
Demystifying deep learning in predictive monitoring for cloud-native SLOs

Andrea Morichetta
Vı́ctor Casamayor Pujol

Stefan Nastic
Distributed Systems Group, TU Wien

Vienna, Austria

lastname@dsg.tuwien.ac.at

Thomas Pusztai
Philipp Raith

Schahram Dustdar
Distributed Systems Group, TU Wien

Vienna, Austria

lastname@dsg.tuwien.ac.at

Deepak Vij
Ying Xiong

Zhaobo Zhang
Futurewei Technologies, Inc.

Santa Clara, CA, USA

firstname.lastname@futurewei.com

Abstract—The complexity inherent in managing cloud com-
puting systems calls for novel solutions that can effectively
enforce high-level Service Level Objectives (SLOs) promptly.
Unfortunately, most of the current SLO management solutions
rely on reactive approaches, i.e., correcting SLO violations only
after they have occurred. Further, the few methods that explore
predictive techniques to prevent SLO violations focus solely on
forecasting low-level system metrics, such as CPU and Memory
utilization. Although valid in some cases, these metrics do not
necessarily provide clear and actionable insights into application
behavior. This paper presents a novel approach that directly
predicts high-level SLOs using low-level system metrics. We
target this goal by training and optimizing two state-of-the-
art neural network models, a Short-Term Long Memory –
LSTM-, and a Transformer-based model. Our models provide
actionable insights into application behavior by establishing
proper connections between the evolution of low-level workload-
related metrics and the high-level SLOs. We demonstrate our
approach to selecting and preparing the data. We show in practice
how to optimize LSTM and Transformer by targeting efficiency
as a high-level SLO metric and performing a comparative
analysis. We show how these models behave when the input
workloads come from different distributions. Consequently, we
demonstrate their ability to generalize in heterogeneous systems.
Finally, we operationalize our two models by integrating them
into the Polaris framework we have been developing to enable a
performance-driven SLO-native approach to Cloud computing.

Index Terms—workload prediction; neural networks; cloud;
LSTM; Transformers

I. INTRODUCTION

The proliferation of Cloud vendors and the increase in

customers joining Cloud platforms calls for developing more

effective and better-tailored management solutions for next-

generation cloud applications. Notably, it is crucial to guar-

antee compliance with the Service-Level Objectives (SLOs),

representing targets within contracts between the provider and

its customers. Many current methodologies [1] are based on

reactive approaches, i.e., promptly countering SLO violations

only after they happen. Unfortunately, these approaches usu-

ally do not provide adequate guarantees in highly dynamic sce-

narios, typically found in the Cloud. Therefore, in recent years,

we have witnessed the consolidation of works that predict

the workload behavior to allow elastic management of Cloud

systems and resources [2]. Still, most proposed solutions focus

solely on analyzing and predicting low-level metrics, like CPU

usage [3], achieving resource-level elasticity. However, re-

sources represent just one of the three dimensions that govern

an application elasticity, the others being cost (how much a

customer is willing to pay for a service) and quality (how well

the application performs its operations) [4]. In this regard,

managing applications only through the prediction of low-

level metrics do not provide a complete vision of its state, nor

does it provide actionable insights, which can be used to set

optimal elastic scaling strategies [5]. Hence, focusing the effort

towards the usage of high-level SLO leads to (i) model more

complex constraints in terms of resource usages, i.e., instead

of talking about CPU usage, we can define the CPU usage

efficiency. Furthermore, it helps to (ii) include cost and quality

elasticity dimensions in the SLO-based Cloud management

system. That means that we could consider cost-efficiency, as

described in [5], as a constraint for the system. Finally, (iii)

involve other system stakeholders in the deployment phase,

i.e., machine learning engineers can set accuracy constraints

to their prediction models and map them to a high-level SLO.

All these characteristics create stronger bonds between the

application and its underlying infrastructure, which are now

weak and poorly tailored.

To bridge this gap and foster the usage of high-level SLO,

we shift the focus moving the emphasis on directly predicting
high-level SLO metrics. We introduce novel neural network-
based prediction methods to predict high-level SLO metrics

with available low-level metrics obtained through system

monitoring. This way, we enable the models to develop the

relationship between the low-level metrics and the target high-

level SLO metric. We use two different models to gain insights

about their suitability for the task and a clearer perspective on

the needs for predicting high-level SLO metric. Nevertheless,

to enable high-level SLO metric prediction with the models

mentioned above, we need to define the steps to perform
in the data pipeline, like data selection, feature engineering,

model design, model optimization, and performance analysis.

Furthermore, we provide two levels of model analysis. First,

we estimate the ability of the two models to predict high-

level SLO values by looking at out-of-sample (OOS) data.

Out-of-sample data is typically a test set extracted from the

same workload time series used for training. The second level

considers previously unseen workload data, which stems from

different jobs and can have noticeably different behavior. This

type of data is called out-of-distribution (OOD). Usually, most

available studies stop at the first level [6], whereas we dig

deep. This analysis is particularly relevant as it allows us

24

2023 IEEE 16th International Conference on Cloud Computing (CLOUD)

2159-6190/23/$31.00 ©2023 IEEE
DOI 10.1109/CLOUD60044.2023.00013

20
23

 IE
EE

 1
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
lo

ud
 C

om
pu

tin
g

(C
LO

U
D)

 |
 9

79
-8

-3
50

3-
04

81
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
O

U
D6

00
44

.2
02

3.
00

01
3

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2023 at 14:06:01 UTC from IEEE Xplore. Restrictions apply.

to evaluate our models’ performance over new workloads,

investigating models’ generalization, which is one of the

main challenges in modern ML research [7] and key for

cloud management at a scale. Finally, we operationalize the
developed prediction models and put them at “developers’
fingertips”. The ease of creating ML algorithms makes it

appear that they can easily integrate with any complex so-

lution. However, there are many aspects to consider [8].

Previously, we introduced a new framework, Polaris [9]–[11],

which enables straightforward high-level SLO management

and workload scheduling. We integrate our novel ML models

into Polaris, ensuring the separation of concerns and leaving

the application administrator with a view transparent to the

prediction algorithms. We make our open source code publicly

available.1 In summary, our contributions are as follows:

• We present our methodology for designing, optimizing,

and building models for ingesting low-level metrics and

predicting high-level SLO metrics. We provide insights

from each phase, letting the community leverage our

experience.

• We evaluate and compare the proposed models on out-of-

distribution data. We develop insights on models’ robust-

ness to new data and models’ generalizations capabilities,

and we show the specific limits and potentials for the

LSTM and Transformer models.

• We integrate the final models in our Polaris framework

for cloud management. We enhance the development of

SLO policies for developers.

The rest of the paper is organized as follows. Section II de-

scribes the most relevant steps of the methodology.Section III

offers an in-depth evaluation of our proposed models.Then,

Section IV details the integration of models in the Polaris

framework. Section V positions our work in the context of

previous research. Finally, Section VI concludes the paper.

II. METHODOLOGY

Our work aims at building a system to forecast high-level

SLO metrics, looking at low-level metrics, such as resources

usage. The process involves multiple steps: (i) Obtaining the
data (Subsection II-A), i.e., analyzing the available resources

and targets; (ii) Features engineering (Subsection II-B), i.e.,

data preprocessing such as normalization, aggregation, and

defining high-level metrics; (iii) Prediction models design
(Subsection II-C), that is, inspecting Long Short-Memory ap-

proach and Transformers for time series forecasting; lastly, (iv)

Optimizing the models (Subsection II-D) performing hyper-

parameter optimization to select the best models’ configura-

tion. Figure 1 shows the process.

A. Obtaining the data

It is fundamental to set requirements for choosing the most

appropriate dataset: it shall report from existing infrastructure,

avoiding synthetic data; last more than one week; guarantee

accurate visibility on the workload; provide information on

1https://github.com/polaris-slo-cloud/polaris-ai

the infrastructure; provide accurate documentation; avoid pro-

prietary solutions, allowing experiment repeatability. Hence,

we select and analyze the four databases that best fulfill

these requirements from approximately twenty open-sourced

collections.

The Google Cluster Workload Datasets contains four

weeks-long measurements collected in 2011 from its Borg

cluster. The dataset contains a range of Google applications

sampled every five minutes [12]. The Azure Dataset comprises

first-party (i.e., internal VMs, infrastructure) and third-party

(i.e., communication, gaming, and more) workloads collected

in 2019. The sampling rate is every five minutes [13]. The

TUDelft - Bitbrains traces report the execution of business-

critical workloads. They sample the metrics every 5 minutes.

Finally, the Alibaba dataset consists of eight days of recording

of 4 000 machines, 9 000 online services, and 4M batch

jobs with static and runtime information, extracted every five

minutes [14]. Table I summarizes their characteristics. We

can deduce that, while reasonable for experimenting with

forecasting, the Azure dataset has too coarse features and a not

active community. Bitbrains offers various job types but is too

small for our analysis. Alibaba, which may represent a notable

collection for model benchmarking, has cluttered documen-

tation. Finally, the Google 2019 version, despite being new

and rich, is vast; plus, handling data retrieval and processing

through BigQuery, which requires a subscription, limits its

use. For these reasons, we choose Google Cluster Data in its

2011 version. Despite being 12 years old, the data still holds

great significance. The current underlying infrastructure has

been improved but is still built on top of the considered one,

and the applications running at the Borg cluster, i.e., Google

services, have evolved. However, we can consider them still

similar for the sake of this paper.

Takeaways Considering multiple requirements for dataset
selection is fundamental to developing an in-depth analy-
sis of high-level SLO metric prediction. Open-source, well-
documented data guarantees reliability and research repeata-
bility. Therefore, we select the 2011 Google Cluster Data as
it satisfies the major data requirements.

B. Features engineering

1) Selecting data pool: In the Google cluster data [15], the

work arrives at a node (referred to as a “cell” in Borg) in

the form of a job. A job has multiple tasks. Usually, all tasks

within a job execute the same binary, sharing the same options

and requests. Hence, different task categories run as separate

jobs. Further, each task runs within its container.

Google uses the scheduling class category to describe how

latency-sensitive a job (or a task) is. The value 0 denotes

low sensitivity, whereas 3 is for latency-sensitive workloads.

The latter includes jobs related to user-facing applications and

internal infrastructure services [12]. Therefore, we focus on

class 3, which is more sensitive to SLO violations, given

the goal of forecasting high-level SLO metrics for proactive

adaptation. Thus, we obtain a pool of more than 400 jobs.

We select one for model optimization and testing, whereas

25

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2023 at 14:06:01 UTC from IEEE Xplore. Restrictions apply.

LSTM

Obtaining data
Optimizing, tuning and
designing the models

S
1

S
2

S
n

�
�
�

Data
source

candidates

Understand
data

Define SLO
target

Missing
values

Variable
inputs

Scaling
data

Windows
selection

Features engineering

Data
source

selection

Transformers

Prediction
approaches

Tuning Testing

Tuning Testing

Fig. 1: Overview of the methodology and its main steps.

TABLE I: Datasets comparison.

Dataset Size Resources usage infos Machine infos Year Documentation Variety Data collection
Google 2011 41GB (zip) CPU, memory, and disk Yes 2011 Github, community and papers First-party workload csv
Google 2019 2.4TB CPU, memory, and disk Yes 2019 Github, community and papers First-party workload BigQuery/ Json

Azure 235GB CPU and memory No 2019 Github, papers First- and third-party workload csv
Bitbrains 280MB (in total) CPU, memory, network and disk No 2013 Papers Third-party workload csv
Alibaba 280 GB CPU, memory, network and disk Yes 2018 Github, papers First-party workload csv

we use the rest for the out-of-distribution study. This way,

we can check whether, with the bit of information provided

by a single job, we can build robust and general models able

to predict many use cases. As standard practice in machine

learning, we split the job’s data into three batches: the training

set, the validation set, and the test set. 2 We use the first two

for the model optimization and the test set to obtain results

and evaluate the generalization error. We have 23 days of

measurements for the model optimization (summing training

plus validation set), which is a reasonable window to learn

patterns and anomalies. The last five days constitute our test

and serve for the final evaluation of our model.

Takeaways Choosing the relevant pool of jobs is essential
to provide meaningful insights. We only consider jobs from
scheduling class 3, which are user-facing applications; these
are more sensitive to SLO violations. Further, we select one
job for training/validation/test and keep more than 400 jobs
for the out-of-distribution analysis.

2) Defining the high-level SLO metric: While the benefits

of using high-level SLO s are promising, obtaining the infor-

mation necessary to compute them from open-source data is

often tricky. Since SLOs are tied to the application needs, they

are typically left out in most of the datasets. Hence, given the

available data, we have to find a compromise for our target.

In our case, we perform high-level SLO metrics forecasting

through efficiency, according to its definition provided by [16],

[17]. The papers define efficiency as the mismatch between

actual resource use and resource demand. A perfectly efficient

system will match its resource usage with its demands and

have a perfect efficiency of 1. With this notation, given a

2We split our workload data, which contains 8 352 data points (4 985 for
training, one 644 for validation, and one 645 for the test).

job, and a resource res measured for a task k, at time t, the

efficiency for the resource res is represented by the Equation 1.

effk
t (res) =

used
k

t (res)

allocatedkt (res)
(1)

We target three resource metrics for each job to extract the

efficiency, namely the CPU rate (CPU), the canonical memory

usage (mem), and the disk usage (disk). We can define the

total efficiency for a job j with m active tasks k at time t
with the Equation 2; notice that we divide by three as we

are considering the three resources equally. Nevertheless, in

systems where CPU is more relevant we can foresee adding

weights to the formula to account for this behavior.

Eff j
t (CPU,mem, disk) =
∑m

k=1 eff
k
t (CPU) + effk

t (mem) + effk
t (disk)

3m
(2)

This high-level SLO is simply a linear combination of resource

usage. Nevertheless, it is valid to show the capacity of our

system to predict high-level SLO. Further, the distribution of

a linear combination of random variables presents a different

distribution than each one. Also, efficiency provides an aggre-

gate description of the usage of the infrastructure resources

that can ease their management. Imagine, for instance, that

the sum is weighted with the cost of each resource; in such

situations, we can obtain real insights and reduce costs.

The prediction of the efficiency high-level SLO metric takes

for each job twelve3 low-level metrics as features.

Takeaways Defining a high-level SLO metric requires under-
standing the needs of the application to focus on the most

3The fields are, namely: CPU rate, canonical memory usage, assigned mem-
ory usage, unmapped page cache, total page cache, maximum memory usage,
disk I/O time, local disk space usage, maximum CPU rate, maximum disk IO
time, cycles per instruction, memory accesses per instruction, efficiency.

26

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2023 at 14:06:01 UTC from IEEE Xplore. Restrictions apply.

important aspect. In this work, we are addressing several
applications, hence, we are using efficiency which is a generic
high-level SLO metric that provides a summary about any
application state. Further, we consider CPU rate, canonical
memory usage, and disk usage for its computation, as they are
the more generic low-level metrics on the workload.

�����

Ta
sk

s
Fea

tur
es

tn-3 tn-2 tn-1 tn Time

Fig. 2: The dimensions in job traces.

3) Managing variable input: Given a job, for every ob-

servation interval, Google provides an aggregated value of

the measurements over the last five minutes for each task,

at each step ti. Following the representation in Figure 2, we

can see the trace of a job as having a three-dimensional form.

The horizontal Time axis represents the temporal evolution of

usage information; the vertical Tasks axis shows the number

of active tasks, and the depth Features axis corresponds to the

number of features, i.e., the measured metrics. The variability

over time of the number of active tasks, i.e., the vertical axis of

Figure 2, poses challenges in data ingestion for neural network

modeling. Indeed, the models we are considering must know

the exact dimensions of the input data for each ingested batch

in order properly to create their weights4. Thus, we need

to neutralize the tasks’ variability before developing a valid

input for the neural network models. To this end, a common

approach in the neural network community is to use padding.

It offers the possibility of restraining input sequence length. A

strategy involves truncating larger inputs by cutting everything

exceeding the defined threshold. Otherwise, it is possible to

add zeros to align short sequences to the largest value for the

varying dimension.5 However, padding severely limits the use

of out-of-distribution workloads, where the task dimension can

vary in an arbitrary range. In the dataset analysis, we could

observe that the number of tasks in a job has wide variability,

which is even more evident between different jobs.

Therefore, we rely on aggregation of the tasks metrics at

each measurement. This is a widespread technique in statistics,

and in workload characterization in particular [18]. It fixes

the input shape, i.e., (n features, 1) at each step, and keeps

the richness of information by representing the features with

statistics. In our case, for every step, to maintain a high-quality

summary, we provide the mean, median, 25th quantile (1st

4https://keras.io/guides/sequential model/#specifying-the-input-shape-in-a
dvance

5https://www.tensorflow.org/guide/keras/masking and padding

quartile), 75th quantile (3rd quartile), and we expand it with

the minimum, maximum, and the 95th quantile.

Takeaways Padding is the typical approach for dealing with
dynamic inputs. However, when considering the jobs’ tasks,
the padding would cap the number of tasks the input can
consider at each interval. Since the tasks’ feature is essential
in predicting high-level SLO metrics, we lean on aggregation.
This way, we extract a large set of tasks’ summarization
statistics, producing a correct input that fully represents the
active tasks at each interval.

4) Choosing the look-back and look-ahead window sizes:
In time series forecasting, it is common to use a look-back

sliding window. The look-back window represents the set of

past time steps on which the models perform the estimation.

Setting it too short could lead to missing relevant patterns;

having it too long may mean having unrepresentative old data.

In our scenario, where the job behavior varies quickly, it is

essential to have fresh, relevant data. The look-ahead window

choice depends on how far and how many steps in the future

we want the models to predict. In our case, looking too far

into the future could lead to making elasticity decisions that,

given the rapid change in job behavior, can be inadequate.

We fix the size of look-back and look-ahead windows at

design time. During our preliminary optimization phase for

the look-back window, we consider values from 1 to 24 steps.

The final choice is a window with the past 24 measurements,

i.e., the last two hours of the job’s activity. Regarding look-

ahead window, we consider the efficiency values effn+1,

effn+2, and effn+3, i.e., five, ten, and fifteen minutes in

the future. This selection lets the system have up-to-date near-

future predictions and an adequate interval to perform actions

that can result in accurate SLOs violation prevention. Figure 3

depicts the approach. The blue horizontal bars represent our

previous input steps, with aggregated tasks statistics. The green

cubes represent the future efficiency values. The look-back and

look-ahead windows are the same for LSTM and Transformer

models.

tn-24

. . .

tn-3 tn-2 tn-1 tntn-23 tn-22 tn-21 tn-20tn-25

effn+1

effn+2
effn+3

Input data

Old input data

Old
efficiency
Predicted
efficiency

Fig. 3: Prediction steps depiction.

Takeaways In the context of time series forecasts, the models
estimate the future values on fixed-sized sliding look-back
windows. In our scenario, we want to guarantee precise, up-
to-date, near-future predictions to perform the correct actions
promptly. Therefore, we select a 24-steps wide sliding look-
back window, suitable to extract the main patterns. Given the

27

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2023 at 14:06:01 UTC from IEEE Xplore. Restrictions apply.

�
�
�
�
�

	

�
�

�
�

	
���
��

�
��
��
������

�	����

�
�

�� ��

�	�����

�
�
��

�
�

������

���
��

�

�	����

��

�
�

�������� ��� ! " �
�� �����

#
�
�
�
�
�

	

�
�

�
�

Fig. 4: Model schema for the LSTM approach.

near-future requirements, our look-ahead window targets the
high-level SLO metric values for the next five, ten, and fifteen
minutes.

C. Prediction models design

The rationale of this work is to predict the job efficiency
values, estimating them based on time series of resource

measurements. Therefore, it is essential to use methodologies

that can deal with sequences. Since we aim at forecasting

high-level SLO metrics based on low-level metrics, we need

approaches that can seamlessly perform this mapping. Neural

network methods natively offer automatic feature selection

mechanisms [19]. In our work, we focus on two models.

On the one hand, we inspect the LSTM model, a well-

known recurrent neural network for time series forecasting;

it guarantees fast and accurate results with lightweight imple-

mentations. On the other hand, we explore the Transformer

architecture, a deep learning model based on self-attention. It

achieved robust results in natural language processing (NLP)

and is currently gaining momentum in other fields, like time

series prediction. Differently from LSTM, it natively has many

layers and neurons, making it a computationally expensive

model. However, its structure offers excellent parallelization

capabilities. We focus on neural network models to obtain high

generalization capabilities. Statistical methods like ARIMA

or ML models need more careful fine-tuning. While we did

preliminary tests with them, we want to frame our work on

neural models and keep them out of this evaluation.

1) LSTM-based model: This model is based on the Long

Short-Term Memory layer, in which the key idea is that a

cell can learn to recognize an important input, store it in

the long-term state, and learn to extract it whenever it is

needed. It is often appropriate to combine various layers to

increase performance to forecast time series. In our work we

test different setups, as depicted in Figure 4. The solid lines

represent the established blocks. The dashed lines depict the

optional components. The gray beveled boxes represent the

logical layers, while the white rectangles show the data. In

Section II-D we present the final model configuration, here

we delineate the options:

Introduce a Convolutional layer before the recurrent one.
This strategy is especially beneficial when dealing with long

sequences and, in general, to obtain a higher-level represen-

tations of the input time series. Our idea is that this feature

can provide an intermediate representation from the low-level

input metrics to the high-level SLO metric.

Make the LSTM Bidirectional: The bidirectional LSTM

layer looks at its input sequence both ways, obtaining richer

representations and capturing patterns that the single pass

might miss. In our case, we expect this technique to highlight

recurring peaks at different temporal scales.

“Deepen” the network: Adding layers and “deepening” the

network structure increases the number parameters allowing

a more complex relation between inputs and outputs. In our

study, this aspect is relevant as we have to face highly-variable

data with sudden peaks and valleys. Hence, we expect to

corroborate this need from the optimization process.

2) Transformer: Transformer implementations [20], have

two main components: the encoder and the decoder. Each of

these can be composed of several identical encoder or decoder

layers. Where, each layer implements the attention mechanism,

precisely a self-attention, and is followed by feedforward and

normalization layers. Additionally, the decoder also imple-

ments an attention mechanism that relates the encoder’s output

with the decoder’s current state.

As explained in [21], forecasting time series requires a

complete transformer architecture with encoder and decoder

layers. We have adopted the model from [22] and modified

it to improve its performance and to fit our data6. The model

presents three degrees of freedom (DoF) in terms of internal

dimensions: (1) the inner dimension of the model, (2) the

number of attention heads, and (3) the Query, Key, and Value

(QKV) dimension. We adjust these specific dimensions of

a transformer architecture as model hyper-parameters (see

Section II-D). Additionally, the model has two more DoF

corresponding to the number of encoder layers and the number

of decoder layers. It is complex to make hypothesis regarding

the best configuration of these DoFs, therefore, we entirely

rely on the output obtained from the optimization process.

Further, the model has 2 inputs. The encoder inputs data as

the LSTM model. However, the decoder inputs the efficiency
values for the same time-steps. Finally, the decoder outputs

the predicted efficiency values. The rationale is that the en-

coder processes low-level metrics and develops an encoded

representation. Then, this is merged at the decoder with

the corresponding past values of the high-level SLO metric.

Finally, it provides the future values for the high-level SLO

metric. This characteristic contrasts with the LSTM model,

which does not explicitly require efficiency as input.

To leverage the transformer parallelization capabilities, the

data for the training and validation process is fed into the

model as three simultaneous rolling windows, which speeds up

the training phase. Further, each rolling window has a different

initial timestamp, providing a randomization characteristic to

the training phase aiming at reducing any possible overfitting,

similarly as proposed in [23], [24] or [25].

Takeaways Despite the attempts to predict workloads be-
havior, the forecast of high-level SLO metric from low-level
metrics has not yet found a preferred solution, making it a
green field for developing tailored techniques. Our approach

6https://github.com/LiamMaclean216/Pytorch-Transfomer

28

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2023 at 14:06:01 UTC from IEEE Xplore. Restrictions apply.

tests two very different solutions, i.e., LSTMs, lightweight and
established in time series forecasting, and Transformers, more
complex but rising in popularity, given their high accuracy.
With our work, we aim to compare these two models, different
in characteristics, to provide a cost/benefit analysis for both
options.

D. Optimizing the models

Building a deep neural network means setting many hyper-

parameters; thus, performing an exhaustive analysis and tuning

is not always feasible. To build preparatory domain knowledge,

we first study the prediction models’ behavior with a single

step ahead prediction. This step, which we do not report due

to space limit, helps us fix a set of parameters representing

our “ground truth.”

Once we have established the ground truth, we focus on

model optimization for the three-step-ahead prediction. We

perform it using the hyperparameter tuning ASHA scheduler
provided by RayTune7. This optimization method is appro-

priate for achieving parallelism during the search, making

it fitting for exploring many combinations. In particular,

ASHA [26] achieves good performance thanks to early stop-

ping strategies, giving more resources and time to the most

promising experiments while ceasing the ones with the least

potential. For both models, we use the “adam” optimizer, and

we compute the loss using “mae.” In Tables II and III we

report the hyperparameters that we consider in our analysis.

The ones established with the single-step-ahead study are

the non-bold ones. The bold parameters are the ones we

let RayTune manipulate. The Value column shows the final

decision for each hyperparameter.

TABLE II: Hyper-parameters of the LSTM model.

Hyper-parameters Value

Model

Neurons 50

Dropout 0.0

Recurrent dropout 0.0

Activation tanh

Activation output sigmoid

CNN filters None
Bidirectional No
LSTM layers 1

Learning Epochs 100

Data related
Batch size 72

Input window length 24

Going more into detail, the results for the LSTM opti-

mization process with RayTune did not improve the ground

truth model. In this case, adding layers to the model does

not provide a clear benefit; conversely, some combinations

produce overfitting on the training and validation set. Hence,

we decide to keep the LSTM model as lightweight as pos-

sible, which already provides good results without heavily

overfitting. Table II summarizes the final selection of hyper-

parameters. This way, we can better compare the difference

between the shallow LSTM network and the rich Transformer

7https://docs.ray.io/en/latest/index.html

TABLE III: Hyper-parameters of the transformer model.

Hyper-parameters Value

Model

Encoder layers 8
Decoder layers 1
Attention heads 10
QKV internal dimension 3
Model inner dimension 8

Learning

Learning rate 0.01

Learning decay factor 0.99

Epochs 30

Data related
Batch size 4

Input window length 24

model. The hyperparameter tuning of the Transformer model

consists of running 1000 samples with RayTune using the

configuration previously explained. Given our experience with

the single step-ahead model, we fix learning and data-related

parameters to shorten the hyperparameters’ space to those

defining the model. Table III summarizes the best performing

configuration.

Takeaways Designing and optimizing neural network models
is a complex task. In this regard, approaching this prediction
problem with two models allows us to take two different
strategies to inspect trade-offs for each of them. Hence, after
the optimization, we generate a simple and lightweight LSTM
model and a complex and rich Transformer model. In our
use case, the former approach should guarantee low resource
consumption, while the latter could provide more accurate
predictions.

III. COMPARATIVE ANALYSIS

This section presents the comparative evaluation of the

LSTM and Transformer models. We first juxtapose the models

behavior on the test set. Then, we analyze their performance on

out-of-distribution data. Finally, we provide a discussion where

we examine strengths and weaknesses of the two approaches.

A. Evaluation on the test set

In the following, we show the results obtained from the test

set for the LSTM and Transformer models. Figure 5 visually

represents the target efficiency together with its predicted

values for the entire test set, showing only the first step in

the future (efft+1). From Figure 5, we can acknowledge the

capability of both models to adhere to the target values.

Figure 6 provides a closer look at the results, considering

the last 100 steps in the test set for LSTM (top row) and

Transformer (bottom row). The LSTM and the Transformer

models can accurately follow the efficiency evolution, showing

a progression reproducing the true efficiency values. The

Transformer approach is more sensitive to peaks, while the

LSTM shows less accentuated ripples. Looking at the high-

lighted gap area, it can be observed an increasing shift from the

original measurement as we focus on more distant predictions.

So, for t+ 2, Figures 6b-6e, and t+ 3, Figures 6c-6f the gap

is larger than for t+ 1, Figures 6a-6d.

Table IV shows the numeric results, precisely the Root

Mean Square Error (RMSE) and in its normalized form

29

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2023 at 14:06:01 UTC from IEEE Xplore. Restrictions apply.

0 250 500 750 1000 1250 1500
Steps

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

E
ffi
ci
en
cy

Raw measurements

Predictions

(a) LSTM - model performance .

0 250 500 750 1000 1250 1500
Steps

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

E
ffi
ci
en
cy

Raw measurements

Predictions

(b) Transformer - model performance.

Fig. 5: Models performance over the whole test set. Example for t+ 1. The
orange dashed line, with triangles, depicts the target efficiency values, while
the blue dash-dotted line, shows the predicted values.

(RMSE %). The prediction errors are generally low, in per-

centage almost below 1%. Further, they confirm that results

deteriorate towards far predictions. These results can depend

on the model tending to rely on the latest information to

forecast the following values. This intuition finds proof when

analyzing the cross-correlation between actual and predicted

values.

TABLE IV: LSTM and Transformer results on the test set.

t+1 t+2 t+3

LSTM
RMSE 0.0029 0.0038 0.0049

RMSE (%) 0.60 0.78 1.02

Transformer
RMSE 0.0029 0.0040 0.0050

RMSE (%) 0.60 0.82 1.04

Figure 7 allows us to take a closer look at this behavior,

showing the cross-correlation results for both models (LSTM

(left) and Transformer (right)); the x-axis represents the offset

from the curve median, while the y-axis shows the normalized

correlation value; the markers in the scatter plot represent the

cross-correlation at different steps. The green star portrays

the behavior in the case of auto-correlation. We correlate the

predicted series at t+ 1, t+ 2, and t+ 3 to the target values

with the same delay. In these cases, the peaks are not centered

at zero but shifted at −1, −2, and −3 for both LSTM and

Transformer. This outcome confirms the intuition previously

noted. In any case, the cross-correlation returns good values

around the center, with a minimum value of 0.95, showing a

satisfactory forecast accuracy.

B. Evaluation on out-of-distribution data

We perform inference over more than 400 selected work-

loads; we do not use batching, but we feed the models step

by step with the look-back window to simulate a real-time

prediction. This evaluation provides insights into how well

the generated models can forecast different jobs. Further, we

can discover the performance difference between LSTM and

Transformer and highlight the strengths and limitations of each

solution.

In Figure 8, we can see the average resource usage values

for our training data (the red line) compared to the test set

(the blue line). The values are normalized over the maximum

value in the comparison, plus the standard deviation, e.g., for

CPU usage: max{avgcpu usagetrain+stdcpu usagetrain , avgcpu usagetest+
stdcpu usagetest}. The blue and red areas represent the standard

deviation. It is visible from Figure 8 how the test set behaves

differently. Of course, the test set has a more significant

deviation from the mean, as we considered 400 different jobs,

but the contrast between the test and the training set we used

to train the model is apparent.

Table V shows a summary of the results obtained. At

first glance, we can immediately notice how the Transformer

provides one order of magnitude less error in terms of RMSE

and RMSE (%).

TABLE V: LSTM and Transformer results on the all work-

loads analyzed

t+1 t+2 t+3

LSTM
RMSE 0.2957 0.3156 0.2955

RMSE (%) 58.84 63.43 57.46

Transformer
RMSE 0.0243 0.0262 0.0299

RMSE (%) 5.527 6.126 6.687

Figure 9 shows all results as boxplots, each subplot shows

the RMSE (%) for LSTM and Transformer respectively. 8 In

general, the errors for Transformer are considerably lower.

Nevertheless, they are one order of magnitude higher than the

test set. The LSTM model is not able to provide good results,

in general, when dealing with OOD data.

C. Discussion

We test the LSTM and Transformer models on the test

set and out-of-distribution data. First, we could see how both

models suffer from the naive behavior. This problem seems

familiar for time-series analysis, and it is known as naive
behavior [27] [28]. It can find its justification in the high

time-series variability and the short-term forecast both models

have to produce and calls for ad-hoc analyses to overcome this

issue. Considering out-of-distribution evaluation, both models

showed an increased divergence from the prediction and the

actual value; this behavior is predictable as they performed

inference on entirely new jobs. However, while the Trans-

former model showed one order of magnitude error increase

8The boxes represent the values between the 25th quantile (1st quartile),
75th quantile (3rd quartile). The magenta diamond represents the mean
values, while the orange line is the median. The two whiskers denote the
IQR, while the red fliers show the outliers.

30

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2023 at 14:06:01 UTC from IEEE Xplore. Restrictions apply.

-100 -80 -60 -40 -20 0
Steps

0.480

0.485

0.490

0.495

0.500

E
ffi
ci
en
cy

Raw measurements

Predictions

(a) LSTM - Prediction for t+1

-100 -80 -60 -40 -20 0
Steps

0.480

0.485

0.490

0.495

0.500

E
ffi
ci
en
cy

Raw measurements

Predictions

(b) LSTM - Prediction for t+2

-100 -80 -60 -40 -20 0
Steps

0.480

0.485

0.490

0.495

0.500

E
ffi
ci
en
cy

Raw measurements

Predictions

(c) LSTM - Prediction for t+3

-100 -80 -60 -40 -20 0
Steps

0.480

0.485

0.490

0.495

0.500

E
ffi
ci
en
cy

Raw measurements

Predictions

(d) Transformer - Prediction for t+1

-100 -80 -60 -40 -20 0
Steps

0.480

0.485

0.490

0.495

0.500

E
ffi
ci
en
cy

Raw measurements

Predictions

(e) Transformer - Prediction for t+2

-100 -80 -60 -40 -20 0
Steps

0.480

0.485

0.490

0.495

0.500

E
ffi
ci
en
cy

Raw measurements

Predictions

(f) Transformer - Prediction for t+3

Fig. 6: Last 100 steps of the test series for LSTM and Transformer. The orange dashed line shows the target efficiency, while the blue dash-dotted line the
predicted values. The light blue area highlights the gap between the target and predicted values.

−4 −3 −2 −1 0 1 2 3 4
Offset

0.94

0.95

0.96

0.97

0.98

0.99

1.00

C
ro
ss
-c
or
re
la
ti
on

(n
or
m
al
iz
ed

)

auto-corr

t+1

t+2

t+3

(a) LSTM - Cross-correlation.

−4 −3 −2 −1 0 1 2 3 4
Offset

0.94

0.95

0.96

0.97

0.98

0.99

1.00

C
ro
ss
-c
or
re
la
ti
on

(n
or
m
al
iz
ed

)

auto-corr

t+1

t+2

t+3

(b) Transformer - Cross-correlation.

Fig. 7: Correlation of the target series with the output series at different time
steps for the last 100 values of the series.

compared to the test set results, for the LSTM, this difference

is at two orders of magnitude. The Transformer’s behavior falls

in an acceptable error range, only around 6%, whereas for the

LSTM, the average error is around 60%. While, by design, we

kept the LSTM model as simple and lightweight as possible,

the Transformer model results from a thorough optimization,

Fig. 8: Radar chart of the mean resource usage values for the training set and
for the out-of-distribution test set.

plus, by structure, it uses the past values of efficiency at the

decoder input. Therefore, these characteristics can justify the

performance difference between the two models. Ultimately,

analyzing the two approaches, the light LSTM model provides

a faster training process and a lightweight model, making it

helpful for a bootstrap monitoring phase. On the contrary,

the Transformer model provides satisfactory results on out-

of-distribution data but requires more extended training and

tuning phases; thus, it can represent a solution in the long

run.

31

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2023 at 14:06:01 UTC from IEEE Xplore. Restrictions apply.

t + 1 t + 2 t + 3
Scores

0

20

40

60

80

100

R
S

M
E

pe
rc

sc
or
e

LSTM box plot

t + 1 t + 2 t + 3
Scores

R
S

M
E

pe
rc

sc
or
e

Transformers box plot

Fig. 9: RMSEperc results for LSTM and Transformer over out-of-sample
(OOS) workload.

IV. INTEGRATION WITH THE FRAMEWORK

The Polaris SLO Cloud 9 is part of Centaurus project10. This

project proposes a novel open-source platform for unified and

highly scalable distributed cloud and edge systems. Polaris

aims to make cloud computing SLOs first-class entities and

facilitate their design and usage. Its users can leverage the CLI,

based on TypeScript, to develop SLO mapping mechanisms,

which allow the design and usage of high-level SLO metrics.

In addition, Polaris presents predictive models for managing

the SLOs. They allow proactive elasticity strategies for SLOs.

Furthermore, they automatically link relevant low-level metrics

to the target high-level SLO. In this way, the users do not have

to care about performing complex low-to-high level metrics

associations. Plus, they do not need to constantly monitor their

system to develop articulated strategies for their SLOs. These

processes happen under the hood, handled by a block called

the Predicted Metric Controller. The developers only need to

write the TypeScript code for the high-level SLO metric.

In the Predicted Metric Controller, one block gets the

metrics from the deployed monitoring toolkit (in our case

Prometheus), and the other works as a proxy to call ML

services. This design allows the quick deployment of a unit

that can get the relevant monitored low-level metrics and

fetch, preprocess and invoke ML models to obtain predic-

tions for the high-level SLO metric. Further, this modular

design separates the ML components from the rest of the

infrastructure, simplifying their interfaces. To build the ML

proxy for operationalizing the models, we rely on base imple-

mentations for TensorFlow Serving 11 and PyTorch Serve 12.

The implemented services deliver the high-level SLO metrics

forecasts and return them to the monitoring system, letting the

users and the elasticity controllers work with predicted metrics

transparently.

This approach, conversely to previous research and contribu-

tions limited in proposing data analytics sandboxing, proposes

concrete solutions for operationalizing and deploying ML

models in production, making them seamlessly work with

the other services of the system. Most importantly, Polaris

9https://polaris-slo-cloud.github.io
10https://www.centauruscloud.io
11https://www.tensorflow.org/tfx/guide/serving
12https://pytorch.org/serve/

put the models and prediction capabilities at the “developers’

fingertip,” letting them only with the task of specifying the

code for the high-level SLO metric.

Figure 10 shows a high-level representation of the main

monitoring building blocks of the Polaris SLO Cloud. The

predictive controller (1) obtains the low-level metrics from

the monitoring tool, (2) it produces the high-level SLO metric

forecasts, which (3) are sent back to the monitoring tool. In

this way, the proposed layout transparently produces predictive

metrics that (4) the system can use to plan and execute
decisions to guarantee the application’s elasticity. Further, this

implementation provides seamless integration of reactive and

pro-active management behaviors, which could be switched

given the availability or quality of the predicted values. More-

over, this approach provides an excellent advantage for the

application developer, who can solely focus on the SLOs

definition and optimization, and not on estimating possible

violations, since Polaris SLO Cloud automatically manages it.

. . .
tn-1 tntn-23 tn-22

Orchestration

Predictive
controller

effn+1

effn+2

effn+3

1

2

3

4

Application
developer

AI
developer

Monitoring

Inference
serving

Fig. 10: Polaris architecture

V. RELATED WORK

Traditionally, the background for solving time-series for-

casting involves typical statistical methods. However, due to

the complexity of cloud computing monitoring and the diffi-

culty of promptly adapting to its changes, the last decade has

witnessed several studies using machine learning techniques to

forecast events and usage patterns automatically. Specifically,

these studies focused on predicting metrics associated with the

applications’ use of the underlying infrastructure to prevent

suboptimal use of the platforms.
a) Statistical methods: Traditionally, the background ap-

proach for solving time-series forecasting involves using the

Autoregressive Integrated Moving Average (ARIMA) model.

Thus, several approaches leveraged this method to predict

cloud-related metrics over time. In [29] the authors used

ARIMA to predict workload forecasting web requests from

Wikimedia Foundation servers. This forecast then allows for

dynamically provisioning VMs in a cloud SaaS environment.

More recently, Kholidy [30] leveraged ARIMA, together with

a Multiple Support Vector Regression (MSVR) model, for

forecasting cloud users’ resource requirements in terms of

CPU, memory, and disk storage consumption. Still, in the

context of statistic methods, Liu et al. [31] proposed a linear

32

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2023 at 14:06:01 UTC from IEEE Xplore. Restrictions apply.

regression model (LiRCUP) to predict machine CPU usage

over simulated traces, to obtain container consolidation.

b) Machine learning methods: Since the progress made

by Recurrent Neural Networks in the last years, researchers

and practitioners have started exploring the use of these

techniques. In [32] they forecast CPU usage to predict the

cloud host load using LSTM. Gao et al. [33] compared

statistical and LSTM models for forecasting CPU and memory

usage, m steps in the future, over the Google cluster dataset.

They concluded that the best approach was a combination of

clustering for similar workloads grouping and the Bayesian

Ridge Regression model (BRR). In [34], for host load pre-

diction, they proposed a system based on Bi-directional Long

Short-Term Memory (BiLSTM). The proposed method used

Google load trace data to perform the mean load prediction

and actual load prediction tasks looking at the CPU. In [35]

they introduced an approach that joins Autoencoders and

RNN (ESN in this case) to predict CPU usage. The work

of Nguyen et al. [36] suggested a system based on the LSTM

Encoder-Decoder (LSTM-ED), testing it over the Google load

traces for CPU usage. Similarly, Chen et al. [37] proposed a

multi-resource forecast (CPU, memory, and disk) using Top-

sparse Autoencoder (TSA) and Gated Recurrent Units (GRU),

testing it on Google, Alibaba, DUX-based cluster traces.

Autoencoders are also a key component in the work of Zhang

et al. [38], where they combined them with Canonical Polyadic

Decomposition (CPS) to forecast CPU usage in the PlanetLab

simulation traces for workload prediction. On a different note,

in [39] they used the graphical generative Deep belief networks

to predict workload usage through CPU forecasting.

Although these works are interesting, they focus on low-

level metrics, usually emphasizing CPU usage. Hence, these

approaches aim to infer SLAs solely by the CPU usage.

Despite being reliable in some cases, this perspective does not

link the SLOs developer with higher-level objectives, which

limits its visibility and capacity. Further, from the provider’s

perspective, having a unique target, like the CPU, for all

SLOs means having less grip on the customers’ needs, offering

shallow and brittle management. From the point of view of the

learning models, previous works mainly focus on optimizing

one method, typically considering simplistic training data and

using only a test set from the same distribution. Despite

being a well-established approach, it presents limitations in a

complex cloud scenario. Indeed, there is often little attention

to how the models could work on unseen data at runtime,

providing few elements to understand the proposed solutions’

robustness. Finally, most proposed solutions focus solely on

the predictive approach, skirting how to embed it in a complex

system management framework. Even if this operation could

be out of the scope of the presented works, it is crucial to

demonstrate how the forecasting models could integrate into

a cloud provider infrastructure, shedding light on which part

of the system and which stakeholders could benefit from the

work, and how.

VI. CONCLUSIONS

We leveraged low-level cloud workload data to forecast

high-level SLO metrics in this work. This approach enables

proactive Cloud management systems based on high-level

SLO metrics. We have presented the methodology to ob-

tain a high-level SLO metric from an open-source dataset

and a detailed analysis of the development of two cutting-

edge neural network models (Long Short-Term Memory &

Transformer). We compared the performance of the models

using out-of-distribution data, presenting deep insights into the

strengths and limitations of the proposed models. Finally, we

demonstrated how to incorporate the created model into the

Polaris SLO Cloud, emphasizing the benefit of keeping the

SLO metrics developer and the model predictions separate,

going beyond performing some data analytics in a testing

environment, and operationalizing the models.

In the future, it is interesting to look for mid- or long-

term forecasts; this way, we can work on minimizing the

so-called naive behavior. Further, we aim to compare their

performance in a deployed scenario, leverage the Polaris

SLO Cloud, and corroborate the need to combine simple and

lightweight models with out-of-distribution resilient models to

tackle all Cloud management phases. Finally, we aim to show

how proactive Cloud management enhanced through predictive

monitoring of high-level SLO improves the performance of the

current reactive management systems.

REFERENCES

[1] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications
in clouds: A taxonomy and survey,” arXiv: Distributed, Parallel, and
Cluster Computing, 2016.

[2] Z. Zhong, M. Xu, M. A. Rodriguez, C. Xu, and R. Buyya, “Machine
learning-based orchestration of containers: A taxonomy and future
directions,” ACM Computing Surveys (CSUR), 2021.

[3] D. Saxena and A. K. Singh, “Workload forecasting and resource
management models based on machine learning for cloud computing
environments,” ArXiv, vol. abs/2106.15112, 2021.

[4] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong, “Principles of elastic
processes,” IEEE Internet Computing, vol. 15, no. 5, pp. 66–71, 2011.

[5] S. Nastic, A. Morichetta, T. Pusztai, S. Dustdar, X. Ding, D. Vij, and
Y. Xiong, “Sloc: Service level objectives for next generation cloud
computing,” IEEE Internet Computing, vol. 24, no. 3, pp. 39–50, 2020.

[6] J.-C. Gagnon-Audet, K. Ahuja, M. J. D. Bayazi, G. Dumas, and I. Rish,
“Woods: Benchmarks for out-of-distribution generalization in time series
tasks,” ArXiv, vol. abs/2203.09978, 2022.

[7] J. Wang, C. Lan, C. Liu, Y. Ouyang, W. Zeng, and T. Qin, “Generalizing
to unseen domains: A survey on domain generalization,” arXiv preprint
arXiv:2103.03097, 2021.

[8] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden tech-
nical debt in machine learning systems,” Advances in neural information
processing systems, vol. 28, 2015.

[9] T. Pusztai, S. Nastic, A. Morichetta, V. Casamayor Pujol, S. Dustdar,
X. Ding, D. Vij, and Y. Xiong, “A novel middleware for efficiently
implementing complex cloud-native slos,” in IEEE 14th International
Conference on Cloud Computing (CLOUD), 2021.

[10] ——, “Slo script: A novel language for implementing complex cloud-
native elasticity-driven slos,” in IEEE International Conference on Web
Services (ICWS), 2021.

[11] S. Nastic, T. Pusztai, A. Morichetta, V. Casamayor Pujol, S. Dustdar,
D. Vii, and Y. Xiong, “Polaris scheduler: Edge sensitive and slo
aware workload scheduling in cloud-edge-iot clusters,” in IEEE 14th
International Conference on Cloud Computing (CLOUD), 2021, pp.
206–216.

33

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2023 at 14:06:01 UTC from IEEE Xplore. Restrictions apply.

[12] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems,
2015, pp. 1–17.

[13] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting work-
loads for improved resource management in large cloud platforms,” in
Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 153–167.

[14] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao, “Who
limits the resource efficiency of my datacenter: An analysis of alibaba
datacenter traces,” in 2019 IEEE/ACM 27th International Symposium on
Quality of Service (IWQoS). IEEE, 2019, pp. 1–10.

[15] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format+ schema,” Google Inc., White Paper, pp. 1–14, 2011.

[16] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud comput-
ing: What it is, and what it is not,” in 10th international conference on
autonomic computing ({ICAC} 13), 2013, pp. 23–27.

[17] M. Becker, S. Lehrig, and S. Becker, “Systematically deriving quality
metrics for cloud computing systems,” 2015.

[18] S. F. Piraghaj, R. N. Calheiros, J. Chan, A. V. Dastjerdi, and R. Buyya,
“Virtual machine customization and task mapping architecture for effi-
cient allocation of cloud data center resources,” The Computer Journal,
vol. 59, no. 2, pp. 208–224, 2016.

[19] F. Chollet, Deep learning with Python. Simon and Schuster, 2021.
[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[21] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff,
“A Transformer-based Framework for Multivariate Time Series Repre-
sentation Learning,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. Association
for Computing Machinery, aug 2021, pp. 2114–2124.

[22] N. Wu, B. Green, X. Ben, and S. O’Banion, “Deep transformer mod-
els for time series forecasting: The influenza prevalence case,” arXiv
preprint arXiv:2001.08317, 2020.

[23] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from sim-
ulation to the real world,” IEEE International Conference on Intelligent
Robots and Systems, vol. 2017-September, pp. 23–30, dec 2017.

[24] R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang, “Learning vision-
guided quadrupedal locomotion end-to-end with cross-modal transform-
ers,” arXiv preprint arXiv:2107.03996, 2021.

[25] N. Hansen, H. Su, and X. Wang, “Stabilizing Deep Q-Learning
with ConvNets and Vision Transformers under Data Augmentation,”
in Advances in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. W. Vaughan, Eds.,
vol. 34. Curran Associates, Inc., 2021, pp. 3680–3693. [Online].

Available: https://proceedings.neurips.cc/paper/2021/file/1e0f65eb20ac
bfb27ee05ddc000b50ec-Paper.pdf

[26] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-Tzur, M. Hardt,
B. Recht, and A. Talwalkar, “A system for massively parallel hyperpa-
rameter tuning,” Proceedings of Machine Learning and Systems, vol. 2,
pp. 230–246, 2020.

[27] M. Du, “Improving lstm neural networks for better short-term wind
power predictions,” 2019 IEEE 2nd International Conference on Re-
newable Energy and Power Engineering (REPE), pp. 105–109, 2019.

[28] M. E. Aydin and S. S. Kozat, “A hybrid framework for sequential data
prediction with end-to-end optimization,” ArXiv, vol. abs/2203.13787,
2022.

[29] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
prediction using arima model and its impact on cloud applications’ qos,”
IEEE Transactions on Cloud Computing, vol. 3, pp. 449–458, 2015.

[30] H. A. Kholidy, “An intelligent swarm based prediction approach for
predicting cloud computing user resource needs,” Computer Communi-
cations, vol. 151, pp. 133–144, 2020.

[31] J. Liu, S. Wang, A. Zhou, J. Xu, and F. Yang, “Sla-driven container con-
solidation with usage prediction for green cloud computing,” Frontiers
of Computer Science, vol. 14, no. 1, pp. 42–52, 2020.

[32] B. Song, Y. Yu, Y. Zhou, Z. Wang, and S. Du, “Host load prediction
with long short-term memory in cloud computing,” The Journal of
Supercomputing, vol. 74, pp. 6554–6568, 2017.

[33] J. Gao, H. Wang, and H. Shen, “Machine learning based workload
prediction in cloud computing,” 2020 29th International Conference on
Computer Communications and Networks (ICCCN), pp. 1–9, 2020.

[34] H. Shen and X. Hong, “Host load prediction with bi-directional long
short-term memory in cloud computing,” arXiv: Signal Processing,
2020.

[35] Q. Yang, Y. Zhou, Y. Yu, J. Yuan, X. Xing, and S. Du, “Multi-step-
ahead host load prediction using autoencoder and echo state networks
in cloud computing,” The Journal of Supercomputing, vol. 71, pp. 3037–
3053, 2015.

[36] H. M. Nguyen, G. Kalra, and D. Kim, “Host load prediction in
cloud computing using long short-term memory encoder–decoder,” The
Journal of Supercomputing, vol. 75, pp. 7592 – 7605, 2019.

[37] Z. Chen, J. Hu, G. Min, A. Y. Zomaya, and T. A. El-Ghazawi,
“Towards accurate prediction for high-dimensional and highly-variable
cloud workloads with deep learning,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, pp. 923–934, 2020.

[38] Q. Zhang, L. T. Yang, Z. Yan, Z. Chen, and P. Li, “An efficient deep
learning model to predict cloud workload for industry informatics,” IEEE
Transactions on Industrial Informatics, vol. 14, pp. 3170–3178, 2018.

[39] F. Qiu, B. Zhang, and J. Guo, “A deep learning approach for vm
workload prediction in the cloud,” 2016 17th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), pp. 319–324, 2016.

34

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2023 at 14:06:01 UTC from IEEE Xplore. Restrictions apply.

