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Abstract—Service Level Objectives (SLOs) guide the elasticity
of cloud applications, e.g., by deciding when and how much the
resources provisioned to an application should be changed. Eval-
uating SLOs requires metrics, which can be directly measured on
the application or system, or, more elaborately, be composed from
multiple low-level metrics. The implementation of such metrics
and SLOs, the triggering of elasticity strategies, and allowing
configurability by the user deploying an application, requires
a flexible middleware. In this paper, we present a middleware
that provides an orchestrator-independent SLO controller for
periodically evaluating SLOs and triggering elasticity strategies,
while decoupling SLOs from the elasticity strategies to increase
flexibility, and provider-independent services for obtaining low-
level metrics and composing them into higher-level metrics. We
evaluate our middleware by implementing a motivating use case,
featuring a cost efficiency SLO for an application deployed on
Kubernetes.

Index Terms—Cloud, Service Level Objectives, Elasticity,
Orchestrator-independent, Middleware

I. INTRODUCTION

A Service Level Objective (SLO) is a “commitment to

maintain a particular state of the service in a given period” [1].

As such, SLOs are fundamental parts of Service Level Agree-

ments (SLAs), which, in cloud computing, are agreements

between cloud providers and cloud consumers to define limits,

within which the rented services need to operate [2]. SLOs

need to be measurable, based on one or more system or appli-

cation metrics, e.g., CPU usage or the application’s response

time, i.e., the time it takes the application to handle and send

a response to a network request to its API.

When an SLO is violated, e.g., the application’s response

time exceeds an upper threshold due to high demand, the cloud

can provision more resources for the application, allowing it to

meet the response time SLO again. Once the demand reduces

and the response time goes below a lower threshold, the cloud

can deprovision resources to reduce costs. This autonomous

adaptability to the current demand is called elasticity [3],

which may apply not only to resources, but also to costs, and

quality (e.g., accuracy of a weather prediction) [4]. We define

This work is supported by Futurewei’s Cloud Lab. as part of the overall
open source initiative.

an elasticity strategy as a sequence of actions that adjust the

resources provisioned to a cloud application and/or adjust its

configuration to correct an SLO violation.

To efficiently adjust the elasticity of a deployed cloud

application, which we refer to as a workload, based on its

SLOs, a Monitor Analyze Plan Execute (MAPE) loop [5] can

be implemented: i) the monitoring of system and workload

metrics can be handled by tools, such as Prometheus1, ii) the

analysis of the metrics to evaluate whether the defined goals

are met, is the task of an SLO, iii) the planning of actions

to correct a violated SLO needs to be done by the elasticity

strategy, and iv) the execution of the planned actions is carried

out by the cloud orchestrator, e.g., Kubernetes2. As part of the

Polaris SLO Cloud (Polaris) project [6], we are working to

bring complex SLOs, which can be combined with multiple

elaborate elasticity strategies, to the cloud.

In this paper, we focus on the realization of SLOs, i.e.,

the analysis step of the control loop. In the analysis step, an

SLO must obtain one or more metrics from the monitoring

step and pass its evaluation result on to the planning step,

i.e., an elasticity strategy – this is not trivial. A common

approach is to implement the SLO as a control loop itself. The

variety of monitoring solutions and databases (DBs) makes

obtaining metrics difficult without tying the implementation to

a particular vendor. Once the metrics have been obtained, they

may need to be aggregated to gain deeper insights. When the

current status of the SLO has been determined, the outcome

needs to be conveyed to an elasticity strategy; ideally multiple

elasticity strategies should be supported.

To facilitate the implementation of complex SLOs, we

present the Polaris Middleware. Its implementation is pub-

lished as open source, as part of the Polaris project3. Our

main contributions with the Polaris middleware include:

1) An orchestrator-independent SLO controller periodically

evaluates SLOs and triggers elasticity strategies, while

ensuring that SLOs and elasticity strategies remain de-

1https://prometheus.io
2https://kubernetes.io
3https://polaris-slo-cloud.github.io
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coupled to increase the number of possible SLO/elasticity

strategy combinations.

2) A provider-independent SLO metrics collection and pro-
cessing mechanism allows querying raw time series met-

rics, as well as, composing multiple metrics into reusable

higher-level metrics.

3) A Command-Line Interface (CLI) Tool creates and man-

ages projects that rely on the Polaris middleware.

Additionally, we provide platform connectors for Kuber-

netes, which has been found to have the most capabilities

for production-level services among commonly used container

orchestrators [7], and Prometheus, which is a popular choice

for a time series DB.

The remainder of this paper is structured as follows: Sec-

tion II provides further motivation for our work using a real-

world use case, Section III presents a high-level overview of

the Polaris middleware, Section IV describes the central mech-

anisms, and Section V their implementation. In Section VI

we evaluate the Polaris middleware by implementing the real-

world use case, in Section VII we present related work, and

in Section VIII we conclude this paper.

II. MOTIVATION

One of the aims of the Polaris project is to make SLOs first

class entities in cloud computing and facilitate their realization

through its runtime. Polaris is part of Linux Foundation’s

Centaurus project4, a novel open-source platform targeted

towards building unified and highly scalable public or private

distributed cloud infrastructure and edge systems.

A. Illustrative Scenario

To illustrate the need for the Polaris middleware, we present

a real-world cloud use case, featuring a headless Content Man-

agement System (CMS) that can be provisioned in the form

of Software-as-a-Service (SaaS). A headless CMS is primarily

used through its REST API, as a content source integrated into

another application. Gentics Mesh5 is an open source headless

CMS, consisting of two main components: the CMS itself

and an ElasticSearch6 DB. Each component exposes multiple

low-level metrics, e.g., CPU usage, or network throughput.

However, when deploying Gentics Mesh as SaaS, customers

expect the cloud provider to offer SLOs that automatically

scale the entire workload, i.e., the CMS and the DB. Such an

SLO may be based on the average CPU usage of all workload

components or the network throughput of the REST API.

Mapping their business goals to such low-level SLOs, while

keeping their budget, is difficult for most customers. Thus, a

high-level SLO that combines performance and costs can allow

customers to better define their objectives. One such high-level

SLO is cost efficiency, which is often defined as the number of

requests per second served faster than N milliseconds divided

by the total cost of the workload [8], [9].

4https://www.centauruscloud.io
5https://getmesh.io
6https://www.elastic.co/elasticsearch/

Cost efficiency is a high-level metric that is not directly

observable on the workload. Instead, it needs to be calculated

by combining multiple low-level metrics. Doing this without

tying the implementation to a specific time series DB is

difficult, because each major time series DB has its own

query language, e.g., Prometheus uses PromQL, InfluxDB7

uses Flux, and Google Cloud Platform uses MQL8. To alleviate

this problem, the Polaris middleware offers a DB-independent

service for querying raw metrics. Once a high-level metric,

e.g., the total cost of a workload, has been computed, it would

be beneficial to reuse it in multiple SLOs, thus, we also provide

a service for obtaining such high-level, composed metrics.

Before reading and evaluating metrics, an SLO needs to

be configured by the customer and executed periodically to

perform its evaluation. Once the SLO detects a violation, it

has to be able to trigger an elasticity strategy to bring the

workload back into a state, where the SLO is respected. Hor-

izontal scaling is the most commonly used elasticity strategy

today [10]. Nevertheless a customer should be able to choose

from different elasticity strategies to trigger upon an SLO

violation – yet, most SLOs today are tightly coupled with

one specific elasticity strategy, e.g., the average CPU usage

SLO in the Kubernetes Horizontal Pod Autoscaler (HPA) [11].

To support the aforementioned flexibility, the runtime’s SLO

control mechanism, which should be generic enough to be

shared among all SLOs, must provide these features.

B. Research Challenges

RC-1 Decoupling of SLOs from elasticity strategies: Many

SLOs are tightly coupled with the elasticity strategy they

trigger. For example, HPA in Kubernetes provides an av-

erage CPU usage SLO, which can trigger only horizontal

scaling. This rigid coupling reduces the flexibility of a

system – re-implementing every useful elasticity strategy

for every SLO controller is infeasible. Thus, a decoupling

of SLOs from elasticity strategies is needed.

RC-2 Enable realization of high-level SLOs, based on com-
plex metrics: Most metrics that guide cloud elasticity

today are directly measurable at the system or applica-

tion level [10], [12], [13]. While HPA supports custom

metrics using the custom and external metrics APIs9,

both approaches require developers to write a custom API

server, to which the Kubernetes API can proxy requests,

thus, increasing development and maintenance effort. The

external metrics API supports the specification of custom

queries, but this feature must also be implemented by the

custom API server. An SLO middleware must provide

mechanisms for combining multiple low-level metrics into

high-level metrics that are reusable in multiple SLOs.

RC-3 Cloud platform and datastore independence: The con-

figuration of autoscaling solutions is commonly specific to

a cloud vendor or orchestrator. Likewise, there is a distinct

7https://www.influxdata.com
8https://cloud.google.com/monitoring/mql/reference
9https://kubernetes.io/docs/tasks/run-application/horizontal-pod-

autoscale/#support-for-metrics-apis
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Fig. 1: Polaris Runtime Architecture (the colors indicate, which connector
realizes interfaces from a particular component).

query language for each major time series DB. Portable

SLOs require mechanisms to make them independent of

particular vendors.

Our first contribution, the orchestrator-independent SLO

controller, addresses all three research challenges, while our

second contribution, the provider-independent SLO metrics

collection and processing mechanism, focuses on RC-2 and

RC-3. Our third contribution, the CLI Tool, is a supporting

mechanism for leveraging the other two.

III. FRAMEWORK OVERVIEW

In this Section we provide a high-level overview of the

Polaris middleware’s architecture and the Polaris CLI.

A. Architecture

The architecture of the Polaris middleware is divided into

two major layers, as illustrated in Fig. 1. The Core Runtime
layer contains orchestrator-independent abstractions and algo-

rithms. The Connectors layer below it, contains orchestrator

and DB-specific implementations of interfaces from the core

runtime to allow connecting it to a specific orchestrator or

time series DB, which are located underneath this layer. SLO
Controllers are built on top of the core runtime, shielding them

from orchestrator- and DB-specific APIs. We subsequently

describe each of the runtime components in Fig. 1 briefly:

The Core Model contains abstractions for defining

and implementing SLOs. The most important ones are

ServiceLevelObjective, SloTarget, SloMapping, and

ElasticityStrategy. ServiceLevelObjective defines

the interface that the SLO implementation needs to realize

to plug into the control loop provided by the runtime. Slo-

Target is an abstraction used identify the target workload that

the SLO should be applied to. An SLO is configured through

an SloMapping, which associates a particular SLO type with

a target workload and an elasticity strategy, thus, establishing

a loose coupling between them. SLO mappings are deployed

to the orchestrator as custom resources. Each SLO mapping

type entails the definition of a custom resource type in the

orchestrator. The addition of a new SLO mapping resource

instance, activates the respective SLO controller, which sub-

sequently enforces the SLO. The ElasticityStrategy that

is specified as part of an SLO mapping, identifies the strategy

that should be used if the target violates the SLO, to bring

it back into a state, where the SLO is adhered. Akin to

an SLO mapping type, each ElasticityStrategy type is

represented by a custom resource type in the orchestrator.

The SLO control loop is used in an SLO controller to

watch the orchestrator for new or changed SLO mappings and

to periodically evaluate the SLO. It relies solely on Polaris

middleware abstractions and does not need be customized by

an orchestrator connector or an SLO controller, albeit this is

possible, if desired.

The SLO Evaluation facilities are used by the SLO control

loop to perform the evaluation of the SLO and to trigger

elasticity strategies on the orchestrator, if necessary. The

evaluation of the SLO is handled by the core runtime, while

the mechanisms for triggering an elasticity strategy, which

are specific to each orchestrator, must be provided by the

respective orchestrator connector.

The Transformation Service allows transforming

orchestrator-independent Polaris middleware objects into

orchestrator-specific objects for a particular target platform

and vice-versa. The runtime provides a transformation

mechanism that allows orchestrator connectors to register

a type transformer for every object type that needs to be

customized for the target orchestrator.

The Object Watch facilities allow observing a set of resource

instances of a specific type in the orchestrator for additions,

changes, and removals of instances. This is used, e.g., by

the SLO control loop to monitor additions of or changes to

SLO mappings. Orchestrator connectors must implement these

facilities for their respective platforms.

The Raw Metrics Service enables DB-independent access

to time series data to obtain metrics. A DB connector must

transform the generic queries produced by this service into

queries for its particular DB.

The Composed Metrics Service provides access to higher-

level metrics, called composed metrics, which allow combin-

ing multiple lower level metrics into a reusable high-level

metric. To make it accessible through the Composed Metrics

Service, a composed metric may be packaged into a library

that can be included in an SLO controller or it can be exposed

as a service or stored in a shared DB, promoting loose coupling

between the metrics providers and the SLO controllers. The

implementation of the sharing mechanism may be provided by

either the orchestrator or the DB connector.

The connectors create the bridge between the core runtime

and the underlying orchestrator and DBs.

The Kubernetes Connector library provides Kubernetes-

specific realizations of the three runtime facilities that are

highlighted in green in Fig. 1. Kubernetes-specific trans-

formers plug into the Transformation Service to enable the

transformation of objects from the core model to Kubernetes-

specific objects. The library also implements the object watch
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facilities for the Kubernetes orchestrator, which allow the SLO

control loop in an SLO controller to watch a particular SLO

mapping Custom Resource Definition (CRD) for additions of

new resource instances or changes to existing ones. The SLO

evaluation realization for Kubernetes augments the generic

evaluation facility from the core runtime by allowing it to

trigger an elasticity strategy using Kubernetes CRD instances.

The Prometheus Connector implements the generic Raw

Metrics Service using queries specific to the Prometheus time-

series database. It also supplies a mechanism for reading

composed metrics from Prometheus.

B. Polaris CLI

The Polaris Command-Line Interface (CLI) provides a

mechanism for project creation, building, and deployment for

developers, who want to use the Polaris middleware to create

custom SLOs and controllers. Its aim is to provide a convenient

user interface to developers, as well as a starting point for inte-

grating Polaris middleware projects in Continuous Integration

(CI) pipelines. The major commands are the following:

polaris-cli generate <componentType> <name>

adds a component of the specified type to the project. The

componentType may currently be one of three types:

• mapping-type creates a new SLO mapping type that can

be used by consumers to apply and configure an SLO.

• slo-controller creates an SLO controller for an SLO

mapping type and deployment configuration files.

• mapping creates a new mapping instance for an existing

SLO mapping type. This is intended to be used by

consumers, who want to configure and apply a particular

SLO to their workload.

polaris-cli (docker-)build <name> executes the

build process for the specified component to produce deploy-

able artifacts. For an SLO mapping type, this is a library

package that can be published for use by customers. For SLO

controllers, a container image with the executable controller

for deployment on the orchestrator is produced. For an SLO

mapping, the output is a configuration file, representing an

instance of the corresponding SLO type CRD.

polaris-cli deploy <name> [destination]

deploys the build artifact of the specified component to

the specified destination orchestrator.

The Polaris CLI provides a default implementation for all

commands, but allows developers to override these defaults in

the project file, enabling, for example, the use of a different

tool for deployment of the artifacts.

IV. MECHANISMS

In this Section, we describe the two main mechanisms

provided by the Polaris middleware, i.e., the orchestrator-

independent SLO controller and the provider-independent SLO

metrics collection and processing mechanism.

A. Orchestrator-Independent SLO Controller

The central mechanism in an SLO controller is the SLO

control loop – it monitors and enforces an SLO configured by

SLO Control Loop

Watch supported SloMappings

Receive raw SloMapping

Transform to SLOC object

Remove SLO from
evaluation loop

Instantiate and configure SLO

Add to evaluation loop or
replace

<<structured>>
for each SLO

Evaluate SLO

Orchestrator SloMapping

SLOC SloMapping Instance

SLO instance

SLO Output

Wrap in ElasticityStrategy

Submit to orchestrator

Orchestrator-specific
ElasticityStrategy

Transform to orchestrator object

Evaluation Loop Interval

[SloMapping added] [SloMapping removed]

Fig. 2: SLO Control Loop.

a user. The SLO control loop itself is orchestrator-independent

and merely requires some supporting services to be imple-

mented by the orchestrator connector. The SLO controller can

then use the control loop without further adaptation.

The SLO control loop consists of two sub-loops, as shown

in Fig. 2. The watch loop on the left side is concerned with

observing additions, changes, or deletions of SLO mappings

in the orchestrator using the object watch facilities and main-

taining the list of SLOs managed by the control loop. The

evaluation loop on the right side periodically evaluates each

SLO and triggers the configured elasticity strategy using the

SLO evaluation facilities.

1) Watch Loop: The watch loop begins by observing the

SLO mapping custom resource types that the SLO controller

supports. To this end, it uses the object watch facilities, which

emit an event whenever an object of the watched types (i.e., the

supported SLO mappings) is added, changed, or removed from

the orchestrator. This functionality must be implemented by

the orchestrator connector. Each watch event entails receiving

the raw SLO mapping object that has been added, changed,

or removed. Since this object is specific to the underlying or-

chestrator, it is transformed using the Transformation Service

into an orchestrator-independent object.

The watch loop then acts according to the type of watch

event. If a new SLO mapping has been added or changed, the

appropriate SLO object that is capable of evaluating the SLO

is instantiated, configured, and added to or replaced in the list

of SLOs for the evaluation loop. If an existing SLO mapping

has been removed, the corresponding SLO object is removed

from the evaluation loop. Subsequently the watch loop goes
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objectKind: { 
  group: ’slo.sloc.github.io’, 
  version: ’v1’, 
  kind: ’CostEfficiencySloMapping’, 
}, 
metadata: { name: ’my-slo’ }, 
spec: { ... }

:CostE ciencySloMapping

apiVersion: ‘slo.sloc.github.io/v1’, 
kind: ‘CostEfficiencySloMapping’, 
metadata: { name: ’my-slo’ }, 
spec: { ... }

:KubernetesObject

Fig. 3: Cost efficiency SLO mapping before and after transformation.

back to waiting for the next event.
2) Evaluation Loop: The evaluation loop executes at an

interval that is configurable by the SLO controller. Whenever

it is triggered, the evaluation loop iterates through the list of all

its SLOs. For each SLO, the current status is evaluated using

the SLO evaluation facilities. The exact evaluation process

depends on the implementation of the particular SLO that

is built on top of the Polaris middleware. Generally, SLO

evaluation entails the retrieval of all relevant input metrics

using the Raw Metrics Service and the Composed Metrics

Service. These metrics may be further processed and combined

and are subsequently compared to the ideal values configured

by the user in the SLO mapping. This results in an SLO output
that indicates if the SLO is currently fulfilled, violated, or

outperformed (i.e., fulfilled by a large margin, such that e.g., a

resource reduction is possible) and any additional information

necessary to get it back into a fulfilled state, if necessary.

This output is wrapped in an elasticity strategy object of the

type specified by the SLO configuration. The elasticity strategy

object is subsequently transformed to an orchestrator-specific

object using the Transformation Service and submitted to the

orchestrator, where it will trigger the respective controller for

the elasticity strategy. This submission to the orchestrator is the

part of the SLO evaluation facilities that must be implemented

by the orchestrator connector – the remainder of the SLO

evaluation is orchestrator-independent.

The SLO control loop is designed to handle errors during

the evaluation of an SLO gracefully, such that a problematic

SLO does not cause the entire controller to fail.

The SLO control loop relies on the Transformation Service

to convert between orchestrator-independent and orchestrator-

specific objects. All objects that are received from or submitted

to the orchestrator pass through this service. Orchestrator

connector libraries can register transformers for object types,

whose orchestrator-specific data structure does not match that

of the corresponding type in the Polaris middleware. The

Transformation Service is responsible for transforming the

structure of objects, while serialization and deserialization

(e.g., to/from JSON) are handled by the object watch and

SLO evaluation facilities. To transform an object’s structure,

the Transformation Service recursively iterates through all at-

tributes of an input object. If a transformer has been registered

for an attribute’s type, it is executed on the attribute’s value ac-

cording to the direction of the current transformation operation

(i.e., from orchestrator-independent to orchestrator-specific or

from orchestrator-specific to orchestrator-independent). If no

transformer is registered for a particular type, the value is

copied and the recursive iteration continues on the value’s

attributes. Fig. 3 exemplifies how an SLO mapping object for

a cost efficiency SLO is transformed to a Kubernetes resource

object (observe that the objectKind attribute of the Polaris

object is transformed into two attributes, apiVersion and

kind, on the Kuberenetes object).

Another essential mechanism in an SLO controller is the

decoupling of SLOs and Elasticity Strategies. The goal of this

is two-fold: i) allow an SLO to trigger a user-configurable elas-

ticity strategy that is unknown at the time the SLO controller

is built (i.e., the SLO controller cannot have a hardcoded set of

elasticity strategy options) and ii) allow an elasticity strategy

to be used by multiple SLOs to avoid having to reimplement

the same set of elasticity strategies for every SLO.

To achieve both goals, we have defined a common structure

for elasticity strategy resources, consisting of three parts: a

reference to the target workload, the output data from the

SLO evaluation, and static configuration parameters supplied

by the user. The target workload reference and the static

configuration parameters are copied from the SLO mapping

by the Polaris middleware. The configuration parameters are

specific to the elasticity strategy that the user has chosen,

which does not limit the generality of the mechanism, because

they are statically specified together with the identifier of the

elasticity strategy that the user has chosen and are not modified

by the SLO. Conversely, the SLO evaluation output data are

entirely produced by the SLO controller. The structure of

the SLO output determines which elasticity strategies can be

combined with that SLO, i.e., if an elasticity strategy supports

the SLO’s output data type as input, the two are compatible.

The Polaris middleware only needs to copy the SLO output

data to the elasticity strategy resource.

Using a generic data structure that is supported by mul-

tiple SLOs and elasticity strategies as an SLO’s output data

type, increases the number of possible SLO/elasticity strategy

combinations. Any suitable data structure can be used for

this purpose. The Polaris middleware includes the generic

SloCompliance data type, which captures the compliance to

an SLO as a percentage: a compliance value of 100% indicates

that the SLO is exactly met, a higher value means that the

SLO is violated and that, e.g., an increase in resources is

needed, while a lower value indicates that the SLO is being

outperformed and that resources can be reduced to save costs.

To avoid too frequent scaling, SloCompliance includes the

possibility for specifying a tolerance value, within which no

elasticity action should be performed.

B. Provider-Independent SLO Metrics Collection And Pro-
cessing Mechanism

The metrics required for evaluating an SLO can be obtained

through two mechanisms: i) the Raw Metrics Service and

ii) the Composed Metrics Service. The former is intended for

low-level metrics that are directly measurable on a workload,

e.g., CPU usage or network throughput, while the latter allows

obtaining higher-level metrics that are aggregations of several

lower-level metrics or predictions of metrics.

1) Raw Metrics Service: The Raw Metrics Service enables

the DB-independent construction of queries for time series

data. To this end, it allows specifying the metric name and
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the target workload, for which it should be obtained, as well

as the time range and filter criteria. Furthermore, it provides

arithmetic and logical operators and aggregation functions to

operate on the metrics. Upon execution, a query is transformed

into the native query language of the used time series DB. The

result of a query is an ordered sequence or a set of ordered

sequences of primarily simple (i.e., numeric or Boolean) raw

or low-level metric values.

rawMetricsService.getTimeSeriesSource()
.select(’my_workload’,
’request_duration_seconds_count’,
TimeRange.fromDuration(

Duration.fromMinutes(1)))
.filterOnLabel(LabelFilters.regex(
’http_controller’, ’my_workload.*’))

.sumByGroup(LabelGrouping.by(’path’))

.execute();

Listing 1: Raw Metrics Service query for total duration of all HTTP requests
in the last minute, grouped by paths.

The Raw Metrics Service is designed as a fluent API [14],

[15], which means that the code resulting from its use should

be natural and easy to read. Specifically this entails chaining

of method calls, supporting nested function calls, and relying

on object scoping. Listing 1 shows a query for the sum of

the durations of all HTTP requests that were made in the last

minute, grouped by request paths.

2) Composed Metrics Service: The Composed Metrics Ser-

vice is aimed at high-level metrics. These may be simple

values (e.g., numbers or Booleans) or complex data structures.

Unlike a raw (low-level) metric, a composed metric is not

directly observable on a workload, but needs to be calculated,

e.g., by aggregating several lower level metrics. A composed

metric may also represent predictions of future values of a

metric. Every composed metric has a composed metric type
definition that specifies the data structure of its values and a

unique name for identification.

The calculation of a composed metric requires an additional

entity, termed a composed metric source, to perform this

calculation. Each composed metric source supplies a metric

of a specific composed metric type. A composed metric type

is similar to an interface in object-oriented programming; it

specifies the type of composed metric that is delivered and

may be supplied by multiple composed metric sources.

Apart from its composed metric type, a composed metric

source is also identified by the type of target workload it sup-

ports. This enables high-level metrics, such as cost efficiency,

which need to be computed differently for various workload

types. For example, for a REST service, cost efficiency relies

on the response time of the incoming HTTP requests, a metric

that is not available on a SQL database. There, the execution

time of the queries could be used instead. This entails different

composed metric sources, which can be registered to the

respective workload types.

The Composed Metrics Service supports both, i) composed

metric sources integrated into the SLO controller through

libraries and ii) out-of-process composed metric sources that

execute within their own metric controller. The former option

computes the composed metric within the SLO controller and

is simple to realize for developers, because it only requires

the creation of a custom library that needs to be imported in

the SLO controller and registered with the Composed Metrics

Service. The latter option is more flexible and allows for

decoupling of the implementation and maintenance of the SLO

controller from that of the composed metric source.

Out-of-process composed metric sources may be imple-

mented, e.g., as REST services or through the use of a shared

DB. The latter allows the composed metric to be calculated

once and reused by multiple SLO controllers. An out-of-

process composed metric source can be leveraged to flexibly

update or change the way a certain composed metric type is

computed. For example, a TotalCost composed metric type

is of interest to multiple SLOs. It may be supplied by a metric

controller with a refresh rate of five minutes, i.e., the total

cost of a workload is updated every five minutes. This metric

controller can be replaced by a newer version, with a refresh

rate of one minute, without having to recompile and redeploy

the SLO controllers that depend on this composed metric.

V. IMPLEMENTATION

In this Section, we briefly describe the implementation of

the mechanisms from Section IV in our core runtime and the

connectors for Kubernetes and Prometheus.

The Polaris middleware and its CLI are realized in Type-

Script and published as a set of npm library packages. An SLO

controller is a Node.js application that uses these packages as

dependencies to implement SLO checking and enforcement

mechanisms. All middleware and CLI code, as well as example

controllers, are available as open source10.

A. Orchestrator-Independent SLO Controller

The orchestrator-independent SLO controller relies on the

abstractions provided by the core model, as well as the object

watch and SLO evaluation facilities. Fig. 4 shows the main

components involved in the SLO control loop. In case the

default control loop implementation does not suffice for a

particular scenario, the runtime may be configured to use a

custom implementation of the SloControlLoop interface.

The SLO control loop manages ServiceLevelObjective

objects, which are implemented by the SLO controller. The

ObjectKindWatcher is provided by the orchestrator con-

nector library to enable observation of the supported SLO

mapping types. The evaluation loop evaluates registered SLOs

using the SloEvaluator provided by the orchestrator con-

nector. The default implementation handles the evaluation

of the SLO and the wrapping of its output in an elasticity

strategy object – the connector library must only implement

the submission to the orchestrator. The Kubernetes connector

for the Polaris middleware relies on kubernetes-client11, the

officially supported JavaScript client library for Kubernetes.

It is important to note that the decisions need to be made

10https://polaris-slo-cloud.github.io
11https://github.com/kubernetes-client/javascript
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Fig. 4: SLO Control Loop components (simplified).

inside the SLO- and elasticity strategy-specific code in the

respective controllers. The purpose of the Polaris middleware

is to connect an SLO to any compatible elasticity strategy and

to provide reusable facilities to reduce the effort of developing

these types of controllers.
The Transformation Service is relies on the open-source

library class-transformer12 for executing the transformation

process, but provides its own, more flexible, transformer

registration mechanism. We assume that all raw orchestrator

resources contain a metadata property that uniquely identifies

their type. An orchestrator connector library is required to

register a transformer that converts these metadata into an

ObjectKind object, which is the Polaris abstraction used for

identifying orchestrator resource types. The Transformation

Service supports associating object kinds with Polaris classes

to enable the transformation into the correct runtime objects.
The decoupling of SLOs and elasticity strategies relies on

a common layout of elasticity strategy resources and the use

of the same data type for the output of an SLO and the input

of an elasticity strategy. The user selects an elasticity strategy

for an SLO by specifying its object kind in the SLO mapping

that configures the SLO. After evaluating an SLO, the Polaris

middleware instantiates the elasticity strategy class associated

with this object kind and copies the SLO output data to it. An

SLO Mapping requires the user to choose exactly one elasticity

strategy. An elasticity strategy is responsible for ensuring that

its sub-actions do not conflict with each other, e.g., if it

combines horizontal and vertical scaling. Unlike metrics, SLOs

and elasticity strategies cannot be composed. However, it is

possible to configure multiple SLOs for a single workload and,

thus, also multiple elasticity strategies (one for each SLO).

Since such combinations are highly use case specific, there

is no generic conflict resolution mechanism. Instead, the user

needs to ensure that there are no conflicts, which, however,

does not limit the expressiveness of the solution.

B. Provider-Independent SLO Metrics Collection And Pro-
cessing Mechanism

1) Raw Metrics Service: To create a raw metrics query, the

Raw Metrics Service is used to obtain a TimeSeriesSource,

12https://github.com/typestack/class-transformer

which realizes a DB-independent interface for assembling time

series queries for a particular target DB. The supported sources

are registered with the Polaris middleware when the SLO con-

troller starts. The select() method of TimeSeriesSource

creates a new query by specifying the name of the metric and

the target workload. Each method call on a query (see List-

ing 1) returns an immutable object that models the query up to

this point. The query may be executed, using the execute()

method, or extended by adding another query clause with an

additional method call, which yields a new, immutable query

object. This approach allows reusing a base query object, e.g.,

the time series of all HTTP request durations, for multiple

queries without side effects, e.g., for the sum of all request

durations and for the average duration of a request. When

execute() is called on a query object q, the segments of the

query chain, starting from the select() query object up to

query object q, are passed to a NativeQueryBuilder. This

builder needs to be provided by a DB connector library, e.g.,

the Prometheus connector.

2) Composed Metrics Service: To get a composed metric,

a ComposedMetricSource is obtained from the Composed

Metrics Service using a composed metric type and the tar-

get workload. Upon startup, the SLO controller registers

all ComposedMetricSource realizations that are provided

through libraries, together with their corresponding composed

metric types and supported target workload types, in the

Polaris middleware. These composed metric sources execute

their metric computation logic inside the SLO controller, e.g.,

by using the Raw Metrics Service internally for retrieving

and aggregating multiple raw metrics. If no Composed-

MetricSource has been registered for a particular composed

metric type, the Composed Metrics Service assumes that

this is an out-of-process composed metric source, which is

realized by a connector library. The Prometheus connector

provides a ComposedMetricSource realization that relies

on Prometheus as a shared DB, where standalone composed

metric controllers store their computed metrics.

VI. EVALUATION

We implement the motivating cost efficiency SLO use case

from Section II to show the productivity benefits of using the

Polaris middleware and run experiments in our cluster testbed

to evaluate its performance.

A. Demo Application Setup

Fig. 5 provides an overview of the components of the

cost efficiency SLO implementation and their relationships

– blue components are implemented for the use case, white

components are orchestrator and DB-independent parts of the

Polaris middleware, and green and orange components are part

of the Kubernetes and Prometheus connectors respectively. All

code is available in the Polaris project’s repository.

Our test cluster provides an elasticity strategy for horizontal

scaling, which is also part of the Polaris project and accepts

generic SloCompliance data as input.
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Fig. 5: Cost Efficiency SLO Implementation (blue), Kubernetes Connector
(green), Prometheus Connector (orange).

First, we set up an SLO mapping type in an npm library

to allow users to configure the cost efficiency SLO. To this

end, the Polaris CLI can create a TypeScript class Cost-

EfficiencySloMapping, which we extend with the configu-

ration parameters. Currently, the YAML code for registering a

Kubernetes CRD must be written manually or be generated

from an equivalent data structure defined in Go – as part

of future work, we will extend the Polaris CLI to support

generating CRDs from the TypeScript SLO mapping classes.

To enable reuse of the cost efficiency metric, we implement

it as a composed metric in a library. In our use case, cost

efficiency is defined as the number of REST requests handled

faster than N milliseconds, divided by the total cost of the

workload. However, cost efficiency is not only useful for REST

services, but can be applied to other types of services as well,

e.g., a weather prediction service, albeit with a different raw

metric as the numerator in the equation. To allow this, we

define a generic cost efficiency composed metric type (com-

posed metric types are shown as interfaces in Fig. 5) that can

be implemented by multiple composed metric sources. Thus,

we enable a cost efficiency SLO controller to support multiple

workload types (e.g., REST services and prediction services)

by either registering multiple cost efficiency composed metric

sources from libraries or by relying on out-of-process com-

posed metric services to provide the cost efficiency metric for

the various workload types. In our use case we supply a cost

efficiency implementation for REST services, but since the

Composed Metrics Service differentiates between workload

types when obtaining a composed metric source, this can

be increased to an arbitrary number of implementations for

various workload types.

Since total cost is an important metric in cloud computing,

this part of the cost efficiency composed metric could be

reused by other composed metrics or SLOs. To this end,

we create a total cost composed metric type that may be

supplied by multiple composed metric sources. We provide

an implementation that relies on KubeCost13, which we use

to export the hourly resource costs to Prometheus. In the

implementation of the KubeCostMetricSource, we use the

13https://www.kubecost.com

Raw Metrics Service to obtain these costs and the recent CPU

and memory usage of the involved workload components and

multiply and sum them to obtain the total cost.

The RestApiCostEfficiencyMetricSource also relies

on the Raw Metrics Service to read the HTTP request metrics

from the time series DB. It uses the Composed Metrics Service

to obtain the cost efficiency composed metric source for the

current workload to calculate the cost efficiency. The modular

approach of the composed metrics allows changing parts of the

implementation (e.g., use a different cost provider) without

affecting the rest of the composed metrics. Note that even

though we use Prometheus in our use case, the implementation

of both composed metrics is completely DB-independent – in

fact, a DB connector must be initialized by the SLO controller

(Prometheus connector in Fig. 5) to provide a NativeQuery-

Builder for generating queries for a specific DB.

Next, the SLO controller needs to be created. Its bootstrap-

ping code generated by the Polaris CLI initializes the Polaris

middleware, the Kubernetes and Prometheus connectors, reg-

isters the cost efficiency SLO and its SLO mapping type with

the SLO control loop, and starts the control loop. For the

CostEfficiencySlo class, a skeleton is generated to realize

the ServiceLevelObjective interface – it must be imple-

mented by developers. Since the cost efficiency composed

metric has been developed as a library, we need to call its

initialization function during controller startup to register the

cost efficiency metric with the Composed Metrics Service.

The SLO control loop monitors CostEfficiencySlo-

Mapping resources in the orchestrator through the object

watch facilities. To this end, the Kubernetes connector pro-

vides an implementation of the ObjectKindWatcher inter-

face, which relies on the Transformation Service to transform

Kubernetes resources using the transformers supplied by the

Kubernetes connector as well.

When a CostEfficiencySloMapping resource is re-

ceived by the SLO control loop, the CostEfficiencySlo

class is instantiated to handle its evaluation, when periodically

triggered by the control loop through the SLO evaluation

facilities. We use the Composed Metrics Service in the Cost-

EfficiencySlo class to obtain the composed metric source

for the cost efficiency metric. The current value of the metric

is compared to the target value configured by the user and

an SLO compliance value is calculated and returned to the

SLO evaluation facilities, whose orchestrator-specific parts are

realized by the Kubernetes connector. They use the elasticity

strategy object kind configured in the SLO mapping instance

to create a HorizontalElasticityStrategy resource to

wrap the SloCompliance output and submit that to the

orchestrator to trigger the elasticity strategy controller.

B. Qualitative Evaluation

Due to the use of the generic SloCompliance (depicted

as an interface in Fig. 5) and the dynamic instantiation of the

elasticity strategy resource, the cost efficiency SLO does not

need to know about the specific elasticity strategy that will

be used. Similarly, the horizontal elasticity strategy controller
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TABLE I: Lines of Code (excl. comments and blanks).

Component Lines of Code % of Total
Composed Metrics 209 7%
SLO Controller 119 4%
Polaris Middleware 2594 89%
Total 2922 100%

does not require any information on the SLO that has created

the elasticity strategy resource. The type of SLO output data

is the only link that connects an SLO to an elasticity strategy;

apart from having to share the same output/input data type,

they are completely decoupled. For example, changing to

a vertical elasticity strategy, only entails the user altering

the SLO mapping instance, used to configure the SLO, to

reference a vertical elasticity strategy object kind instead of

a horizontal elasticity strategy object kind.

All orchestrator-specific actions used in the SLO control

loop are encapsulated in the object watch and SLO evaluation

facilities, as well as the transformers used by the Transfor-

mation Service, which, in this use case, are implemented

by the Kubernetes connector library. Switching to a different

orchestrator, e.g., OpenStack14, only entails exchanging the

Kubernetes connector library for an OpenStack connector

library (i.e., importing a different library and changing one

initialization function call), the rest of the cost efficiency

SLO controller’s implementation would remain unchanged.

The same applies to changing the type of time series DB used

as the source for the raw metrics needed to compute the cost

efficiency composed metric: the Prometheus connector library

could be exchanged, e.g., for an InfluxDB connector library,

without altering the implementation of the cost efficiency

composed metric source.

Table I summarizes the line counts of the involved compo-

nents. The Polaris middleware has the largest part, with 89%
of the total code. The reusable total cost and the cost efficiency

metrics together add up to 209 lines or 7% of the code. The

cost efficiency SLO controller is the smallest part with only

119 lines (4% of the total code), about half of which can

be generated by the Polaris CLI. This shows that the usage

of the Polaris middleware greatly increases productivity when

developing complex SLOs, while keeping them portable to

multiple orchestrators and DBs. To better illustrate the usage

of the Polaris CLI, we have published a demo video online15.

C. Performance Evaluation

Our testbed consists of a three-node Kubernetes cluster, with

one control plane node and two worker nodes, all running

MicroK8s16 v1.20 (which is based on Kubernetes v1.20).

The underlying virtual machines (VMs) are running Debian

Linux 10 and have the following configurations:

• Control plane & Worker1: 4 vCPUs and 16 GB of RAM

• Worker2: 8 vCPUs and 32 GB of RAM

We use a synthetic workload for the performance tests, as

this is the best practice for stress tests. To the best of our

14https://www.openstack.org
15https://www.youtube.com/watch?v=3 z2koGTExw
16https://microk8s.io
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Fig. 6: Average total execution times of executeControlLoop-
Iteration() and its children across all 300 seconds profiling sessions.

knowledge, there is no other middleware that offers the same

features as Polaris. Out of the production-ready solutions,

HPA offers the greatest similarity. However, the realization

of composed metrics would require the addition of a custom

Kubernetes API server to provide these metrics, which means

that it could not compete with Polaris with respect to the

lines of code. We conduct two experiments, where we create

100 cost efficiency SLO mappings and let the SLO controller

evaluate them at an interval of 20 seconds.

1) SLO Controller Resource Usage: First, we show that

an SLO controller built with the Polaris middleware does not

consume excessive resources, even when handling numerous

SLOs. For this experiment, we deploy the cost efficiency SLO

controller to our cluster in a pod with resource limits of

1 vCPU and 512 MiB RAM. We observe the resource usage

over a period of 20 minutes using Grafana17, which fetches

metrics from Prometheus. While evaluating 100 SLOs every

20 seconds, the CPU usage stays between 0.2 and 0.25 vCPUs,

while the memory usage is between 102 and 140 MiB. Thus,

both, CPU and memory usage stay far below the pod’s limits

and constitute reasonable values for execution in the cloud.

2) Execution Performance of the Polaris Middleware: Next,

we demonstrate that the Polaris middleware does not add

significant overhead to an SLO controller. To this end, we

execute the cost efficiency SLO controller on a development

machine (Intel Core i7 Whiskey Lake-U with 4 CPU cores,

clocked at 1.8 GHz and 16 GiB RAM) under the Visual

Studio Code JavaScript debugger and profiler, while being

connected to our cluster’s control plane node through SSH. As

for the previous experiment, we use 100 cost efficiency SLO

mappings to generate load. We execute 3 profiling sessions,

each with a length of 300 seconds (i.e., 5 minutes).

Fig. 6 shows a flame chart with the total execution times

of all SLO control loop iterations and the major methods

invoked by it. The numbers are the mean average values

across all profiling sessions. The sum of the execution times

of all SLO control loop iterations in a 300 second profiling

session is on average 12,480 milliseconds (ms). The SLO

control loop itself and the triggering of elasticity strategies

using the results from the SLO evaluations only takes about

9% of that time, the remaining 91% are consumed by the

17https://grafana.com
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evaluation of the cost efficiency SLO. The SLO relies on

the cost efficiency composed metric, which takes up most of

the SLO’s execution time. The composed metric sets up one

raw metrics query itself for the HTTP request metrics and

delegates the creation of the query for the costs to the total cost

composed metric. The execution of both raw metrics queries

amounts to about 58% of the total SLO control loop execution

time. More than half of this (35% of the total) amounts to the

query execution in the third-party Prometheus client library.

This analysis demonstrates that the evaluation of SLOs using

the Polaris middleware is performant and does not show any

evidence of bottlenecks.

VII. RELATED WORK

There is a multitude of SLO solutions for the cloud. How-

ever, most of them focus on providing one or a few specific

SLOs instead of supplying a runtime for creating arbitrary

SLOs or decoupling SLOs from elasticity strategies.

The vast majority of big commercial cloud providers, such

as AWS [16], Azure [17], and Google Cloud Platform [18],

offers simple SLOs, where users can specify a lower and

upper bound or an average value for metrics that are directly

observable on the system. Horizontal scaling is the most sup-

ported elasticity strategy, albeit some cloud providers have not

shown additional increases in application performance above

certain instance counts [19], suggesting that more elaborate

elasticity strategies would be more suitable at that point. Some

providers support higher-level SLO specifications, e.g., AWS

uses ”nines” for the availability of services [20] and the

durability of DBs (e.g., ”four nines” is equal to a service

availability of 99.99%). Some providers allow specifying

custom metrics through metrics query languages for existing

SLOs, but nevertheless, most big cloud providers do not offer a

runtime for implementing additional SLOs, which means that

complex SLOs would have to be implemented entirely in the

metrics query language.

For Kubernetes, Horizontal Pod Autoscaler (HPA) [11], Ver-

tical Pod Autoscaler (VPA), and Cluster Autoscaler (CA) [21]

are commonly used solutions. However, they all tie a single

SLO to a single elasticity strategy. HPA allows scaling out/in,

based on an average CPU usage SLO, CA adds or removes

nodes to/from a Kubernetes cluster, based on the time that is

allowed to pass after a pod can no longer be scheduled, and

VPA allows configurable up/down scaling, but does not allow

explicit configuration of the SLO, i.e., the decision when to

scale is made automatically. Some research tries to improve

the performance of VPA [22] and CA [23], but so far, the

aforementioned autoscalers remain limited in their extensi-

bility. While HPA provides support for custom metrics, they

require the implementation of a custom Kubernetes API server,

which leads to additional effort. The experimental kube-

metrics-adapter18 allows expressing complex metrics queries

in PromQL. However, this approach is difficult to maintain,

especially for complicated metrics that require large queries.

18https://github.com/zalando-incubator/kube-metrics-adapter

There are some frameworks that support combining raw

metrics into combined metrics, but they are normally not inte-

grated with an SLO runtime. MELA [24] is designed for cloud

elasticity monitoring and allows combining metrics using a

metric composition language. StreamSight [25] is a language

and framework for generating optimized queries for distributed

processing of streaming analytics in edge computing, which

may also be used to combine multiple metrics.

Some research systems provide flexible runtimes that allow

defining custom SLOs, which are decoupled from elasticity

strategies. The SYBL [26] language is designed for defining

custom metrics and complex constraints, i.e., SLOs, on cloud

applications and their components. While its runtime system

can be extended with custom elasticity strategies, it is tied to

OpenStack. The rSLA [27] language, supports, in conjunction

with its runtime facilities, the definition of SLOs based on raw

and custom metrics, as well as the triggering of actions upon

SLO violations, i.e., elasticity strategies. Despite providing a

runtime with support for custom metrics, SLOs, and to some

degree elasticity strategies, SYBL and rSLA do not allow

passing information resulting from the SLO’s evaluation (e.g.,

the degree of SLO compliance) to the elasticity strategies,

which may limit their effectiveness.

VIII. CONCLUSION & FUTURE WORK

In this paper, we presented the Polaris middleware, a flexible

middleware system for implementing complex metrics and

SLOs that trigger elasticity strategies in an orchestrator- and

DB-independent manner. We have motivated the need for the

Polaris middleware using a real-world use case and listed

its architecture requirements. We presented the design and

implementation of the mechanisms that enable our core contri-

butions of 1) the orchestrator-independent SLO controller for

periodically evaluating SLOs and triggering elasticity strate-

gies, 2) the provider-independent SLO metrics collection and

processing mechanism for obtaining raw, low-level metrics

from a time series DB and composing them into reusable,

higher-level composed metrics, and 3) a CLI Tool for creating

and managing projects that rely on the Polaris middleware.

Finally, we used the realization of the motivating use case

using the Polaris middleware to evaluate the performance

of our middleware and to show that it provides substantial

benefits and flexibility when implementing SLOs.

To achieve all goals of the Polaris project [6], we identify

the following steps of future work: To facilitate the creation

of new SLO mapping types, we will extend the Polaris CLI

with the ability to generate CRDs from the TypeScript class of

an SLO mapping. We will introduce more complex elasticity

strategies that go beyond scaling of workloads by allowing

automatic transformations of the topology of a complex cloud

workload. Furthermore, we will extend Polaris towards edge

computing, by introducing edge-specific SLOs and elasticity

strategies, such as for optimizing the usage of a cellular

network.

419



REFERENCES

[1] A. Keller and H. Ludwig, “The wsla framework: Specifying and
monitoring service level agreements for web,” Journal of Network and
Systems Management, vol. 11, no. 1, pp. 57–81, 2003.

[2] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low level
metrics to high level slas - lom2his framework: Bridging the gap
between monitored metrics and sla parameters in cloud environments,”
in 2010 International Conference on High Performance Computing &
Simulation. IEEE, 28.06.2010 - 02.07.2010, pp. 48–54.

[3] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud comput-
ing: What it is, and what it is not,” in 10th International Conference on
Autonomic Computing (ICAC 13). San Jose, CA: USENIX Association,
2013, pp. 23–27.

[4] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong, “Principles of elastic
processes,” Internet Computing, IEEE, vol. 15, no. 5, pp. 66–71, 2011.

[5] E. Manoel, M. J. Nielsen, A. Salahshour, S. Sampath K.V.L., and
S. Sudarshanan, Problem determination using self-managing autonomic
technology, 1st ed., ser. IBM redbooks. Austin Tex.: IBM International
Technical Support Organization, 2005.

[6] S. Nastic, A. Morichetta, T. Pusztai, S. Dustdar, X. Ding, D. Vij, and
Y. Xiong, “Sloc: Service level objectives for next generation cloud
computing,” IEEE Internet Computing, vol. 24, no. 3, pp. 39–50, 2020.

[7] I. M. A. Jawarneh, P. Bellavista, F. Bosi, L. Foschini, G. Martuscelli,
R. Montanari, and A. Palopoli, “Container orchestration engines: A
thorough functional and performance comparison,” in ICC 2019 - 2019
IEEE International Conference on Communications (ICC). IEEE,
52019, pp. 1–6.

[8] T. A. Hjeltnes and B. Hansson, “Cost effectiveness and cost efficiency in
e-learning,” QUIS-Quality, Interoperability and Standards in e-learning,
Norway, 2005.

[9] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On a catalogue of metrics
for evaluating commercial cloud services,” in 2012 ACM/IEEE 13th
International Conference on Grid Computing. IEEE, 20.09.2012 -
23.09.2012, pp. 164–173.

[10] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications
in clouds,” ACM Comput. Surv., vol. 51, no. 4, pp. 1–33, 2018.

[11] T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park, and S. Kim, “Horizon-
tal pod autoscaling in kubernetes for elastic container orchestration,”
Sensors (Basel, Switzerland), vol. 20, no. 16, 2020.

[12] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes,
and J. N. de Souza, “Elasticity in cloud computing: a survey,” annals of
telecommunications - annales des télécommunications, vol. 70, no. 7-8,
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