
SimuScale: Optimizing Parameters for Autoscaling
of Serverless Edge Functions through Co-Simulation

Philipp Raith
Distributed Systems Group, TU Wien

Vienna, Austria
p.raith@dsg.tuwien.ac.at

Stefan Nastic
Distributed Systems Group, TU Wien

Vienna, Austria
s.nastic@dsg.tuwien.ac.at

Schahram Dustdar
Distributed Systems Group, TU Wien

Vienna, Austria
dustdar@dsg.tuwien.ac.at

Abstract—Serverless Edge Computing is growing in popularity,
and while commercial providers are starting to offer edge-
oriented products, much research is still being done on orches-
trating functions (e.g., autoscaling). These approaches range from
threshold- to AI-based strategies and support various Service
Level Objectives (SLOs), such as Round-Trip-Time (RTT) and re-
source usage. However, the Quality of Service (QoS) continuously
deteriorates due to the dynamic edge-cloud continuum and static
parameterization of orchestration strategy parameters. Platforms
must adapt the orchestration parameters during runtime to
counteract this drift that causes SLO violations. To this end,
we introduce the Orchestration Parameter Optimization Prob-
lem (OPOP), which aims to find parameters for orchestration
strategies to minimize SLO violations. We propose a novel self-
adaptive Simulation-based Scaling (SimuScale) approach that
uses co-simulation to solve OPOP for autoscalers during runtime.
SimuScale uses live monitoring data to feed the simulation and
perform parameter optimization. Our Proof of Concept is inte-
grated with Kubernetes and evaluated on a real-world edge-cloud
testbed. While this work focuses on a threshold-based autoscaler,
it can be extended to optimize other orchestration components
(e.g., schedulers). Our experimental results show that SimuScale
finds parameters that decrease RTT SLO violations between 15%
and 40%. SimuScale also can reduce resource usage by 29.87%
while maintaining the target 95th RTT percentile. Moreover, it
can reduce variance caused by different request patterns, making
orchestration strategies more resilient in realistic scenarios.

Index Terms—Serverless Edge Computing, Co-Simulation,
Self-Adaptive System, Autoscaler, Edge-Cloud Continuum

I. INTRODUCTION

Serverless Computing promises to prevent customers from
manually managing function deployments by autonomously
orchestrating function instances in response to incoming re-
quests. Serverless Edge Computing [1], [2] can be a key
enabler for emerging application paradigms, such as Edge
Intelligence [3], that require all resources in the edge-cloud
continuum to work together [4], [5]. Serverless platforms build
on orchestration strategies to autoscale function instances,
schedule them, and route requests from clients. Orchestration
strategies adapt functions to satisfy operational goals, such
as service level objectives (SLOs), which include user- and
platform-oriented ones. For example, users want low latency
response times to reduce cost and satisfy function require-
ments. Platform providers try to satisfy customer SLOs and
avoid penalties. At the same time, they aim to achieve high

resource efficiency, making it challenging to balance between
customer and platform provider goals.

Research in orchestrating deployments has been extensively
discussed and evaluated in the literature. Autoscaling has
evolved over the years, from grid computing to cloud comput-
ing, and nowadays moves towards the edge [6], [7]. However,
an issue that remains is finding appropriate parameters and
drifting orchestration strategies. Proper parameterization of
orchestration strategies, in general, is challenging. Autoscal-
ing strategies can use various optimizations, ranging from
heuristic- , threshold-, to AI-based, etc. [7]. Which can focus
on different aspects, such as reducing data movement [8],
guaranteeing response times [9], or reducing resource usage
[10]. However, the optimal performance of those strategies
is bound to the proper parameterization, which depends on
the environment (e.g., infrastructure, deployed functions, client
request patterns, etc.) [8], [11].

Straesser et al. [12] present several challenges for au-
toscalers in production, and one is finding optimal parame-
ters, which can become increasingly complex with different
approaches. Al et al. [13] show the impact of the varying CPU
threshold for autoscalers on cost and performance. Calzarossa
et al. [14] conclude that the performance of autoscalers de-
pends on the configurations, which in turn is affected by the
request patterns, giving reason to adapt configurations during
runtime. Especially in Serverless Edge platforms spanning
multiple geo-distributed clusters, request patterns can vary
from one to another. For example, the Shanghai Telecom
dataset [15]–[17], which contains real-world mobile user re-
quest patterns, shows a high variance of concurrent users over
time, causing Orchestration Strategy Drift. Therefore, an open
challenge is putting orchestration strategies into production
and finding parameters to satisfy operational requirements
during runtime to avoid Orchestration Strategy Drift.

These drifts are analogous to the concept of Concept Drift,
established in Machine learning operations (MLOps) [18].
Concept Drifts occur when the input changes over time and
AI models need to be retrained. A common indicator is a
decreasing model performance. In the same way, we observe
increasing SLO violations due to outdated orchestration pa-
rameters as request patterns and environments change. To find
appropriate parameters and prevent this drift, we introduce
the Orchestration Parameter Optimization Problem (OPOP),

which tries to minimize SLO violations by updating orches-
tration parameters during runtime.

To this end, we introduce a self-adaptive Simulation-based
Scaling approach (SimuScale) that can efficiently tune orches-
tration strategy parameters during runtime. It uses a trace-
driven open-source simulator faas-sim [19] to run the opti-
mization process of finding autoscaling parameters and solving
OPOP. SimuScale is implemented as Proof-of-Concept (PoC)
that works in tandem with Kubernetes. The Co-Simulation
allows us to evaluate new orchestration strategy parameters
efficiently, thus enabling parameter optimization. It uses live
monitoring data to replicate the state of the real-world system
as closely as possible and can then use optimization techniques
to find appropriate parameters. We present two approaches: a
random parameter search and a gradient descent-based one.

The contributions of this paper are as follows:

1) Based on the issue of Orchestration Strategy Drifts, we
introduce our model to solve OPOP. This aims to min-
imize SLO violations by selecting optimal parameters
for orchestration strategies.

2) We propose SimuScale1, a self-adaptive approach to
automatically adapting threshold-based autoscalers dur-
ing runtime by using co-simulation. SimuScale works
in tandem with Kubernetes, a container orchestration
platform commonly serving as a base for open-source
Serverless platforms. Because we use a simulation, we
evaluate the impact of the time horizon we simulate
ahead. Results show that a short time horizon (i.e.,
30 seconds), results in lower SLO violations for high-
intensity request patterns.

3) A random and a gradient descent approach are used to
solve OPOP and integrated into SimuScale. We evaluate
our approach on a real-world testbed that demonstrates
SimuScale’s ability to reduce SLO violations by tun-
ing the autoscaler’s parameters. Experiments show that
SimuScale can reduce SLO violations between 15% to
40% while overcoming the challenge of dynamic request
patterns.

Our evaluation on a real-world testbed shows that the co-
simulation approach can facilitate self-adaptive platforms. The
results indicate that our platform prototype can reduce SLO
violations and resource usage effectively.

The remaining work is structured as follows. Section II
introduces Orchestration Drifts in more depth and shows pre-
liminary results that underline the issue of static autoscaler pa-
rameters. Section III introduces our model to solve OPOP that
builds on three components: a Serverless Edge Platform, the
Parameter Optimization, and the Co-Simulation. Section IV
presents details of our PoC implementation and the experiment
setup. Section V shows and discusses the results obtained from
our empirical evaluation of SimuScale. Section VI presents
related work, and and Section VII introduces future work and
concludes this work.

1https://github.com/edgerun/simu-scale

II. MOTIVATION

This section introduces the issue of drifting orchestration
strategies and highlights its impact on functions based on
results from preliminary experiments.

A. Orchestration Strategy Drift

The parameters of an orchestration strategy depend on the
implementation. They are crucial as they dictate the strategy’s
behavior and must be appropriately set to perform well in
real-world systems [8], [12]. For example, an autoscaler that
tries to satisfy a certain round-trip-time (RTT) might neglect
resource usage. Different request patterns make this even more
difficult and render seemingly obvious parameters unsuitable,
like setting the threshold to the target RTT. We showcase this
behavior in Section II-B but focus for now on the overall
problem of drifting orchestration strategies and the impact on
platform performance.

For that, we quantify a platform’s performance through
Service Level Objectives (SLOs). SLOs are measurable targets
of Key Performance Indicators (KPI) that quantify deployed
functions’ Quality of Service (QoS). KPIs include the state
of the function (e.g., availability, latency, cost) or the state of
the infrastructure (resource or network usage). For example,
an SLO might specify that the function’s RTT should have
a 95th percentile of 0.6s. A violation occurs any time the
RTT is higher than 0.6s, resulting in penalties for the platform
provider. Customers usually impose them, but we also consider
platform-oriented ones, such as resource usage. The platform’s
task is to balance these goals and avoid SLO violations.

However, serverless systems are highly dynamic and not
static. For example, request patterns can differ significantly
across compute clusters, even within a single city. The Shang-
hai Telecom dataset, based on real-world mobile user request
patterns, shows this [15]–[17]. Therefore, setting orchestration
strategy parameters statically is not enough as systems change
over time, causing more SLO violations to happen [12], [13].
We call this issue Orchestration Strategy Drift and investi-
gate its impact on our testbed by running request patterns
from the Shanghai Telecom dataset using different autoscaler
parameters. Specifically, we look into the negative impact
static parameters can have under varying request patterns on
performance and resource usage.

B. Drifts in Practice

In the following, we motivate and showcase the Orches-
tration Strategy Drift in practice on our testbed. We focus
on the impact of different request patterns and extract three
patterns from the Shanghai Telecom dataset [15]–[17]. The
dataset contains mobile user connections of over 2000 base
stations in Shanghai. We introduce three scenarios (S1, S2,
S3) that combine request patterns of different base stations. S1
being the one with the highest number of requests and S3 the
one with the lowest. We expect the RTT’s 95th percentile of
the deployed function to be around 0.6s. This includes network
latency and any queuing delay in the system. Further details of

0.2 0.3 0.5 0.6 0.7 0.9
Autoscaler RTT Threshold (s)

0.0

0.5

1.0

1.5

2.0

2.5
95

th
 P

er
ce

nt
ile

 R
TT

 (s
)

SLO = 0.6s

Scenario
S1
S2
S3

(a) 95th Percentile RTT in seconds

0.2 0.3 0.5 0.6 0.7 0.9
Autoscaler RTT Threshold (s)

0

10

20

30

40

50

60

70

SL
O

Vi
ol

at
io

ns
 (%

)

Scenario
S1
S2
S3

(b) SLO Violations in % (Target: 0.6s)

0.2 0.3 0.5 0.6 0.7 0.9
Autoscaler RTT Threshold (s)

0

20

40

60

80

M
ed

ia
n

Fu

nc
tio

n
Re

pl
ica

s Scenario
S1
S2
S3

(c) Median of running Function Replicas

Fig. 1: Autoscaler Drift across different Request Patterns from Shanghai Telecom Dataset [15]–[17].

the autoscaler and the experiment setup, including the testbed,
can be found in Section IV.

As seen in Figure 1, we set the autoscaler’s RTT threshold
parameter in the range of 200ms to 900ms by using the
95th percentile. The results show that the SLO violations
differ between scenarios, and in our case, no setting could
have a steady RTT across all scenarios. We also observe that
setting the RTT threshold to 0.6s (the SLO) has a significant
variance between scenarios, making it challenging to find the
right setting. Moreover, Figure 1c shows the resource usage
(i.e., running replicas) per threshold setting. While lower RTT
thresholds imply better performance, they also lead to higher
resource usage. These experiments focus on a threshold-based
autoscaler; other papers explore similar topics and indicate
that parameterization is not easy and heavily depends on the
environment [8], [12]. Based on those findings, we introduce
our model to overcome OPOP and present SimuScale, a
Simulation-based Scaling approach that we implement on a
real-world system.

III. SIMUSCALE - ORCHESTRATION PARAMETER
OPTIMIZATION

Serverless Computing platforms, responsible for avoiding
SLO violations through function scaling, scheduling, and
request routing, grapple with the complexity of maintaining
optimal orchestration parameters over time. We previously
identified this issue as OPOP and introduce our model to
solve it, which is an unconstrained optimization framework. Its
core objective is to find orchestration strategy parameters that
minimize the SLO violations. The SLO violations measure
the discrepancy between the observed KPIs and the desired
SLO targets. Therefore, the goal is to minimize a function
f(x), Rn → R, where the input x represents the orchestration
parameters and f estimates the SLO violations resulting from
those parameters for a given scenario. We leave the decision
variable x unconstrained to emphasize the general applicability
towards various orchestration strategies. f uses a function h to
estimate the KPIs based on x which are put into a cost function
v to calculate the SLO violations (i.e., the discrepancy between
the target SLO and the observed KPIs).

Figure 2 depicts the individual components of our model
to solve OPOP — SimuScale. The three high-level compo-

nents contain the real-world Serverless Edge Platform (Sec-
tion III-A), the Parameter Optimization (Section III-B), and
the Co-Simulation (Section III-C). The parameter optimiza-
tion runs at intervals and uses co-simulation to optimize the
parameters and minimize SLO violations. The Co-Simulation
receives the latest platform state to mimic the real world as
closely as possible. This includes the orchestration compo-
nents, clients, and worker nodes on which function instances
run. The Co-Simulation represents the implementation of the
function h to estimate KPIs, while the Parameter Optimization
uses different modes that describe the implementation of the
cost function v. The Co-Simulation enables us to perform
what-if scenarios considering the platform’s state, the request
pattern, and parameters. We take a snapshot of the current
state, transform the simulation can use, and execute scenarios
based on the known request pattern. The optimization uses
Co-Simulation to find the suitable parameters, minimize the
SLO violations, and send them to the platform, where the
orchestration components are updated. Next, we lay out the
details of each component by starting with the Serverless Edge
Platform.

A. Serverless Edge Platform

The Serverless Edge platform is geo-distributed and consists
of multiple clusters. It is based on a decentralized orches-
tration architecture [10] and includes worker nodes that host
function replicas and clients that spawn requests. Orchestration
strategies include schedulers, autoscalers, and load balancers
that route client requests to the function replicas. It consists
of a decentralized autoscaler implementation in which each
cluster runs one instance. Autoscaler instances monitor their
cluster and scale in or out by sending messages to the
global scheduler. The global scheduler determines a cluster
to start or remove function replicas. A local scheduler selects
a worker node to start a new function replica. These build the
fundamental components of our envisioned Serverless Edge
Platform. However, we want to emphasize that SimuScale is
not constrained to this particular architecture. For example,
SimuScale is not concerned with the implementation details of
schedulers, autoscalers, or load balancers. The implementation
of h is responsible for capturing the platform’s logic, including
orchestration and compute clusters, to estimate the KPIs. To

Worker
WorkerWorker

Cloud Cluster

Cloud
Orchestration

Edge Cluster

Worker
WorkerClient

Worker
WorkerWorker

Edge
Orchestration

 III-A) Serverless Edge Platform

State

 III-B) Parameter Optimization III-C) Co-Simulation

Orchestration

Edge Orchestration

Cloud Orchestration

Load
Balancer

Local
Scheduler

Load
Balancer

Local
Scheduler

AutoscalerGlobal
Scheduler

Orchestration
Worker

Client

Edge Cluster

Worker

Cloud Cluster

Simulated Infrastructure

Simulated
System

State Requests

Function
Replicas

Resource
Usage

Modes

Balanced

Balanced-Perf.Performance

Optimization Algorithm

RandomGradient
Descent

Parameter Search
Process

Update

Fig. 2: SimuScale - A high-level system overview

this end, we present our Parameter Optimization approach
that uses Co-Simulation to run an optimization algorithm
and updates the real-world components afterward, as seen in
Figure 2.

Transfrom State
Into

Simulation
State

Determine
a set of

Orchestration
Parameters

Run
simulations

with
Parameters

Determine best
Parameter Set

Apply
Parameters

on Real-World
System

vhx

Fig. 3: Parameter Optimization using Co-Simulation

B. Parameter Optimization

We introduce the Parameter Optimization process to solve
OPOP. As shown in Figure 2, the Parameter Optimization con-
sists of three parts: the Optimization Algorithm, The Parameter
Search Process, and the Modes. The Optimization Algorithm is
used to find parameters minimizing the SLO violations. The
Parameter Search Process takes the Optimization Algorithm
and a Mode as input and uses the Co-Simulation to find
parameters that reduce SLO violations, effectively solving
OPOP. The Modes can be viewed as implementations of the
cost function v and the Co-Simulation as implementation of
h.

A basic approach to finding parameters is depicted in
Figure 3. First, we transform the real-world state into the
simulation state. Then, we generate parameters based on the
current ones. Next, we run simulations for each parameter set,
calculate the SLO violations for each setting, and choose the
parameter set with the lowest violations. We apply these pa-
rameters to the real world. This builds the base implementation
of our model to solve OPOP. The orchestration parameters
represent the input, x, the Co-Simulation represents the im-
plementation of h, while the step of determining the optimal
parameter set is the implementation of v. However, we need an
optimization approach to find parameters that minimize SLO

violations, which consists of the optimization algorithm and
the cost function.

We use two optimization algorithms: a random parameter
search and one based on the Gradient Descent (GD) [20]
algorithm. The Random approach creates n parameter sets
and starts n simulation in parallel. Each parameter set is
generated randomly by applying a percentage adjustment to
each parameter. Specifically, we draw a random percentage
number from a uniform distribution [−15, 15] and apply the
adjustment to the current orchestration parameter value. The
GD approach approximates the gradient of the cost function
by adding and subtracting an epsilon value e to each parameter
x ∈ x, assuming x is of length m. We approximate the

gradient
∂f

∂xi
using the central approximation method.

And then apply the update, with a learning rate of α:

xi = xi − α · ∂f

∂xi

In every iteration, we perform these steps for each xi ∈ x.
These two approaches differ in complexity in finding suit-

able parameters. For example, Gradient Descent has two
stopping criteria and simulates the system sequentially to
determine the parameters. The random approach only iterates
once and is, therefore, easy to parallelize, whereas we can
only parallelize each iteration of the Gradient Descent. Besides
the approaches to perform the optimizations, we also need
to determine the best parameter settings. For example, how
can we determine which configuration is the most suited? To
answer this, we introduce modes that dictate how results are
judged. Specifically, this addresses implementing the function
v. v acts as an objective function and calculates the SLO
violation cost based on the observed KPIs.

We introduce three modes that vary in the metrics they use
and the goal they follow. The first one, Performance, only takes
the RTT into account by using the 95th percentile to calcu-
late the difference to the configured SLO target (SLORTT).
This mode focuses on performance and, therefore, will have

increased resource usage while keeping performance SLO
violations down. The other two modes use, in addition, a
second objective function that takes the resource usage into
account by calculating the difference to a target resource
usage (SLOCPU). Resource usage is the average number of
CPU cores used, and the goal is a percentage of the target
resource usage. Based on that, we introduce a cost function
that combines performance resource usage by building the
weighted sum of the deviation from the target:

vcombined =
RTTP95

SLORTT
∗ wp +

CPUmean

SLOCPU
∗ wr

This allows us to balance the importance of each error and
introduce the remaining two modes: Balanced and Balanced-
Perf.. Balanced sets wr = 1 and wp = 0.5, while Balanced-
Perf. reverses the weight settings.

C. Co-Simulation

The Co-Simulation estimates the platform’s behavior (i.e.,
KPIs) based on the orchestration parameters. For this, we
transform the state of the real-world platform in the Co-
Simulation and run different simulation scenarios. It allows us
to simulate different scenarios ahead of time and use the KPIs
to calculate the SLO violations, as shown in Section III-B. In
the following, we describe the transformation of the real-world
into the simulation state. The mapping includes orchestration
strategies, worker nodes, clients, and network connections
between clusters and individual nodes, as shown in Figure 2.
The simulated system state contains the latest information
about function replicas, requests (i.e., completed function
invocations), and resource usage. The information about fin-
ished requests contains the start and end timestamps from
the client and the actual function execution (i.e., the duration
without any queuing), which load balancers were used, and the
function replica that processed the request. Function replica
state includes the worker node they were placed on and the
state (e.g., running, deleted, etc.). It is also important to
transform the function replicas currently being scheduled (i.e.,
pending) and the resource usage, such as CPU and memory
usage. The simulated infrastructure and system state can be
extended to incorporate other aspects. SimuScale constantly
observes the latest state to perform the transformation every
time the Parameter Optimization is executed.

D. Challenges

An issue prevalent across many orchestration implementa-
tions is the challenge of setting the initial parameters. The
impact of those can be crucial to the overall performance of
functions and the resulting resource usage. A challenge for
SimuScale is the ability to self-adapt from seemingly wrong
settings, which can be seen as convergence to the optimal value
and is important for SimuScale’s ability to handle worst-case
scenarios. Therefore, validating whether SimuScale can handle
this is essential.

Another challenge is to set the right Simulation Time Hori-
zon. That is, how much time should each scenario simulate?

For example, if we set the Simulation Time Horizon too short,
we might miss critical changes in the request pattern. On the
other hand, each simulated scenario might take longer with an
increasing Simulation Time Horizon, thus resulting in fewer
updates. Another aspect to consider is when putting SimuScale
into production; tools must be used to estimate future request
patterns, which probably worsen with longer time horizons.
Therefore, finding the right Simulation Time Horizon setting
is critical.

Moreover, we investigate what impact SimuScale has on
SLO violations and resource usage compared to the static
deployment of orchestration strategies. Especially when con-
sidering different request patterns and if the modes are de-
terministic regarding their goal. We are addressing all these
questions and challenges and our real-world implementation
of SimuScale in the following.

IV. IMPLEMENTATION & EVALUATION

We evaluate SimuScale2 using the two optimization ap-
proaches: Gradient Descent (GD) and Random on a real-world
testbed. We compare it to the static case, where parameters are
only set once initially. This serves as a baseline and replicates
the behavior expected nowadays on serverless platforms. The
following outlines our implementation of SimuScale and de-
tails of the experiment setup.

A. Serverless Edge Platform

Our PoC Serverless Edge platform is built on Kubernetes, a
container orchestration service, and is split into multiple clus-
ters - from cloud to edge. Users can send requests to the load
balancers, which forward them to running function replica in-
stances, which the autoscalers and schedulers manage. telemd
pushes monitoring data via Redis’ publish/subscribe feature.
The orchestration components subscribe to these metrics and
are all implemented in Python, each using an in-memory cache
for the system state. The system state includes resource usage,
information about requests, running application instances, etc.
The orchestration components run as individual containers in
the cluster for which they are responsible.

1) Orchestration Strategies: To comply with our model
presented in Section III-A, we must implement an autoscaler,
global and local schedulers, and load balancers for the de-
centralized orchestration architecture. The autoscaler imple-
mentation mimics the official Kubernetes Horizontal Pod Au-
toscaler3, which is commonly used in open-source serverless
platforms [21]. We denote this strategy as HPA. It is based
on the round-trip-time (RTT) of requests per cluster. Based on
the current metric value, the HPA estimates how many replicas
are needed to satisfy the threshold value. The threshold value
is a parameter that we denote as thrRTT . It uses the following
formula to calculate the desired number of function replicas:

desiredReplicas = currentReplicas × RTTP95

thrRTT

2https://github.com/edgerun/simu-scale
3https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

RTTP95 is the 95th percentile of the observed RTT. Other pa-
rameters include reconcile interval, lookback, and a percentile.
The reconcile interval determines the time the autoscaler
waits before executing again, the lookback determines how
far we look into the past when calculating the current value,
i.e., RTTP95. The threshold (thrRTT) is the parameter we
optimize in each experiment. HPA and open source platforms
that re-use it default to a reconcile interval of 15 seconds [22],
[23]. We set the percentile to 95 and the lookback to 10
seconds across all experiments.

If the autoscaler decides the platform should create or
remove function replicas, it sends a message to the global
scheduler. The global scheduler implements a simple network-
aware strategy by first prioritizing clusters from which the
scale action stems. If the origin cluster is out of resources,
it chooses the nearest cluster based on network latency. The
local scheduler is implemented like the default Kubernetes
scheduler, filling up all worker nodes while balancing out used
resources. Both schedulers are kept simple on purpose to focus
on the autoscaler and the optimization of its parameters.

B. Co-Simulation

We use the open-source trace-driven Serverless Edge Com-
puting platform simulator, faas-sim [19], to replicate the real-
world in the cluster. However, to limit the scope of this work,
we make the following assumptions. (1) we know the workload
pattern, (2) we know the network configuration between nodes
and clusters, (3) we do not simulate any node failure that can
happen in the real world, and (4) we assume that all function
images are stored already on each node. These assumptions
would otherwise require solutions outside this work’s scope, as
we want to focus on the efficacy of the co- simulation’s ability
to adapt to real-world orchestration components. Specifically,
we need a simulator that can replicate the behavior of our
components in the simulation. We use a Python API to
implement the core logic of all orchestration components
once and re-use it in the simulation and the real-world4,
the orchestration strategy implementations can be found on
Github5. Besides avoiding code duplication and guaranteeing
parity in terms of logic, the simulator uses real-world traces to
feed the simulation. In contrast to the popular CloudSim [24],
it does not rely on the knowledge of how many instructions
an application takes but rather on real-world measurements. In
our case, we conduct profiling experiments to determine the
execution time of the deployed function and fit a logarithmic
distribution from which we sample [19], [25]. The profiling
experiments invoke the function, we use for the evaluation,
on each host and allow us to fit a logarithmic distribution
from which we sample in the simulation. The real advantage
of this approach lies in the support for future applications
that can be observed in a black-box manner without counting
executed instructions. A challenge of such a system is to
communicate the state efficiently. The Co-Simulation runs in a

4https://github.com/edgerun/faas
5https://github.com/edgerun/faas-optimizations/

central location and always keeps the global state in-memory.
Therefore, powerful machines can be used to execute the
optimization.

C. Parameter optimization

We implement the Parameter Optimization through a Ran-
dom and GD approach to minimize the SLO violations of
f . The input x of f contains the target duration (thrRTT)
of each autoscaler instance. The Random approach generates
n new autoscaler parameters that each is being evaluated
through a simulation. In contrast to the simulations in GD,
we can execute all n simulations at the same time. Specif-
ically, we generate 5 parameter sets, and each autoscaler
parameter is randomly set in the range of ±15% of the
original value. The GD settings were chosen based on a set
of preliminary experiments. As mentioned, we must avoid
long-running optimizations to avoid updating the autoscaler
based on outdated data. Therefore, we set the number of
iterations to 3, the learning rate to 1e-1, and the epsilon value
to 0.2. These settings must be adjusted to the underlying
simulation and have proven feasible for our setup. Besides
the optimization approaches, we also implement three modes,
already introduced in Section III-B: Performance, Balanced
and Balanced-Perf. Performance only considers performance
SLO violations, i.e., using the RTT, while the other two
incorporate performance and resource aspects. To this end, we
set weights for Balanced and Balanced-Perf. that determine
their focus. The former favors resource usage (i.e., wr = 1,
wp = 0.5) and the latter reverses them (i.e., wr = 0.5,
wp = 1). The weights are set according to their goal. For
all modes SLORTT = 0.6 and SLOCPU = 50%. That means
all modes have 0.6s as 95th percentile target and should not
use more than 50% of available CPU cores. We evaluate all
approaches and modes, resulting in six combinations.

D. Experiment Setup

Besides implementing SimuScale, we also highlight details
of the remaining experiment setup. This ranges from the
testbed specification to the function we use to test SimuScale
and the request patterns synthesized from a real-world dataset.

1) Testbed: The experiments run on a real-world testbed
that consists of three compute clusters using an end-to-
end evaluation framework for edge-cloud resource manage-
ment [25]. We denote the edge clusters as EC1 and EC2,
while the one mimicking a cloud is called CC. Our testbed
contains 15 VMs with different sizes to mimic a heterogeneous
environment, similar to related works [26], [27]. Each VM has
between 2 to 8 cores at 2.1GHz and 3 to 16GB of memory —
we set the platform to spawn at most 90 function instances.
We use the Linux network traffic shaping tool tc to emulate
network latency between the clusters. Between cloud and edge
clusters, we inject a network latency of 60ms, and between
edge clusters, 30ms. The clients connect to the Edge Clusters
and send the requests to the respective load balancer instances
in each cluster.

0 200 400
0
5

10
15
20
25

RP
S

Station = BS1

0 200 400

Station = BS2

0 200 400
TimeStamp

0
5

10
15
20
25

RP
S

Station = BS3

0 200 400
TimeStamp

Station = BS4

Fig. 4: Base station request patterns

Scenario EC1 EC2

S1 BS1 BS2
S2 BS3 BS4
S3 BS2 BS4

TABLE I: Request pattern to Edge Cluster mapping.

2) Function: The deployed function is CPU-bound and
calculates a specified number of digits of π. This enables us
to mimic short-running CPU-focused functions and vary the
execution duration. Due to system delay, we expect the 95th
percentile to be around 600ms. As we do not focus on the most
optimal function placement in this work, we expect the cloud
cluster to host function replicas and incur network overhead.
The function is chosen to mimic a low-latency AI inference
service, such as is typical for Edge Intelligence [10].

3) Request Patterns: An important part of our experiments
is the use of request patterns that exhibit different degrees
of requests over time. The request patterns are based on the
Shanghai Telecom dataset [15]–[17], and we extract them from
four base stations. We chose the base stations based on the
number of connected users and their patterns. Specifically,
we have taken the profiles of the following base stations
and assigned each an ID from which on we use to refer
to them: 31.218201/121.487151 (BS1), 35.379598/116.072359
(BS2), 31.129955/121.336848 (BS3), 31.395915/121.363062
(BS4). We synthesize request patterns for our experiments by
extracting each base station’s general pattern over 48 hours
and trimming it to 10 minutes of actual requests. The patterns
per base station are shown in Figure 4. Base station A has the
highest requests (∼ 4000), while the others have each around
∼ 2000. The requests per second are based on the number
of users connected at each point, each sending three requests.
The interarrival times are drawn from a Poisson distribution.
Based on these profiles, we create three scenarios that assign a
request pattern to an edge cluster in our testbed. The scenarios
and request pattern mappings are shown in Table I.

30s 60s 120s 240s
Simulation Time Horizon (s)

20

30

40

50

60

SL
O

Vi
ol

at
io

ns
 (%

)

S1
S2
S3

Fig. 5: SLO Violations under different Sim Time Horizons

V. RESULTS

A. Key Performance Indicators

In the following, we focus on three KPIs: SLO Violations in
%, 95th percentile of the Round Trip Time in seconds, and the
median number of running replicas over the experiment. The
SLO violations are calculated by grouping the requests into
windows (i.e., 1 second) and calculating the 95th percentile.
A violation occurs if the value exceeds the SLO (i.e., 0.6s).
Based on that, we count how often an SLO violation occurred
relative to the complete experiment.

B. Simulation Time Horizons

First, we look into the impact the Simulation Time Horizon
has on the results. For this, we run shortened experiments with
the Balanced-Perf. mode using four duration settings that we
simulate ahead: 30, 60, 120 and 240. The results of these
experiments decide which setting we use in the remaining
experiments. Figure 5 shows the median SLO Violations in
(%) across the duration settings and scenarios. We observe that
shorter Simulation Time Horizons positively impact the SLO
violations. Specifically, the two scenarios with more requests
(i.e., S1 and S2) had the lowest median SLO Violations with
the duration set to 30 seconds. However, a positive trend exists
when looking at S3, where a longer time horizon lowers the
median number of SLO violations and reduces the variance.
We believe these results confirm our assumption of shorter
Simulation Time Horizons allowing the system to update more
often, making it more resilient against bursty workloads. While
longer Simulation Time Horizons allows the platform to find
more suitable parameters in case the workload is relatively
stable. We select the 30 seconds Simulation Time Horizon as
our default for the remaining experiments.

C. Static vs. Co-Simulation

Next, we look into the results when setting the initial
autoscaler RTT threshold to 0.6s (i.e., thrRTT = 0.6). The
results determine whether SimuScale can reduce the SLO
violations and its impact on resource usage. Figure 6 shows
that SimuScale can reduce the SLO Violations by up to 15%
on average across all scenarios when using the Balanced-Perf.
mode and GD optimization in comparison to Static. More-
over, the minimal exhibited variance shows that SimuScale is

Static Random
Performance

Random
Balanced-Perf.

Random
Balanced

GD
Performance

GD
Balanced-Perf.

GD
Balanced

10

20

30

40

50

60

70

80
SL

O
Vi

ol
at

io
ns

 (%
)

Fig. 6: SLO Violations - thrRTT = 0.6s

Static Random
Performance

Random
Balanced-Perf.

Random
Balanced

GD
Performance

GD
Balanced-Perf.

GD
Balanced

0

10

20

30

40

M
ed

ia
n

Ru
nn

in
g

Fu
nc

tio
n

Re
pl

ica
s

Fig. 7: Resource Usage - thrRTT = 0.6s

effective across scenarios. However, an unexpected result is
that the GD approach using the Performance mode was not
able to reduce the SLO violations as much as the Random.
The resource usage in Figure 7 shows that these two had the
highest number of replicas. While this should imply a better
performance, it might be less beneficial in edge-cloud systems
to spawn that many function replicas due to network latency.
We suspect that the Performance settings spawned many
replicas at the wrong time. Therefore, overall RTT increased in
these cases. However, we can also see in Figure 8 that the RTT
for Performance and GD - Balanced-Perf. were lower than
the Static setting. Based on that, aggressive modes, such as
Performance, can harm the overall SLO compliance in contrast
to those more reluctant to increase resource usage in favor
of performance. The Balanced modes, while using the least
amount of replicas, performed worse in terms of performance.
However, looking at the SLO Violations, it becomes clear
that using GD for optimization reduces variance. We conclude
that SimuScale can effectively reduce SLO violations while
balancing performance and resource usage, i.e., Balanced-Perf.
only used on average 30% more replicas but keeping the
resource usage below the SLOCPU of 50% while reducing
the SLO violations on average by 15%.

D. Impact of Thresholds

The following section covers the other two initial autoscaler
RTT thresholds we set. Specifically, we set thrRTT = 0.3
and thrRTT = 0.9. The first setting allows us to observe the
platform’s performance if the threshold is set much lower than

Static Random
Performance

Random
Balanced-Perf.

Random
Balanced

GD
Performance

GD
Balanced-Perf.

GD
Balanced

0

2

4

6

8

10

12

RT
T

95
th

 P
er

ce
nt

ile
 (s

)

SLO = 0.6s

Fig. 8: RTT P95 - thrRTT = 0.6s

Static Random
Performance

Random
Balanced-Perf.

Random
Balanced

GD
Performance

GD
Balanced-Perf.

GD
Balanced

1

2

3

4

5

6

7

RT
T

95
th

 P
er

ce
nt

ile
 (s

)

SLO = 0.6s

Fig. 9: RTT P95 - thrRTT = 0.3s

the SLO, and the second is when the initial threshold is higher.
To examine SimuScale’s ability to adapt the threshold, we want
to show it can reduce resource usage while keeping the RTT
low and update the threshold setting to reduce SLO violations
substantially.

First, we observe the results when setting thrRTT to 0.3s.
Figure 9 shows the median 95th percentile of the observed
RTT over all scenarios and experiments. Such a low threshold
positively impacts the performance of the Static autoscaler.
It achieved a 95th percentile of under 0.6s without updating
the threshold. At the same time, the GD approach using the
Balanced-Perf mode achieved the same with some outliers.
The other approaches diverged more from the SLO. Before
looking more into the Balanced-Perf results, the GD - Bal-
anced approach was able to have a similar SLO violation count
in the S1 scenario. In this case, we suspect the high amount
of traffic caused the optimization to stay at a low threshold,
while in other scenarios, it resulted in increasing thresholds.

Moreover, the GD - Balanced-Perf. approach was able to
have only 8% SLO violations in S3, while the Static approach
had an average of 6%. Therefore, SimuScale was also able to
handle a lower threshold setting and, as Figure 10 shows, was
able to reduce the resource usage significantly in comparison
to the Static approach. Especially in the just described sce-
nario, where SimuScale only had 2% more SLO violations,
it could do so with a 29.87% resource usage reduction. The
resource usage decreased overall in all approaches and modes,
which explains the rising SLO violations and high RTT.

While SimuScale can handle lower thresholds by having

S1 S2 S3
Scenario

GD
Balanced

GD
Balanced-Perf.

GD
Performance

Random
Balanced

Random
Balanced-Perf.

Random
Performance

M
od

e
-32.14 -73.97 -80.52

-2.98 -23.29 -29.87

-38.10 -56.16 -28.57

-28.57 -53.42 -58.44

-21.43 -28.77 -46.75

-35.71 -26.03 -18.18

80

70

60

50

40

30

20

10

Fig. 10: Resource Usage Decrease (%) to Static (thrRTT =
0.3s)

a reduced resource and maintaining a similar performance,
it also can adapt to threshold settings that are too high.
We set the parameter thrRTT = 0.9s in this case. The
Static variant will perform worse with many SLO violations.
However, the focus of these results should emphasize the
versatility of SimuScale. Figure 11 shows the SLO violations
for these experiments. While SimuScale’s Random approach
and the Balanced mode failed to adapt quickly enough, it
was able to significantly reduce SLO violations using the GD
approach with Performance and Balanced-Perf. modes. Across
all scenarios, the Performance mode reduced median SLO
violations compared to the Static approach by around 40%.
This indicates that the Performance mode was too aggressive
for other initial threshold settings but appropriate for too high
values. Besides reducing the SLO violations, Figure 12 shows
the difference of the 95th RTT percentile relative to the Static
experiments. Here we can see that Performance reduced the
RTT by up to 84% in the case of S1.

Based on these results, we conclude that SimuScale can
reduce resource usage and SLO violations. While the GD
approach using Balanced-Perf. was able to perform better
or similar than the Static deployment, the other variants
require further fine-tuning. Especially the Balanced setting
focused too much on resource usage, negatively impacting
SLO violations and RTT. Also, the Performance mode behaved
unexpectedly in some cases and was only able to outperform
Balanced-Perf. when setting thrRTT to 0.9s. Moreover, while
the Random approach yielded good results, it overall had a
higher variance than GD. This was especially visible in the
last set of experiments, where we set the initial threshold to
0.9s.

Static Random
Performance

Random
Balanced-Perf.

Random
Balanced

GD
Performance

GD
Balanced-Perf.

GD
Balanced

20

40

60

80

100

SL
O

Vi
ol

at
io

ns
 (%

)

Fig. 11: SLO Violations - thrRTT = 0.9s

S1 S2 S3
Scenario

GD
Balanced

GD
Balanced-Perf.

GD
Performance

Random
Balanced

Random
Balanced-Perf.

Random
Performance

M
od

e

71.05 48.83 75.34

-35.27 -79.06 -33.03

-84.75 -64.27 -62.77

118.11 59.92 157.83

-14.91 111.78 226.73

125.08 115.07 -27.08 50

0

50

100

150

200

Fig. 12: RTT P95 Difference (%) to Static (thrRTT = 0.9s)

VI. RELATED WORK

A. Orchestration Strategy Parameters

Haidari et al. [28] investigated the impact of different
thresholds for different request patterns. Their results indicate
that the optimal threshold varies under different loads to
minimize resource usage and response times. This underlines
our work as we have shown a similar behavior in Section II.
Similarly, Taherizadeh and Grobelnik [29] explore different
settings for the HPA that they conduct under different request
patterns. They investigate how the reconcile interval impacts
autoscaling decisions, resource usage, and performance. In-
terestingly, they also looked into changing the policy when
removing application instances by only removing one for a
specific set of request patterns. Our work can complement
this finding by extending the optimization process to tweak
parameters and trying different policies that change the overall
behavior. Rossi et al. [30] use Reinforcement Learning agents
to update thresholds for autoscaling during runtime. The main
differences are that their agent learns and interacts with the
real world and that we base our scaling decisions on the
RTT, whereas they explore a CPU-based autoscaler. Therefore,

our simulation-based platform can complement their work by
using it to speed up the training of the agents.

B. Simulations for Resource Management

Simulations of real world systems allow decision makers to
assess what-if scenarios that can guide the selection process
[31]. In the context of orchestration systems (e.g., microser-
vices, functions, containers, etc.) this can help providers ef-
ficiently adapt system components in dynamic environments
[32]. Specifically, the adaptation of autoscaler or scheduler
components profit from simulation-based adaptations in mul-
tiple ways.

Depending on the domain and use case, simulations unite
multiple simulations together in a single cohesive simulation
unit that can reproduce the behavior of a real complex sys-
tem. These simulations are called coupled simulations (co-
simulations) [33] and have been successfully used in improv-
ing container scheduling performance [32], [34]. Like co-
simulations, symbiotic simulations use simulations to direct
real-world systems [35], [36]. Onggo et al. [35] identified three
symbiotic systems combining real systems and simulations and
differ in the interactions between the two. For example, in
the Decision Support Symbiotic Simulation System, decision
makers (e.g., humans) use the simulation’s output to direct the
real system. In contrast, in the Control Symbiotic Simulation
System, simulation directly influences the physical system.

In our work, we implement a PoC that integrates into
Kubernetes and mixes the Control Symbiotic Simulation Sys-
tem approach and co-simulations to solve OPOP. The use
of simulations for resource management during runtime has
been explored in some other works. Frey et al. [37] use a
simulation-based Genetic Algorithm to find optimal architec-
ture configurations for cloud systems. This work complements
our work, as we focus on the platform’s parameters while
they are searching for an optimal architecture. Simulations
can be used similarly in that they mimic the real world, and
their output is used to influence the orchestration components
[32], [34], [36]. Tuli et al. [38] propose CILP, which uses the
simulation as a teacher to generate the ground truth with which
their AI models learn. This work showcases that simulations
can be used to optimize orchestration strategies (i.e., AI-
based). While they use it as a surrogate to generate data,
our simulation interacts directly with the real-world system
by sending autoscaler parameters. SimuScale differs from
others due to its runtime being able to adapt the autoscaler’s
parameters in response to request pattern changes and has
proven to trade-off resource usage and performance based
on high-level parameters. Rausch et al. [8] investigate how
to use simulations for tweaking scheduler parameters, but in
contrast to our system, they do not evaluate in a real-world
setting. However, it showcases that simulations are feasible for
resource management and, specifically, tweaking parameters.

VII. CONCLUSION & FUTURE WORK

Serverless Edge Computing presents a promising platform
paradigm for the heterogeneous edge-cloud continuum by
autonomously managing functions under the SLOs’ guarantee.
Many research works explore different strategies to autoscale,
schedule, or route requests, but in production systems, the
Orchestration Strategy Drift arises, which renders initial or-
chestration parameters unsuitable, causing SLO violations.

Based on that, we propose SimuScale, a self-adaptive
Simulation-based Scaling approach for Serverless Edge Com-
puting. It uses a co-simulation to guide the optimization
algorithm in finding optimal autoscaler parameters. Results
show that shorter simulation time horizons favor bursty work-
loads, while longer horizons can perform better in scenarios
with less variation. Our evaluation on a real-world testbed
has shown that SimuScale can improve the results overall
by reducing SLO violations and variance across different
scenarios. Especially in instances where threshold parameters
are set lower and higher than the SLO, it can reduce resource
usage by up to 29.87% while maintaining the same RTT
and SLO violations by up to 40% and the RTT by up to
84.75%, respectively. However, the results also show that more
investigation is necessary to determine appropriate settings
for the optimization process. For example, some optimization
goals did not yield the expected results and, therefore, require
a detailed look at defining these goals.

Future work aims at extending SimuScale to support other
autoscaling strategies or update parameters of schedulers. An
interesting avenue to make our work usable for AI-based
models is using simulation-generated data for training [32].
This can be useful to extend datasets and enhance the rate at
which AI models can be updated in new environments. Finally,
we want to investigate the uncertainties that are inherently
present in such environments [39] and how they can be
integrated into the co-simulations to achieve more accurate
predictions.

ACKNOWLEDGEMENT

The authors thank the reviewers and Alireza Furutanpey for
their valuable feedback on improving this paper.

REFERENCES

[1] S. Nastic, P. Raith, A. Furutanpey, T. Pusztai, and S. Dustdar, “A server-
less computing fabric for edge cloud,” in 2022 IEEE 4th International
Conference on Cognitive Machine Intelligence (CogMI), 2022, pp. 1–12.

[2] A. Glikson, S. Nastic, and S. Dustdar, “Deviceless edge computing:
Extending serverless computing to the edge of the network,” in Pro-
ceedings of the 10th ACM International Systems and Storage Conference
(SYSTOR 2017). ACM, 2017, p. Article No. 28.

[3] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge intelligence: The confluence of edge computing and artificial
intelligence,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7457–
7469, 2020.

[4] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[5] P. Raith and S. Dustdar, “Edge intelligence as a service,” in 2021 IEEE
International Conference on Services Computing (SCC). IEEE, 2021,
pp. 252–262.

[6] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,
D. Taibi, M. Assuncao, S. S. Gill, R. Gaire, and S. Dustdar, “Serverless
edge computing: vision and challenges,” in 2021 Australasian Computer
Science Week Multiconference, 2021, pp. 1–10.

[7] P. Raith, S. Nastic, and S. Dustdar, “Serverless edge computing—where
we are and what lies ahead,” IEEE Internet Computing, vol. 27, no. 3,
pp. 50–64, 2023.

[8] T. Rausch, A. Rashed, and S. Dustdar, “Optimized container schedul-
ing for data-intensive serverless edge computing,” Future Generation
Computer Systems, vol. 114, pp. 259–271, 2021.

[9] X. Li, P. Kang, J. Molone, W. Wang, and P. Lama, “Kneescale:
Efficient resource scaling for serverless computing at the edge,” in 2022
22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). IEEE, 2022, pp. 180–189.

[10] P. Raith, T. Rausch, S. Dustdar, F. Rossi, V. Cardellini, and R. Ranjan,
“Mobility-aware serverless function adaptations across the edge-cloud
continuum,” in 2022 IEEE/ACM 15th International Conference on
Utility and Cloud Computing (UCC). IEEE, 2022, pp. 123–132.

[11] A. Suresh and A. Gandhi, “Fnsched: An efficient scheduler for server-
less functions,” in Proceedings of the 5th international workshop on
serverless computing, 2019, pp. 19–24.

[12] M. Straesser, J. Grohmann, J. von Kistowski, S. Eismann, A. Bauer, and
S. Kounev, “Why is it not solved yet? challenges for production-ready
autoscaling,” in Proceedings of the 2022 ACM/SPEC on International
Conference on Performance Engineering, 2022, pp. 105–115.

[13] F. Al-Haidari, M. Sqalli, and K. Salah, “Impact of cpu utilization
thresholds and scaling size on autoscaling cloud resources,” in 2013
IEEE 5th International Conference on Cloud Computing Technology
and Science, vol. 2. IEEE, 2013, pp. 256–261.

[14] M. C. Calzarossa, L. Massari, and D. Tessera, “Evaluation of cloud
autoscaling strategies under different incoming workload patterns,” Con-
currency and Computation: Practice and Experience, vol. 32, no. 17, p.
e5667, 2020.

[15] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C.-
H. Hsu, “User allocation-aware edge cloud placement in
mobile edge computing,” Software: Practice and Experience,
vol. 50, no. 5, pp. 489–502, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2685

[16] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
aware microservice coordination in mobile edge computing: A rein-
forcement learning approach,” IEEE Transactions on Mobile Computing,
vol. 20, no. 3, pp. 939–951, 2021.

[17] Y. Li, A. Zhou, X. Ma, and S. Wang, “Profit-aware edge server
placement,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 55–67,
2022.

[18] D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine learning operations
(mlops): Overview, definition, and architecture,” IEEE Access, 2023.

[19] P. Raith, T. Rausch, A. Furutanpey, and S. Dustdar,
“faas-sim: A trace-driven simulation framework for serverless
edge computing platforms,” Software: Practice and Experience,
vol. 53, no. 12, pp. 2327–2361, 2023. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3277

[20] H. E. Robbins, “A stochastic approximation method,” Annals of
Mathematical Statistics, vol. 22, pp. 400–407, 1951. [Online].
Available: https://api.semanticscholar.org/CorpusID:16945044

[21] Knative. (2024) Autoscaling. Accessed: 2024-03-26. [Online]. Available:
https://knative.dev/docs/serving/autoscaling/autoscaler-types/

[22] B. Jeong, S. Baek, S. Park, J. Jeon, and Y.-S. Jeong, “Stable and efficient
resource management using deep neural network on cloud computing,”
Neurocomputing, vol. 521, pp. 99–112, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231222014850

[23] OpenFaaS. (2024) Autoscaling. Accessed: 2024-03-26. [Online]. Avail-
able: https://docs.openfaas.com/architecture/autoscaling/legacy-scaling-
for-the-community-edition-ce

[24] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F.
De Rose, and R. Buyya, “Cloudsim: a toolkit for modeling
and simulation of cloud computing environments and evaluation
of resource provisioning algorithms,” Software: Practice and
Experience, vol. 41, no. 1, pp. 23–50, 2011. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.995

[25] P. Raith, T. Rausch, P. Prüller, A. Furutanpey, and S. Dustdar, “An
end-to-end framework for benchmarking edge-cloud cluster management
techniques,” in 2022 IEEE International Conference on Cloud Engineer-
ing (IC2E), 2022, pp. 22–28.

[26] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Machine learning-based
scaling management for kubernetes edge clusters,” IEEE Transactions
on Network and Service Management, vol. 18, no. 1, pp. 958–972, 2021.

[27] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with kubernetes,” Computer
Communications, vol. 159, pp. 161–174, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366419317931

[28] F. Al-Haidari, M. Sqalli, and K. Salah, “Impact of cpu utilization
thresholds and scaling size on autoscaling cloud resources,” in 2013
IEEE 5th International Conference on Cloud Computing Technology
and Science, vol. 2, 2013, pp. 256–261.

[29] S. Taherizadeh and M. Grobelnik, “Key influencing factors of
the kubernetes auto-scaler for computing-intensive microservice-
native cloud-based applications,” Advances in Engineering
Software, vol. 140, p. 102734, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0965997819304375

[30] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli, “Dynamic multi-
metric thresholds for scaling applications using reinforcement learning,”
IEEE Transactions on Cloud Computing, vol. 11, no. 2, pp. 1807–1821,
2023.

[31] K. Rehman, O. Kipouridis, S. Karnouskos, O. Frendo, H. Dickel,
J. Lipps, and N. Verzano, “A cloud-based development environment
using hla and kubernetes for the co-simulation of a corporate electric
vehicle fleet,” in 2019 IEEE/SICE International Symposium on System
Integration (SII). IEEE, 2019, pp. 47–54.

[32] S. Tuli, S. R. Poojara, S. N. Srirama, G. Casale, and N. R. Jennings,
“Cosco: Container orchestration using co-simulation and gradient based
optimization for fog computing environments,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 1, pp. 101–116, 2021.

[33] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe,
“Co-simulation: a survey,” ACM Computing Surveys (CSUR), vol. 51,
no. 3, pp. 1–33, 2018.

[34] S. Tuli and G. Casale, “Optimizing the performance of fog computing
environments using ai and co-simulation,” in Companion of the 2022
ACM/SPEC International Conference on Performance Engineering,
2022, pp. 25–28.

[35] B. S. Onggo, N. Mustafee, A. Smart, A. A. Juan, and O. Molloy,
“Symbiotic simulation system: Hybrid systems model meets big data
analytics,” in 2018 Winter Simulation Conference (WSC). IEEE, 2018,
pp. 1358–1369.

[36] D. Oakley, B. S. Onggo, and D. Worthington, “Symbiotic simulation for
the operational management of inpatient beds: model development and
validation using δ-method,” Health care management science, vol. 23,
pp. 153–169, 2020.

[37] S. Frey, F. Fittkau, and W. Hasselbring, “Search-based genetic opti-
mization for deployment and reconfiguration of software in the cloud,”
in 2013 35th international conference on software engineering (ICSE).
IEEE, 2013, pp. 512–521.

[38] S. Tuli, G. Casale, and N. R. Jennings, “Cilp: Co-simulation based
imitation learner for dynamic resource provisioning in cloud computing
environments,” IEEE Transactions on Network and Service Manage-
ment, pp. 1–1, 2023.

[39] S. Nastic, G. Copil, H.-L. Truong, and S. Dustdar, “Governing elastic
iot cloud systems under uncertainty,” in Proceedings of the IEEE 7th
International Conference on Cloud Computing Technology and Science
(CloudCom 2015). IEEE Computer Society, 2015, pp. 131–138.

