
Engineering Heterogeneous Internet of Things
Applications: From Models to Code

Thomas W. Pusztai, Christos Tsigkanos, and Schahram Dustdar
Distributed Systems Group, TU Wien

Vienna, Austria

Abstract—Applications on top of the Internet of Things (IoT)
show big potential, but the domain raises challenges for software
engineers. Heterogeneous hardware environments and software
stacks, unreliable devices, and diverse developer skillsets make
the implementation of business processes spanning the entire
application and the enforcement of constraints difficult. To
this end, we propose a methodology and technical framework
targeting heterogeneous IoT systems, where software components
may be situated on IoT devices, cloud infrastructure, or edge
devices – a paradigm often referred to as fog computing. Our
approach leverages design-time modeling of device interfaces,
data, and business processes. Design-time activities entail speci-
fication of the software architecture of the IoT application in an
implementation- and language- agnostic manner. Subsequently,
we automatically generate boilerplate code for participating de-
vices, requiring developers to only implement business processes.
The generated boilerplate code is correct by construction and
it targets the different languages usually involved in diverse
IoT software components. When the application is deployed,
its execution may violate design assumptions. To counter this,
constraints defined during design time are enforced at runtime,
ensuring that devices operate within certain bounds. We evaluate
our model-driven engineering framework over a health care
system use case.

Index Terms—Internet of Things, Fog computing, Model-
Driven Engineering, Code Generation, UML

I. INTRODUCTION

Contemporary pervasive systems effectively integrate het-

erogeneous devices, computing infrastructure and cloud ser-

vices. The resulting Internet of Things (IoT) applications can

be of varying types and complexities, with multiple heteroge-

neous components expected to satisfy design objectives in a

collaborative manner.

Managing, configuring and deploying complex IoT ap-

plications are emerging problems, where multiple software

components may be situated in different devices, utilizing non-

local computing or data resources and communicating over

the network. This is exacerbated in what has been defined as

fog computing for the Internet of Things [1], where intercon-

nected devices with greatly differing hardware and software

characteristics, typically interact in a manner characterized

by absence of centralized control structures or data sources.

Engineering such applications can make use of powerful model

conceptions and accompanying software tools, allowing appli-

cation designers to first reason on a well-defined architecture

Research partially supported by the TU Wien Research Cluster SmartCT.

representation of their application and subsequently use the

architectural model to support development.

The domain of fog computing presents special challenges

for engineering software applications [2]–[4]. Firstly, the het-

erogeneity prevalent in devices and software stacks means

that devices may range from very resource constrained (e.g.,

microcontrollers) to quite powerful (e.g., smartphones); yet

they all need to collaborate and coordinate [5] in a single

application. Resource constraints on devices need to elaborate

data or control, in a system characterized by dynamicity, as

participating devices may join or leave within application op-

eration. This includes failures, as components and devices may

cease working without warning or a communication link may

drop. Security and privacy constraints are another concern,

something exacerbated by the fact that different components

on different devices may need to implement security controls

or protect sensitive data [6]. Developers of such applications

would ideally need to be experts in handling all of them and,

in addition, be experts of the target domain of the application

itself, e.g., health care or industrial smart power grids. The

developer of a microcontroller-based sensor might not be

interested in the global architecture of the fog application that

it is going to be used in; similarly, the power grid engineer

designing a smart grid application might not know how to

handle unreliable communication between devices.

Our fundamental intuition is that a complex IoT fog com-

puting application – as a software artifact itself – is a set of

components and connectors [7], which due to the IoT target

domain may be deployed, transferred, or make use of non-local

computing or data resources over the network. A component

is a software artifact logically situated in a device, responsible

for some functionality that can be independently developed

and delivered as a unit and that can be composed unchanged,

with other components to build something larger. Typically,

in a fog computing application, a component is responsible

for some functionality with code executed on some device,

making deployment a key issue. Connectors are interaction

mechanisms between components, supporting some workflow;

often in fog computing, web services are used.

We advocate a model-driven engineering (MDE) approach

consisting of both design-time and runtime facilities to deal

with these challenges. At design-time, the system architect

designs the system as a set of models, which can then be used

to generate boilerplate code that defines the principal inter-

faces and components of the system. This boilerplate code is

222

2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC)

978-1-7281-6739-8/19/$31.00 ©2019 IEEE
DOI 10.1109/CIC48465.2019.00036

the basis upon which application development can commence.

Models defined at design-time may also be used at runtime,

to monitor and enable reasoning about the satisfaction of

system requirements. Given defined, well-designed models, a

middleware that controls the execution of the defined processes

and enforces certain defined constraints can be generated,

and situated at runtime along the running system. The MDE

approach we advocate, is also related to software maintenance

– new developments or changes in requirements may require

the replacement of a component with another that provides a

different interface and behaves differently. With model-driven

development this can be carried out with little disruption to

the system.

In this paper, we propose a methodology and technical

framework for model-driven engineering of fog computing

applications. Our approach targets heterogeneous IoT systems,

where software components may be situated on IoT devices,

cloud infrastructure, or edge devices. Our approach leverages

design-time modeling of (i) device interfaces and data, (ii)

business processes, and (iii) overall application execution

constraints that may be involved. This design-time activity es-

sentially entails specification of the software architecture of the

fog application in an implementation- and language- agnostic

manner. After the architecture has been modeled, we auto-

matically generate boilerplate code for all different software

components within it, requiring developers to implement only

device-specific details and naturally, the business processes.

The generated boilerplate code is correct by construction and

is able to target the different languages usually used in diverse

IoT software components. Developers may complete the fog

computing application components independently. When the

application is completed and deployed, its execution may

violate design assumptions. To this end, constraints defined

during design-time are enforced at runtime; constraints are

obtained from the model specification of the fog application,

and during code generation are converted to runtime assertions.

As such, enforcement ensures that the fog devices operate

within defined bounds.

Our concrete contributions lie within model-based engineer-

ing of fog computing applications and are as follows.

• We provide a methodology where device REST interfaces

and data in a fog application are modeled with UML

class diagrams, and business processes within it with

UML activity diagrams. Those record the application’s

architecture and constraints on its behavior at runtime.

• Model-to-code facilities give rise to a technical frame-

work FogUML2Code1, able to generate correct-by-

construction boilerplate code from the models defined.

The generated artifact captures the fog computing archi-

tecture, is able to target heterogeneous implementation

languages used throughout the application, and is com-

pleted by application developers.

• Execution constraints added to the UML model specified

with the Object Constraint Language (OCL) are utilized

1https://github.com/fog-uml-2-code/fog-uml-2-code

Runtime

D

Design time

Fog Application
Model

IoT Devices
Deployment

Business Process
and Constraints

Model-to-Code Engine Developers

Activity Execution Engine

Development Cycle

IoT Devices

…

Io
T

D
ev

ic
e

x86/Java

Software Stack

Fog Computing
Application

Io
T

D
ev

ic
e

ARM/C

Software Stack

Activity Execution Engine

Fig. 1. Model-based Engineering of Fog Computing Applications: Overview.

to generate runtime assertions, which are integrated di-

rectly into the generated code.

• Finally, we provide a runtime library, fog-execution-
framework-java2, for executing business processes de-

fined in UML activity diagrams.

The rest of the paper is structured as follows. Section II

gives an overview of our approach within fog application engi-

neering as well as illustrating a motivating example. Section III

describes key methodological aspects and design activities

of our approach. Section IV illustrates operational aspects,

including model-to-code generation and activity realization.

Section V provides an assessment of applicability over a health

care fog application use case; related work is considered in

Section V-C, and Section VI concludes the paper.

II. OVERVIEW

We advocate a model-driven engineering approach con-

sisting of both design-time and runtime facilities; Figure 1

provides a bird’s-eye view of our approach. At design-time, the

system architect designs the system as a set of models, defining

principal interfaces and components of the system, taking

into account the overall business processes as well as the

target IoT devices where the application should be deployed.

Subsequently, boilerplate code is automatically generated for

every software component modeled in the system; components

–to be deployed on different IoT devices– may utilize different

software libraries and be written in different programming

languages. The generated code is tailored to the capabilities of

each hardware platform and abstracts away details of initial-

izing the modeled services, allowing developers to focus on

2https://github.com/fog-uml-2-code/fog-execution-framework-java

223

E
dg

e
D

ev
ic

e

Health Monitor
Computer

x86/Java

M
ic

ro
co

nt
ro

lle
r

Blood Pressure
Sensor

PIC/C

REST

GET BloodPressure

Body Area Network

Fig. 2. Interacting components on devices within a Body Area Network.

the business logic of each component. Moreover, components

may be built independently by software developers.

At system runtime, the application is deployed on IoT

devices. Some components provide REST services to other

components, while others execute one of the modeled business

processes using an activity execution engine. Models defined

at design-time may also be used at runtime [8], to monitor and

enable reasoning about the satisfaction of system requirements.

Constraints obtained from the UML specification of the fog

application are converted to runtime assertions and enforced at

system operation, ensuring that the application behaves within

the defined bounds. Design and development using our MDE

approach is essentially a four step process:

1) Design Data Model & Interfaces: Definition of key

interfaces and components as well as constraints they

should adhere to in operation; it thus consists of two sub-

steps: a) Data model and device interfaces design with

UML class diagrams, and b) Definition of constraints on

data and operations using OCL;

2) Processes Design: Specification of the processes of the

fog application with UML activity diagrams;

3) Models-to-Code Generation: Automatic generation of

boilerplate code for each device and process, tailored

to the respective hard- and software platforms;

4) Details Implementation: Manual implementation of the

business processes.

Steps one and two will be discussed in detail in Section III,

while steps three and four will be elaborated in Section IV.

A. Motivating Example

The rapid growth in sensor technologies, low-power inte-

grated circuits, and wireless communication has enabled a new

generation of wireless sensor networks for medical uses. Such

Body Area Networks (BANs) [9] involve multiple, possibly

heterogeneous and interconnected devices upon which various

software-intensive data and control operations take place. In

Figure II-A a simplistic BAN is illustrated, consisting of a

health monitor and a blood pressure sensor, which could

be used for 24-hour ambulatory blood pressure monitoring

of a patient; a more complex scenario will be presented in

Section V-A.

The blood pressure sensor is based on a low-powered

microcontroller, running C code and exposing its functionality

through a REST interface. The health monitor is an edge

device connected to to the blood pressure sensor through

the BAN and to the Internet or a hospital’s private network

through WiFi. It is a more powerful device than the sensor

and runs Java, leading to a heterogeneous system with two

devices having different performance and programmability

characteristics. The health monitor issues a GET request to

the blood pressure sensor’s REST interface at regular intervals

to check the blood pressure of the patient and logs the data. If

the blood pressure reaches a critical level, medical personnel

is automatically informed, illustrating a runtime decision.

Notice that the simple BAN presented is an instance of the

IoT; several sensing or actuating devices are needed to realize

it, which are connected over networks with programming

interfaces. Engineering of an application within such an IoT

domain, involves (i) architectural aspects, such as correct

design of the involved components and connectors, as well

as (ii) ensuring that execution behavior of the system does not

violate certain bounds (e.g. maximum number of blood pres-

sure checks per hour) and adheres to the defined specification.

It is then evident that supporting systematic engineering of

such applications is required; high-level reasoning can occur

at the model level, something especially important in critical

domains such as medical IoT.

III. DESIGN

In this section the steps of Design Data Model & Interfaces
and Design Processes from the methodology outlined in the

previous section are examined. As development platform we

adopt Eclipse Modeling Framework (EMF), because of its

widespread use in the MDE community. It provides support for

UML2 and OCL through their implementations within Model

Development Tools (MDT)3. MDT provides EMF metamodels

and libraries, but no graphical editors for UML diagrams (apart

from a rudimentary tree-based editor). For graphically creating

UML diagrams UML Designer4 was adopted, but any UML

modeling tool that targets Eclipse’s UML2 meta-model can be

used.

A. Design Data Model & Interfaces

The first step requires the software architect to design the

data model that will be used across the fog application, as

well as the REST interfaces of the involved IoT devices using

a UML2 class diagram [10]. REST is very common in the

fog/IoT domain and microservices have emerged as a widely

used architectural conception. Microservices inherent in our

approach (i.e., over REST), are applicable to a wide range of

platforms in fog computing: from miniscule devices to cloud

infrastructures. A class diagram captures the data structures

and REST endpoints in a compact manner. Each interface in

the diagram will be treated as a device’s REST endpoint. After

designing the data model and REST interfaces, the architect

can define constraints on data and methods using OCL [11].

The architect may specify class invariants, as well as pre- and

post-conditions for each method of the REST interfaces.

3https://www.eclipse.org/modeling/mdt
4http://www.umldesigner.org

224

1) Fog UML Profile: In order to allow a software architect

to apply fog specific semantics to the elements of a class

diagram, we provide a tailored UML2 Fog profile, consisting

of stereotypes and some helper elements. Stereotypes are used

during the code generation process to gain information on how

elements should be treated - they are: DataModel, FogDevice,

and ActivityRealization. The DataModel stereotype is used

to designate a class or a package as being part of the data

model of the fog application. In the following, we discuss the

FogDevice and ActivityRealization stereotypes in detail.
The FogDevice stereotype informs the code generator that

the interface, class, or package, to which it has been applied,

will be deployed on a fog device. Setting specific properties on

an application of this stereotype influences the code generation

for these UML elements. The most important property of a

FogDevice stereotype application is targetLanguage, which

defines the programming language that will be used to generate

code for this device. It must be set to a member of the

TargetLanguage enumeration. Currently C and Java are sup-

ported, but other languages can be added in the future. Other

properties available in the FogDevice stereotype are: cpu (CPU

types, like AVR-8bit or ARM-32bit), cpuCores, cpuClockMHz,

eepromKb, ramKb, flashStorageKb, and batteryMAh. In our

prototype these other properties do not influence the code

generation, but they may be useful in the future - e.g., the CPU

type could be used to automatically generate some defaults for

the compiler settings.
The ActivityRealization stereotype designates that a

package and all contained elements are part of the realization

of one of the fog application processes, modeled using activity

diagrams in the Design Processes step. It has one property,

realizedActivity, which must be set to the activity diagram

that models the process, in whose realization the stereotyped

package will be part of. Each class contained in this package

will be generated as a service class. Services classes provide

methods that can be referenced and thus called from activity

diagrams. The ActivityRealization stereotype is designed to

be used in conjunction with FogDevice on the same package.

The latter is used to set the target programming language for

the activity realization and other information about the fog

device that will host the activity’s process.
2) Class Diagram Design: A fog application design com-

mences with the creation of a new UML model using Eclipse

MDT and the application of the Fog profile to it. The design

of a class diagram for a fog application is very similar to that

of a class diagram for any other application, although there

are some important differences:

• The Fog UML profile’s stereotypes need to be used;

• Interfaces play a special role, due to the domain;

• Classes must either be part of the DataModel, implement

an interface, or be part of an ActivityRealization.

The stereotypes described in Section III-A1 need to be

applied to appropriately classify some of the model elements

and to customize the code generation. Each interface in the

UML model will be treated as a REST interface in the fog

application. This means that during code generation both a

server-side implementation (for the fog device that hosts the

REST endpoint) and a client-side implementation (for the

activities that call that REST endpoint) will be generated.

For simplicity, each interface method that takes no parameters

is considered as a GET endpoint, and each method with

parameters is considered as a POST endpoint. Parameters and

return values are assumed to be passed as JSON objects.

If an interface is extended by one or more subinterfaces,

code will only be generated for the interface(s) at the bottom

of the inheritance hierarchy; for superinterfaces nothing will

be generated. For generating REST client code only the

interfaces are of importance, but for generating code that

implements the REST endpoint (i.e., the server-side), any

classes that realize an interface are considered as well. If

an interface is not realized by any class in the UML model,

a class (or an equivalent for non object-oriented languages)

that implements this interface will be generated as the REST

endpoint controller. If an interface is realized by a class in the

model, that class will be generated, including all additional

attributes and methods.

For a class in the UML model to be considered during code

generation, it must either:

1) Have the DataModel stereotype applied, or be part of a

package with that stereotype (the class will be treated

as a model class);

2) Implement an interface (the class will be treated as a

REST endpoint controller), or

3) Be part of an ActivityRealization (the class will be

treated as a service class, callable from the activity).

3) Define Constraints: After specifying the data model and

REST interfaces, the software architect may add constraints

to the UML model using OCL. Constraints may be added to

all interfaces, classes, and their methods in a class diagram

and they may be of the following types: invariants, if they are

added directly to a class or interface, or pre- or post-conditions,

if they are added to a method. Within our approach, adding

OCL constraints occurs through the tree-based UML model

editor that is part of MDT.

These constraints play a vital role in the design of the

fog application, because during code generation they will be

converted to assertions that will be executed at runtime. This

enforcement of the defined constraints is especially important

in a fog application, because it helps ensure that the fog

devices operate within their defined bounds, which aids the

stability of the application. It is also a major factor for the

security of a fog application, because a malicious device

compromised by a hacker cannot request the other devices

to do something that would violate the constraints.

B. Business Process Design

The next step is to design the business processes that will

be realized by the fog application. For each business process

the software architect has to create a UML activity diagram.

Activity diagrams are well suited for this purpose, because

they capture the essence of a process without unneeded details.

The captured information includes which devices are called

225

or contribute to the process, the order of the actions to be

executed, as well as major control flow decisions. Activity di-

agrams are also part of the Foundational UML Subset (fUML)

standard [12]. Since fUML models can be executed, they

are well suited for code generation. FogUML2Code supports

all node types contained in fUML. It does not support all

action types, but it supports Opaque Actions, which have been

excluded from fUML. In Section IV-A, one can observe that

the information obtained from activity diagrams is detailed

enough to generate boilerplate code with handler classes for

the activity nodes, which significantly reduces development

time (see Section V for details on this). Only the business logic

in the handler classes will need to be implemented manually.

Designing an activity diagram for a fog application is a

straightforward task. The activity starts with an Initial Node.

Call Operation Action nodes are used to call methods from

the REST interfaces designed in the previous step. This type

of node allows the architect to directly reference a method

from a classifier in the UML model, thus enabling a resolution

of the method during code generation. The architect may call

methods from any REST interface in the model or from classes

in the package that will realize this activity (by being marked

with the ActivityRealization stereotype). Classes inside an

ActivityRealization package will be generated as singleton

services, which are only available on the device that hosts the

activity and are not callable via REST.

To model decisions in the control flow, the architect may

add Decision Nodes. Each outgoing edge of a decision node

should be given a name that reflects the condition under which

this edge will be taken, e.g., [LastCheckOlderThan1Hour] or

[ContainerIsEmpty] - the edge that will be taken in case none

of the conditions is true, must be labeled with the keyword

else. This makes the diagram easy to understand and provides

the code generator with human readable method names that

will be used during generation. The other activity diagram

node types currently supported by our code generator are Fork,

Join, Merge, Accept Event Action, and Opaque Action nodes.

They are implemented according to their semantics defined

in the UML specification [10]. An opaque action node can

be used if the software architect wants to run some custom

action that is not included in any REST interface or service

class. For such nodes a handler class will be generated, which

developers can implement themselves. Final Nodes are not

supported, because the fog business processes modeled here

will probably be continuous processes. Note that the architect

need not worry about passing state information from one

activity node to the next, because a generated application state

class will be available in all handler classes.

Finally, the software architect connects the activity diagram

to the package in the class diagram that will realize the

activity, i.e., the package that contains the service classes

referenced in the activity. This is done by applying the

ActivityRealization stereotype to the desired package and

then setting the stereotype application’s realizedActivity

attribute to the activity that it will realize. Furthermore, the

FogDevice stereotype should be applied to the package as well

to set the target programming language and possibly other

device parameters.

IV. OPERATION

After the fog application has been modeled, our code

generator, FogUML2Code, can be used to generate boilerplate

code for all fog devices, requiring developers to implement

only the details of the devices and business processes. Tedious

tasks, like configuration of the build system or setting up and

running the HTTP REST services are handled by the code

generator. For C the targeted build system is CMake, while

for Java Apache Maven is used.

After the code has been generated, developers can imple-

ment those parts of the code that could not be generated

automatically. As mentioned in the previous section, this refers

to two main parts: i) the business logic of each REST endpoint

operation, and ii) the handler classes for the activity nodes.

The generated code ensures that developers can work with

the data model types directly and need not deal with HTTP

or JSON handling. Developers must however, write code that

does not break if a setter invocation fails due to a constraint

validation or if the activity state does not contain all the desired

information, because a preceding action has failed.

The manual implementation of the business logic is required

because modeling and implementation are two activities that

are not distinct. Generating all business logic from a model

would require modeling all low-level sensor details as well.

Thus, in essence, the model would collapse to an implemen-

tation. Extensions mitigating this phenomenon, such as the

Action Language for Foundational UML (ALF) [13], would

require orthogonal facilities to our approach.

A. Code Generation

To provide concrete tool support and a proof-of-concept

implementation, we realized FogUML2Code5, a model-to-

code generator implemented using Eclipse Acceleo6, which

conforms to OMG’s MOF Model to Text Transformation

Language (MOFM2T) specification [14]. After installing

FogUML2Code as an Eclipse plugin, it can be run from within

MDT on any EMF UML model with our Fog profile applied.

The code generation process consists of these major steps:

1) Generation of the common module;

2) Generation of a REST controller module for each REST

interface (deployable on the configured FogDevice);

3) Generation of an activity realization module for each

activity.

The generation of each module can be further cus-

tomized using a codeGeneration.properties file in the

project. It contains a list of settings, which can be con-

figured globally and individually for each module (REST

controller or activity realization). The settings use the follow-

ing scheme: codegen.<module>.<setting_name> = <value>.

Using default as the module name, allows defining global

5https://github.com/fog-uml-2-code/fog-uml-2-code
6https://www.eclipse.org/acceleo/

226

settings for all modules, which may be overridden for each

module if desired. The list of all available settings and

their explanations is available in the README file of the

FogUML2Code project. In the following subsections, each

major code generation step will be examined in detail.

1) The Common Module: The common module contains

classes for all model types and interface definitions for all

REST interfaces. It is generated in all available target lan-

guages, such that each module can reference it, regardless of

what language it will be generated in. Currently, C and Java
are supported, as the major languages used within IoT/fog.

Support for others may be similarly added by extending

FogUML2Code’s capabilities. The model classes also contain

code to enforce the constraints that were specified in the UML

model using OCL.

Language differences between C and Java dictate setting in

place a way to map a UML class diagram to a non object-

oriented programming language. To be able to enforce the

validation of the constraints defined on the UML model, the

design choice of simulating encapsulation by generating a

public and a private header file for each type was adopted. The

public header declares a constructor, destructor, getter/setter

functions, and a pointer type to the data structure that will

represent the UML classifier, but no definition of the struc-

ture’s fields. The definition of the data structure is generated

in the private header file. Both header files are included by

the implementation (.c) file of the type. However, only the

public header file is meant to be included by code written by

the developers of the fog application. We identify improved

tracking of C variable types (i.e., values vs. pointers) as future

work.

Central header files provide common definitions of types

(e.g., 32-bit integers), whose sizes may otherwise vary de-

pending on the platform. For integers and reals, the size of

the default data type can be customized for each module.

The constraint validation code for C is generated directly

inside of the getter and setter functions or the functions of the

REST operation implementations. Support of class invariants

and operation pre-conditions is provided out-of-the-box; fur-

ther facilities may be added to FogUML2Code. To transform

OCL expressions to C code, our prototype implementation

uses regular expressions, thus supporting a limited subset of

OCL. We identify implementing an OCL to C compiler to

provide support for more OCL expressions as an avenue of

future work. Each setter function returns a boolean value,

indicating if the constraint validation has succeeded.

For C a header file is generated for each REST interface to

provide a high level abstraction for the REST calls.

For Java as target language the generation process is analo-

gous to that for C, but being an object-oriented programming

language, it allows a more straight forward translation from

the UML class diagram. The data model classes are generated

as plain Java classes with private fields and a getter and setter

for each of them. Instead of using basic data types (int,

double, etc.), we have decided to use their wrapper classes

(Integer, Double, etc.), because it simplifies the generation

of the validation code and it allows developers to set each

attribute to null. All arrays in the UML model are translated

to List<T> objects. Java does not allow typedef declarations

like C, so the data type size settings do not have any effect

on Java code generation.

Constraint validation in our generated Java code is

implemented using Aspect-oriented programming (AOP).

FogUML2Code adopts the implementation provided by the

Micronaut framework7, which is a lightweight Java framework

for building microservices with low memory footprint. This

design choice is because in contrast to other Java frameworks,

Micronaut does not depend on runtime reflection but resolution

occurs mostly at compile time. This method leads to better

performance and lower memory requirements, which is critical

for the fog domain we target. Like for C, class invariants and

operation pre-conditions as constraints are supported. They are

realized by custom Java annotations, which are part of the

fog-execution-framework-java8 library reflecting our approach.

The annotations are applied to the classes and/or methods by

the code generator and for each constraint an implementation

class is generated, which contains Java code obtained from

the OCL constraint using regular expressions. If a constraint

validation fails, an exception is thrown.

For the REST interfaces defined in the UML model, Java

interfaces are generated that contain Micronaut annotations

declaring the type of the HTTP verb used for each method. The

implementation of the REST clients and endpoint controllers

are generated in the modules that require them and are realized

using Micronaut annotations as well.
2) REST Controller Modules: The next major step is to

generate a module for each REST endpoint controller in the

UML model. A REST endpoint controller in the UML class di-

agram is either an interface or a class that realizes an interface.

The name of a module is that of the classifier that defines the

REST controller, i.e., the class in the UML model that realizes

the interface or the interface itself, if there are no realizing

classes. If the FogDevice stereotype has been applied to a

REST classifier, the module is generated in the target language

configured in the respective attribute, otherwise Java is used

as default. For both, C and Java, the generated module will be

an executable application that will start up the REST services

automatically and abstract away the HTTP communication, as

well as the JSON serialization/deserialization. Developers only

need to implement the business logic of each REST endpoint

operation as normal functions/methods operating on the data

types of the common module.

In C, the REST services are set up using the ulfius frame-

work9. It works on desktop systems, which is useful for

testing, and can also be compiled with lwIP10, a lightweight

TCP/IP stack for microcontrollers. FogUML2Code generates

the code necessary to launch the REST endpoint and accept

incoming requests. The generated code then calls a function

7https://micronaut.io
8https://github.com/fog-uml-2-code/fog-execution-framework-java
9https://github.com/babelouest/ulfius
10https://savannah.nongnu.org/projects/lwip/

227

containing the business logic, which needs to be implemented

manually by the developers. The return value of that function

will be serialized and transmitted to the REST client by the

generated code.

For Java the amount of code that needs to be generated is

much smaller. Each REST controller module contains a .java

file with the main entry point, which launches the applica-

tion using the Micronaut framework. For the REST endpoint

controller itself, a class is generated, which implements the

corresponding Java interface from the common module and has

the Micronaut @Controller annotation applied, such that it is

recognized by the framework as a REST controller. The HTTP

communication and serialization/deserialization of parameters

and return values is all handled by Micronaut. Annotations

for any defined constraints are added and validator classes are

generated.

3) Activity Realization Modules: The final major step in

code generation is to generate a module for each activity in the

UML model. Each activity is serialized to a JSON document,

containing all the information necessary to execute it using the

activity execution engine in our fog-execution-framework-java
library. Within the framework, only Java is currently supported

as a target language for activity realizations. This is motivated

by the fact that most fog business processes will not be run

on a microcontroller but on a more powerful device capable

of executing Java.

FogUML2Code generates an entry point for each activity

realization module, which bootstraps the application using

the Micronaut framework and instructs the activity execution

engine to load the activity’s JSON document and start the

execution on the initial node. The basic structure of the activity

JSON is shown in Listing 1.

Listing 1. Activity.json - Basic Structure
"activity": {

"name": "ActivityName",
"initialNode": "0",
"nodes": [{

"id": "0",
"type": "InitialNode",
"name": "Start",
"nextNode": "1"

},...]} ...

Each activity has a name, which is the name of the activity in

the UML model, an initialNode referenced by its ID, and an

array of nodes. Each node has an id, which is used to reference

it from other nodes, a type, and a name, the other properties

vary depending on the node type. For an Initial Node for

example, there is only one additional property, nextNode,

which contains the ID of the node that should be executed next.

Each supported activity node type is handled by an executor

class in our fog-execution-framework-java. Some node types,

e.g., a Fork node, can be executed just by its executor class and

the information from the activity JSON, but other types, such

as a Call Operation Action node need code to be implemented.

A Call Operation Action node executes a call to a REST

endpoint controller. This is handled by the execution engine;

the developer is required to provide the parameters for the

REST call and to handle the result. FogUML2Code creates

a class that implements a handler interface with methods to

assemble the parameters for the REST request, to handle its

result, and to handle an eventual error. These need to be

implemented by the developers.

Another example for a node type requiring code from

developers is the Decision Node. For each such node a handler

class is generated with one method for each outgoing control

flow edge, except for the else edge. Each of these methods

must return a boolean value indicating whether the control

flow edge guarded by it should be taken or not. The executor

responsible for the node executes the condition methods in the

order in which they are defined in the conditions array in the

node’s JSON (see Listing 2). For each condition the JSON

document contains a reference to the nextNode that should be

executed if the condition is true. If none of the conditions

evaluate to true, the node referenced by the elseNextNode

property is executed.

Listing 2. Decision Node JSON Example
"id": "10",
"type": "DecisionNode",
"name": "",
"handler": "healthcare.monitoring.

handlers.decisions.AfterQueryData_Id10",
"conditions": [{

"condition":
"LastBloodPressureCheckOlderThan1Hour",

"nextNode": "11"
}], "elseNextNode": "9" ...

Recall that security plays an important role in a fog appli-

cation and that fog devices may fail or leave the fog without

notice. To enforce security concerns, automatic constraint

validation is adopted – an exception will be raised if a

constraint fails to validate. An unanswered REST call due to

a failed device also produces an error. For such situations the

activity execution engine is designed to automatically handle

the error, thus preventing the application from crashing, and

to continue execution. For each node type the executors in our

engine define the maximum number of times the execution of

a node will be retried in case of an error and a next node,

which should be executed in case the current one fails on all

retries. Since this can lead to skipping of nodes if they fail too

often, developers must take into account that previous nodes

may have failed, when implementing handler classes.

V. EVALUATION

Our approach targets heterogeneous IoT and fog systems,

where software components may be situated on IoT devices,

cloud infrastructure, or edge devices. Our evaluation goal

targets applicability of our approach. Specifically, we aim to

investigate applicability over the complete consideration of a

realistic use case, featuring a modern health care scenario.

Thereupon, we describe our evaluation setup and modeling ac-

tivities. The complete model of the use case considered along

with an illustrative complete implementation can be found on

GitHub11. We first present our use case, demonstrating that

11https://github.com/fog-uml-2-code/health-care-iot-example

228

our engineering approach leads to a reduction in development

time and then conclude with a discussion.

A. BAN Use Case

As a representative use case, consider a BAN application

for a diabetic patient. Kwasnicki and Yang examine various

usage scenarios of body sensor networks for medical uses [15],

while Fioravanti et al. propose a system for diabetes manage-

ment [16] that has sparked the idea for our scenario.

The health care fog application proposed can monitor vital

signs such as blood sugar levels and heart rate, auto inject

insulin through a pump device, or alert the hospital in case it

is needed. Furthermore, it can transmit aggregated monitoring

data to the doctor at regular intervals and allows the doctor

to remotely adjust the treatment plan. An eventual failure of

the heart rate sensor should not cause the insulin treatment

to cease working, while a malfunction of the blood sugar

sensor must not cause an overdose of insulin to be injected

into the patient, e.g., by defining a maximum amount that

can be administered per hour. The BAN scenario presented

is intended as an exemplar use case highlighting the model-

driven engineering facilities of the approach, while not being

medically accurate.

Figure 3 shows a part of the class diagram capturing

the BAN application. The Sensors package contains four

(REST) interfaces of sensors that can be placed on or im-

planted in the body: HeartRateSensor, TemperatureSensor,

BloodPressureSensor, and BloodSugarSensor. Each of these

interfaces will lead to a distinct deployment module, in

fact, each of them has the FogDevice stereotype applied.

The Treatment package contains another interface with the

FogDevice stereotype applied - InsulinPump. It does not

model a sensor however, but a device that can be used for

injecting insulin into the patient’s blood. It can do this either

by means of a basal rate (basically a continuous long term

dose) or a bolus (a dose administered over a shorter period of

time, e.g., 15 minutes).

The Models package (not shown in Figure 3) has the

DataModel stereotype applied and contains most of the model

classes needed in this fog application. Some of them are

used as return types for operations provided by the sensors

and others, namely BasalRate and Bolus are needed for the

insulin pump. The InsulinPumpState class contains infor-

mation about the amount of insulin administered within the

last hour and the last 24 hours and the time when the last

bolus administration has ended. The state also contains the

current TreatmentPlan. It contains the basal rate and bolus (if

one is currently being administered) and the limits for insulin

administration, which are supposed to ensure the safety of the

patient.

To enforce these limits certain OCL constraints are

defined; class invariants for InsulinPumpState and

TreatmentPlan and a pre-condition for the startBolus()

and adjustBasalRate() operations of the InsulinPump.

For example, the maxInsulinDosage invariant on the

InsulinPumpState class ensures that the number of insulin

Sensors
TemperatureSensor
measureTemperature()

BloodPressureSensor
measureBloodPressure()

HeartRateSensor
<<FogDevice>>

getHeartRate() : Integer[1]

BloodSugarSensor
measureBloodSugar()

BAN
BANDevice

getBatteryLevel() : Integer[1]

Treatment

InsulinPump
currentState : [1]
setCurrentTime(timestamp : Integer
getCurrentState()
startBolus(bolus : Bolus)
adjustBasalRate(rate : BasalRate)

{preStartBolus:
-- There is currently no other bolus being administered
self.currentState.bolus = null and
-- The last bolus ended at least one hour ago
self.currentState.currentTime - self.currentState.timeLastBolusEnded >= 3600000 and
-- This bolus will not exceed the max insulin allowed per hour
self.currentState.insulinUnitsAdministeredLastHour + bolus.insulinUnits <= self.currentState.treatmentPlan
maxInsulinUnitsPerHour and
-- This bolus will not exceed the max insulin allowed per day
self.currentState.insulinUnitsAdministeredLast24Hours + bolus.insulinUnits <= self.currentState.treatmentP
maxInsulinUnitsPerDay}

<<FogDevice>>

<<FogDevice>>

<<FogDevice>> <<FogDevice>>

Fig. 3. Health Care Fog Application - Class Diagram (fragment).

«Activity»HealthCareStart

Init

PT1S
QueryData

measureBloodSugar_call : measureBloodSugar

 : BloodSugarLevel[1]

target : BloodSugarSensor[1]

measureTemperature_call : m

 : BodyTemperature[1]

target : TemperatureSensor[1

CombineData

evaluateHealthStatus_call : evaluateHealthStatus

target : HealthMonitor[1]

adjustBasalRate_call : adjustBasalRate
rate : BasalRate[1]

target : InsulinPump[1]

startBolus_call : startBolus
bolus : Bolus[1]

target : InsulinPump[1]

storeHeartRate_call : storeHeartRate

timestamp : Integer[1]
bpm : Integer[1]

target : HealthDataStore[1]

getHeartRate_call : getHeartRate

: Integer[1]
target : HeartRateSensor[1]

 else

 [HeartRateIsAbn

 [BloodSugarIsHigh]

 [BloodSugarIsCritical]

 else

 else [BloodSugarIsLow]

 else

 [HeartRateIsAbn

 else

 else

 else

 else

 [BloodSugarIsCritical]

 [BloodSugarIsLow]

 [BloodSugarIsHigh]

Fig. 4. Health Care Fog Application - Activity Diagram (fragment).

units administered over the last 24 hours and over the last

hour do not exceed the respective maximum insulin units

defined in the treatment plan. The preStartBolus operation

pre-condition verifies four conditions before allowing a bolus

to start.

The Monitoring package has the FogDevice and

ActivityRealization stereotypes applied, because it

serves as the realization of the HealthCare activity shown in

Figure 4. The package contains two service classes used by

the activity.

At first glance, the HealthCare activity in Figure 4 seems

very complex, highlighting the advantage of reasoning on

the model than on an implementation level. Furthermore,

code generation will produce a module capable of executing

the complicated business process at hand using an activity

execution engine, requiring the developers to only write code

for application details.

The activity starts by forking into two concurrent control

flows: one runs a loop querying the heart rate sensor every

second and the second one starts querying the other sensors

for their data. The blood sugar level and the body temperature

are measured; blood pressure is measured only if the last

last measurement is older than one hour. These data are

229

combined and the evaluateHealthStatus() method of the

HealthMonitor service is called. After this, the control flow

forks again in order to make two decisions. One depends on

whether the blood sugar is low; in that case the basal rate

is adjusted (lowered). If the blood sugar is high, a bolus is

administered and when the blood sugar is critically low or

high, an ambulance is called. The second decision checks

if the heart rate is abnormal, which would cause the blood

pressure to be measured if the available data is older than

four minutes. If the blood pressure results to be critical, an

ambulance is called. If the blood pressure is acceptable or if

the heart rate was normal in the first place, the control flow

continues to a Join node, where it meets the control flow from

the blood sugar evaluation. Next, the obtained data is stored.

Subsequently a check entails if 24 hours have passed since the

last data submission to the doctor; if this is satisfied, the data

is submitted. Next, if the last treatment plan update check is

older than one hour, the plan is updated. Finally the control

flow leads to a timer event, which will trigger the querying of

data again after one minute.

Using the facilities of our approach, boilerplate code is

generated starting up REST interfaces for the sensors and

the insulin pump and executing the defined activity in the

HealthCare activity realization module. For all modules, the

defined constraints are automatically enforced; required im-

plementation is the particular business logic parts of devices

and the activity realization. One can observe that the MDE

approach advocated leads to a reduction in development time.

Specifically, the following development items are automati-

cally produced:

• Data model classes (in multiple programming languages);

• REST interfaces setup:

– HTTP server and requests handling;

– JSON serialization and deserialization;

– Constraints enforcement upon REST operation;

• Failure-tolerant execution of business processes.

B. Discussion and Perspectives

We have demonstrated that the MDE approach advocated

can aid development of fog applications. The error handling

built into the activity execution engine is well suited for the

volatile nature of a fog environment. The REST operation

calls trigger either a result handler, if the call was successful,

or an error handler, if it was not to update the application

state of the activity realization. This helps ensure that this

state is always well defined. The automatic enforcement of

constraints provides further error resilience and aids protection

from malicious attacks.

The error handling inside the activity execution engine could

be further improved in the future by making application state

changes only possible by means of transactions. Currently, if

the application state contains an instance of a data model class

that has some constraints associated with it, making a change

that violates a constraint would result in an exception, which

would be caught by the execution engine. If the developers do

not catch the exception themselves, the application state may

be left in an invalid state - with some intended changes already

applied and some not. Furthermore, if the invalid change

was detected by a class invariant constraint, the constraint

validation was performed after setting the disallowed value.

Use of a transaction system that would ensure that all the

changes of an activity node are either fully committed or not

committed at all, would help avoid such bugs.

The error handling for REST endpoint controllers can be

improved. Since transactions would be too expensive for most

microcontrollers, a different approach may be taken. If all

constraints are required to be expressed as operation pre-

conditions, any operation could be only executed if it will

lead to a valid state. Currently the code generation facilities

support pre-conditions and invariants. A future step could

be to try to automatically transform all invariants into pre-

conditions during code generation, such that all constraint

validation would occur before an action is executed. Another

improvement would be the replacement of regular expression-

based OCL to code transformation with an OCL compiler,

similar to CrossEcore12, to support more types of assertions.

The Fog UML profile and the code generator may also be

extended in the future to support the generation of code that

conforms to certain IoT standards, e.g., the Open Connectivity

Foundation (OCF)13 standards, to allow for easier integration

with other frameworks. Furthermore, empirical evaluation of

the presented methodology may be conducted.

C. Related Work

Recursive model transformations are adopted in [17] to

derive a fog-based architecture from requirements defined as

UML Use Case diagrams. Such diagrams are used as input

to the four-step-rule-set (4SRS) method, which consists of

four transformation steps. The first one leads to a set of

architectural components, which are grouped into three cate-

gories: interface, data, and control. The second step eliminates

unnecessary components, while the third one yields semanti-

cally cohesive aggregations of components. Finally, the fourth

step is used for associations between components. The output

architecture is then modularized and used to create a service
Use Case diagram, which is a refined Use Case diagram

for the system with actors being either humans or computer

services. This is then used as input to another execution of the

4SRS method, which yields a set of microservices, for which

scenarios are defined as a variant of sequence diagrams [17].

Even though this approach makes heavy use of UML, it does

not include any generation of code directly from the models.

A model-driven approach for provisioning and managing

IoT services in an infrastructure comprised of cloud, network,

and fog nodes that ”is exposed to service administrators as

a unified resource fabric” [18]. The model of a service only

defines what the service has to do, but not how it is instantiated

on a specific device. This allows a service to be deployed on

12https://github.com/crossecore
13https://openconnectivity.org

230

those nodes (cloud or fog) of the system that the administrator

selects or which the system itself determines to be most

suitable. The authors state that there is a pilot implementation

of such a system in the city of Barcelona [18].

Based on our observations and those of [17], it appears that

the community has largely not pursued model-driven design

in fog so far. The OpenFog Reference Architecture is a fog

computing architecture that can be applied to any IoT scenario.

It consists of a hierarchy with the cloud on top and the IoT

sensors and actuators at the bottom, everything in between can

be seen as part of the fog. Raw data processing takes place

close to the IoT sensors and actuators and decreases as the

hierarchy is traversed upwards towards the cloud. Intelligence

(machine learning, etc.) on the other hand, is performed very

little or not at all by the bottom layers of the hierarchy and

increases towards the cloud [19]. Within [20], a hierarchical

fog architecture for analyzing Big Data generated by smart

cities is described. Like the OpenFog Reference Architecture,

its lower layers focus more on data processing, while the

higher layers focus on intelligence. In [21] authors propose

a sort of operating system (FogOS) to manage all cloud, fog,

and edge resources, such that fog application developers can

use an API to request certain resources (e.g., video cameras in

certain locations) and FogOS will use the registered devices

to satisfy these requests like a computer operating system that

handles an application’s request for certain hardware. The idea

of a fog orchestrator in [22] is similar, because the proposed

orchestrator has to decide on which nodes a workflow (with

its specific requirements) is deployed.

Finally, there have been various research streams regarding

the use of models to support systems at runtime. Even though

not directly fog computing related, such a conception may be

used in fog computing as well. For example, [23] proposes an

alternative to the EMF with lower resource requirements, thus

making it more suitable for constrained devices.

VI. CONCLUSIONS

IoT computing applications bring significant challenges to

software engineers. The fog/IoT environment is very volatile,

where devices can fail and/or leave without notice, while

dependability is a highly sought property. We proposed a

methodology and supporting framework consisting of a four

step process: (i) design of the data model and REST interfaces

using UML class diagrams and definition of constraints using

OCL, (ii) design of business processes using UML activity

diagrams, (iii) automatic code generation facilities designed

specifically for fog computing, and (iv) implementation of

details that cannot be easily captured in a model.

We identify several directions for future work; communi-

cation methods other than REST (e.g., MQTT or CoAP) and

the interplay between them may be investigated, support for

more target programming languages and conformance of the

generated code to specific IoT standards (e.g., OCF) may be

added, a full OCL to code compiler could be implemented, the

error resilience may be improved, and automatic translation of

invariants to pre-conditions could be realized.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proc. of MCC Workshop on Mobile
Cloud Computing. New York, NY, USA: ACM, 2012, pp. 13–16.

[2] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, Dec 2016.

[3] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in 2015 Third IEEE Workshop on Hot Topics in Web
Systems and Technologies (HotWeb), Nov 2015, pp. 73–78.

[4] Z. Hao, E. Novak, S. Yi, and Q. Li, “Challenges and software architec-
ture for fog computing,” IEEE Internet Computing, vol. 21, no. 2, pp.
44–53, Mar 2017.

[5] C. Tsigkanos, I. Murturi, and S. Dustdar, “Dependable resource coor-
dination on the edge at runtime,” Proceedings of the IEEE, vol. 107,
no. 8, pp. 1520–1536, 2019.

[6] N. Li, C. Tsigkanos, Z. Jin, S. Dustdar, Z. Hu, and C. Ghezzi,
“Poet: Privacy on the edge with bidirectional data transformations,”
in 2019 IEEE International Conference on Pervasive Computing and
Communications, PerCom 2019, Kyoto, Japan, 2019. IEEE, 2019.

[7] C. Tsigkanos and T. Kehrer, “On formalizing and identifying patterns in
cloud workload specifications,” in 13th Working IEEE/IFIP Conference
on Software Architecture, WICSA 2016, Venice, Italy, April 5-8, 2016,
2016, pp. 262–267.

[8] N. Bencomo, R. B. France, B. H. Cheng, and U. Aßmann, Models@
run. time: foundations, applications, and roadmaps. Springer, 2014,
vol. 8378.

[9] IEEE, “Ieee standard for local and metropolitan area networks - part
15.6: Wireless body area networks,” IEEE Std 802.15.6-2012, pp. 1–
271, Feb 2012.

[10] Object Management Group, “Unified modeling language - version
2.5.1,” https://www.omg.org/spec/UML/2.5.1/, December 2017.

[11] ——, “Object constraint language - version 2.4,” https://www.omg.org/
spec/OCL/2.4/, February 2014.

[12] ——, “Semantics of a foundational subset for executable uml models -
version 1.4,” https://www.omg.org/spec/FUML/1.4/, December 2018.

[13] ——, “Action language for foundational uml - version 1.1,” https://www.
omg.org/spec/ALF/1.1/, June 2017.

[14] ——, “Mof model to text transformation language - version 1.0,” https:
//www.omg.org/spec/MOFM2T/1.0/, January 2008.

[15] R. M. Kwasnicki and G.-Z. Yang, Clinical Applications of Body Sensor
Networks. Wiley-Blackwell, 2014, ch. 16, pp. 479–504.

[16] A. Fioravanti, G. Fico, A. G. Patón, J.-P. Leuteritz, A. G. Arredondo,
and M. T. A. Waldmeyer, Health-Integrated System Paradigm: Diabetes
Management. Wiley-Blackwell, 2014, ch. 22, pp. 623–632.

[17] N. Santos, H. Rodrigues, J. Pereira, F. Morais, R. Martins, N. Ferreira,
R. Abreu, and R. J. Machado, Specifying Software Services for Fog Com-
puting Architectures Using Recursive Model Transformations. Springer
International Publishing, 2018, pp. 153–181.

[18] F. van Lingen, M. Yannuzzi, A. Jain, R. Irons-Mclean, O. Lluch,
D. Carrera, J. L. Perez, A. Gutierrez, D. Montero, J. Marti, R. Maso,
and a. J. P. Rodriguez, “The unavoidable convergence of nfv, 5g,
and fog: A model-driven approach to bridge cloud and edge,” IEEE
Communications Magazine, vol. 55, no. 8, pp. 28–35, 2017.

[19] O. C. A. W. Group, “OpenFog reference architecture for fog computing,”
OpenFog Consortium, Tech. Rep., February 2017.

[20] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang, “A
hierarchical distributed fog computing architecture for big data analysis
in smart cities,” in Proc. of the ASE BigData SocialInformatics 2015,
ser. ASE BD’15. New York, NY, USA: ACM, 2015, pp. 28:1–28:6.

[21] N. Choi, D. Kim, S. J. Lee, and Y. Yi, “A fog operating system for
user-oriented iot services: Challenges and research directions,” IEEE
Communications Magazine, vol. 55, no. 8, pp. 44–51, 2017.

[22] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog
orchestration for internet of things services,” IEEE Internet Computing,
vol. 21, no. 2, pp. 16–24, Mar 2017.

[23] F. Fouquet, G. Nain, B. Morin, E. Daubert, O. Barais, N. Plouzeau, and
J.-M. Jézéquel, “An eclipse modelling framework alternative to meet the
models@ runtime requirements,” in Intl. Conference on Model Driven
Engineering Languages and Systems. Springer, 2012, pp. 87–101.

231

