
Chapter 9
Intelligence Inference on IoT Devices

Qiyang Zhang, Ying Li, Dingge Zhang, Ilir Murturi, Victor Casamayor Pujol,
Schahram Dustdar, and Shangguang Wang

9.1 Introduction

IoT devices (including smartphones and smart tablets) have gained significant
popularity and have become the primary gateway to the Internet (Xu et al. 2019,
2020). Meanwhile, the exceptional performance of deep learning (DL) models
in computer vision over the past decade has led to an increased reliance on
deep neural networks (DNNs) for cloud-based visual analyses. These DNNs are
utilized for diverse tasks such as inference and prediction after deployment. This
integration of DNNs and cloud-based visual analyses has facilitated the realization
of various applications, including object detection (Girshick et al. 2015), vehicle
and person reidentification (Liu et al. 2016), pedestrian detection (Sun et al. 2014),
and landmark retrieval (Wang et al. 2017), etc.

Q. Zhang (�)
State Key Laboratory of Network and Switching, Beijing University of Posts and
Telecommunications, Beijing, China

Distributed Systems Group, TU Wien, Vienna, Austria
e-mail: qyzhang@bupt.edu.cn

Y. Li
College of Computer Science and Engineering, Northeastern University, Shenyang, China

Distributed Systems Group, TU Wien, Vienna, Austria
e-mail: liying1771@163.com

D. Zhang · S. Wang
State Key Laboratory of Network and Switching, Beijing University of Posts and
Telecommunications, Beijing, China
e-mail: zdg@bupt.edu.cn; sgwang@bupt.edu.cn

I. Murturi · V. C. Pujol · S. Dustdar
Distributed Systems Group, TU Wien, Vienna, Austria
e-mail: imurturi@dsg.tuwien.ac.at; v.casamayor@dsg.tuwien.ac.at; dustdar@dsg.tuwien.ac.at

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. K. Donta et al. (eds.), Learning Techniques for the Internet of Things,
https://doi.org/10.1007/978-3-031-50514-0_9

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50514-0protect T1	extunderscore 9&domain=pdf

 885 42454
a 885 42454 a

mailto:qyzhang@bupt.edu.cn
mailto:qyzhang@bupt.edu.cn
mailto:qyzhang@bupt.edu.cn

 885 47989 a 885 47989
a

mailto:liying1771@163.com
mailto:liying1771@163.com

 885
52970 a 885 52970 a

mailto:zdg@bupt.edu.cn
mailto:zdg@bupt.edu.cn
mailto:zdg@bupt.edu.cn

 7979 52970 a 7979 52970 a

mailto:sgwang@bupt.edu.cn
mailto:sgwang@bupt.edu.cn
mailto:sgwang@bupt.edu.cn

 885 56845
a 885 56845 a

mailto:imurturi@dsg.tuwien.ac.at
mailto:imurturi@dsg.tuwien.ac.at
mailto:imurturi@dsg.tuwien.ac.at
mailto:imurturi@dsg.tuwien.ac.at

 11421 56845 a 11421 56845 a

mailto:v.casamayor@dsg.tuwien.ac.at
mailto:v.casamayor@dsg.tuwien.ac.at
mailto:v.casamayor@dsg.tuwien.ac.at
mailto:v.casamayor@dsg.tuwien.ac.at
mailto:v.casamayor@dsg.tuwien.ac.at

 23541 56845 a 23541
56845 a

mailto:dustdar@dsg.tuwien.ac.at
mailto:dustdar@dsg.tuwien.ac.at
mailto:dustdar@dsg.tuwien.ac.at
mailto:dustdar@dsg.tuwien.ac.at
https://doi.org/10.1007/978-3-031-50514-0_9
https://doi.org/10.1007/978-3-031-50514-0_9
https://doi.org/10.1007/978-3-031-50514-0_9
https://doi.org/10.1007/978-3-031-50514-0_9
https://doi.org/10.1007/978-3-031-50514-0_9
https://doi.org/10.1007/978-3-031-50514-0_9
https://doi.org/10.1007/978-3-031-50514-0_9
https://doi.org/10.1007/978-3-031-50514-0_9
https://doi.org/10.1007/978-3-031-50514-0_9
https://doi.org/10.1007/978-3-031-50514-0_9
https://doi.org/10.1007/978-3-031-50514-0_9

172 Q. Zhang et al.

Developers are actively exploring the integration of DL into mobile applications
to enhance intelligence and improve the user experience on IoT devices. While DL
on the cloud has received significant research attention, the study of DL on IoT
devices remains relatively limited. There is a lack of comprehensive understanding
regarding the key challenges and issues associated with DL on IoT devices.
Therefore, further research is needed to gain insights into this domain.

Supporting a diverse range of devices while maintaining high performance with
a single convolutional neural network (CNN) presents a significant challenge. How-
ever, the development of models specifically designed for IoT devices has greatly
improved the capabilities of AI. These models are optimized for performance
and efficiency, considering the limited computational resources, power constraints,
and memory limitations of IoT devices. These models are typically lightweight
and compact, enabling fast and efficient inference without sacrificing accuracy.
They incorporate techniques such as model compression (Choudhary et al. 2020),
quantization (Polino et al. 2018), and efficient network architectures (Iandola et al.
2016; Zhang et al. 2018) to minimize computational and memory requirements
while achieving high performance.

Device vendors have responded to the demand for efficient CNNs on IoT devices
by introducing System-on-Chips (SoCs) and inference libraries that incorporate
specialized units for CNN acceleration. These SoCs are equipped with high-
performance CPU/GPU units, and dedicated accelerators designed for machine
learning (ML) and image processing tasks. While these accelerators enable on-
device processing, developers still face the challenge of supporting the diverse
array of devices available in the market. The advancements in hardware have
significantly enhanced the overall performance and capabilities of IoT devices,
allowing them to handle computationally intensive tasks and deliver enhanced user
experiences. Moreover, software solutions play a crucial role in accelerating on-
device DL inference alongside hardware advancements. For instance, fine-tuned
implementation can achieve up to a 62,806. × performance improvement compared
to vanilla implementations (Leiserson et al. 2020; Zhang et al. 2022). Inference
libraries provide developers with the necessary tools and runtime environments to
optimize inference on resource-constrained devices. These libraries enable real-time
and on-device inference for a wide range of applications, further enhancing the
efficiency and effectiveness of DL on IoT devices.

Recently, there has been a notable increase in the adoption of cloud-based
visual analysis, driven by advancements in network infrastructure. To achieve SOTA
performance and ensure compatibility with a wide range of IoT devices, developers
often choose to offload computational tasks, either partially or entirely, to high-
computing-power infrastructures such as cloud servers. The rapid development of
5G communication technology has further facilitated offloading, allowing applica-
tions with stringent latency requirements like to be supported effectively. While
offloading offers benefits such as improved inference latency and the ability to han-
dle device diversity, it also comes with certain challenges. One of these challenges is
the high operational costs associated with maintaining and utilizing cloud resources.
Additionally, remote execution raises concerns regarding privacy and security, and

9 Intelligence Inference on IoT Devices 173

the user experience can be affected by variations in networking conditions. To
address these challenges, researchers have been exploring collaborative approaches
that leverage both local and cloud resources for CNN inference (Huang et al. 2020;
Laskaridis et al. 2020). These approaches aim to strike a balance between leveraging
the computing power of cloud and utilizing local resources to enhance performance
and reduce latency. By distributing the computational workload and optimizing
resource utilization, these collaborative methods offer potential solutions to the
limitations of cloud-based visual analysis, paving the way for more efficient and
effective AI applications.

In summary, IoT devices have made computing pervasive, accessible, and per-
sonalized, enriching our daily lives and opening up new possibilities for applications
and services in various domains. The remainder of this work is structured as
follows: Sect. 9.2 introduces the preliminary work on inference. Section 9.3 explores
the diverse applications of inference in IoT, highlighting the range of domains
where inference finds utility. Sections 9.4–9.6 present comprehensive reviews of
commodity hardware, model optimization, and inference libraries, focusing on their
relevance and effectiveness in IoTs, respectively. Section 9.7 reviews the current
inference system in edge computing. Section 9.8 presents the research challenges
and future opportunities. Lastly, Sect. 9.9 concludes the paper.

9.2 Inference on IoT Devices: Preliminaries

DL model deployment involves two main stages: model training and inference
(Xu et al. 2022; Wang et al. 2022; Li et al. 2023). During the training stage, a
significant volume of training data is utilized, and the backpropagation algorithm
is employed to determine the optimal model parameter values. This process
necessitates substantial computing resources and is typically conducted offline.
On the other hand, model inference involves utilizing a trained model to process
individual or continuous input data. The results of these computations often require
real-time feedback to users, making factors such as computing time and system
overhead (e.g., memory usage, energy consumption) crucial considerations. This
two-stage deployment methodology allows for efficient utilization of computing
resources during the training stage and facilitates real-time inference on IoT devices.

Inference refers to the execution of data analysis, decision-making procedures,
and related tasks directly on edge devices or servers situated within a decentralized
computing infrastructure, thus mitigating the exclusive dependence on cloud-based
computing systems. This strategy facilitates timely, context-aware decision-making
processes near the network edge, in closer proximity to the data source, proffering
numerous advantages and opportunities for IoT devices:

• Real time: Inference empowers devices to make immediate decisions and
take action without relying on cloud connectivity. By processing data locally,
proximate to the data source, devices can provide real-time responsiveness.

174 Q. Zhang et al.

• Reduced Bandwidth: Inference enables IoT devices to locally process large
data volumes, thereby reducing latency and conserving bandwidth, proving
advantageous in situations with limited network connectivity.

• Privacy Enhancement: Inference bolsters data privacy by limiting sensitive data
transmission to the cloud. Conducted locally, it ensures sensitive information
remains confined to IoT devices, minimizing potential risks and reinforcing
privacy.

• Context-aware Decision-making: Inference utilizes contextual data from IoT
devices, such as sensor readings and device-specific information, to enhance
result accuracy and relevance. This facilitates intelligent, environment-specific
decisions, leading to heightened operational efficiency and effectiveness.

Overall, inference underpins the autonomy, responsiveness, and the capacity to
handle intricate tasks of IoT devices. It facilitates the evolution and potentiality of
the IoT ecosystem, endowing devices with the ability to exploit their computational
prowess and make judicious decisions.

9.3 Promising Intelligence Applications

AI applications, due to their complexity and high computational requirements, are
housed in cloud centers. However, this computing paradigm struggles to deliver
real-time services like analytics and smart manufacturing. Therefore, situating AI
applications on IoT devices widens the application scope of AI models. As shown
in Fig. 9.1, DL models can execute on edge devices (i.e., IoT devices and edge
servers) or depend on cloud centers. In this section, we spotlight several notable
AI applications and their merits.

9.3.1 Real-Time Video Analytic

Video analytics, integral to VR/AR, necessitates considerable computational power
and extensive storage resources (Xu et al. 2021). Performing such tasks in the
cloud often leads to unexpected latency and high bandwidth usage. However, the
progression of edge computing allows for the migration of video analytics closer to
the data source, mitigating these issues (Dustdar & Murturi 2021).

Video analysis applications, such as face recognition and object detection, benefit
from various effective DL algorithms, including artificial neural networks and
histogram analysis (Bajrami et al. 2018). Nonetheless, utilizing a singular model for
analysis without noise reduction and feature extraction proves challenging. Thus,
integrating multiple models often results in enhanced video analytic performance.
For instance, face recognition entails several steps, each addressed by a different

9 Intelligence Inference on IoT Devices 175

Cloud

Edge

Smartbrand Vehicle Sensor Traffic
light Camera

Wireless
communication

Cellular
communication

Backhaul
communication

Fig. 9.1 Deep learning models can execute on edge devices (i.e., IoT devices and edge servers) or
depend on cloud centers

model: AdaBoost (Viola & Jones 2001) for face detection, a nonlinear SVM
classifier for gender and age classification, and a basic algorithm (Lucas & Kanade
1981; Zhou et al. 2022) for face tracking to calculate optimal flow and depict pixel
trajectories.

9.3.2 Autonomous Driving

Autonomous vehicles, equipped with a plethora of sensors, generate a vast amount
of data necessitating swift processing. The interconnectivity of these vehicles
enhances safety, streamlines efficiency, and mitigates traffic congestion. Notably,
autonomous driving aims to deliver services characterized by low latency, high-
speed communication, and rapid response. ML- and DL-based solutions present
potential for optimizing the complex operations intrinsic to autonomous vehicles.
For example, ML algorithms deployed in self-driving vehicles extract features from
raw data to discern real-time road conditions, facilitating informed decision-making.
Similarly, for demanding tasks in autonomous driving—such as sensing, perception,
and decision-making—DL algorithms process raw data through sensing to reach
final decisions (Liu et al. 2019).

176 Q. Zhang et al.

9.3.3 Smart Manufacturing

Smart manufacturing fundamentally hinges on automation and data analysis—
the former being the primary goal, and the latter serving as an invaluable tool
(Li et al. 2018). Ensuring low latency, privacy protection, and risk control is
paramount to adhering to these principles. Within the realm of a smart factory,
intelligent inference proves beneficial, bolstering computational resources and
facilitating resource scheduling and data processing throughout the manufacturing
process. Given the exponential proliferation, remote management of DL models
and their continuous evaluation have emerged as pressing imperatives. To tackle
these challenges, (Soto et al. 2016) pave the way for the development of real-
time applications. Furthermore, DL algorithms are set to be significant catalysts
propelling the industry’s advancement by transforming all stages of the product
lifecycle—from design and manufacturing to service—thereby driving substantial
productivity enhancements.

9.3.4 Smart City and Home

The proliferation of IoT devices has sparked the emergence of intelligent services
in various aspects of home lifestyles, encompassing appliances like smart TV
and air conditioners (Kounoudes et al. 2021; Ain et al. 2018). Furthermore, the
deployment of multiple IoT sensors and controllers in smart homes has become a
prerequisite. Edge computing-based inference assumes a crucial role in optimizing
indoor systems, aiming for low latency and high accuracy, thereby enhancing the
capabilities and diversity of services. Moreover, extending edge computing beyond
individual homes to encompass communities or cities holds significant potential.
The inherent characteristic of geographically distributed data sources in urban envi-
ronments enables location awareness, latency-sensitive monitoring, and intelligent
control. For instance, we integrate large-scale ML algorithms, such as data mining
combined with semantic learning, to extract advanced insights and patterns from the
voluminous data generated by smart homes and cities (Mohammadi & Al-Fuqaha
2018).

9.4 Commodity Hardware for IoT Devices

With advancements in hardware, low-power IoT devices have the capability to
independently handle AI tasks without relying on cloud communication. For
instance, commodity CPUs, which are widely available in these devices, serve as the

9 Intelligence Inference on IoT Devices 177

primary hardware for executing inference. CPUs play a crucial role in the inference,
supported by toolchains and software libraries that facilitate practical inference.
These CPUs share similar microarchitectures, allowing for the effective utilization
of optimization techniques. However, performing computationally intensive tasks
still poses challenges. For instance, processing a single image using the common
VGG model (Sengupta et al. 2019), which consists of 13 CNN layers and 3 fully
connected neural network (FCNN) layers, may take hundreds of seconds on devices
like the Samsung Galaxy S7 (Xiang & Kim 2019).

Mobile GPUs have revolutionized high-dimensional matrix operations, including
matrix decomposition and multiplications in CNN (Owens et al. 2008). Notably,
GPUs have emerged as a standout option for edge computing, as they consume less
power compared to traditional desktop and server GPUs. In particular, the Jetson
family of GPUs, including the latest Jetson Nano, showcases a 128-core affordable
GPU module that NVIDIA has successfully introduced. Additionally, the concept
of caching computation results in CNN has sparked optimizations in frameworks
like DeepMon (Huynh et al. 2017). DeepMon implements a range of optimizations
specifically designed for processing convolution layers on mobile GPUs, resulting
in significantly reduced inference time.

Due to power and cost constraints on devices, traditional CPU- and GPU-
based solutions are not always viable. Moreover, devices often need to handle
multiple application requests simultaneously, making the use of CPU- and GPU-
based solutions impractical. As a result, hardware integrated with FPGA has gained
attention for Edge AI applications. FPGA-based solutions offer several advantages
in terms of latency and energy efficiency compared to CPUs and GPUs. However,
one challenge is that developing efficient algorithms for FPGA is unfamiliar to most
programmers, as it requires the transplantation of models programmed for GPUs
into the FPGA platform.

There are also AI accelerators specifically designed for inference that have been
introduced by several manufacturers. One notable example is the Myriad VPU
(Leon et al. 2022), developed by Movidius, which is optimized for computer vision
tasks. It can be easily integrated with devices like Raspberry Pi to perform inference.
However, these AI accelerators are not widely available on all devices, limiting their
accessibility. Additionally, the ecosystem surrounding these accelerators is still in its
early stages and tends to be closed due to their black box structure and proprietary
inference frameworks. This creates barriers for widespread adoption and usage.
For instance, the Edge TPU, currently found only in Google Pixel smartphones,
is limited to running models built with TensorFlow (Developers 2022).

Looking ahead, AI accelerators are expected to play a crucial role in IoT
devices. With the introduction of powerful AI SoCs, there is potential for significant
improvements in inference performance. As hardware accelerators and software
frameworks continue to evolve and upgrade, more AI applications will be able to
execute directly on IoT devices.

178 Q. Zhang et al.

9.5 Model Optimization for IoT Devices

The limited computing resources on IoT devices necessitate developers to make
trade-offs between model accuracy and real-time performance requirements, leading
to the inability to deploy SOTA models. A fundamental challenge of this trend is the
constrained resources of devices. Therefore, performance optimization has been a
primary research direction for both academia and industry.

9.5.1 Lightweight Model Design

To optimize the computational overhead of DL inference, one approach is to ensure
the lightweight nature of the DL models themselves. This can be achieved through
the design of a lightweight model or the compression of a trained model. For
example, SqueezeNet demonstrates such optimization by achieving comparable
accuracy to AlexNet while utilizing only 2% of the parameters (Iandola et al. 2016).

The key innovation of SqueezeNet lies in its novel convolution method and
the introduction of a fire module. As shown in Fig. 9.2, the fire module consists
of a squeeze layer and an expand layer. The squeeze layer employs a 1 . × 1
convolution kernel to alter the number of channels while maintaining the resolution
(H. ×W) of the feature map to achieve compression. The subsequent expand layer
utilizes 1 . × 1 and 3 . × 3 convolutional layers, whose outputs are combined to obtain
the fire module’s output. SqueezeNet follows a similar network design concept
as VGG, utilizing stacked convolutional operations, with the difference being
the incorporation of the fire module. Furthermore, ShuffleNet integrates group
convolution to significantly decrease the number of parameters and computational
complexity (Zhang et al. 2018). Group convolution divides channels into subgroups,
where the output of each subgroup depends solely on the corresponding input
subgroup. To address potential issues caused by group convolution, ShuffleNet
(Zhang et al. 2018) introduces the shuffle operation, which rearranges the channels
within each part to create a new feature map. The architecture of ShuffleNet is
inspired by ResNet (Targ et al. 2016), transitioning from the basic ResNet bottleneck
unit to the ShuffleNet bottleneck unit and stacking multiple ShuffleNet bottleneck
units to form the complete model.

9.5.2 Model Pruning

Numerous researchers have explored techniques to reduce model complexity in DL
models through parameter sharing and pruning. In many neural networks, the com-
putationally intensive matrix multiplication in fully connected layers leads to a large
number of model parameters and computing. To overcome this challenge, circulant

9 Intelligence Inference on IoT Devices 179

Input

GConv1

Feature

GConv2

Output

Channels Channels Channels

Channel Shuffle

Fig. 9.2 Grouping convolution used in the lightweight model ShuffleNet

Fig. 9.3 Fast ConvNets reduce operations by pruning convolution kernels

projections have been proposed as a method to accelerate the computation of fully
connected layers. As shown in Fig. 9.3, by employing a weight matrix with circulant
projections (Cheng et al. 2015), memory requirement is reduced from .O(d2) to
.O(d) for a matrix of size d . × d. Furthermore, the multiplication of rotation matrices
can be accelerated using fast Fourier transform (FFT). This technique reduces the
computational complexity from .O(d2) to .O(dlogd) for the multiplication of a 1 . × d
vector and a d . × d matrix. Given the significant role of CNN models in mobile
vision, various approaches have been proposed for parameter pruning and sharing
algorithms specifically tailored to CNNs. Fast ConvNets achieves computational
reduction by pruning convolution kernels (Lebedev & Lempitsky 2016).

The commonly used technique for implementing convolution operations in DL
libraries such as TensorFlow and Caffe is referred to as im2col. This process
involves three steps: (1) During convolution, the input image is transformed into

180 Q. Zhang et al.

a matrix by sliding the convolution kernel. Each column in the matrix represents
the information of a small window processed by the kernel. Rows in the matrix
correspond to the product of the kernel’s height, width, and number of input
channels, while the column represents the product of the height and width of
the single-channel image output by the convolution layer, representing the overall
processing of the small window. (2) By reshaping the convolution kernel, a matrix
is obtained where the rows correspond to the number of output image channels and
the columns match the row values of the previous matrix. (3) The im2col operation
converts complex convolution operations into matrix multiplications. The process
involves performing matrix multiplication between two matrices and reshaping
the resulting matrix into the final output. By leveraging existing optimization
algorithms and libraries for efficient matrix operations, such as the BLAS algebraic
operation library, im2col benefits from optimized matrix operations. Techniques
like parameter pruning in Fast ConvNets (Lebedev & Lempitsky 2016) further
reduce the matrix dimension after expansion, leading to accelerated computational
workload for matrix multiplication.

9.5.3 Model Quantization

Quantization is a technique used to compress DL models by reducing the number of
bits required for each parameter. In traditional DL models, parameters are typically
represented using 16-bit floating-point numbers. However, experimental studies
have shown that using lower-precision representations can significantly reduce
memory consumption and computation time without compromising precision. In
some cases, researchers have even employed 1-bit representations for storing
parameters during both training and inference, achieving comparable results by
using values of 1 or . −1 (Rastegari et al. 2016). Additionally, other studies have
investigated the use of vector quantization and product quantization techniques to
compress models and further improve their efficiency.

Vector quantization and product quantization are widely used data compression
techniques that involve grouping scalar data into vectors and quantizing them as
a whole in the vector space, resulting in lossless data compression. By applying
product quantization to the connection layer and the convolution layer, it is possible
to achieve benefits such as reduced model size and improved operation time. These
techniques are effective in optimizing DL models for improved efficiency and
performance (Wu et al. 2016). As illustrated in Fig. 9.4, the main concept involves
partitioning the input space into M equally sized subspaces, where each subspace
of the weight matrix is assigned a sub-codebook obtained through a clustering
algorithm. A codebook consists of multiple codewords, and the core idea of the
algorithm is to approximate all subvectors of the same dimension in the space using
a limited number of codewords. During inference, the input vector is divided into M
sub-vectors, which are then multiplied only with the codewords in their respective
subspaces. The final output can then be obtained based on the index of the pre-

9 Intelligence Inference on IoT Devices 181

Layer Input Weight Matrix

Sub-vector
Splitting

Inner Product
Pre-computation

Codebook
Learning

Layer Response

Approximate
Response

Computation

Fig. 9.4 Model compression method based on product quantization

calculated codebook mapped to the output matrix. Consequently, the computational
complexity is reduced from the original .O(CsCt) to .O(CsK +CtM), where . Cs and
. Ct denote the input and output dimensions, respectively. K represents the number of
codewords in each codebook. Experimental results demonstrate that the algorithm
can achieve a 4–6. × increase in computational speed and reduce the model size by
15–20. × with only a marginal 1% loss of accuracy.

9.5.4 Knowledge Distillation

Knowledge distillation (KD) is an effective algorithm widely used for compressing
DL models. When employing small models for classification inference, relying
solely on one-hot encoding in the training set is insufficient. This encoding method
treats categories as independent entities and fails to capture the relationships
between them. However, by allowing the small model to learn from the probability
distribution generated by a larger model, additional supervision signals are provided,
and similarity information between categories is incorporated, facilitating easier
learning. For example, in the recognition of handwritten digits, certain images
labeled as 3 may bear a resemblance to 8 or 2. One-hot encoding is unable to capture
such nuances, whereas a pre-trained large model can provide this information.
As a result, researchers modify the loss function to align the small model with
the probability distribution outputted by the large model, a process known as KD
training.

182 Q. Zhang et al.

The effectiveness of KD training has been demonstrated in two datasets:
handwriting recognition and speech recognition. However, (Romero et al. 2014)
argue that directly mimicking the outputs of large models poses challenges for
small models. Additionally, as the model depth increases, emulating the large model
becomes more difficult as the supervision signal from the final layer needs to
propagate to the earlier layers. To address this challenge, the researchers propose
Fitnets, which involve incorporating supervisory signals in the middle layers. By
comparing and minimizing the discrepancy between the outputs of the intermediate
layers in both the large and small models, the small model can learn from the larger
model during an intermediate step of prediction. Here, the “small” refers to the
width of the layers rather than the depth. This training approach, known as hint
training, involves pre-training the parameters of the first half of the small model
using hint training. Subsequently, KD training is employed to train all parameters,
enabling the small model to better emulate the knowledge of each layer in the larger
model. However, it is important to note that this more active learning method may
not be universally applicable due to the significant capacity gap between large and
small models.

Building upon the work of (Yim et al. 2017), researchers have extended the
concepts and applications of KD. Instead of having the small model directly fit
the output of the large model, the focus is on aligning the relationships between
the layers of the two models. These relationships are defined by the inner product
between layers. A matrix of size .M ×N is constructed to represent this relationship,
where each element .(i, j) corresponds to the inner product between the . i − th

channel of layer A and the .j − th channel of layer B. Yim et al. propose a
two-stage method: first, adjusting the parameters of the small model based on the
feature similarity preservation (FSP) matrix of the large model to align the layer
relationships; then, continuing fine-tuning the small model parameters using the
original loss function, such as cross-entropy. This approach aims to preserve the
feature similarity between the two models while maintaining the original learning
objective (Yim et al. 2017).

9.6 Inference Library for IoT Devices

The inference performance of on-device models is influenced by multiple factors,
including hardware, models, and software, such as DL execution engines or
libraries. DL libraries aim to enable on-device inference, and several major vendors
have developed their own DL libraries, including TFLite (Haris et al. 2022), Core
ML (Deng 2019), NCNN (Courville & Nia 2019), MNN (Jiang et al. 2020; Zhang
et al. 2023), etc. TensorFlow and Caffe have been deprecated and replaced by their
lightweight implementations, TFLite and PyTorchMobile, respectively. This work
provides a summary of popular DL libraries such as TFLite (Haris et al. 2022),
PyTorchMobile, NCNN (Courville & Nia 2019), MNN (Jiang et al. 2020), MACE
(Lebedev & Belecky 2021), and SNPE (Zhang et al. 2022). Table 9.1 presents

9 Intelligence Inference on IoT Devices 183

Table 9.1 A comparison of representative DL libraries on mobile devices

Library Developer
CPU
FP32

CPU
INT8

GPU
FP32

GPU
INT8

DSP
INT8

TFlite Google � � � � �
Pytorch Mobile Facebook � �
NCNN Tencent � � � �
MNN Alibaba � � � �
MACE Xiaomi � � � �
SNPE Qualcomm � � � � �

a comparison of these DL libraries, considering their support for various model
precision and hardware configurations.

Current DL libraries often do not fully leverage the capabilities of different hard-
ware platforms. Each DL library typically supports at least one hardware platform,
such as CPU, although PyTorchMobile lacks GPU acceleration support (Courville
& Nia 2019). Interestingly, the DL library that achieves the best performance for a
given model can vary depending on the specific hardware used. This difference in
inference performance can be attributed to two main factors. Firstly, the hardware
ecosystem exhibits a high level of fragmentation due to variations in architecture,
such as Big. Little Core, cache size, GPU capacity, etc. Secondly, the heterogeneity
of model structures also plays a role. The implementation of depth-wise convolution
operators, for example, differs significantly from that of traditional convolution
operators, as they have distinct cache access patterns (Zhang et al. 2022).

Even when using the same GPU, DL libraries provide different backend options.
For example, MNN offers three backends: Vulkan, OpenGL, and OpenCL (Jiang
et al. 2020). Interestingly, different backend choices can be more suitable for
different models and devices. This may seem unexpected since MNN’s Vulkan
backend is primarily designed for cross-platform compatibility, including desktop,
while OpenGL and OpenCL are mobile-specific programming interfaces that are
highly optimized for mobile devices. This phenomenon can be attributed to both
the underlying design of these backends and how DL developers implement the DL
operators on top of them.

TFLite and SNPE provide acceleration capabilities for INT8 models running
on DSP. For example, Qualcomm DSP is equipped with AI capabilities, such as
HTA and HTP (Zhang et al. 2022), which are integrated with Hexagon vector
extension (HVX) acceleration. The Winograd algorithm is also utilized to accelerate
convolution calculations on the DSP. Furthermore, the energy-saving benefits of the
DSP are particularly significant compared to the speed of inference.

To achieve optimal performance when executing models on devices, developers
often need to integrate multiple DL libraries and dynamically select the appropriate
one based on the current model and hardware platform. However, this approach is
seldom implemented in practice due to the substantial overhead in terms of software
complexity and development efforts. There is a need for a more lightweight system
that can efficiently leverage the best performance from different DL libraries.

184 Q. Zhang et al.

9.7 Inference Systems for IoT Devices

A considerable amount of research has been dedicated to exploring the collaborative
utilization of local and cloud resources for inference. In contrast to the traditional
completely offloading tasks to the server, these studies leverage the inherent
characteristics of CNNs to optimize the offloading process (Donta & Dustdar 2022).
Existing literature addresses the offloading of CNN inference to various destina-
tions, including IoT devices within the local network (Xu et al. 2020; Mao et al.
2017), third-party IoT devices that possess the CNN computational graph (Almeida
et al. 2022), and a choice between devices and servers through model selection
(Han et al. 2016). Although these research endeavors share close relationships, the
systems developed in these studies often have distinct requirements, such as the
inclusion of multiple devices in a local area network, diverse optimization goals,
such as distributing computations in a share-nothing setup, or significant overhead
associated with maintaining multiple models.

9.7.1 Edge Cache-Based Inference

DL applications typically depend on real-time data provided by IoT devices,
demonstrating specific similarity traits: (1) Temporal similarity: sequential frames in
video streams captured by cameras frequently reveal similarities, such as consistent
background or scene elements. (2) Spatial similarity: individuals’ daily movement
patterns, such as recurring travel between places like a laboratory and a restaurant,
often show a high degree of repetition. Although variations in the captured images
can occur due to alterations in lighting or background, image feature extraction
algorithms like Speeded Up Robust Features (SURF) can capture these disparities
(Xu et al. 2021). Note that despite the pronounced similarity between frames, they
are not identical. The recurrent use of identical data can lead to a decrease in
model accuracy. Consequently, the effective use of caching strategies is crucial to
maintaining a balance between accuracy and efficiency. In this regard, there are
some representative properties as follows.

Starfish enables the execution of multiple mobile vision applications on wearable
devices while effectively managing computing resources and shared memory
(LiKamWa & Zhong 2015). Its workflow is shown in Fig. 9.5. Researchers initially
identified the need to parallelize multiple vision applications on existing wearable
devices for simultaneous recognition and prediction tasks. However, these algo-
rithms often rely on common data preprocessing steps such as grayscale processing,
size adjustment, and feature extraction. Executing these algorithms separately on
the same input image by different applications leads to redundant operations and
memory consumption. To address this, Starfish decouples the CV library from the
application, running it as an independent process (Core). API calls are transformed
into cross-process calls, allowing the Core process to handle CV library calls

9 Intelligence Inference on IoT Devices 185

Fig. 9.5 The overview of Starfish framework

from all vision applications. A cache mechanism is employed to reduce redundant
calculations and storage, with the API called by the CV library being key cached
elements. Starfish, built on Android and optimized for the OpenCV (Bradski et al.
2000) library, effectively mitigates redundant operations and enhances resource
utilization.

DeepMon leverages caching in mobile CV to enhance the performance of CNN
inference (Huynh et al. 2017). The camera captures a series of video streams, and
each frame is processed to convert it into an information stream that is then outputted
to the users. The authors observe that consecutive frames in the video stream
captured by IoT devices, such as smartphones and smart glasses, often contain
significant pixel similarities, as vision applications typically require the camera to
remain focused on a specific scene (e.g., object recognition, selfies) for a certain
duration. Exploiting this pixel similarity, the author proposes using it as a cache
to reduce the computation required by the CNN. However, traditional CNNs are
considered a black box, where the output is obtained directly from the input image.
The nature of convolution operations necessitates the dependence of output results
on each frame’s input image. To address this challenge, the authors redesign the
forward algorithm of each CNN layer, enabling the (partial) computation results
from the previous frame to be reused in the intermediate calculation process.

Guo and Hu (2018) incorporate a cross-application caching mechanism to
minimize redundant calculations on the same or similar sensor input data, such
as images. For instance, when both an image recognition application and an AR
application utilize the same CNN model for image recognition, the output of CNN
models can be cached. The cache lookup key is a variable-length feature vector that
developers can specify, such as SIFT, SURF, etc. Furthermore, Potluck assigns an
importance value to each cache item, indicating its frequency of use and potential
time-saving benefits. Given the limited storage capacity, priority is given to caching
the more important items. To find the most suitable cache entry, Potluck employs a
nearest neighbor algorithm. The authors implement Potluck as a background service
on the Android system and demonstrate its ability to reduce computing delay by up
to 2.5–10. × when used in applications.

186 Q. Zhang et al.

1) Generate
prediction models

...

CONV FC

POOL ACT

CONV FC

Prediction
Model

POOL ACT
Prediction

Model
Prediction

Model

1) Extract layer
configurations

Target Application

Prediction
Model

Prediction
Model

2) Predict layer
performance

3) Evaluate
partition points

4) Partitioned
Execution

Development Phase Runtime Phase

Fig. 9.6 The Neurosurgeon (Kang et al. 2017) framework tailored for computing offloading-based
framework

9.7.2 Computing Offloading-Based Inference

Table 9.2 presents a comprehensive comparison of inference systems based on
computing offloading. Note that these systems are specifically designed for a
particular class of CNNs that are optimized for tasks such as classification and object
detection. Among these systems, one notable work in this area is Neurosurgeon
(Kang et al. 2017), as illustrated in Fig. 9.6, a framework that focuses on selecting
an optimal split point to offload models between the devices and servers, with
the aim of minimizing latency or energy consumption. However, the evaluation of
Neurosurgeon primarily involves simple sequential CNN models, and the offloading
decisions tend to be polarized, either offloading nothing or offloading everything,
depending on the network conditions. Another relevant work is Hu et al. (2019),
which introduces a scheduling scheme for partitioning DNNs under different
network conditions to minimize either overall latency or throughput. However, it
should be noted that the proposed scheduler lacks support for SLO deadlines, which
are important in real-time applications. MCDNN (Han et al. 2016) is a framework
that enables parallel computing for multiple applications. It uses a shared feature
extraction layer and dynamically selects smaller, faster models to optimize accuracy
and efficiency. The model selection is based on model catalogs, allowing for flexible
adaptation to task requirements and available resources.

In terms of the compression of transferred data, JALAD (Li et al. 2018),
SPINN (Laskaridis et al. 2020), and DynO (Almeida et al. 2022) incorporate the
quantization scheme. However, it should be noted that SPINN utilizes a fixed 8-
bit quantization level that is uniform across the split layers, without considering
the dynamic range of the data or the resilience of each layer to quantization.
DynO’s compression method includes the compression method used in SPINN.
DynO offers greater adaptability by dynamically selecting the optimal combination
of bitwidth and split points based on performance targets and networking conditions.
On the other hand, JALAD utilizes a decoupled DL model to make offloading
decisions using a joint accuracy- and latency-aware execution framework (Li
et al. 2018). However, JALAD is associated with a significant accuracy drop
to achieve performance improvements. Additionally, JALAD only provides static
configurations and lacks the ability to adapt to dynamic network conditions during
runtime, limiting its efficiency on resource-constrained devices.

9 Intelligence Inference on IoT Devices 187
Ta

bl
e
9.
2

C
om

pa
ri
so
n
of
 th

e
ex
is
tin

g
in
fe
re
nc
e
sy
st
em

s

W
or
k

M
od
el

N
et
w
or
k

O
ffl
oa
di
ng

gr
an
ul
ar
ity

C
om

m
un

ic
at
io
n

op
tim

iz
at
io
n

Sc
he
du

le
r

D
ec
is
io
n
va
ri
ab
le
(s
)

O
bj
ec
tiv

es

N
eu
ro
su
rg
eo
n
(K

an
g

et
 a
l.
20
17
)

A
le
xN

et
, V

G
G
,

D
ee
pc
ac
e

W
iF
i,
LT

E
,

3G

L
ay
er

×
D
yn
am

ic
, S

O
,

E
xh

au
st
iv
e

Sp
lit
 p
oi
nt

L
at
en
cy
,

E
ne
rg
y

JA
L
A
D
 (
L
i e
t a
l.

20
18
)

V
G
G
, R

es
N
et

L
A
N

L
ay
er

D
yn
am

ic

bi
tw

id
th

St
at
ic
, S

O
, I
L
P

Sp
lit
 p
oi
nt
, b

itw
id
th

L
at
en
cy

D
A
D
S
(H

u
et
 a
l.

20
19
)

Y
O
L
O
, I
nc
ep
tio

n
3G

, 4
G
, W

iF
i

L
ay
er

×
D
yn
am

ic
, S

O
,

H
eu
ri
st
ic

Sp
lit
 p
oi
nt

L
at
en
cy
,

T
hr
ou
gh
pu
t

M
oD

N
N
 (
M
ao
 e
t a
l.

20
17
)

V
G
G
16

W
L
A
N

ne
ur
on
s

×
St
at
ic
, S

O
, H

eu
ri
st
ic

N
eu
ro
n
pa
rt
iti
on

L
at
en
cy

D
ee
pT

hi
ng
s
(Z
ha
o

et
 a
l.
20
18
)

Y
O
L
O
v2

W
L
A
N

C
ro
ss
-l
ay
er

til
e

×
St
at
ic
, S

O
, M

an
ua
l

T
ile

 s
iz
e,
 n
o.
 o
f
la
ye
rs

L
at
en
cy
,

T
hr
ou
gh
pu
t

M
C
D
N
N
 (
H
an
 e
t a
l.

20
16
)

V
G
G
16

W
L
A
N

M
od
el

×
D
yn
am

ic
, M

O
,

H
eu
ri
st
ic

M
od
el
 v
ar
ia
nt
, c
lo
ud

or
 d
ev
ic
e

L
at
en
cy
,

E
ne
rg
y

C
lio

 (
H
ua
ng

 e
t a
l.

20
20
)

M
ob
ile
N
et
V
2,

V
G
G
, R

es
N
et

L
O
R
A
,

Z
ig
B
ee
, B

L
E
,

W
iF
i

L
ay
er

D
yn

am
ic
 w
id
th

D
yn
am

ic
, S

O
,

E
xh

au
st
iv
e

Sp
lit
 p
oi
nt
,

cl
ou
d-
m
od
el
 w
id
th

L
at
en
cy

E
L
F
(X

u
et
 a
l.
20
20
)

Fa
st
R
C
N
N

W
iF
i

Im
ag
e
pa
tc
h

×
D
yn
am

ic
, S

O
,

M
ul
ti-
se
rv
er

Pa
tc
h
pa
ck
in
g,
 s
er
ve
r

al
lo
ca
tio

n
L
at
en
cy

IO
N
N
 (
Je
on
g
et
 a
l.

20
18
)

A
le
xn

et
,

In
ce
pt
io
n,

R
es
N
et

W
L
A
N

L
ay
er

×
D
yn
am

ic
, S

O
,

H
eu
ri
st
ic

Sp
lit
 p
oi
nt

L
at
en
cy

E
dg
nt
 (
L
i e
t a
l.

20
18
)

A
L
ex
N
et

4G
,L
T
E

L
ay
er

E
E

D
yn
am

ic
, S

O
,

E
xh

au
st
iv
e

Sp
lit
 p
oi
nt
, m

od
el

de
pt
h

L
at
en
cy

SP
IN

N
 (
L
as
ka
ri
di
s

et
 a
l.
20
20
)

R
es
ne
t5
0,

R
es
ne
t5
6,

m
ob

ile
N
et
V
2

4G
,L
T
E

L
ay
er

Fi
xe
d(
8-

bi
t)

+
E
E

D
yn
am

ic
, M

O
,

E
xh

au
st
iv
e

Sp
lit
 p
oi
nt
, E

E
-p
ol
ic
t

L
at
en
cy
,

T
hr
ou
gh
pu
t,

A
cc
ur
ac
y

D
yn
O
 (
A
lm

ei
da

et
 a
l.
20
22
)

m
ob
ile
N
et
V
2,

R
es
N
et
15
2,

In
ce
pt
io
nV

3

4G
,W

iF
i

L
ay
er

IS
Q
ua
nt

+
B
itS

hu
ffl
in
g

+
L
Z
4

D
yn
am

ic
, M

O
,

E
xh

au
st
iv
e

Sp
lit
 p
oi
nt
, b

itw
id
th

Se
rv
er
 c
os
t,

L
at
en
cy
,

T
hr
ou
gh
pu
t,

A
cc
ur
ac
y

188 Q. Zhang et al.

Clio (Huang et al. 2020) and SPINN (Laskaridis et al. 2020) focus on different
aspects of model offloading: Clio considers the width of models, while SPINN
focuses on the depth. However, these approaches require additional training for
early classifiers or slicing-aware schemes, leading to increased computational
overhead for pre-trained models. In contrast, DynO can directly target any pre-
trained models without incurring additional costs. DynO proposes a distributed
CNN inference framework that splits the computation between the client device
and a more powerful remote end. It utilizes an online scheduler to optimize latency
and throughput and minimize cloud workload and associated costs through device-
offloading policies.

Early-Exit (EE)-based inference is a strategy that allows for accelerated inference
by implementing early exits from specific branches within a model, capitalizing
on the observation that early layers of models often capture significant features.
One example of this approach is BranchyNet, which introduces supplementary side
branches in addition to the main branch of the model (Teerapittayanon et al. 2016).
BranchyNet enables the early termination of the inference process at an earlier
layer when certain conditions are satisfied, resulting in substantial computational
savings. It dynamically selects the branch that achieves the shortest inference time
while maintaining a specified level of accuracy. By incorporating additional side
branch classifiers, EE-based inference allows for early termination when processing
easier samples with high confidence, while more challenging samples utilize more
or all layers to ensure accurate predictions. This adaptive approach optimizes both
inference speed and accuracy based on the characteristics of the input data. Another
work, Edgent (Li et al. 2018), integrates BranchyNet to resize DNNs and enhance
the efficiency of the inference process. By reducing the latency requirement, Edgent
dynamically adjusts the optimal exit point in BranchyNet, resulting in improved
accuracy. Additionally, Edgent utilizes adaptive partitioning, enabling collaborative
and on-demand co-inference of DNNs.

In addition, another approach in this field focuses on exploiting the variability
in the difficulty of different inputs to adapt the computations. Various works have
been done in this area, including dynamic DNNs that adjust the depth of models
(Panda et al. 2016; Kouris et al. 2022; Laskaridis et al. 2020; Panda et al. 2016),
dynamic channel pruning (Jayakodi et al. 2020), or progressive inference schemes
for generative adversarial network-based image generation (Jayakodi et al. 2020).
These approaches offer flexibility in tuning the trade-off between accuracy and
efficiency in the inference system.

9.8 Challenges and Opportunities of Inference

Despite the aforementioned benefits, the implementation of inference for IoTs still
encounters various challenges and presents opportunities, as outlined below:

9 Intelligence Inference on IoT Devices 189

Model Optimization. With the advent of large models, how to run large sizes
such as transformer-based models on IoT devices is an interesting direction. The
acceleration of quantized models in inference is not universal and depends on
the involved hardware (Zhang et al. 2022). However, there is significant potential
to improve the inference speed of quantized models through software optimiza-
tions. By automating the compression, researchers can explore algorithms and
strategies to effectively balance the trade-off between model size reduction and
inference performance. On the other hand, the development trend for lightweight
models on IoT devices is to achieve a similar trade-off in inference.

Algorithm-Hardware Codesign. The lightweight DL models and compression
techniques should take into consideration the underlying hardware architecture,
enabling hardware-algorithm codesign to achieve more efficient inference. DL
developers should prioritize optimization for heterogeneous processors (Guo
et al. 2023), expanding support for various types of operators and enhancing
single-operation performance. In many scenarios, more powerful CPUs and
accelerators, especially GPUs and DSPs, can significantly accelerate inference
(Zhang et al. 2023). This encourages DL researchers to design models well-
suited for GPU computing, emphasizing operators with high parallelism while
minimizing memory-intensive operations that hinder parallelism.

Neural Network Hardware Accelerator. To design a reasonable scheduling
mode in a complex and multi-application operating environment, it is vital to
consider the relatively primitive driver management compared to CPU and GPU.
There is a significant research opportunity to address this gap by introducing
flexibility in SoCs to effectively handle and adapt to the evolving requirements
of improved DL operations. The addition of flexibility can enhance silicon
efficiency and lead to cost-friendly solutions. Consequently, the integration
of dynamic reconfigurability into SoCs is expected. However, it is crucial
to minimize power consumption and area in SoCs that incorporate extra
logic. Therefore, research efforts focused on reducing power consumption and
optimizing the area of such SoCs are actively pursued.

DL Library Selection. It is crucial to assess the advantages and disadvantages
of various DL libraries and devise a solution that can unify their strengths.
Otherwise, the issue of inference performance fragmentation may persist for
an extended period, as resolving it requires substantial engineering efforts.
Achieving optimal performance in mobile DL applications often necessitates the
integration of multiple DL libraries and dynamic loading based on the current
model and hardware platform. However, this approach is seldom implemented
due to the considerable overhead in terms of software complexity and develop-
ment efforts. There is a need for a more lightweight system that can harness the
superior performance of different DL libraries.

Developing Benchmarks. Proper benchmark standards are crucial for accurately
evaluating the inference performance (Ren et al. 2023). To enable meaningful
comparisons of DL models, optimization algorithms, and hardware platforms, a
universal and comprehensive set of quality metrics specific to inference is essen-
tial. Currently, benchmark datasets and models predominantly focus on CNNs

190 Q. Zhang et al.

evaluated on the ImageNet (Azizi et al. 2023). To ensure a more comprehensive
evaluation, it is necessary to develop additional benchmark datasets, libraries,
and DL models that cover a wider range of applications and input data types.
This will facilitate a more thorough assessment of inference performance.

Explainability in Inference. The adoption of AI in critical domains has raised
concerns about transparency and accountability. Explainable AI (XAI) aims to
address these concerns by providing transparency in DL algorithms (Adadi &
Berrada 2018). However, ensuring explainability in the context of intelligent
inference remains a challenging and underexplored research area, particularly
considering the trade-off between optimization and accuracy. Resolving this
challenge is essential for the responsible deployment of AI.

Complex Audio Processing Models. Most existing research focuses predom-
inantly on image-processing tasks, leaving a notable gap in the exploration
of similar methods for audio-processing models. However, we posit that the
techniques developed for image processing can also be effectively applied to
these audio scenarios. Specifically, when addressing RNN-based models, such as
LSTMs (Yu et al. 2019) and GRUs (Jiao et al. 2020), their recurrent nature intro-
duces dependencies between samples that are absent in CNNs. Consequently, this
poses a challenge in offloading computations, as the RNNs must be transferred
alongside the computation. While the partitioning strategies employed in prior
studies demonstrate applicability to various DNN architectures by automatically
identifying split-point dependencies, RNNs necessitate specialized treatment.
The future of inference systems is expected to encompass a wide range of
architectures and use cases, showcasing their versatility and applicability in
various domains.

Resource Allocation for Inference. The collaborative DNN inference applica-
tion scenarios are characterized by dynamic environments where future events
are challenging to predict accurately. To effectively handle large-scale tasks,
it is crucial to have robust online edge resource coordination and provisioning
capabilities (Donta et al. 2023; Adadi & Berrada 2018; Dustdar & Murturi 2020;
Alkhabbas et al. 2020; Tsigkanos et al. 2019). Real-time joint optimization of
heterogeneous computing, communication, and cache resource allocation, along
with customized system parameter configuration based on task requirements, is
necessary. Addressing the complexity of algorithm design, an emerging research
direction focuses on efficient resource allocation strategies driven by data-driven
adaptive learning.

Enhancing Security in Inference. Ensuring the credibility of services in dis-
tributed collaborative inference requires the design of a robust distributed
security mechanism (Flamis et al. 2021; Sedlak et al. 2022). This mechanism
plays a vital role in authenticating subscribers, controlling access to collaborative
inference tasks, ensuring model and data security on devices, and facilitating
mutual authentication between different devices. Furthermore, ongoing research
explores the use of blockchain technology to enhance the security and privacy
of devices and data in collaborative inference. This avenue holds promise and

9 Intelligence Inference on IoT Devices 191

warrants further exploration in future collaborative DNN inference, particularly
regarding privacy issues.

9.9 Conclusion

This chapter provides a comprehensive review of the current state of DL operating
on IoT devices. It discusses various methods for accelerating DL inference across
devices, edge servers, and the cloud, highlighting their utilization of the unique
structure of DNN models and the geospatial locality of user requests in edge com-
puting. The analysis emphasizes the crucial trade-offs between accuracy, latency,
and energy that need to be considered. Despite significant progress, numerous
challenges persist, including performance improvements, hardware and software
optimization, resource management, benchmarking, and integration with other
networking technologies. These challenges can be overcome through technological
innovations in algorithms, system design, and hardware accelerations. As DL
innovation continues at a rapid pace, it is anticipated that new technical challenges
in edge computing will arise, providing further opportunities for innovation.
Ultimately, this review aims to stimulate discussion, attract attention to the field
of inference, and inspire future research endeavors.

References

Adadi, Amina, and Mohammed Berrada. 2018. Peeking inside the black-box: A survey on
explainable artificial intelligence (XAI). IEEE access 6: 52138–52160.

Ain, Qurat-ul et al. 2018. IoT operating system based fuzzy inference system for home energy
management system in smart buildings. Sensors 18 (9): 2802.

Alkhabbas, Fahed, et al. 2020. A goal-driven approach for deploying self-adaptive IoT systems. In
2020 IEEE International Conference on Software Architecture (ICSA), 146–156. Piscataway:
IEEE.

Almeida, Mario, et al. 2022. Dyno: Dynamic onloading of deep neural networks from cloud to
device. ACM Transactions on Embedded Computing Systems 21 (6): 1–24.

Azizi, Shekoofeh, et al. 2023. Synthetic data from diffusion models improves imagenet classifica-
tion. arXiv preprint. arXiv:2304.08466.

Bajrami, Xhevahir, et al. 2018. Face recognition performance using linear discriminant analysis
and deep neural networks. International Journal of Applied Pattern Recognition 5 (3): 240–
250.

Bradski, Gary, Adrian Kaehler, et al. 2000. OpenCV. Dr. Dobb’s Journal of Software Tools 3 (2):
1–81.

Cheng, Yu, et al. 2015. An exploration of parameter redundancy in deep networks with circulant
projections. In Proceedings of the IEEE International Conference on Computer Vision, 2857–
2865.

Choudhary, Tejalal, et al. 2020. A comprehensive survey on model compression and acceleration.
Artificial Intelligence Review 53: 5113–5155.

192 Q. Zhang et al.

Courville, Vanessa, and Vahid Partovi Nia. 2019. Deep learning inference frameworks for ARM
CPU. Journal of Computational Vision and Imaging Systems 5 (1): 3–3.

Deng, Yunbin. 2019. Deep learning on mobile devices: A review. In Mobile Multimedia/Image
Processing, Security, and Applications 2019. Vol. 10993, 52–66. Bellingham: SPIE.

Developers, TensorFlow. 2022. TensorFlow. In Zenodo.
Donta, Praveen Kumar, and SchahramDustdar. 2022. The promising role of representation learning

for distributed computing continuum systems. In 2022 IEEE International Conference on
Service-Oriented System Engineering (SOSE), 126–132. Piscataway: IEEE.

Donta, Praveen Kumar, Boris Sedlak, et al. 2023. Governance and sustainability of distributed
continuum systems: A big data approach. Journal of Big Data 10 (1): 1–31.

Dustdar, Schahram, and Ilir Murturi. 2020. Towards distributed edge-based systems. In 2020
IEEE Second International Conference on Cognitive Machine Intelligence (CogMI), 1–9.
Piscataway: IEEE.

Dustdar, Schahram, and Ilir Murturi. 2021. Towards IoT processes on the edge. In Next-Gen Digital
Services. A Retrospective and Roadmap for Service Computing of the Future: Essays Dedicated
to Michael Papazoglou on the Occasion of His 65th Birthday and His Retirement, 167–178.

Flamis, Georgios, et al. 2021. Best practices for the deployment of edge inference: The conclusions
to start designing. Electronics 10 (16): 1912.

Girshick, Ross, et al. 2015. Region-based convolutional networks for accurate object detection
and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 38 (1):
142–158.

Guo, Anqi, et al. 2023. Software-hardware co-design of heterogeneous SmartNIC system for
recommendation models inference and training. In Proceedings of the 37th International
Conference on Supercomputing, 336–347.

Guo, Peizhen, and Wenjun Hu. 2018. Potluck: Cross-application approximate deduplication
for computation-intensive mobile applications. In Proceedings of the Twenty-Third Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems, 271–284.

Han, Seungyeop, et al. 2016. MCDNN: An approximation-based execution framework for deep
stream processing under resource constraints. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services, 123–136.

Haris, Jude, Gibson, Perry, Cano, José, Agostini, Nicolas Bohm and Kaeli, David. 2022. Hard-
ware/Software Co-Design of Edge DNN Accelerators with TFLite. 107 (8): 1–4.

Hu, Chuang, et al. 2019. Dynamic adaptive DNN surgery for inference acceleration on the
edge. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications, 1423–1431.
Piscataway: IEEE.

Huang, Jin, et al. 2020. Clio: Enabling automatic compilation of deep learning pipelines across iot
and cloud. In Proceedings of the 26th Annual International Conference on Mobile Computing
and Networking, 1–12.

Huynh, Loc N., et al. 2017. DeepMon: Mobile GPU-based deep learning framework for continuous
vision applications. In Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services, 82–95.

Iandola, Forrest N., et al. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and< 0.5MB model size. arXiv preprint. arXiv:1602.07360.

Jayakodi, Nitthilan Kanappan, Janardhan Rao Doppa, et al. 2020. SETGAN: Scale and energy
trade-off gans for image applications on mobile platforms. In Proceedings of the 39th
International Conference on Computer-Aided Design, 1–9.

Jayakodi, Nitthilan Kanappan, Syrine Belakaria, et al. 2020. Design and optimization of energy-
accuracy tradeoff networks for mobile platforms via pretrained deep models. ACM Transactions
on Embedded Computing Systems (TECS) 19 (1): 1–24.

Jeong, Hyuk-Jin, et al. 2018. IONN: Incremental offloading of neural network computations
from mobile devices to edge servers. In Proceedings of the ACM Symposium on Cloud
Computing, 401–411.

9 Intelligence Inference on IoT Devices 193

Jiang, Xiaotang, et al. 2020. MNN: A universal and efficient inference engine. In Proceedings of
Machine Learning and Systems. Vol. 2, 1–13.

Jiao, Meng, et al. 2020. A GRU-RNN based momentum optimized algorithm for SOC estimation.
Journal of Power Sources 459: 228051.

Kang, Yiping, et al. 2017. Neurosurgeon: Collaborative intelligence between the cloud and mobile
edge. ACM SIGARCH Computer Architecture News 45 (1): 615–629.

Kounoudes, Alexia Dini et al. 2021. User-centred privacy inference detection for smart home
devices. 2021 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications, Internet of People and Smart City
Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI), 210–218. Piscataway: IEEE.

Kouris, Alexandros, et al. 2022. Multi-exit semantic segmentation networks. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part XXI, 330–349. Berlin: Springer.

Laskaridis, Stefanos, Stylianos I. Venieris, Hyeji Kim, et al. 2020. HAPI: Hardware-aware
progressive inference. In Proceedings of the 39th International Conference on Computer-Aided
Design, 1–9.

Laskaridis, Stefanos, Stylianos I. Venieris, Mario Almeida, et al. 2020. SPINN: Synergistic
progressive inference of neural networks over device and cloud. In Proceedings of the 26th
Annual International Conference on Mobile Computing and Networking, 1–15.

Lebedev, Mikhail, and Pavel Belecky. 2021. A survey of open-source tools for FPGA-based
inference of artificial neural networks. In 2021 Ivannikov Memorial Workshop (IVMEM), 50–
56. Piscataway: IEEE.

Lebedev, Vadim, and Victor Lempitsky. 2016. Fast convnets using group-wise brain damage. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2554–2564.

Leiserson, Charles E., et al. 2020. There’s plenty of room at the Top: What will drive computer
performance after Moore’s law? Science 368 (6495): eaam9744.

Leon, Vasileios, et al. 2022. Systematic embedded development and implementation techniques
on intel myriad VPUs. In 2022 IFIP/IEEE 30th International Conference on Very Large Scale
Integration (VLSI-SoC), 1–2. Piscataway: IEEE.

Li, En, et al. 2018. Edge intelligence: On-demand deep learning model co-inference with device-
edge synergy. In Proceedings of the 2018 Workshop on Mobile Edge Communications, 31–36.

Li, Hongshan, et al. 2018. JALAD: Joint accuracy-and latency-aware deep structure decoupling for
edge-cloud execution. In 2018 IEEE 24th International Conference on Parallel and Distributed
Systems (ICPADS), 671–678. Piscataway: IEEE.

Li, Liangzhi, et al. 2018. Deep learning for smart industry: Efficient manufacture inspection system
with fog computing. IEEE Transactions on Industrial Informatics 14 (10): 4665–4673.

Li, Ying, et al. 2023. Federated domain generalization: A survey. arXiv preprint.
arXiv:2306.01334.

LiKamWa, Robert, and Lin Zhong. 2015. Starfish: Efficient concurrency support for computer
vision applications. In Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, 213–226.

Liu, Hongye, et al. 2016. Deep relative distance learning: Tell the difference between similar
vehicles. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2167–2175.

Liu, Shaoshan, et al. 2019. Edge computing for autonomous driving: Opportunities and challenges.
Proceedings of the IEEE 107 (8): 1697–1716.

Lucas, Bruce D., and Takeo Kanade. 1981. An iterative image registration technique with an
application to stereo vision. In IJCAI’81: 7th International Joint Conference on Artificial
Intelligence. Vol. 2, 674–679.

Mao, Jiachen, et al. 2017. MoDNN: Local distributed mobile computing system for deep
neural network. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, 1396–1401. Piscataway: IEEE.

194 Q. Zhang et al.

Mohammadi, Mehdi, and Ala Al-Fuqaha. 2018. Enabling cognitive smart cities using big data
and machine learning: Approaches and challenges. IEEE Communications Magazine 56 (2):
94–101.

Owens, John D., et al. 2008. GPU computing. In Proceedings of the IEEE 96 (5): 879–899.
Panda, Priyadarshini, et al. 2016. Conditional deep learning for energy-efficient and enhanced

pattern recognition. In 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 475–480. Piscataway: IEEE.

Polino, Antonio, et al. 2018. Model compression via distillation and quantization. arXiv preprint.
arXiv:1802.05668.

Rastegari, Mohammad, et al. 2016. XNOR-Net: Imagenet classification using binary convolutional
neural networks. In European conference on computer vision, 525–542. Berlin: Springer.

Ren, Wei-Qing, et al. 2023. A survey on collaborative DNN inference for edge intelligence. In
Machine Intelligence Research, 1–25.

Romero, Adriana, et al. 2014. Fitnets: Hints for thin deep nets. arXiv preprint. arXiv:1412.6550.
Sedlak, Boris, et al. 2022. Specification and operation of privacy models for data streams on the

edge. In 2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC), 78–
82. Piscataway: IEEE.

Sengupta, Abhronil, et al. 2019. Going deeper in spiking neural networks: VGG and residual
architectures. Frontiers in Neuroscience 13: 95.

Soto, José Angel Carvajal, et al. 2016. CEML: Mixing and moving complex event processing and
machine learning to the edge of the network for IoT applications. In Proceedings of the 6th
International Conference on the Internet of Things, 103–110.

Sun, Yi, Chen, Yuheng, Wang, Xiaogang, Tang, Xiaoou. 2014. Deep learning face representation
by joint identification-verification. Advances in Neural Information Processing Systems 27 (8):
1–8.

Targ, Sasha, et al. 2016. Resnet in resnet: Generalizing residual architectures. arXiv preprint.
arXiv:1603.08029.

Teerapittayanon, Surat, et al. 2016. Branchynet: Fast inference via early exiting from deep neural
networks. In 2016 23rd International Conference on Pattern Recognition (ICPR), 2464–2469.
Piscataway: IEEE.

Tsigkanos, Christos, et al. 2019. Dependable resource coordination on the edge at runtime.
Proceedings of the IEEE 107 (8): 1520–1536.

Viola, Paul, and Michael Jones. 2001. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. CVPR 2001. Vol. 1, I–I. Piscataway: IEEE.

Wang, Qipeng, et al. 2022. Melon: Breaking the memory wall for resource-efficient on-device
machine learning. In Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services, 450–463.

Wang, Yang, et al. 2017. Effective multi-query expansions: Collaborative deep networks for robust
landmark retrieval. IEEE Transactions on Image Processing 26 (3): 1393–1404.

Wu, Jiaxiang, et al. 2016. Quantized convolutional neural networks for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4820–4828.

Xiang, Yecheng, and Hyoseung Kim. 2019. Pipelined data-parallel CPU/GPU scheduling for
multi-DNN real-time inference. In 2019 IEEE Real-Time Systems Symposium (RTSS), 392–
405. Piscataway: IEEE.

Xu, Daliang, et al. 2022. Mandheling: Mixed-precision on-device DNN training with DSP
offloading. In Proceedings of the 28th Annual International Conference on Mobile Computing
And Networking, 214–227.

Xu, Mengwei, Jiawei Liu, et al. 2019. A first look at deep learning apps on smartphones. In The
World Wide Web Conference, 2125–2136.

Xu, Mengwei, Tiantu Xu, et al. 2021. Video analytics with zero-streaming cameras. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), 459–472.

9 Intelligence Inference on IoT Devices 195

Xu, Mengwei, Xiwen Zhang, et al. 2020. Approximate query service on autonomous iot cameras.
In Proceedings of the 18th International Conference on Mobile Systems, Applications, and
Services, 191–205.

Yim, Junho, et al. 2017. A gift from knowledge distillation: Fast optimization, network minimiza-
tion and transfer learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 4133–4141.

Yu, Yong, et al. 2019. A review of recurrent neural networks: LSTM cells and network architec-
tures. Neural Computation 31 (7): 1235–1270.

Zhang, Qiyang, Xiang Li, et al. 2022. A comprehensive benchmark of deep learning libraries on
mobile devices. In Proceedings of the ACM Web Conference 2022, 3298–3307.

Zhang, Qiyang, Zuo Zhu, et al. 2023. Energy-efficient federated training on mobile device. IEEE
Network 35 (5): 1–14.

Zhang, Xiangyu, et al. 2018. Shufflenet: An extremely efficient convolutional neural network
for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 6848–6856.

Zhao, Zhuoran, et al. 2018. Deepthings: Distributed adaptive deep learning inference on resource-
constrained IoT edge clusters. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 37 (11): 2348–2359.

Zhou, Kanglei, et al. 2022. TSVMPath: Fast regularization parameter tuning algorithm for twin
support vector machine. Neural Processing Letters 54 (6): 5457–5482.

	9 Intelligence Inference on IoT Devices
	9.1 Introduction
	9.2 Inference on IoT Devices: Preliminaries
	9.3 Promising Intelligence Applications
	9.3.1 Real-Time Video Analytic
	9.3.2 Autonomous Driving
	9.3.3 Smart Manufacturing
	9.3.4 Smart City and Home

	9.4 Commodity Hardware for IoT Devices
	9.5 Model Optimization for IoT Devices
	9.5.1 Lightweight Model Design
	9.5.2 Model Pruning
	9.5.3 Model Quantization
	9.5.4 Knowledge Distillation

	9.6 Inference Library for IoT Devices
	9.7 Inference Systems for IoT Devices
	9.7.1 Edge Cache-Based Inference
	9.7.2 Computing Offloading-Based Inference

	9.8 Challenges and Opportunities of Inference
	9.9 Conclusion
	References

