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Abstract—We present a recursive approach to the design and
operation of complex, data-driven IoT services, which are chal-
lenged by the traditional cloud-centric view of service delivery.
To this end, we introduce a recursive IoT node abstraction,
around which we sketch the architecture of a distributed runtime
environment for the execution of such services, promoting self-
adaptation to a first-class concept. Our framework aims to sup-
port services of arbitrary structure and complexity, dynamically
configured and fluidly deployed along a heterogeneous device-to-
cloud compute continuum, and operating according to provider
and user intent. It features inherent privacy enhancements and
aims to give users more control over their resources and data. We
demonstrate how these principles can be applied to facilitate the
composition, deployment and orchestration of complex machine
learning workflows, which are becoming increasingly relevant for
IoT applications.

I. INTRODUCTION

Emerging data-driven IoT architectures need to accommo-
date large numbers of heterogeneous services that need to be
composed, deployed, and autonomously and elastically scale,
in order to efficiently handle voluminous data flows originating
by massive numbers of IoT devices. Flexible structures need to
be in place to support an ever-changing system of systems [1],
[2], where devices will be dynamically composed in constructs
of different complexities in order to execute diverse tasks.

Such IoT services are traditionally engineered to be cloud-
centric [3]. However, the availability of advanced computa-
tional capabilities on-device or at hosts in proximity, which
has given rise to the edge computing paradigm [4], [5], creates
opportunities for novel decentralized service execution modes,
with improved performance and increased security and privacy.
These aspects are particularly important for data-driven IoT
services, which often include Artificial Intelligence/Machine
Learning (AI/ML) workflows [6]. With the emergence of edge
computing, the next generation of the cloud is expanding
beyond traditional data-center boundaries up to the IoT device
space, allowing us to imagine such IoT services fluidly de-
ployed and elastically scaled along a device-to-cloud compute
continuum [7], [8].

This, however, comes with significant management and
engineering challenges. Firstly, the compute continuum is
heterogeneous, not only in terms of host capabilities and
interfaces, but also ownership and geographic distribution.
Secondly, in contrast with the cloud, resources are more
volatile at the edge, while a single administrative edge domain
cannot typically offer the view of an infinite pool of resources.

From a developer viewpoint, the entry barrier is high to
engineer and deploy large-scale IoT systems, having to cater
for the particularities of different compute infrastructures,
connectivity technologies, edge platforms and IoT device
providers, if autonomous operation is to be delivered over
the compute continuum. A similar barrier exists from the
perspective of infrastructure provision: While, if we consider
the edge/fog domain as a whole, the available spare compute
capacity can compete with traditional data centers [9], these
resources remain largely segregated and unusable, in part
due to the lack of a common framework to harness them,
and in part due to the reluctance and unclear incentives of
individual (micro-)providers of compute resources to share
them on demand. Important security and privacy concerns are
related with this last point.

To address these challenges, it is necessary to provide
advanced middleware support to (i) enable the dynamic com-
position of services of arbitrary structure and complexity,
that can self-configure and make optimal use of infrastructure
resources along the compute continuum, and adapt to changing
environmental conditions following user, service provider, and
infrastructure owner requirements and intent; (ii) offer IoT
service providers the primitives to develop and inject custom
self-adaptation logic to their services, building on resource
and data abstractions provided by the runtime environment;
(iii) give users more control over their resources and data,
offering expressive interfaces to define access policies; (iv)
facilitate cross-domain operation and natively support infor-
mation scoping, thus enhancing privacy.

In this direction, we introduce a recursive IoT node ab-
straction, around which we sketch the architecture of a dis-
tributed runtime environment that allows the composition of
large-scale IoT services, with built in self-adaptive behavior
at various levels, from the infrastructure up to the service
level. We argue for recursion as a key design principle,
which enables expressing complex IoT service patterns and
reducing management complexity. We present the conceptual
foundations of our framework (§II) and delve into the details
of our architecture’s functional blocks, also discussing some
desirable properties of the framework (§III). To demonstrate
our principles in action, we show how our recursive design
can facilitate the deployment and orchestration of complex
ML workflows, which are characteristic of data-driven IoT
services (§IV). We then provide a short overview of related
work (§V), before concluding the paper (§VI).



II. DESIGN PRINCIPLES

A. Motivating examples

Our motivation for this work draws from the need to
support large-scale and complex data-driven IoT services. For
example, such a composite service may include training a deep
learning model on remote private data on-device via federated
learning [10], potentially aggregating training devices and
creating a hierarchical structure [11], [12]. The output of this
process (a trained deep learning model) can be served over a
compute hierarchy from the device to the cloud, to provide
low-latency inference. Ideally, and depending on the service,
self-adaptation logic should be provided at various levels,
including optimal assignment of training tasks over (groups of)
remote IoT devices, and dynamic orchestration of inference
serving, based on the changing conditions of the operating
environment, user preferences and service/infrastructure-level
objectives. Complex service structures like this should be
naturally supported, and this is very challenging. In Section IV,
we show how our approach can facilitate such a service.

As another example, in prior work [13] we proposed a
large-scale IoT monitoring architecture that is designed around
recursive principles: A monitor is an entity responsible for
receiving streams of events and verifying temporal logic prop-
erties on them at runtime, e.g., related with an environmental
phenomenon or the state of a smart-city service (such as smart
parking). A monitor’s output can be sent as input to another
monitor with the same interfaces but different internal func-
tionality (verifying different properties). By chaining monitors,
arbitrary monitoring hierarchies can be constructed recursively
depending on the service in question. While currently a
monitor’s physical location and allocated compute resources
are static, a runtime environment that would allow the system
to seamlessly self-reconfigure, e.g., by scaling up monitor
resources or migrating a monitor to another more capable host
or cluster, could help this service better cope with demand
dynamics. This is another example that demonstrates the need
for intelligent runtimes to enable next-generation IoT services.

B. Conceptual view

From a conceptual architecture perspective, we argue for
recursion as a key design feature of future IoT services. This
stems from the following observations:

• A recursive design reduces management complexity and
makes it more straightforward to express and compose
complex IoT service structures, when specific function-
ality repeats itself at different levels of abstraction. This
functionality may be expressed via common primitives
that can be applied recursively.

• It can facilitate the design of resource abstraction, ag-
gregation mechanisms, and scoped data access. This is
particularly important both for dealing with complexity
and for enhancing security and privacy: access to data
flows originating from a device can be restricted to the
device’s scope, and specific filters can be applied as

these flows cross domain (scope) boundaries, transform-
ing them according to privacy policies or performing
aggregation operations according to specific service logic.

• It can express various system-of-systems patterns, from
simple hierarchies to meshes of connected entities of
varying internal complexities. For example, a device-
to-cloud component hierarchy can be expressed in a
recursive way, where a node could represent a single
physical service entity, or a group thereof that appears
as a single logical entity; both such entities could expose
the same service endpoints.

These principles materialize in a recursive node abstraction.
The complexity and form factor of such a node can vary,
ranging from pico-scale devices to complex IoT ecosystems
integrating other lower-complexity nodes under different and
evolving topologies and configurations, as shown in Fig. 1.
Each abstraction layer exposes a (subset of a) common set of
primitives that enable the dynamic composition of recursive
IoT structures in an elastic way and for life-spans that range
widely, depending on the role and task that the structure is
expected to perform.

Such a design has the potential to support complex IoT ser-
vices, but this complexity comes with non-trivial management
challenges. Zero-touch service management and orchestration
schemes are mandated, thus promoting self-adaptation to a
first-class concept.

A recursive node is as a logical entity, and its physical re-
alization encapsulates infrastructure resources and the service
components that execute on top of them, which may be part
of different services owned by different tenants. At the host
level, appropriate middleware support needs to be in place.
We advocate for a distributed node runtime environment to
enable recursive IoT services, which should have the following
features.
Design-time developer facilities: It should offer developers
expressive northbound interfaces to build self-adaptive IoT
applications, hiding the complexity of the underlying system,
allowing to take advantage of the native intelligence provided
by the system (e.g., for resource management), and giving one
single entry point to implement custom self-adaptive behavior,
when desired. When the service is physically deployed, the
node runtime takes care of executing this adaptation logic.
Technology integration: The node runtime should provide
a technology integration layer by means of an extensible
framework to build southbound communication modules. Cur-
rent IoT devices and edge computers that can host service
components have notoriously heterogeneous computation and
connectivity capabilities (very often multiple ones on the same
device), and the node runtime should be able to interface with
and exploit them.
Policy expression languages: Powerful interfaces need to
be in place so that users of the IoT service (or owners of
the infrastructure where service components are hosted) can
express requirements and policies, mainly with respect to how
their resources and data can be used and exposed.



Fig. 1: Conceptual view. Nodes are recursive entities that range widely in complexity. They expose resource and data
abstractions and are used for the deployment of diverse services on top of resources that span the cloud-fog-edge continuum
and across administrative domains. Intelligent, self-adaptive behavior allows optimal service reconfiguration, including scaling
and migration. Advanced control over data and resources is provided, to address security and privacy requirements.

Requirement translation: An adaptation layer should be
offered, whose main role is to translate user and devel-
oper/service provider requirements into policies that are dy-
namically enforced by the node runtime, allowing adaptations
to attain security, privacy and performance goals.

In the following section, we translate the above concepts
and properties to a recursive architectural framework.

III. ARCHITECTURAL FRAMEWORK

A. Desirable properties

1) Requirements-driven self-adaptive behavior: Nodes are
expected to host services with diverse requirements, which the
node runtime should support in a unified way. A means to en-
able the IoT service provider to encode specific requirements
and policies in the application code is via Domain-Specific
Languages (DSL). The node runtime is then responsible for
implementing these policies and ensuring that the requirements
are met. AI-driven adaptation and policy enforcement modules
running in the IoT node should operate a control loop where
feedback from the node’s environment is utilized for the
node to decide on appropriate reconfiguration actions, in the
decision space that is defined for it by the respective policy
applied. Notably, the application developer should be able
to implement and deploy custom self-learning behavior in a
pluggable manner; the system should provide the necessary
software architecture support for that. In order for the specific
adaptation algorithms to collect the necessary input and de-
rive reconfiguration decisions, node primitives for information
access and exchange should be provided by the architecture.

2) AI-driven predictive behavior: A desirable property for
zero-touch operation is that a node is able to learn by interact-
ing with its operating environment. In a volatile such environ-
ment, the node should be able to deal efficiently with unknown
contexts. Such intelligence pertains to different management
dimensions: (i) service and (ii) resource management and
orchestration. The first dimension refers to aspects related with

service composition and intelligent management, for which
we advocate for predictive, self-learning schemes targeting
aspects ranging from node recruitment to end-to-end IoT
service lifecycle management and workload placement, aiming
to optimally address tradeoffs that emerge when attempting
to satisfy potentially conflicting user and service provider
requirements/constraints (as specified at design time) and ob-
jectives. Along the second dimension, the underlying network
and compute node resources need to be orchestrated optimally
to serve heterogeneous coexisting IoT application instances.
Predictive models of service performance from multi-level
monitoring data would be useful for optimally configuring the
underlying resources to reach target service-level KPIs and
node operational goals. For the latter, it is critical that the
node runtime environment is capable of interfacing with het-
erogeneous network and compute infrastructures (see below).

3) Flexible resource allocation exploiting network soft-
warization: Our envisioned service architecture will be de-
ployed across heterogeneous network environments, but mo-
bile/wireless IoT device connectivity will be the norm. Fortu-
nately, with the rise of network softwarization that powers the
5th generation of mobile communication systems (5G), it will
be possible to dynamically and flexibly allocate customized
network slices on demand [14], while the emergence of
standardized interfaces for Multi-access Edge Computing [15]
simplifies access to edge/fog compute resources. These devel-
opments create the technical foundation to build sophisticated
resource allocation and configuration mechanisms on top.
Indeed, there is a significant body of works that explores how
these technologies can support IoT services [16], [17], [18].

Given a specific space of potential adaptation actions at
runtime, and when the context changes or a policy violation
is predicted, the node executing a service component will
have to select an appropriate resource (re)allocation and re-
configuration decision. This includes (i) migrating application
components across compute hosts, and (ii) allocating the



necessary network resources to maintain application perfor-
mance requirements. Such actions are depicted in Fig. 1. For
example, a battery-powered IoT device may be executing an
AI pipeline including the following tasks: 1© collect data
from the environment; 2© pre-process; 3© train; 4© validate;
5© deploy and use. In this pipeline, the training task is the

most compute-intensive, while it should be possible to access
the trained model with low latency. If the battery level drops
below a threshold defined in the service policy, the node may
decide to migrate parts of the pipeline (including the resource-
hungry training task) to a nearby MEC host. Furthermore,
current memory and storage constraints might not allow the
model to reside on the device itself, while at the same time
it should be possible for the device to use/query it at runtime
with very low latency.

In situations like this, and putting this example in the
context of recent ETSI standards, the node runtime can take
the following decisions: (i) select an appropriate nearby MEC
host, (ii) package the application components to migrate (e.g.,
training, validation, and model, together with an API front-end
so that the device can access it) in a way appropriate for MEC
deployment (as per the ETSI MEC 010-2 specifications [19]),
(iii) onboard and instantiate these components as (one or
more) MEC applications via the ETSI MEC Mm1 [19] and
Mx2 [20] reference points, and (iv) access the 5G operator’s
Communication Service Management Function (CSMF) [21]
API endpoint to request the deployment of an Ultra Reliable
and Low Latency Communication (URLLC) network slice for
the communication of the end device with the MEC appli-
cation with low delay, security and reliability. Note that the
node runtime might select generic (non-MEC) virtualization
infrastructures to migrate the service components. In this
case, the ETSI NFV-MANO Os-Ma-Nfvo interface [22] or the
proprietary interface of an edge cloud provider will be used
instead, via the appropriate plugin (see Section III-B).

4) Facilitating resource and data sharing (and monetiza-
tion): Advanced and abundant compute and sensing capa-
bilities are available at the edge, on top of IoT devices,
and in the premises of individuals (e.g., home space) and
organizations, but harnessing them for service provision in an
automated and opportunistic way is challenging. At the tech-
nical level, this owes to infrastructure heterogeneity, and the
lack of widespread frameworks for opening up the individual
resources of a multitude of “micro-providers” in a controlled,
secure and on-demand way. In addition, security and privacy
concerns prevail, and the incentives to provide one’s spare
edge compute resources for executing tasks of other tenants are
unclear [9]. At the same time, interest in putting more control
on users with respect to exploiting the data they generate is
growing [23].

A interesting design challenge and potential goal of IoT
node middleware is thus to provide the means to individuals,
collectives, and organizations to monetize on their data and
resources in a (user-)controlled and flexible way, making their
spare resources available on demand for the execution of IoT
service components of other tenants for profit. Data generated

at the edge can also be scoped appropriately for reasons
of privacy and be made available to interested third-party
consumers, with data providers receiving compensation.

B. Design of a distributed node runtime

At a high level, a node is composed of a set of logical
building blocks. It should be noted that given the recursive
nature of a node, this functionality of each block is available at
any level of abstraction (from a small-scale end device to more
complex structures) and exposes the same set of primitive
functions. A call to a function of a specific node module may
invoke recursive calls to the same function at the nodes that it
contains. As a simple example, an API call to retrieve a node’s
available compute resource capacity will result in recursive
queries to the lower-order nodes that compose it. Note that at
each level of recursion, specific transformations may apply to
the data returned by a function call, as a result of information
scoping or other policies (e.g., anonymization operations).
Fig. 2 presents the envisioned high-level view of the our node
architecture, including its logical blocks and the interactions
among them. The role and envisioned functionality of these
blocks are sketched next.
User Facing Module (UFM): This component aims at node
operators (e.g., individual users, organizations) to control
access to the data their nodes generate and the use of their
resources. It is accessed when an operator deploys specific
third party IoT software developed with support for the node
runtime. The developer (or IoT vertical) annotates at design
time specific data flows for which the user needs to consent to
share, and the user is presented with options to control access
and visibility of this information at deployment and run time.
The node operator’s input is then translated by the interface
module to requirements that are injected in the software.
Moreover, the node operator may define pricing related options
for access to its data and resources. These are communicated
to the Policy Execution Engine (PEE) and propagate to the
Capability Exposure Module (CEM) to expose them so that
they are used in the node recruitment process, as well as to
the node’s Service Negotiation Module (SNM).
Capability Exposure Module (CEM): The CEM is used
by nodes to advertise their resources and capabilities (e.g.,
sensing, hardware acceleration elements, trusted computing
technology, other specific services) and provide API endpoints
for third-party IoT services to use them. Depending on the
complexity of the node, the CEM will provide an aggregate,
abstracted view of node resources. This view is acquired by
recursively accessing the CEM endpoints of constituent lower-
order nodes. Furthermore, the CEM communicates with the
CEMs of other nodes to discover available resources and
services. The CEM implements access control policies for
node data and resources according to the settings configured
by the user via the UFM and propagated by the PEE. As the
component in charge of advertising a node’s resources and
capabilities, it is also the central point where the node’s context
is managed and exposed via a node-local distribution broker.



Fig. 2: Node architecture.

Service Negotiation Module (SNM): This element is respon-
sible for executing the node’s transaction logic during service
composition and runtime. It executes transaction protocols for
acquiring or contributing data or resources, considering policy
restrictions posed by the node operator, service requirements
and node capabilities, and pricing related options. Service
composition algorithms are executed by the SNM, for which
the latter accesses the node’s CEM and invokes its discovery
functions to spot other nodes’ available resources and services.

Node Adaptation Engine (NAE): The NAE implements
service-specific and node-wide adaptations. Much of the in-
telligence of the system is implemented here. The NAE
executes autonomous control loops, receiving feedback from
the environment and self-adapting as required by the IoT
service at design time to attain application-specific goals (e.g.,
end-to-end latency), and by the node operator to optimize
for its individual operational objectives (e.g., save on energy
consumption and bandwidth cost, maximize profit from data
monetization, apply security-enhancing configurations, etc.).
An implementation of our framework should provide the
runtime support for executing custom intelligent behavior in a
pluggable manner. The NAE is responsible for executing self-
adaptive algorithms for service management and orchestration,
making resource allocation and orchestration decisions that
are passed on to the Resource Management Module (RMM),
as well as deriving adaptation decisions with respect to how
service and resource monitoring should be performed to attain
specific objectives (e.g., overhead reduction, energy savings).
The NAE interacts with the node environment (via the RMM
and the CEM) and with the PEE (that stores the translated node
operator and service provider policies), receiving the necessary
input via well-defined interfaces and primitives, in order to
select the appropriate action from the space defined by the

PEE.

Policy Execution Engine (PEE): The PEE is responsible
for managing end enforcing application-specific and operator-
defined rules. This also involves resolving conflicts between
user and service-provider policies, and providing input to
the NAE to implement policy-driven adaptation decisions.
Furthermore, the PEE is responsible for propagating data
access control rules to the CEM to enforce appropriate data
visibility constraints, as well as to push user options and
preferences (e.g., with respect to pricing) to the SNM.

Resource Management Module (RMM): This element is
aware of the available compute and network resources, current
workload, sensing and other capabilities of the node, as well
as of their status. It implements the node runtime’s layer that
enables (i) resource monitoring, (ii) device resource abstrac-
tions, and (iii) interfacing with the underlying hardware, cloud-
fog-edge virtualization infrastructure and communication sub-
strate. The RMM also acts as a context data provider (and
aggregator, in case a node is recursively composed by lower-
order ones). The RMM arbitrates access to the data that are
generated by the device hardware across the multiple services
deployed over a node and managed by different tenants. It
also exposes an interface to the PEE for the latter to apply
developer and node operator policies (e.g., regarding data
visibility) which are enforced by the node runtime. To deal
with the heterogeneous underlying network and compute in-
frastructures across the device-to-cloud continuum and provide
flexibility towards supporting future technologies, the RMM
should provide an extensible southbound plugin framework.
The role of this framework is to abstract their technical
details and to provide a unified interface to other runtime
components. Southbound plugins may include support for
virtualization schemes and communication technologies such



as ETSI MEC-compliant edge compute infrastructures, public
clouds, network slice orchestrators, and other.

IV. ENABLING EDGE INTELLIGENCE: COMPOSITION,
DISTRIBUTION, AND ORCHESTRATION OF ML WORKFLOWS

AT THE EDGE

A. Overview

In this section, we demonstrate the principles of our frame-
work in action, applying our recursive design to facilitate the
full lifecycle of a complex data-driven IoT service. Our aim is
to showcase the versatility of such a design to support emer-
gent IoT services, tackling challenges such as infrastructure
heterogeneity, service complexity, and self-adaptive operation.
Our work can be seen as an enabler for edge intelligence, and
can serve its two dimensions as elaborated by Deng et. al [24]:

• Intelligence-enabled Edge Computing (IEC), otherwise
referred to as AI for edge, where the underlying edge
infrastructure and the IoT services on top of it are
intelligently orchestrated by means of AI.

• AI on Edge (AIE), namely training and inference with
device-edge-cloud synergy.

In more practical terms, we elaborate on the role and function-
ality of the components of our node architecture, and how they
are used to compose and manage the lifecycle of a full ML
workflow on top of compute infrastructure along the device-
to-cloud continuum.

At a high level, such a workflow, which is typical of
many data-driven applications, alternates among the following
processes: (i) training a ML model on data generated at IoT
devices, after appropriately pre-processing them; (ii) deploying
the derived model and using it for inference; (iii) re-training,
updating and re-deploying the model, either periodically or
when deemed necessary.

The traditional, cloud-centric way of managing such a
workflow would involve transmitting device data to central-
ized cloud hosts, where the compute-intensive training and
validation phases take place, and then serving the model from
the cloud via API endpoints; both training data and inference
queries need to traverse all the way to the cloud. Following
the classification of Rausch and Dustdar [25], this workflow is
referred to as Cloud to Cloud (C2C). Despite some advantages,
C2C workflows are challenged in the following ways: (i)
they do not exploit compute resources at the edge, which
are recently becoming more capable with the introduction of
AI accelerator hardware; (ii) model serving from the cloud
comes with latencies that are often unacceptable for delay-
sensitive applications typical in industrial and vehicular IoT,
but also for user-facing IoT applications that feature a lot of
interaction [26]; (iii) massive volumes of IoT traffic towards
the cloud strain the network transport infrastructure; last but
not least, (iv) stringent privacy constraints stemming from
operation on sensitive data may prohibit their centralized and
cross-domain processing – for various applications such as
healthcare-related, private data have to be processed in place
or within administrative boundaries. Therefore, our aim is

to enable more diverse workflow structures, from Edge to
Edge (E2E) ones, where all AI functionality is pushed to the
edge, to services of varying structure and complexity spanning
the device-to-cloud continuum (e.g., supporting hierarchical
federated learning [11], [12] and distributing Deep Neural
Networks (DNN) along the compute continuum [27]).

Such a complex distributed ML pipeline is shown in Fig. 3,
where the role of the functional components of our framework
is also put in context. This workflow is composed of two
main services (themselves broken down, in turn, to a number
of internal ones), distributed along the compute continuum
and executed alternately in a loop that is controlled based on
feedback from the service- and infrastructure-level operating
environment and policies that are put in place by the service
provider and node operators: (i) a federated learning (FL)
process [10], where a model (a DNN) is trained on data
streams originating from IoT devices, organized in a node
hierarchy, and (ii) a deployment process, which receives the
trained model and optimally distributes it layer-wise across
a compute hierarchy that spans devices, edge nodes, and the
cloud. This enables to distribute inference computation load,
and, if the model allows it [28], [27], to provide inference at
the edge by early exits when confidence is high; this reduces
latency and communication load. Training is continuous and
operates in rounds or can be triggered when performance
drops. As soon as an updated model is available, it is rede-
ployed. Redeployment can also take place when changes in the
underlying compute and communication substrate are detected,
warranting adaptation. In the context of our recursive design
framework, these two services operate as follows.

B. Distributed training

1) Service overview: Training follows the principles of
federated learning [10], which is a distributed ML paradigm
allowing model training on decentralized data. A FL sys-
tem [29] operates in rounds, where a server manages a FL task
which is executed remotely by a number of devices (workers).
This task is typically about training a ML model, such as a
DNN, on local device data. A FL protocol defines procedures
such as device registration, worker recruitment, parameter
configuration, reporting the results of local computation, etc.
A FL round can be broken down in three main phases: (i)
device selection, (ii) round configuration, and (iii) reporting
and aggregation of the reported computation results in the
single global model.

Device selection gives rise to interesting optimization prob-
lems and defines part of the adaptation space of a FL ser-
vice: Often devices are unreliable [30], heterogeneous both
in capabilities [31], [32] and in terms of the distribution
of their data [33], are connected over bandwidth-limited or
metered links [34], or have disincentives to participate [35].
These aspects need to be taken into account when selecting an
appropriate subset of the available workers to participate in a
training round. The respective selection criteria depend on the
particularities of the use case in question. We later demonstrate
an example worker recruitment scheme, but other options are



Fig. 3: A complex, recursively composed data-driven IoT service workflow spanning the device-to-cloud continuum, delivered
following our concepts and framework. LHS: A high-order node (ND) orchestrates a Federated Learning (FL) service. A group
of low-order nodes (devices) are abstracted as a single node (NA), which exposes the same service endpoints for participating
in FL. This single-node abstraction is supported by the RMM (for resource abstraction) and the CEM (to expose node service
endpoints and capabilities). Adaptation logic pertains to device recruitment and is executed by the NAE of the respective
nodes at different levels of abstraction, subject to policy (PEE) and other constraints. RHS: ND is “chained” with a model
deployment and serving node (NE) to compose an end-to-end ML workflow. Similar principles apply here: the trained model
(DNN) is sliced layer-wise and deployed on top of heterogeneous lower-order nodes (device, edge and cloud). Self adaptation
builds on service and environmental monitoring (RMM), custom adaptation logic (NAE), and infrastructure/service provider
policies (e.g., quality thresholds, budget and resource usage constraints; PEE). The CEM is responsible of exposing model
serving API endpoints.

possible. Notably, since the operating conditions change, the
system needs to self-adapt. For example, the battery level of
a device may fall below a threshold which can reduce its
availability, while its connectivity conditions might change,
affecting both the cost and reliability of fulfilling the FL task.
These need to be properly monitored and reported as part of
the FL protocol, and considered in the recruitment process.

2) Node composition: In this example, IoT devices are
sources of data streams on which training takes place. Our
framework allows for a hierarchical composition of nodes. A
node can correspond to a single device, but also can aggregate
a group of devices, thus forming a higher-order structure. Node
capabilities are exposed over the interfaces provided by each
node’s CEM. At the lower tier of this hierarchy, each node’s
resources are managed by a device-local RMM. As shown
in Fig. 3, a higher order node (NA) provides a single-node
abstraction for a set of IoT devices. A call to NA’s RMM, for
example regarding the node’s aggregate compute capabilities
or its overall reliability to execute a FL task invokes recursive
calls to the RMMs of IoT device-level nodes. FL server
functionality is executed by the highest-order node (in this
case, ND). Thanks to the abstraction provided by our recursive
framework, NA can be seen as a single FL worker, at the same
level of hierarchy as low-order nodes NB and NC , although
internally it can execute different worker selection logic,
optimizing for different criteria than ND (e.g., load-balancing

tasks across devices so as to achieve long term intra-node
fairness goals). The highest order node can provide a single
entry point to the FL service, also being capable of serving
the learned model or providing it to another node/process for
deployment and serving (NE , in our example).

While we are not discussing such issues in depth in this
work, the role of the SNM is also critical in this process,
as an enabler for negotiating participation in the service.
This may involve different steps depending on the ownership
scenario assumed: For instance, complex accounting protocols
can be put in place in a multi-domain scenario, where users
wish to monetize on the use of their data. In contrast, for
a service where the infrastructure and data are controlled by
a single entity, service negotiation takes place solely on the
grounds of the resources available by each node (i.e., nodes are
cooperative and node composition considers only whether or
not a device is capable of execute a given task). In both cases,
it is the role of the PEE to enforce the appropriate information
scoping. This also includes protecting the identity of workers
from the server, if this is a concern. In this case, it is allowed
to register with the aggregator node, if it is considered trusted,
but not directly with the FL server; the PEE and CEM of each
device-level node can control access to such information.

3) Supporting hierarchical federated learning: Our design
naturally supports hierarchical federated learning. This has
multiple advantages. First, it may enhance the privacy of



IoT data sources by abstracting them via higher order nodes.
Second, it reduces communication load by partial model aggre-
gation at intermediate FL servers close to or at the edge [11],
and can also reduce communication latencies [12]. Finally,
it reduces the complexity of managing large-scale federated
learning tasks. For example, as we show in Section IV-B4,
when the worker population is very large, selecting the optimal
set of participants for a round is computationally expensive.
Having to deal with smaller populations, delegating part of
the task of recruiting workers to the edge (e.g., to node NA

in Fig. 3) saves time and server resources, while it allows
for applying different selection criteria at different levels of
abstraction.

4) Adaptation space – Intelligent worker selection: In this
FL service, there is a significant amount of parameters that
can control its operation and affect its performance. It is the
responsibility of the service engineers to define these control
knobs and potentially develop specific self-adaptation logic
that the node runtime (NAE) will execute, using as input
(i) developer and user intent, and (ii) monitoring information
flows originating at each node’s RMM. As an example of
adaptation, we focus on the process of FL worker selection.

The provider of a FL service may apply different criteria to
select workers. In general, if the necessary number of workers
participating in a round fail to report in time, the round is
abandoned [29]. Therefore, selecting workers that are reliable
is desirable. At the same time, participating in a round incurs
computation and communication cost for devices, therefore
minimizing it is a goal. Node reliability and cost can be
expressed in various ways. Reliability can be a function of a
worker’s battery level (operating on low battery can not only
cause the training process to fail to complete, but also creates
disincentives to contribute compute resources), connectivity
profile (a device connected over an error prone link is more
likely to fail to report in time), or in general the history of a
worker’s reporting behavior (keeping track of the number of
times a recruited worker failed to deliver is straightforward).
Similarly, participation cost is linked with a device’s con-
nectivity properties (LTE connections are typically metered,
contrary to fixed wired broadband links) and computation
costs.

Assuming that node reliability and participation cost can
be abstracted by unit-less metrics, worker selection can be
formulated as the following optimization problem:

minimize
n∑

i=1

cixi (1)

s.t.
n∑

i=1

pixi ≥ E (2)

xi ∈ {0, 1}, i = 1, . . . , n, (3)

where the objective is to select a subset of the n available
workers (each denoted by a binary variable xi; xi = 1 if the
respective worker has been selected) that minimizes the total
participation cost, subject to the constraint that the expected

number of delivered reports exceeds a threshold E (2). In this
formulation, each worker i is characterized by its probability
pi to successfully deliver a report (model update) at the end
of a round, and its participation cost ci. Constraint (3) ensures
that the decision variables are binary.

Successful reporting probabilities (pi values) and costs
(ci values) need to be communicated to the FL server that
carries out the selection. This functionality cuts across various
functional components of our framework. The RMM of the
high-order node that controls worker selection (e.g., ND in
Fig. 3) needs to communicate with the RMMs of its constituent
nodes (NA, NB , and NC), in order to retrieve information
about the status of their resources (e.g., battery level, available
bandwidth) or indications about their reliability levels, and
derive the pi values. This may be translated to recursive
monitoring requests, as in the case of NA. In a similar
fashion, and depending on the implementation of the service in
question, each node’s CEM can advertise node capabilities, FL
protocol service endpoints, and participation costs (which may
be configured by node operators). The actual worker selection
is functionality pertaining to the NAE of the node hosting a FL
server. Finally, based on the solution to the selection problem,
the SNMs of workers and the FL servers may be involved,
for instance to execute transaction logic and the respective
accounting procedures.

For very large-scale FL tasks, where workers are in the order
of millions or more, deriving optimal solutions to problems
such as the above may be time and resource consuming. To
demonstrate this issue, we have used the CPLEX optimization
suite to solve the worker selection problem to optimality. As
Fig. 4a shows (dashed line), this can take time in the order of
many tens of seconds for large problem instances, while its
memory requirements become prohibitive (it was not possible
to solve problem instances of more than 2M candidate workers
on an 8CPU VM with 8 GB RAM due to lack of memory).
Instead, in such cases, it is necessary to trade optimality
for execution speed and lower resource consumption. For
example, an algorithm that sorts workers in ascending order
of the ratio ci

pi
(i.e, low-cost and high-reliability nodes first)

and greedily selects workers in that order, until the expected
number of delivered reports is achieved, executes much faster
(Fig. 4a, solid line) while not suffering significantly in terms of
solution quality in our experiments (Fig. 4b; for each worker,
reliability and cost were drawn uniformly at random from
the (0.5, 1) and (0, 1) ranges, respectively). It is important
to point out that a recursive service design helps in dealing
with this complexity: by using higher-order edge nodes to
abstract groups of IoT devices, the central FL server node has
less worker state to manage, and deals with worker selection
problem instances of smaller size, delegating some of the
selection logic.

In practice, other approaches can also be applied for worker
selection. For example, balancing the load across workers to
avoid selection bias should be considered. While our example
captures critical properties and constraints, more sophisticated
selection mechanisms should be expected, and other criteria



 0

 10

 20

 30

 40

 50

 500000  1x10
6

 1.5x10
6

 2x10
6

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Number of FL workers

Exact algorithm (CPLEX - Branch and cut)
Greedy algorithm

(a) Execution time of the exact
and the greedy algorithm for in-
creasingly large sets of candidate
workers.

 0

 1

 2

 3

 4

 5

 6

 7

 100  200  300  400  500  600  700  800  900  1000

O
p
ti
m

a
lit

y
 g

a
p
 [
%

]

Number of FL workers

(b) Loss in performance (solution
quality) of the greedy algorithm
compared to the exact one.

Fig. 4: Solving the worker selection problem. For very large
problem instances, the computation and memory cost to solve
the problem to optimality can be prohibitively large and
heuristic or approximation algorithms that do not significantly
sacrifice on solution quality may be necessary.

and formulations are possible.
In summary, self-adaptation may manifest itself, among

others, in the following ways: (i) device-level SNMs may
adapt their pricing or decide to participate in a FL round based
on high-level goals (intent) such as profit maximization and
energy conservation; (ii) high-order nodes may autonomously
select different subsets of workers across rounds to attain
goals encoded in optimization criteria and respecting specific
service- and infrastructure-level constraints.

C. Inference serving

1) Service overview: Once a model is available by the
training service, it is ready for serving. In our example, node
NE receives the trained model from ND and handles internally
its deployment over an underlying node hierarchy, as well as
exposes service endpoints that interested entities can access
for inference. Orchestrating the lifecycle of model serving
can be broken down to the following processes: 1© processing
the model and preparing it for deployment over one or more
compute nodes; 2© recruiting resources over the compute
continuum to optimally serve inference requests based on
specific criteria and constraints; 3© deploying the model, i.e.,
placing sub-tasks of the inference workflow on the recruited
computational elements, appropriately configuring and chain-
ing them, and configuring API endpoints for data ingestion and
delivery of inference results; 4© continuously monitoring the
service and the infrastructure, and, when deemed appropriate,
applying adaptations to attain operational objectives such as
inference latency and resource use; 5© terminating the service
and decommissioning resources, e.g. upon the request of the
service provider.

The traditional way of executing this workflow is to allocate
cloud resources and host the whole ML model there. The
purely edge-centric approach involves hosting the model either
on-device, or offloading it to edge servers in proximity. Our
approach is to allow exploiting both edge and cloud resources,
and we do so by providing the appropriate execution environ-
ment. This allows a DNN model to be sliced and optimally

deployed over the nodes that support hosting it. Distributing
the computations of a neural network structure across nodes
by model splitting and edge offloading is a topic recently
receiving attention [27], [36], [35], [37], [38], [39], [40].

At runtime, the status of the network and compute in-
frastructure, as well as the performance of the service, are
monitored and adaptation decisions are triggered when neces-
sary (as decided by each node’s NAE). Given the adaptation
space defined by service and infrastructure providers, the goal
of the system is to enable the fluid management of service
components, e.g., facilitating dynamic layer migration across
hosts when drops in network performance are predicted or
when node resources are about to get exchausted, up/down-
scaling the allocated compute resources following service
demand (inference requests), etc. AI-driven mechanisms can
be applied by the NAE towards this end, thus showcasing
intelligence-enabled edge computing [24]. We demonstrate
aspects of self-adaptation in Section IV-C3.

2) Node composition: In the same spirit as for the FL
service, these nodes can be recursively composed. As Fig. 3
(RHS) shows, NE has an overall view of nodes in the three
compute domains, i.e., the device, the edge/fog, and the cloud.
Although the figure does not demonstrate it, each domain
can be abstracted by a single node, or individual device-level
nodes can be exposed. Each node, via its CEM, exposes its
capabilities to host parts of the DNN model (e.g., the service
endpoints to receive computation tasks). These capabilities are
combined with up-to-date monitoring information maintained
by the RMM of the node on top of the hierarchy (NE)
and are utilized by its NAE when deciding on how to split,
deploy, configure, and serve the model. After a DNN model is
distributed over the underlying compute infrastructure, which
spans the device, edge, and cloud domains, the CEMs of
specific nodes that can receive input data and serve the model
are configured.

Note that in Fig. 3, the input layer of the DNN model is
placed at device-level node NE.1, which is the source of input
data (e.g., sensor readings). It might as well be the case that
such a node also participates in the training service. This is a
manifestation of a desired feature for our framework, namely
to support multi-service nodes; taking this a step further, this is
also a demonstration of service multi-tenancy, where a node’s
resources can be shared by multiple IoT services, potentially
managed by different providers. It is the responsibility of each
node-local PEE to decide on a resource usage policy, which
is then enforced at the low level by the node’s RMM.

3) Adaptation space – Layer placement, monitoring, and re-
configuration: We have designed and implemented an orches-
tration scheme for distributed DNN serving, which showcases
various aspects of our framework design. It combines logic
that pertains to all the functional blocks of our framework,
and we demonstrate here how it facilitates the self-adaptive
management of a model serving workflow.
Model partitioning: We provide a programming model build-
ing on top of PyTorch which allows developers to compose
and train neural network architectures, potentially with early



exits, and define distributable layers. A DNN produced this
way can be passed on by the service provider to a controller,
which implements the core of our orchestration logic (part
of the NAE) and which takes care of the distribution of its
layers to compute hosts. More importantly, we also provide
an automated model slicing mechanism that operates on a pre-
trained, vanilla PyTorch model (in particular, on TorchScript,1

an intermediate representation of serialized PyTorch modules),
scans its computational graph, and automatically identifies
split points. The processed model can be submitted for serving
and is treated by the controller in an identical manner as
the ones built using our developer facilities. Therefore, our
system can orchestrate existing, pre-trained models, without
modifications.
Host execution environment: Each compute node imple-
ments an environment that allows to receive DNN layers,
perform the respective computations, communicate with other
nodes in the compute hierarchy, trigger inference, and perform
monitoring. Communication tasks are carried out over gRPC.
This includes exchanging serialized intermediate results of
DNN inference between layers. Each node’s RMM is respon-
sible for monitoring various environmental conditions which
are relevant for orchestration. For example, periodically, each
node measures the latency to reach other known hosts, as well
as the available bandwidth. This information is also updated in
the course of inference, when the node has to exchange infor-
mation with nodes hosting other DNN layers. The controller
(see below) is responsible for collecting, via its own RMM,
and maintaining this information centrally. Nodes initially
register with the controller, and the latter is responsible for
contacting them periodically (CEM functionality) to determine
their availability.
Controller engine: At the heart of our system is a con-
troller, which implements the core NAE-level logic. The RMM
of the controller maintains an up-to-date view of system-
wide information. For example, it maintains a latency and
bandwidth matrix with the respective metrics for any pair of
compute nodes, which it updates by accessing the relevant
information of the RMMs of the lower-order nodes. It exposes
both southbound and user-facing APIs; the latter are used as
an entry point to deploy a DNN model. From a software
architecture perspective, we provide a plugin framework for
implementing different deployment, resource allocation, and
adaptation strategies. This way, different optimization goals
can be supported. Our system readily supports a number of
them, which we review here. Notably, the controller also pro-
vides an extensible configuration interface, via which various
operational settings and constraints can be expressed.
Layer placement strategies: When a model is provided to
the controller for serving, the latter needs to decide on an
appropriate placement of layers over nodes in a compute
hierarchy. This decision can be driven by different criteria.
We briefly describe latency-driven strategies, but other ones
are supported, such as those aiming to balance inference

1https://pytorch.org/docs/stable/jit.html

load fairly across nodes or minimize energy consumption.
We define inference latency as the end-to-end latency from
submitting input data to receiving an inference result. This
is broken down to communication- and computation-related
latency. Communication latency is determined by the under-
lying network links and the volume of data that need to
be exchanged between nodes hosting different DNN layers.
Computation latency is a function of the computational re-
quirements of each inference task, and the capabilities and load
of the processor executing it. The purpose of a latency-driven
strategy is to determine the appropriate DNN split points and
deploy layers of the DNN on hosts to minimize inference
latency, subject to capacity (node and network link) and
layer ordering constraints. In order to acquire the necessary
input to the algorithm, we combine the following information:
(i) the computation requirements per layer (in FLOPS) and
the incurred traffic volume, for which we have implemented
DNN profiling facilities, (iii) the computation capabilities (in
FLOPS) of different compute node hardware models, which
we acquire either via existing studies [41] or via offline
benchmarking (for new devices), (iv) monitoring information
from the RMM, and (v) the architecture of the DNN to deploy.

When the number of potential host nodes is small, or
when device-level nodes are abstracted behind higher-order
ones, thus limiting the search space, this problem can be
solved to optimality fast. However, when deploying very deep
neural architectures over large-scale infrastructures with many
user-controlled device-level nodes, and deep fog computing
hierarchies, deriving the optimal DNN layer distribution is
computationally expensive. We formulate different variations
of the problem as an Integer Linear Program (ILP), and
implement alternative algorithms to solve it, which trade
solution quality for execution speed. (We omit its formulation
due to space limitations.) As Fig. 5 shows, as the number
of candidate compute nodes grows, we can witness a steep
increase in computation and memory requirements to find the
optimal deployment of GoogLeNet [42], a 22 layers deep
Convolutional Neural Network via an exact algorithm (imple-
mented in CPLEX). Heuristics, such as a genetic algorithm
we have implemented, even without significant tuning and
domain-specific optimizations, help deal with large problem
instances, without significantly sacrificing on solution quality
(see Fig. 5c). The expected latency benefits compared to a
cloud-only deployment are also obvious; unsurprisingly, by
pushing the whole model to the cloud, we suffer an inference
latency performance loss of up to 80%. This is an early effort;
more sophisticated algorithms and an extensive evaluation are
part of our ongoing work.
Triggering self-adaptation: The above results demonstrate
the cost of layer placement, and are important when putting
adaptations in the picture. The NAE, when triggering model
re-deployment, needs fast mechanisms for fluid layer mi-
gration. Currently, re-deployment takes place in our system
after periodic monitoring by the controller, which might fire
adaptation triggers when the conditions change, and when
an updated model is available. Future work will focus on
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Fig. 5: Solving the distributed DNN deployment problem.
While for small-scale deployments the problem can be solved
to optimality in acceptable time, large compute hierarchies
come with significant compute and memory resource re-
quirements. A genetic algorithm (without significant tuning)
executes faster for large problem instances, suffering a reason-
able loss in performance. A cloud only solution comes with
significant inference latency.

learning-based such mechanisms, building on Reinforcement
Learning principles [43], as a further step towards better
reflecting both modes of edge intelligence; EIC and AIE.

As a final note, from an architectural and methodological
perspective, our approach is similar in spirit to SPINN [37],
the state of the art in Distributed DNN orchestration. Unlike
SPINN, which partitions computations between a device and
a server, our approach allows for more split points along the
compute continuum, and physically partitions the model data
structure layer-wise over compute nodes, so that each one of
them need not host the whole model. We support multiple
decision algorithms as deployment strategy plugins. As such,
multi-objective orchestration schemes like those of SPINN can
be integrated. Finally, while we designed our system with
early-exit models in mind for latency-driven use cases, we
support out of the box traditional neural architectures for
use cases where other objectives matter, such as distributing
inference load across a number of edge devices that cannot
individually accomplish it due to resource constraints (e.g.,
small IoT devices that cannot fit a full model in memory).

V. RELATED WORK

Recursion as a design principle: Recursion has been explic-
itly or implicitly considered as a principle for studying and
designing systems in various disciplines, and recursive design
has had various interpretations. In the field of cybernetics, Beer
introduced the Viable System Model (VSM) [44], studying the
fundamental viability properties of organizational structures.
According to the VSM, systems that survive are evolvable and
adaptable, and are characterized by a recursive structure: “any
viable system contains, and is contained in, a viable system.”
Barba [45] takes a design-theoretic stance, and argues for
recursive thinking as a vehicle to deconstruct and solve design
problems. Shlaer and Mellor [46] use the term recursive design
for their proposed software development methodology, where

the focus is on the precise specification of system components
and their composition in an application-agnostic architecture.

Importantly, recursion has seen use in attempts to redesign
the Internet architecture. Touch et al. [47], [48] observe that
basic network protocol operations are repeated at different
layers of the network stack. Therefore, they introduce a
Recursive Network Architecture (RNA), which reuses a single,
configurable metaprotocol recursively across different layers
of the stack, each time with layer-dependent services. Day
et al. [49], [50] start from the premise that networking is
inter-process communication (IPC) functionality that repeats
over different scopes, and develop the Recursive Internetwork
Architecture (RINA).2 In RINA, (remote) processes commu-
nicate via a Distributed IPC Facility (DIF), the counterpart of
a layer, which provides communication services (e.g, routing,
transport, and management). At the same time, a single process
provides such IPC services to higher-layer DIFs, leading to a
recursive IPC structure. The concepts of RNA and RINA have
been unified in the design of DRUID [51].
Intent-based self-adaptive middleware: Building self-
adaptive software is challenging both from a developer and a
system (middleware) support perspective [52], [53]. To jointly
address these challenges, Proteus [54] provides a program-
ming model that allows the developer to specify measurable
parameters (feedback), adjustable variables, and intent for an
application. A runtime environment that uses tools from ML
and control theory adapts the application to satisfy the ex-
pressed intent. Proteus was demonstrated in an adaptive video
encoding application. In the IoT space, a work worth noting
is SDG-Pro [55], an everything-as-code programming frame-
work for software-defined cloud-based IoT systems, including
a programming model, and the underlying middleware and
execution environment. While it does not address explicitly
self-adaptation aspects and it has a different interpretation of
intent (in SDG-Pro, intents map to tasks with defined scopes
upon which they can take effect, rather than desired states or
outcomes), it does define programming abstractions to specify
intents and associated attributes (such as quality- or cost-
related), which allow a level of self-optimization at runtime.

VI. CONCLUSION

We argued for recursion as a fundamental design principle
for next-generation data-driven IoT systems and services, and
provided an architectural sketch of a runtime environment to
materialize our concept. Having demonstrated its potential
to facilitate complex ML workflows, which are becoming
increasingly common in the IoT, as well as challenging to
support, our future work will focus on a full prototype imple-
mentation of our node runtime, while also concentrating on
intelligent, zero-touch mechanisms for service and resource
orchestration.
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