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Abstract—The distributed computing continuum systems
(DCCS) and representation learning (ReL) are two diverse
computer science technologies with their use cases, applications,
and benefits. The DCCS helps increase flexibility with improved
performance of hybrid IoT-Edge-Cloud infrastructures. In con-
trast, representation learning extracts the features (meaningful
information) and underlying explanatory factors from the given
datasets. With these benefits, using ReL for DCCS to improve
its performance by monitoring the devices will increase the
utilization efficiency, zero downtime, etc. In this context, this
paper discusses the promising role of ReL for DCCS in terms of
different aspects, including device condition monitoring, predic-
tions, management of the systems, etc. This paper also provides
a list of ReL algorithms and their pitfalls which helps DCCS
by considering various constraints. In addition, this paper list
different challenges imposed on ReL to analyze DCCS data.
It also provides future research directions to make the systems
autonomous, performing multiple tasks simultaneously with the
help of other AI/ML approaches.

Index Terms—Representation learning; Distributed systems;
Compute continuum; Causal inference;

I. INTRODUCTION

The ever-growing complexity of systems, reflected in

geospatial distribution, heterogeneous infrastructures, and

strategies, calls for developing novel paradigms for their

management and orchestration. In this direction, it is clear

that we cannot consider the hypothesis of having separate,

independent strategies for IoT, edge, and cloud anymore;

instead, we need to consider systems in their entirety,i.e., the

distributed computing continuum systems (DCCS) and manage

them accordingly [1], [2]. A pictorial structure of a distributed

compute continuum systems architecture is presented in Fig. 1.

From this figure, we can understand that enormous computing

devices are participating in DCCS. Therefore, there is neces-

sary to advance novel designs, technologies, and methodolo-

gies, to deal with this vast scenario.

To this end, inspecting a novel set of methodologies, called

Representation Learning (ReL) techniques, for the DCCS

management is particularly interesting. Specifically, this set

of approaches aims to extract a high-level, information-rich

representation of data that can be used for pattern recognition,

behavior prediction, or classification [3]. However, ReL and

DCCS are two diverse technologies, the benefits of ReL can

be used in DCCS to continuously monitor the systems to

achieve zero downtime with prominent performance in terms

of rapid deliveries, fault detection, route cause of the faults

and etc. Most of these operations are also doing by the

traditional machine learning (ML) or Artificial Intelligence

(AI) approaches, but they are computationally complex than

the ReL [4]–[6].
However, despite the ongoing research on ReL methodolo-

gies, there are no approaches that try to apply them to the

DCCS [7]. Nevertheless, this is a particularly challenging and

promising direction. DCSS generates a wide variety of metrics

from heterogeneous sources – from limited IoT devices to

high-performative cloud servers. When managing such sys-

tems, a demanding process involves understanding the causes

and the main actors that drive specific behaviors [8]. Usually, a

restricted subset of this information is directly connected to the

system’s behavior. Knowing this relevant information could

open up for fast and rapid actions in terms of management

and adjustment of the system state. In this direction, ReL can

represent a game-changing tool [9].
In this paper, we discuss the various methodologies flavors.

ReL techniques are developed with different structures, like

graphs (graph representation learning), matrix factorization,

Contrastive representation learning, and Bayesian structures

learning, adapting to several use cases. We then analyze their

advantages and where they can make a difference. Further-

more, we go a step forward and examine where ReL can be

applied in the future, focusing on the ongoing challenges in

DCCS, and inspecting what is needed to make ReL techniques

work in these scenarios. In these aspect, this paper contribu-

tions are summarized as follows:

• We initially discuss different representation learning al-

gorithms, their functions, benefits, and limitations. In

addition, we provide an extensive discussion on the

benefits of ReL with respect to the distributed computing

continuum systems.

• We discuss diversity in DCCS data along with their chal-

lenges towards their analytics to extract the knowledge.

In continuation, we mention different ways the ReL will

treat this data to extract the information to break these

challenges.

• Next, the objective of the ReL in DCCS is discussed

through simple illustrative examples in this paper. How-

ever, there are several learning objectives for the ReL,

but consider only a few which help to improve the

performance of DCCS.

• Further, we discuss the promising role of ReL for DCCS
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Fig. 1: A visual representation of distributed computing continuum systems architecture

to improve the performance, such as zero downtime,

identification of route cause for a problem, and predicting

the faults, network, or energy issues in the network.

• Finally, we propose future research direction to address

current challenges and make the DCCS autonomous by

avoiding human interventions, performing multiple tasks

simultaneously, and complexity minimization at the edge,

etc.

The rest of the paper is organized as follows: Section II

summarizes the representation learning and its benefits in dif-

ferent fields. Section III formulates usability of representation

learning in the field of distributed computing continuum sys-

tems in terms of addressing different challenges. The research

challenges and future directions are discussed in IV. Section

V presents the concluding remarks.

II. REPRESENTATION LEARNING

The representation learning (ReL) approach builds a pre-

dictor or classifier to smoothly extract relevant information

by avoiding unnecessary information (including, among the

others, noise, outliers, and inconsistency) from the raw data.

The well-learned representation helps extract the hidden un-

derlying explanatory features from the data and further im-

proves the performance of machine learning (ML) models.

More importantly, a good choice of ReL constructs the ML

model faster and efficiently. Several fields use the advantages

(subsection II-B) of ReL [3]; worth to mention are signal pro-

cessing, natural language processing, and object recognition.

Several ReL algorithms in the literature allow learning the

efficient representation from the given data [10], [11]. Next,

in this section, we show and discuss the most promising ones

concerning improving the performance of the DCCS.

A. Representation learning Algorithms

By studying the various ReL algorithms proposed in the

literature, we can extract their main benefits and limitations

and explore to which extent they are helpful to get improving

the performance of the DCCS. ReL usually encompasses a

set of rules and approaches for learning a representation from

the given input data. These learning algorithms help extract the

latent features, removing conflicting information, compression,

classification, and other noise. We extend the first overview of

the most promising ReL algorithms for DCCS discussed in

[1] by summarizing hereinafter other relevant approaches:

1) Matrix factorization: It helps to reduce the given data

while removing the constituent parts to estimate the complex

relations among the attributes rapidly and efficiently. It helps

to classify the contested relations, irrelevant features, and

relations. The low computational complexity makes it easy

to deploy and work with constrained devices [12]. However,

there are a few limitations, such as failure to handle the noise

data or outliers, a complex in working with Heterogeneous

data, and not working for streaming data.
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2) Random walk learning: The random walk ReL effi-

ciently identifies the structural properties within the data and

quickly removes redundancy. It is more promising in extracting

the causal relations among the attributes and also predicts

their strengths [13], [14]. Unlike matrix factorization, they

can efficiently handle the missing, noise, or outliers in linear

complexity. However, they need an extensive data set to

result from accurate results. Since the DCCS is vast data of

multiple systems, it can efficiently process and get thriving

representation.

3) Graph representation learning: We can consider the

whole DCCS as a semantic network structure (or Graph)

where the vertices are associated with a rich set of attributes,

and relations with their neighborhood nodes are considered

edges. The graph ReL is used to identify or predict the

faults, irrelevant nodes, or links from the complex data using

local neighborhood information [15], [16]. The graph neural

networks (GNN) help to learn from the graph representation

learning to predict, for example, the strength of relations,

classify the nodes or connections, cluster similar nodes [17].

However, this approach is computationally expensive, and

customizing the model by choosing various factors such as

aggregation function, the number of layers,and style of mes-

sage passing is complex.

4) Bayesian network structure learning: The Bayesian net-

work structure learning (BNSL) is used to learn a structure

from the given data, which infers a distribution over a de-

pendency graph that looks like a direct acyclic graph (DAG).

Choosing the best among the many possible DAGs for a given

data is burdensome, but the Bayesian network uses different

approaches to select the best DAG over the many candidates

[18]–[20]. The BNSL can be used in constrained and score-

based depending on the type and available data, whereas

they have their benefits and challenges. We can use BNSL

to run streaming data. This approach uses low computational

resources, handles missing values or outliers, and results in

high accuracy.

5) Contrastive representation learning: It learns the rep-

resentation in a discriminative manner by differentiate the

input data feature instead of learning from the discrete data

sample. It can work on both labeled and unlabelled data.

When working with the unsupervised data, the contrastive ReL

(CRL) can predict the labels and works like a self-supervised

learning approach [21], [22]. This approach is very efficient in

classifications, clustering, and prediction operations. The CRL

results in high accuracy when the input data is more.

B. Benefits of Representation learning

There are several benefits of the ReL in different fields,

whereas the following are the significant advantages of DCCS:

1) Observe the underlying explanatory factors: There are

several underlying factors in DCCS data, where the ReL can

easily extract them from the data of the raw system. These

factors may be, for example, Causal relations, dependencies,

or usage of the resources. There are multiple(or different)

categories of explanatory factors of DCCS; still, the ReL can

extract them independently.

2) Interpretability gets improved: Interpretability is the

possibility of consistent predictions and decisions from the

model. Because of the learned representation from the given

data, it is simplified and improved Interpretability. The feature

of observing underlying factors from the information also may

help to get Interpretability improved.

3) Easy to extract helpful information: Once the represen-

tation of DCCS is learned, it is easy to answer the question

related to the systems because it summarizes the meaningful

data at a glance. The Causal relations and proximity informa-

tion further simplify extracting meaningful information from

the learned representations of DCCS.

4) Improved performance models: Due to the feature engi-

neering done by the ReL, the machine learning models work

better in providing the results accurately and rapidly.

5) Rapid processing: The ReL helps remove the inconsis-

tent and redundant information and extract meaningful features

from the raw data. These features can be inputs to the machine

learning models. So, the model does not need to perform the

data cleaning or prepossessing operations and run using this

limited feature to increase the processing speed.

III. REPRESENTATION LEARNING FOR DISTRIBUTED

COMPUTING CONTINUUM SYSTEMS

This section discusses the challenges of the DCCS’ data,

ReL outcomes, and possible operations for DCCS when using

ReL. The general flow of ReL, AI/ML and their operations

are summarized using Fig. 2.

Data Representation
Learning 

Machine
Learning 

Knowledge

Do

Actions

PredictionMonitoring
Systems 

Data
Generation 

Fig. 2: The general learning paradigm using representation

learning and possible outage

A. Challenges in distributed computing continuum systems’
data

The challenges discussed in this section are primarily fo-

cused on the data about the systems/devices used in DCCS.

There are several data formats, including the metadata of the

participating devices of DCCS, log information, network I/O

or energy information, etc. Several challenges are associated

with these data [3], [11], [23] to analyze using traditional

learning algorithms, whereas we summarize the essential and

related to DCCS as follows.

1) High non-linearity: The non-linearity of DCCS data

talks about the dependent and independent relations between

the attributes. Due to the heterogeneity in DCCS, there is

a lack of direct relationships among the features, which
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makes the learning strategy more complex to extract a good

representation. In such cases, the regularized auto encoders

can learn representation from these non-linear data using local

variations.

2) Structure-preserving: As we know, multiple devices

such as edge, IoT, data centers, and cloud are connected in

DCCS. It is necessary to represent these diversities between

the devices in the learned vectors in the local neighborhood or

global structure. The overarching aim of structure-preserving

is to conserve explicit properties of the continuous model in

its discretization. So, ReL should simultaneously preserve the

DCCS structures.

3) Sparsity: Sparsity can be defined in many ways. We

simplify it as the missing values due to various factors, or

the available data is insufficient to process or extract the

latent features. Technically, a feature x can be reflected in the

datasets only a few times, resulting in no latent features (zero

latent features). In contrast, sometimes x is linearly dependent,

resulting in a single latent feature that does not help for an

efficient representation.

B. Learning objectives

This section discusses the objectives of the ReL, which

help enhance the performance of the DCCS. In this context,

we identify four essential objectives: classification, multi-

clustering, causal inference, and knowledge extraction, and

summarize each learning objective as follows:

1) Classification: Classification refers to the process of

categorizing discrete class labels. It can be performed on

both supervised and unsupervised data. The ReL is good

in conducting the classifications in heterogeneous networks

with the help of neural networks, where the different node

properties [24]. In this context, the data about the DCCS

is heterogeneous and has several challenges, as discussed in

subsection III-A. So, the ReL can help classify the DCCS

data by identifying similar categories (based on computing

capabilities, other resources), properties or functionalities, etc.

2) Multi-clustering: The multi-clustering is considered as

the same clustering strategy that can be applied to several

parts of the systems or the same input on different clustering

approaches take place parallel [25]. The ReL which uses

multi-clustering is treated as a sparse or distributed repre-

sentation. This architecture helps to increase the scalability,

and availability of each individual cluster. It is also useful to

perform the operations on each individual cluster selectively

and separately. An illustrative example of multi-clustering is

explained in Fig. 3. In Fig. 3(a), the data about the end devices

are placed. Fig. 3(b) and Fig. 3(c), represent the multiple

approaches to form clusters from the same data. For example,

Fig. 3(b) create the cluster by considering based on the devices

category vehicles, medical devices and home appliances from

the data set. Similarly, Fig. 3(c) consider the applications such

as healthcare, agriculture, and smartcity.

3) Causal inference: The Causal inference considered dif-

ferent study designs, assumptions, or estimation strategies to

extract the Causal conclusions or interpretations from the data.

How does the cause of a variable affect other variables or

features? Learning causal inferences is easy to extract relation

information from large individual systems. The ReL can

extract the causal inference of the system using the low-level

observations, which further help predictions (consequences of

different actions) and answer the questionnaires [11]. It can

rival explanations for the observed associations between the

attributes. In the DCCS, the Causal ReL helps solve issues

such as monitoring, load-balancing, and Causal predictions.

The nodes in causal network are the variables or attributed

whereas the link (arrows) indicates the causal connections

between the variables. Fig. 4 explains an illustrative example

of Causal inference. From Fig. 4, we can identify the inference

between the four label buffer occupancy (B), delay (D), packet

loss (L), and throughput (T). The relations are highlighted

using arrows. The relation between the B and D is a causal

relation, and probability values indicate the cause of complete

buffer occupied leads to an increase in the delay. Similarly,

packet loss depends on the buffer, and packet loss causes

throughput efficiency.

4) Knowledge extraction: Selecting the best ReL algorithm

always extracts the knowledge from the raw data. Regu-

larization is a standard method to perform the knowledge

extraction through ReL with new data outside the training

data [26]. The quality of the knowledge of learned data is

decided based on the ability to generalize the knowledge [27].

Knowledge extraction simplifies the decision-making systems

and responds quickly.

C. Promising role of ReL for DCCS

While considering all the complications in the data with the

learning objectives discussed in the previous subsections, the

ReL play a promising role to enhance the performance of the

distributed compute continuum systems while analysing their

data. The list of benefits is long, so we try to group them into

different categories and explained them in detail as follows.

1) Monitoring: In DCCS, the systems or devices are con-

nected to the Internet or our private network and operate

using electric power or batteries. Monitoring systems here

indicate observing how the device is responding or working?

This means the device is a healthy power supply, is strongly

connected to the Internet or private network, functions the

resources, responds to the comments, etc. These devices

monitor manually is a tedious task and also not efficient. Since

several monitoring tools in the market are poorly monitoring

the IoT device health, citeMonitoring1, which visualizes the

device’s condition and alerts the users. However, these tools

are made only to monitor the end devices with limited features,

whereas the DCCS involves multiple layers of devices that are

not monitored by these tools.

The ReL simplifies this task by considering the details of the

devices, including device metadata, CPU, energy, network I/O,

and log file information, to learn the representations while ex-

tracting the knowledge of the system. These learning strategies

and knowledge extraction successfully find the root cause of a

problem, such as manufacturing defects, issues with network
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Fig. 4: An illustrative example for causal inference

connections, power connections, etc. This monitoring phase

checks that all devices are meeting the reliability goal with

Service Level Objectives (SLOs) [28]–[30], before notifying

the administrator or user. The network or power connection

issue can be recognized when any device’s (complete) data

values are missing. But, deciding the root cause correctly or

the exact problem, the analysis or previous information on

missing details is analyzed.

The ReL help in monitoring the performance of each device

DCCS to improve the overall performance. It also helps to

debug devices and prevent errors. Monitoring systems through

ReL will not affect the time-critical application, which is a

challenging issue. Still, the ReL is faster than the traditional

AI/ML algorithms. In addition, the monitoring systems need

intelligent protocols for data and control signal transmissions

between the devices. During performance monitoring, privacy,

safety, and security issues are a high priority with the produc-

tive utilization of the system’s data. Representation learning

plays a promising role in distributed compute continuum

systems, achieving zero downtime through monitoring.

2) Predictions: The ReL helps to predict the future issues

of the DCCS. These failures include failures of devices,

software falts, threats, network issues, resource availability,

etc. Once these faults are identified, it is easy to perform the

predictive maintenance of the DCCS devices. For example, the

energy issues of battery-operated devices can be predicted by

the amount of time it can be sustained using the previously

collected energy-related information and the number of oper-

ations the systems do. Based on these predictions, the systems

can alert the administrator to take further actions or rectify the

issues autonomously to avoid downtime.

The predictions of the ReL estimate the availability of

the devices for computation for the future generation data in

systems. It helps to balance the computational loads in the

systems to avoid latency in the system. Estimate the system’s

buffer occupancy to control the packet loss during the data

transmissions within the systems. Further, ReL can predict

the resource availability to decide where the computations are

to be done in the computing continuum hierarchy. So, the

data and computational offloading performances are increased.

The ReL can provide an efficient solutions than the existing

solutions [31], [32], in terms of transmission scheduling and

computational offloading through predictions. Overall, these

predictions help reduce the mean time to resolution through

ReL in distributed compute continuum systems.

IV. FUTURE RESEARCH DIRECTIONS

The previous discussions show the ReL potential in ana-

lyzing the system’s data and providing relevant information

about the systems. Based on this information, we can have

an aggregated and rich view of the system, enabling advanced

and autonomous management strategies. In the following, we

evaluate use cases and situations for DCCS where ReL could

potentially have an impact in the future, discussing what they

can add and what is still missing.

A. Streaming analytics

In DCCS, many new devices are added daily. Due to

this, the representations of DCCS change timely. Whereas
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the existing ReL algorithms are not intended for dynamic

infrastructures, it is possible to adapt them to this scenario.

To this end, it is necessary to embed the dynamic policies in

ReL to analyze newly added devices’ data on-the-fly.

B. Zero-touch provisioning

Zero-touch provisioning (ZTP) is a virtual software for

management and services to the end-to-end network with no

human intervention. With an increasing number of resources

being managed, delivering and managing dynamic user service

requests becomes ever more complex [33] in DCCS. To

overcome this complexity, ETSI offers the idea that ZTP is

a new breed of network management functionality, seeking to

integrate network functionality, cutting-edge communication

technologies (eMBB, URLLC, and mMTC), and automatically

carrying out edge computing processes. In the future, the ZTP

services will be extended in computing and communications

aspects along with the network and service management to

justify the title. As we discussed in subsection III-C, the ReL

can identify the faults by monitoring the systems, predicting

the failures, and also balancing the load. Here, the ZTP can

work to address any problem, such as fault tolerance if any

device or system is in trouble, without waiting for human

instructions. Similarly, ZTP can rectify the errors if ReL

predicts any in the system. In summary, taking the advantages

of ZTP and ReL make the system more autonomous and

minimizes the system’s latency or faults without waiting for

human instructions.

C. Inference at the edge

The edge and end devices are resource-constrained, so it is

necessary to minimize the computation, which does not affect

the performance, including accuracy, cost, and delay. There are

several ways in the literature to reduce the computational com-

plexity at the edge devices while using the machine learning

or Artificial intelligence approaches [34]. The primary way is

to remove the inconsistent or redundant details from the input

data. Another side, there are few model compression tech-

niques to lower the computations. Lippmann [35] introduced

to choose the number of layers in neural networks to process

the information with minimal computations and no loss of

accuracy. Lippmann also focused on parallel computations

to converge quickly. Similarly, Volodymyr et al. [36] present

the model compression techniques such as processing the

alternate frames to minimize the computational load on the

systems without altering the performance. As discussed in

Section III, the ReL is very efficient in identifying the best

feature out of the given data while managing the missing

information, eliminating redundant or inconsistent information

without affecting the performance. So, these advantages must

help improve the inference performance in the edge.

D. Multi-task learning

As we know in DCCS, multiple devices are interconnected

and acquire data from various sources such as industries,

transportation, cities, buildings, and homes. The traditional

ML algorithms solve a particular task and optimize a single

objective function simultaneously. These approaches do not fit

DCCS because of their data diversity and formats. So, there

is a need for multi-task learning (MTL) in DCCS, which

tries to learn different tasks simultaneously to optimize the

various objective functions simultaneously. In the literature,

the MTL is used to forecast time-dependent cloud workloads

[37], inference attacks [38], etc. Besides, the ReL algorithms

are useful for the Causal inference among these independent

data sources to acquire knowledge from these data. They

efficiently find the proximity within the data and analyze the

relationship strength. It also efficiently classifies the data by

reducing the burden on MTL.

E. Interoperability

As we discussed in subsection III-A, given the hetero-

geneity in devices, their execution platforms, interfaces, or

communication patterns in the DCCS, interoperability is one

of the primary challenges to be addressed in the future

[39], [40]. Interoperability is still a critical component of

AI or ML approaches. However, it is necessary to establish

autonomous interoperability in DCCS using their semantic

metadata and latent features by applying ReL. The ReL,

such as node Embedding, with the help of transfer learning

approaches, helps compress the data, reduce the noise, and

provide meaningful latent features [41]. In addition, the ReL

is helpful for the model and optimization explorations using

the metadata and utility functions, respectively, to address the

interoperability [42]. So, the ReL plays a promising role in

DCCS while addressing the Interoperability issues using the

system’s metadata.

V. CONCLUSIONS

This paper talks about two emerging and diverse technolo-

gies: representation learning and distributed computing contin-

uum systems. The primary focus of this paper is to extend the

discussion on the promising role of representation learning for

distributed computing continuum systems to improve perfor-

mance through monitoring, predictions, etc., to achieve zero

downtime for the system with improved service provisioning.

In this context, we describe different representation learning

algorithms and their pitfalls. The challenges concerning data

formats of the systems and their log files are studied, and

possible solutions for analysis with the help of ReL. The

promising role of ReL in monitoring and making predictions in

the system are explained in this paper. We analyze the learning

outcomes of representation learning concerning distributed

compute continuum systems are studied. Finally, we provide

future research direction and use of ZTP, MTL, etc., to

make the computing continuum systems autonomous. Future

research also needs to handle the interoperability issues in the

systems with the help of representation learning.
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Ph.D. dissertation, Luleå University of Technology, 2019.

[42] J. Nilsson, F. Sandin, and J. Delsing, “Interoperability and machine-to-
machine translation model with mappings to machine learning tasks,”
in 2019 IEEE 17th International Conference on Industrial Informatics
(INDIN), vol. 1. IEEE, 2019, pp. 284–289.

132

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 12,2023 at 12:07:54 UTC from IEEE Xplore.  Restrictions apply. 


