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Abstract—The modern computing scenario of the Computing
Continuum exhibits large and complex applications with hetero-
geneous requirements running on distributed infrastructure. Still,
when it comes to coordinating and controlling such applications
and infrastructures, it is common to rely on centralized or
ad-hoc solutions. While these approaches are robust, scaling
management solutions, managing local changes, and having a
holistic perspective can be challenging. Additionally, they could
be better suited for addressing new problems in dynamic envi-
ronments. Therefore, new approaches are needed. In this paper,
we present DICT, a novel method for managing the Computing
Continuum, i.e., the infrastructure and the applications. The pro-
posed approach encompasses a series of modules for automatic
management. The core idea is to develop a method for applying
the intents coming from the infrastructure and application
managers in an autonomic and dynamic way. The modules can
communicate through coordinators that take observable inputs
and send them back predictions on the next actions to take.
These coordinators have the role of summarizing the sensed
observation and extracting high-level information in light of the
AI advancement that shows how discrete space representation
of inputs improves generalization. Thus, they can have models
that build their own semantics and “language.” We envision
that, through DICT, both the application and the infrastructure
management will only have to specify high-level intents and not
focus on defining encoded and difficult-to-change strategies.

Index Terms—Computing Continuum, Holistic Management,
Distributed Intelligence, Intent, Coordination

I. INTRODUCTION

Enterprise systems have reached the capability of providing

pervasive and distributed servers to millions or billions of

customers [1]. However, this comes at the price of unprece-

dented complexity complexity, including a more sophisticated

logic. Moreover, the systems operate on infrastructures that

span from the IoT to the Cloud, in what is called the “Com-

puting Continuum [2].” The Computing Continuum exhibits

heterogeneity in the device types, e.g., IoT devices can be

sensors or UAVs [3], and subsets of the Edge or Cloud nodes

might feature GPU or AI accelerators. Furthermore, it features

intricate interactions. However, solutions for managing this

scenario are still in their infancy.

The key challenge is how to guarantee a holistic manage-

ment [4] of applications and infrastructure, given system-wide

and dynamic goals. In particular, infrastructure providers solve

the problem by stipulating agreements with the enterprises.

However, this approach can be too rigid to adapt to changes

in requirements or objectives. Furthermore, the management

of the application on and with the infrastructure is centralized.

Despite the solid ingenuity of these solutions [5], the mono-

lithic structure of the strategies suffers from the complexity

of the Computing Continuum and the dynamicity of the

applications. Some approaches aim at breaking up the mono-

lithic orchestration, going towards layered or decentralized

approaches [6], [7], [8], [9]. Still, most approaches, despite

offering good results in various management tasks [10], [11],

[12], are just a set of disconnected models. Therefore, is

difficult to have an organic scaling and distribution of the

management, both flexible and capable of controlling local

changes.

In this work, we present a novel problem setting and

framework that enables managing the computing continuum in

a holistic and self-automating way. Our key insight, inspired

by theories and research from other fields, including cognitive

science, biology, physics, and chemistry, is that it is possible

to see complex systems with big, varying data from variegated

and dynamic components as organisms. In particular, one

organism can be seen as composed of a set of specialist

modules. Each of these modules acts locally on their portion of

inputs. Managing a system composed of independent, special-

ist modules means having the possibility of generalizing new

information, objectives, and applications. This task requires

finding communication methods for sharing and improving

the modules’ knowledge. We propose a novel problem setting

where each requirement of an enterprise application or the

infrastructure takes the form of a high-level requirement, i.e.,

intent [13], [14], [15]. Each intent translates into quantifiable

measures, e.g., efficiency, or availability. These measures con-

trol the action of low-level strategies. Their interoperation and

association form the edges and nodes of a graph. Contextually,

each measure relates to some policy or objective for an

application and of a subset of the infrastructure, what we call

a “resource group.” These measures need to be adjusted to

balance the overall functioning of the system with the global

objective of reaching equilibrium.

Within our novel problem setting, we envision DICT (Fig-

ure 1), a framework that enables a decentralized and self-

automating management of the Computing Continuum. Our

blueprint defines the structure of this management. We con-

ceptualize a system composed of multiple independent agents,

each specializing in interacting with the underlying infras-

tructure. In particular, we introduce DICT modules. They

manage the agents, taking care of their communication and

coordination at different speeds [16], i.e., at various levels of
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Fig. 1: This figure aims to represent an example of DICT (Distributed Intelligence Coordination Tool) management operating

at different speeds over the computing continuum infrastructure. It shows how DICT modules are coordinated to enforce

application intents from the edge to the cloud. This overview illustrates the varying speeds of coordination, with faster local

resource agents (the brown cone) managing immediate tasks at the edge and slower global intents enforcement (yellow cone)

occurring in the cloud. This multi-layered approach ensures a seamless and efficient orchestration of resources and tasks across

the entire computing continuum, highlighting the dynamic interaction between different system layers.

granularity. We organize DICT modules at different layers of

abstraction and connect them according to the intents they

manage across various system layers. Each DICT module

abstracts the observed input by extracting a higher-level under-

standing of the system’s dynamics and helping predict causally

the following states to take the most appropriate actions.

We envision that this high-level representation can help deal

with the system’s uncertainty by offering generalization. This

contribution represents one of the main components of the EU

Horizon Project, INTEND [17] 1.

The remainder of this paper is structured as follows. Sec-

tion II provides the background of our study, exploring core

concepts from various fields, including cognitive science,

biology, physics, and chemistry. In Section III, we discuss

advancements in implementing models and tools for complex

systems. Section IV introduces DICT, detailing its main com-

ponents. Finally, Section V aims at providing a viewpoint able

to considers the risks associated with AI and machine learning

in system automation, emphasizing the importance of safety

guarantees and careful implementation.

II. BACKGROUND

In this Section, we aim at displaying the foundation of

our study and characterization. We want to take the core

concepts and mechanisms that these approaches are portraying

1https://intendproject.eu

and transfer them to our use case. Specifically, we want to

show how the studies of complex systems across fields display

similar structure. A complex system model can be seen from

the bottom-up perspective as the sum of autonomous agents,

from the top-down as a set of mechanisms and message pass-

ing patterns that allow to build a global behavior. The topics

fundamental to this work that are discussed in this section

range from theoretical frameworks that, among other things,

take inspiration from the human brain to computational reifi-

cation, and finally, the overlapping areas of interdisciplinary

influences are explored. Thanks to the novel advancements in

studies and methods, we believe that having such an approach

for the Computing Continuum is realistically achievable.

A. Theoretical Frameworks

a) Global Neuronal Workspace: The Global Workspace

Theory is a theory of the brain introduced by Baars [18]

and further developed by Dehaene[19], [20]. This theory is

interesting because it offers a decentralized model of the brain.

The theory envisions that parts of the brain work in autonomy

most of the time, performing unconscious tasks. When relevant

information is needed, and complex decisions need to be made,

a reserved and restricted area of the brain, called the global

neuronal workspace, comes into play. This area of the brain

collects the inputs that arrive from single specialists, and for

the ones that produce relevant information, there is space in

the workspace. The information is then aggregated and sent
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back to all the other modules. The model aims to describe the

executive control that the brain has over mental processes. As

Dehaene describes, it is one of the human attention systems

that selects from many possibilities the ones available in the

mental operation space.

b) Thinking Fast and Slow: The research on conscious-

ness intertwines with the notorious work on the mind by

Daniel Kahneman, “Thinking: Fast and Slow.” [21] This

work defines, through means of abstraction, a picture of the

mind working in two levels, System 1 and System 2. The

first performs “unconscious” actions in a “fast” way. More

cognitively intense operations require System 2 instead. This

system is “slow” as it needs to retrieve the information from a

graph of personal knowledge of the world. This work aids us

in having a perspective that can consider the speeds of learning

and information retrieval and extraction.

c) Active Inference and Multi-Agent Systems: The Prin-

ciple of minimizing Free Energy (FEP) uncovers the idea of

the organism as a set of agents whose role is to minimize

uncertainty and optimize their interactions with the environ-

ment [22], [23], [24]. Active inference offers mechanisms for

acting to minimise free energy. The variational free energy

expresses the surprise or uncertainty associated with a belief or

uncertainty given a predicted or observed outcome. FEP’s idea

is that this mathematical structure [25] helps their modeling

and self-regulation when applied to large complex systems.

d) Causality: Judea Pearl’s framework for Causal In-

ference provides the foundational framework for modeling

cause-and-effect relationships [26]. This work is captivating

as it describes how to predict the outcome of some action.

Schölkopf and his research group extended this work by

identifying the connection between causal inference and ma-

chine learning [27]. In particular, this research branch defines

how combining the power of causal models with novel Deep

Learning methods can lead to better generalization and greater

transparency.

B. Computational Reification

a) Recursive Neural Networks: Recursive Neural Net-

works (RNNs) model the concept of “memory” for neural net-

works. The idea is to hold relevant information, e.g., anomalies

in a time series progression, and share it to enhance knowledge

of the current state. This approach is gaining momentum

in several works, and it helps represent, with mathematical

structure, the idea of having some module that can update the

understanding of the system’s state.

b) Representation Learning: The last decade of advance-

ments in neural networks sees representation learning as a

cornerstone [28]. The core concept is to transform raw input

into higher-level, meaningful representations. The extraction of

rich information can help downstream tasks to have a better

understanding of the problem and generalize over various

data. Since the surge of NLP, embeddings have become a key

technique for representing discrete variables, such as words

in a dictionary, as continuous vectors. Another key method

in representation learning is the encoders, which are used for

translation and summarization by transforming input data into

what is called “latent representations.” The idea is to learn to

encode a different representation of the data by extracting the

relevant information that the input carries, which gives the de-

coder the capability to understand and act better. Autoencoders

guarantee representation and reconstruction. The autoencoder

is used to learn the internal structure of some input and encode

it in a hidden internal representation. A version of them is

the variational autoencoders that use probability. They are

generative models that, thanks to the probability capabilities,

can better understand the underlying causal relation. This

causal understanding leads to better generalization.

c) Cellular Automata and Neural Cellular Automata:
Cellular automata is an architecture and a rule for formaliz-

ing and representing the self-reproduction in machines. Von

Neumann first introduced it, and later, it was reworked by

John Conway and Stephen Wolfram [29], [30]. What cellular

automata provide is parallelism and the capability to form

complex patterns. This approach guarantees the achievement

of computation in a non-traditional way.

C. Interdisciplinary Influences

a) Complex Systems Theories: Talking about complex

systems science in a paragraph would be oversimplifying.

Here, we aim to highlight the perspective of a set of models

and principles that can become essential when dealing with the

problem of continuum management. Specifically, concepts like

self-organization and emergence, both inspired and applied

to natural phenomena, have helped formalize the behavior

of systems that exhibit complexity, intended as the cases

where the whole system behavior is more than the sum of

the individual actions of the agents that compose the system.

In particular, complex systems research has emphasized the

quest for interdisciplinary findings. Certainly, the adoption

of complex systems concepts in distributed systems is not

new; over the years, contributions from scholars like Bernardo

Huberman and Eric Bonabeau have been pivotal. Still, the

modern techniques and mathematical frameworks that both

fields of cognitive science and artificial intelligence are pro-

viding can lead to the application of such paradigms on large-

scale systems. Indeed, novel approaches like self-organized

criticality, based on concepts like dynamical systems theory,

are being applied with success to various fields, from the

brain [24] to natural phenomena [31].

b) Surfing Uncertainty: The work of Andy Clark, “Surf-

ing Uncertainty” [32], offers a general and abstract charac-

terization of the nervous system. In particular, Clark takes a

top-down perspective. In particular, he presents a hierarchical,

action-oriented predictive processing organization. The ratio-

nale is that the cognitive system can be represented as a set

of levels organized hierarchically. The higher levels have the

role of predicting the stimuli coming from the lower levels.

The mismatches between the predictions and the stimuli are

sent back to the higher levels to improve future inferences.

This approach implies the realization of a generative model,

specifically the result of a process of Bayesian inference.
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The agents that compose this characterization are responsible

for generating predictions about the world. In particular, they

perform precision-weighting, i.e., extracting the information of

the sensory stimuli that are more relevant to make an accurate

prediction. In this way, the system builds a model of the world

that will eventually grow in accuracy over time.

III. ADVANCEMENTS AND OPPORTUNITIES

Incorporating advances and opportunities in different areas

is crucial to creating a versatile and practical solution when

developing an intelligent coordination tool. The topics dis-

cussed in this section include collective agents’ cooperation,

message passing among agents, system learning over time,

and the design of accountable and responsible frameworks.

Complex problems can be solved more effectively by foster-

ing cooperation among multiple agents. Therefore, we first

want to introduce solutions for coordinating multiple agents.

Since effective communication is key to the success of any

distributed system, we then introduce some ideas and solutions

that have been proposed in this area. In the next part, we

discuss system learning over time, which is essential to ensure

that the system performance does not deteriorate. The last

part discussed the critical topic of designing accountable and

responsible frameworks.

A. Collective Multi-agent Systems implementation

The advent of distributed computing, characterized by a

wide continuum spanning from edge devices to cloud in-

frastructure, demands innovative management strategies to

optimize resource allocation and ensure seamless integration.

Multi-agent Systems (MAS) demonstrated over time to enable

the integration of various goal and logic in an autonomous,

yet cooperative way [33]. In the context of virtualized infras-

tructures, as the Cloud[34] and the Edge [35], MAS proved

the maturity to handle complex decision-making processes,

especially for task placement and resource allocation. Yet,

considering Edge and Cloud in isolation is not enough; there-

fore, it is essential to develop MASs in the whole Computing

Continuum, as a central pillar for evolving to more adaptive,

resilient, and scalable architectures. Contingently, providing an

efficient and accurate MAS requires leveraging self-regulating

algorithms [36] and developing accurate coordination and

communication strategies [37].

1) Control-based approaches: When dealing with complex

algorithms, it is necessary to coordinate multiple agents and

their actions [38]. Both can broadly vary in scope and char-

acteristics (think about the variety of data and functions in a

composite scenario: computing, monitoring, managing, etc.).

In particular, Reinforcement-learning-based techniques, also

called MARL (Multi Agent Reinforcement Learning) [39], of-

fer the most prominent structure for acting on the environment

and iteratively improve the management. In particular, new

approaches leverage Representation Learning [40] methods for

improving the understanding of the observed environment.

a) Swarm intelligence: Swarm intelligence (SI) explores

biological principles such as stigmergy and self-organization

and highlights the importance of interactions and the effects

of parameter changes on collective behavior[41]. In a swarm,

the individual organisms, relying on limited and imprecise

environmental information, collectively navigate through un-

certainties and solve complex problems. This area of research

has its origins in the study of the self-organized behavior

of social insects and has implications in various fields such

as telecommunications and autonomous robotics[41]. Swarm

intelligence can be split into insect-based and animal-based al-

gorithms [42], However, this intelligence can also be observed

in other environments, e.g. in colonies of bacteria or amoebae,

crowds of human beings, and many others [41]. One popular

SI algorithm is called Ant Colony Optimization (ACO), which

is inspired by the foraging behavior of certain ant species

that create pheromone trails to signal optimal paths to their

colony mates. This method uses a similar strategy to solve

optimization problems in a decentralized environment. Al-

though these approaches can handle complex decision-making

processes, managing the scale that the Computing Continuum

embeds is still challenging. In addition, such approaches

require further development to manage the dynamic nature of

the computing continuum and generalize to new requirements

from the infrastructure and application managers.

2) Deep Learning-based appraoches: Other approaches

explore the use of Representation Learning for controlling

MAS, e.g., through shared memory mechanisms [43]. An-

other possible application of these principles can be seen in

the “How2comm” framework [44]. The paper proposes an

approach to collaborative perception and aims at optimizing

the trade-off between perception accuracy and communication

efficiency. Collaborative perception itself aims at integrating

sensory data to achieve a more accurate and comprehen-

sive understanding of the environment and more accurate

build and reasoning on complex systems. In this context, a

strategy focusing on meaning can improve communication

redundancy, transmission delay, and collaboration [45]. In this

set of techniques graphs [46], [47] play an essential role in

highlighting the relationships between agents and the most

relevant communication information.

B. Semantic Communication

Communication is not trivial since it requires high-level

semantics and regulatory mechanisms. Several works attempt

to achieve it, proposing various encoding mechanisms [48].

Semantic communication [49], [50], a pillar for complex

systems [51], is focusing on the meaning and context of

exchanged information [50], [52], emerges as a pivotal so-

lution for enhancing interoperability and efficiency across the

computing continuum [53]. In particular, semantic commu-

nication has the potential to address key challenges in real-

time, complex distributed systems as the ones that involve

autonomous driving.

An open research question is how a designed communi-

cation scheme can combine these approaches and guarantee
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that specialized algorithms can communicate with each other.

Indeed, when developing distributed solutions, having robust

encoding mechanisms that can handle diverse input becomes

essential.

C. System learning over time

a) Learning methods inspired by cognitive psychology,
physics, and neuroscience: Several learning approaches have

been inspired by how humans learn, to improve the learning

ability of artificial intelligence systems. De Melo et al. [54] de-

scribe three different approaches, including multimodal learn-

ing, continual learning, and embodied learning. Multimodal

learning uses redundancy and self-monitoring of multiple

sensory inputs such as vision, hearing, and touch to improve

learning in humans and deep learning systems. In general, the

goal is to integrate different sensor data [55] for more ro-

bust task performance and comprehensive training. Continual

learning is characterized by the ability to continuously adapt

and learn in a changing environment. It inspires deep learning

(DL) models to support the learning of an infinite set of tasks

using mechanisms such as weight protection, memory systems

for repetition, and network modularity to prevent forgetting

and enable lifelong learning. Some of these approaches can

be categorized under the umbrella of multi-task learning [56].

In this case, the capabilities of generalization to various

domains [57] or, better, to shifts in inputs, is essential. Embod-

ied learning, which emphasizes the importance of interactive

engagement with the environment for knowledge acquisition,

shifts the paradigm towards the development of DL systems

that learn from exploratory, multimodal feedback, supported

by simulated environments and techniques such as inverse

rendering and latent spatial entanglement to understand the

properties of the 3D world. In particular, causal learning [58],

[59] techniques are offering the discovery of high- level causal

variables from low-level observations. These approaches aim

at providing better generalization capabilities for deep learning

and faster convergence for RL models. They are also essential

for continual and multi-task learning, managing to decompose

knowledge about the world into indepen- dent and recompos-

able pieces.

b) Importance of Reasoning in Distributed AI: The chal-

lenge is making complex applications collaborate at different

hierarchy levels and at different speed [16] and take intelligent

decisions. The vast amount of data required to run current

algorithms is not sustainable anymore, and systems need to

adapt to out-of-distribution data. Therefore, complex environ-

ments demand calls for the development of techniques that

can combine top-down signals (high-to-low level - cloud-to-

edge) with bottom-up ones (from sensors up), consolidating

the cloud-edge continuum as a unique ”organism.” A set of

recent studies in the deep learning community developed the

combination of top-down and bottom-up signals on a more

abstract level, inspired by what allegedly happens in our

brain [60]. In particular, one of the deep learning techniques

proposed in [61] derives from the idea of a constrained shared

resource pool in the brain where decisions compete to the

access, letting the best configurations of modules win. This

bottleneck seems beneficial for improving coordination and

communication between specialist models selecting the best

set of actions, and various research groups are researching

in the same direction [62]. These approaches take part in a

wider research quest to develop models capable of offering

generalization [63] capabilities under uncertainty. In particular,

recent efforts have been done to define the essential step

for modular, adaptive models [64], based on deep learning

techniques. These advancement are essential to have a better

understanding on how to build automated, AI tools with more

capabilities [51], [65]

The research for this topic involves studying solutions

for distributed applications by evaluating them in various

scenarios.

IV. SYSTEM BLUEPRINT

Our aim is to develop a novel federated decision coordi-

nator, the Distributed Intelligence Coordination Tool (DICT),

designed for data pipelines in the computing continuum.

The main idea is to enable distributed decision-making that

includes local and regional coordinators. Within the framework

of the INTEND Project [17], we envision DICT operating

within an infrastructure that has global outreach, with a

European core. The system itself is dynamic and continually

evolving, necessitating distributed control mechanisms. The

goal is to move towards self-organizing, self-regulating sys-

tems without human intervention.

DICT role is to coordinate intents, i.e., high-level require-

ments that are defined for data pipeline entities. The sys-

tem processes these intents by converting them into logical

constraints for AI models. Actions are then analyzed by the

Autonomic Manager using information from sensors and pre-

defined rules. Conflicts are resolved through DRL, information

sharing, and optimized resource allocation.

A. DICT Coordinator

We envision the coordination of the computing continuum

in a hierarchical, intent-based way. The hierarchical structure,

depicted in Figure 2, guarantees that the management and the

conflicts are handled at various levels of detail. The global
coordinator focuses on global intents and policies, making

strategic decisions that impact the whole system. It focuses

on guaranteeing long-term goals and enforcing a coherent

approach across the entire system. Its tasks include balancing

and finding trade-offs among high-level intents. The global

coordinator manages multiple regional coordinators. Regional
coordinators manage mid-level, regional decisions. A region

is a cluster of logically connected infrastructure or network

regions. Each regional coordinator prioritizes regional intent

demands while aligning with the directives coming from the

top-level/global coordinator. The local coordinators manage a

restricted portion of the infrastructure. They directly synchro-

nize with the local agents at the machine, data, and network

level. The local coordinator guarantees real-time decision-

making, responding quickly to local conditions and observ-
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Fig. 2: A simplified representation of the various entities and
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Fig. 3: Illustrative pipeline for the local DICT coordinator and

its interaction with the submodules

able inputs. Its adjustments are targeting the optimization

of local performance. At the same time, its decisions are

driven by the regional coordinator’s rules. Figure 3 depicts

a more detailed example of a local coordinator. The local

coordinator receives the quantitative award functions from the

upper layers and manages one research group with one or

more resource dimensions. As depicted, the local coordinator

forwards the functions to coordinator agents, and it controls

and adjusts award functions based on feedback coming from

the coordinator agents.

The operations of the coordinators are based on concepts de-

veloped in neuroscience [19], [66] and cognitive studies [20],

recently extended in cutting-edge Artificial Intelligence re-

search [61], [63]. The rationale is to consider the management

of such complex systems as modular and distributed. The term

“modularity” emphasizes the designing of specialized expert

systems tailored for specific tasks. This aspect is essential as

we do not want to have a unique, monolithic model that is

difficult to manage [67], interpret, and maintain. On the con-

trary, we want specialized modules that are good at predicting,

classifying, or making local decisions. “Distribution” enables

these modules to communicate and collaborate seamlessly.

This aspect entails the selection of a subset of all the available

modules to solve specific tasks related to the current intents.

Therefore, it enables the concept of composability and reuse

of already present solutions, adapting them to the specific

needs. Thus, the coordinator guarantees communication and

collaboration between the expert modules. As stated in the

recent work by Pfeiffer et al. [64], two of the main challenges

with multimodal systems are related to developing routing

and aggregation functions. The routing function development

answers the question “How are active modules selected?” i.e.,

which specialized modules it selects for a specific task?

B. Resource Groups and Agents

For DICT, each coordinator manages a resource group or

a series of resource groups at various hierarchy levels. The

three main resource types in the INTEND continuum are the

Infrastructure, Data, and Network. There are two types of

agents, including resource and coordinator agents, which are

depicted in Figure 3 and either manage a resource group or

a resource agent. Coordinator agents receive a quantitative

award function from the DICT and forward the function to

resource agents in the form of controllable constraints or

quantitative award functions. Additionally, they control and

adjust award functions based on feedback coming from the re-

source agents. Resource agents perform actions on the resource

group they manage and send information to the coordinator

agents. The agents are built with principles of modularity,

reusability, and composition. Therefore, over time, a resource

group agent that, e.g., focuses on autoscaling for a specific

application can perform the same task on a new application.

This information should be updated in the Knowledge Graph,

which is described in the subsection IV-C. At the same time,

thanks to the modularity feature, we can introduce a new agent

that performs a new task in the system. For example, for a

resource group, we add an agent that predicts a machine’s

response time. This new node will be connected to the target

it acts on and to the resource group’s coordinator.

C. The Role of the Graph

For DICT, each coordinator manages a resource group

or a series of resource groups at various hierarchy levels.

Information stored in the Knowledge Graph (KG) includes the

data representing the dynamic state and capabilities of agents

that the coordinator manages, together with the information

regarding the components of the three main classes in the

INTEND continuum, which are the Infrastructure, Data, and

Network. If a resource group depends on an intent and the

coordinator manages it, that should be read from the KG. This

information includes the available agents, their type, current

states, capacities, and roles within the resource group envi-

ronment. The DICT tool would also benefit from information

about the infrastructure, the network, the application, and the
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data space, which directly impact the agents’ activities. So,

when reading from the KG, the edges correspond to each

agent’s inputs and outputs. When an agent that, e.g., focuses

on autoscaling for a specific application performs a task on

the application, this information should be updated in the KG

(target). At the same time, thanks to the modularity feature,

we can introduce a new agent that performs a new task in the

system. For example, for a resource group, we add an agent

that predicts a machine’s response time. This new node will be

connected to the target it acts on and to the resource group’s

coordinator.

V. NAVIGATING AI RISKS IN SYSTEM AUTOMATION

When we talk of ML or AI, we must consider this branch of

science as a reflection of our society [68], [69]. In particular,

the fragmentation and automation of procedures in science

and society are deeply reflected in ML models. Therefore,

when developing such models, we always have to think of the

reasons and of which procedures we are trying to automate.

Furthermore, we need to be aware that the observation of

sensed data does not happen from an acritical and objective

perspective, but already the viewpoint the programs we write

to collect information are necessarily embodying human con-

ceptualizations [70]. As a consequence, a degree of uncertainty

on what might be “uncovered” is inevitable. From the stand-

point of the designers of such models for managing complexity

and taking the perspective of statistical “language,” [71] we

need to be aware that finding a straightforward way to encode

uncertainty is not trivial and eventually not fully possible. In

this scenario, it is also essential to discuss its safety guarantees,

especially in deep learning and autonomous systems. Recent

contributions [72] are opening questions about how to manage

long-term autonomous systems where the current AI models

lack epistemic humility, interpretability, and explainability.

With concerns about AI drifting or being used maliciously, ad-

dressing how to ensure AI remains aligned with human values

and controlled is essential. The emphasis could be given on the

importance of reward-based training within strict boundaries.

Integrating Bayesian inference and causal networks can help

create these boundaries and mitigate the risks. In addition,

there is the necessity of forming international alliances to

address AI safety and work on making recent policies [73],

[74], [75] concrete.
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