
Chapter 9 
Intelligence Inference on IoT Devices 

Qiyang Zhang, Ying Li, Dingge Zhang, Ilir Murturi, Victor Casamayor Pujol, 
Schahram Dustdar, and Shangguang Wang 

9.1 Introduction 

IoT devices (including smartphones and smart tablets) have gained significant 
popularity and have become the primary gateway to the Internet (Xu et al. 2019, 
2020). Meanwhile, the exceptional performance of deep learning (DL) models 
in computer vision over the past decade has led to an increased reliance on 
deep neural networks (DNNs) for cloud-based visual analyses. These DNNs are 
utilized for diverse tasks such as inference and prediction after deployment. This 
integration of DNNs and cloud-based visual analyses has facilitated the realization 
of various applications, including object detection (Girshick et al. 2015), vehicle 
and person reidentification (Liu et al. 2016), pedestrian detection (Sun et al. 2014), 
and landmark retrieval (Wang et al. 2017), etc. 
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Developers are actively exploring the integration of DL into mobile applications 
to enhance intelligence and improve the user experience on IoT devices. While DL 
on the cloud has received significant research attention, the study of DL on IoT 
devices remains relatively limited. There is a lack of comprehensive understanding 
regarding the key challenges and issues associated with DL on IoT devices. 
Therefore, further research is needed to gain insights into this domain. 

Supporting a diverse range of devices while maintaining high performance with 
a single convolutional neural network (CNN) presents a significant challenge. How-
ever, the development of models specifically designed for IoT devices has greatly 
improved the capabilities of AI. These models are optimized for performance 
and efficiency, considering the limited computational resources, power constraints, 
and memory limitations of IoT devices. These models are typically lightweight 
and compact, enabling fast and efficient inference without sacrificing accuracy. 
They incorporate techniques such as model compression (Choudhary et al. 2020), 
quantization (Polino et al. 2018), and efficient network architectures (Iandola et al. 
2016; Zhang et al. 2018) to minimize computational and memory requirements 
while achieving high performance. 

Device vendors have responded to the demand for efficient CNNs on IoT devices 
by introducing System-on-Chips (SoCs) and inference libraries that incorporate 
specialized units for CNN acceleration. These SoCs are equipped with high-
performance CPU/GPU units, and dedicated accelerators designed for machine 
learning (ML) and image processing tasks. While these accelerators enable on-
device processing, developers still face the challenge of supporting the diverse 
array of devices available in the market. The advancements in hardware have 
significantly enhanced the overall performance and capabilities of IoT devices, 
allowing them to handle computationally intensive tasks and deliver enhanced user 
experiences. Moreover, software solutions play a crucial role in accelerating on-
device DL inference alongside hardware advancements. For instance, fine-tuned 
implementation can achieve up to a 62,806. × performance improvement compared 
to vanilla implementations (Leiserson et al. 2020; Zhang et al. 2022). Inference 
libraries provide developers with the necessary tools and runtime environments to 
optimize inference on resource-constrained devices. These libraries enable real-time 
and on-device inference for a wide range of applications, further enhancing the 
efficiency and effectiveness of DL on IoT devices. 

Recently, there has been a notable increase in the adoption of cloud-based 
visual analysis, driven by advancements in network infrastructure. To achieve SOTA 
performance and ensure compatibility with a wide range of IoT devices, developers 
often choose to offload computational tasks, either partially or entirely, to high-
computing-power infrastructures such as cloud servers. The rapid development of 
5G communication technology has further facilitated offloading, allowing applica-
tions with stringent latency requirements like to be supported effectively. While 
offloading offers benefits such as improved inference latency and the ability to han-
dle device diversity, it also comes with certain challenges. One of these challenges is 
the high operational costs associated with maintaining and utilizing cloud resources. 
Additionally, remote execution raises concerns regarding privacy and security, and
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the user experience can be affected by variations in networking conditions. To 
address these challenges, researchers have been exploring collaborative approaches 
that leverage both local and cloud resources for CNN inference (Huang et al. 2020; 
Laskaridis et al. 2020). These approaches aim to strike a balance between leveraging 
the computing power of cloud and utilizing local resources to enhance performance 
and reduce latency. By distributing the computational workload and optimizing 
resource utilization, these collaborative methods offer potential solutions to the 
limitations of cloud-based visual analysis, paving the way for more efficient and 
effective AI applications. 

In summary, IoT devices have made computing pervasive, accessible, and per-
sonalized, enriching our daily lives and opening up new possibilities for applications 
and services in various domains. The remainder of this work is structured as 
follows: Sect. 9.2 introduces the preliminary work on inference. Section 9.3 explores 
the diverse applications of inference in IoT, highlighting the range of domains 
where inference finds utility. Sections 9.4–9.6 present comprehensive reviews of 
commodity hardware, model optimization, and inference libraries, focusing on their 
relevance and effectiveness in IoTs, respectively. Section 9.7 reviews the current 
inference system in edge computing. Section 9.8 presents the research challenges 
and future opportunities. Lastly, Sect. 9.9 concludes the paper. 

9.2 Inference on IoT Devices: Preliminaries 

DL model deployment involves two main stages: model training and inference 
(Xu et al. 2022; Wang et al. 2022; Li et al.  2023). During the training stage, a 
significant volume of training data is utilized, and the backpropagation algorithm 
is employed to determine the optimal model parameter values. This process 
necessitates substantial computing resources and is typically conducted offline. 
On the other hand, model inference involves utilizing a trained model to process 
individual or continuous input data. The results of these computations often require 
real-time feedback to users, making factors such as computing time and system 
overhead (e.g., memory usage, energy consumption) crucial considerations. This 
two-stage deployment methodology allows for efficient utilization of computing 
resources during the training stage and facilitates real-time inference on IoT devices. 

Inference refers to the execution of data analysis, decision-making procedures, 
and related tasks directly on edge devices or servers situated within a decentralized 
computing infrastructure, thus mitigating the exclusive dependence on cloud-based 
computing systems. This strategy facilitates timely, context-aware decision-making 
processes near the network edge, in closer proximity to the data source, proffering 
numerous advantages and opportunities for IoT devices: 

• Real time: Inference empowers devices to make immediate decisions and 
take action without relying on cloud connectivity. By processing data locally, 
proximate to the data source, devices can provide real-time responsiveness.
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• Reduced Bandwidth: Inference enables IoT devices to locally process large 
data volumes, thereby reducing latency and conserving bandwidth, proving 
advantageous in situations with limited network connectivity. 

• Privacy Enhancement: Inference bolsters data privacy by limiting sensitive data 
transmission to the cloud. Conducted locally, it ensures sensitive information 
remains confined to IoT devices, minimizing potential risks and reinforcing 
privacy. 

• Context-aware Decision-making: Inference utilizes contextual data from IoT 
devices, such as sensor readings and device-specific information, to enhance 
result accuracy and relevance. This facilitates intelligent, environment-specific 
decisions, leading to heightened operational efficiency and effectiveness. 

Overall, inference underpins the autonomy, responsiveness, and the capacity to 
handle intricate tasks of IoT devices. It facilitates the evolution and potentiality of 
the IoT ecosystem, endowing devices with the ability to exploit their computational 
prowess and make judicious decisions. 

9.3 Promising Intelligence Applications 

AI applications, due to their complexity and high computational requirements, are 
housed in cloud centers. However, this computing paradigm struggles to deliver 
real-time services like analytics and smart manufacturing. Therefore, situating AI 
applications on IoT devices widens the application scope of AI models. As shown 
in Fig. 9.1, DL models can execute on edge devices (i.e., IoT devices and edge 
servers) or depend on cloud centers. In this section, we spotlight several notable 
AI applications and their merits. 

9.3.1 Real-Time Video Analytic 

Video analytics, integral to VR/AR, necessitates considerable computational power 
and extensive storage resources (Xu et al. 2021). Performing such tasks in the 
cloud often leads to unexpected latency and high bandwidth usage. However, the 
progression of edge computing allows for the migration of video analytics closer to 
the data source, mitigating these issues (Dustdar & Murturi 2021). 

Video analysis applications, such as face recognition and object detection, benefit 
from various effective DL algorithms, including artificial neural networks and 
histogram analysis (Bajrami et al. 2018). Nonetheless, utilizing a singular model for 
analysis without noise reduction and feature extraction proves challenging. Thus, 
integrating multiple models often results in enhanced video analytic performance. 
For instance, face recognition entails several steps, each addressed by a different
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Fig. 9.1 Deep learning models can execute on edge devices (i.e., IoT devices and edge servers) or 
depend on cloud centers 

model: AdaBoost (Viola & Jones 2001) for face detection, a nonlinear SVM 
classifier for gender and age classification, and a basic algorithm (Lucas & Kanade 
1981; Zhou et al. 2022) for face tracking to calculate optimal flow and depict pixel 
trajectories. 

9.3.2 Autonomous Driving 

Autonomous vehicles, equipped with a plethora of sensors, generate a vast amount 
of data necessitating swift processing. The interconnectivity of these vehicles 
enhances safety, streamlines efficiency, and mitigates traffic congestion. Notably, 
autonomous driving aims to deliver services characterized by low latency, high-
speed communication, and rapid response. ML- and DL-based solutions present 
potential for optimizing the complex operations intrinsic to autonomous vehicles. 
For example, ML algorithms deployed in self-driving vehicles extract features from 
raw data to discern real-time road conditions, facilitating informed decision-making. 
Similarly, for demanding tasks in autonomous driving—such as sensing, perception, 
and decision-making—DL algorithms process raw data through sensing to reach 
final decisions (Liu et al. 2019).
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9.3.3 Smart Manufacturing 

Smart manufacturing fundamentally hinges on automation and data analysis— 
the former being the primary goal, and the latter serving as an invaluable tool 
(Li et al.  2018). Ensuring low latency, privacy protection, and risk control is 
paramount to adhering to these principles. Within the realm of a smart factory, 
intelligent inference proves beneficial, bolstering computational resources and 
facilitating resource scheduling and data processing throughout the manufacturing 
process. Given the exponential proliferation, remote management of DL models 
and their continuous evaluation have emerged as pressing imperatives. To tackle 
these challenges, (Soto et al. 2016) pave the way for the development of real-
time applications. Furthermore, DL algorithms are set to be significant catalysts 
propelling the industry’s advancement by transforming all stages of the product 
lifecycle—from design and manufacturing to service—thereby driving substantial 
productivity enhancements. 

9.3.4 Smart City and Home 

The proliferation of IoT devices has sparked the emergence of intelligent services 
in various aspects of home lifestyles, encompassing appliances like smart TV 
and air conditioners (Kounoudes et al. 2021; Ain et al. 2018). Furthermore, the 
deployment of multiple IoT sensors and controllers in smart homes has become a 
prerequisite. Edge computing-based inference assumes a crucial role in optimizing 
indoor systems, aiming for low latency and high accuracy, thereby enhancing the 
capabilities and diversity of services. Moreover, extending edge computing beyond 
individual homes to encompass communities or cities holds significant potential. 
The inherent characteristic of geographically distributed data sources in urban envi-
ronments enables location awareness, latency-sensitive monitoring, and intelligent 
control. For instance, we integrate large-scale ML algorithms, such as data mining 
combined with semantic learning, to extract advanced insights and patterns from the 
voluminous data generated by smart homes and cities (Mohammadi & Al-Fuqaha 
2018). 

9.4 Commodity Hardware for IoT Devices 

With advancements in hardware, low-power IoT devices have the capability to 
independently handle AI tasks without relying on cloud communication. For 
instance, commodity CPUs, which are widely available in these devices, serve as the
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primary hardware for executing inference. CPUs play a crucial role in the inference, 
supported by toolchains and software libraries that facilitate practical inference. 
These CPUs share similar microarchitectures, allowing for the effective utilization 
of optimization techniques. However, performing computationally intensive tasks 
still poses challenges. For instance, processing a single image using the common 
VGG model (Sengupta et al. 2019), which consists of 13 CNN layers and 3 fully 
connected neural network (FCNN) layers, may take hundreds of seconds on devices 
like the Samsung Galaxy S7 (Xiang & Kim 2019). 

Mobile GPUs have revolutionized high-dimensional matrix operations, including 
matrix decomposition and multiplications in CNN (Owens et al. 2008). Notably, 
GPUs have emerged as a standout option for edge computing, as they consume less 
power compared to traditional desktop and server GPUs. In particular, the Jetson 
family of GPUs, including the latest Jetson Nano, showcases a 128-core affordable 
GPU module that NVIDIA has successfully introduced. Additionally, the concept 
of caching computation results in CNN has sparked optimizations in frameworks 
like DeepMon (Huynh et al. 2017). DeepMon implements a range of optimizations 
specifically designed for processing convolution layers on mobile GPUs, resulting 
in significantly reduced inference time. 

Due to power and cost constraints on devices, traditional CPU- and GPU-
based solutions are not always viable. Moreover, devices often need to handle 
multiple application requests simultaneously, making the use of CPU- and GPU-
based solutions impractical. As a result, hardware integrated with FPGA has gained 
attention for Edge AI applications. FPGA-based solutions offer several advantages 
in terms of latency and energy efficiency compared to CPUs and GPUs. However, 
one challenge is that developing efficient algorithms for FPGA is unfamiliar to most 
programmers, as it requires the transplantation of models programmed for GPUs 
into the FPGA platform. 

There are also AI accelerators specifically designed for inference that have been 
introduced by several manufacturers. One notable example is the Myriad VPU 
(Leon et al. 2022), developed by Movidius, which is optimized for computer vision 
tasks. It can be easily integrated with devices like Raspberry Pi to perform inference. 
However, these AI accelerators are not widely available on all devices, limiting their 
accessibility. Additionally, the ecosystem surrounding these accelerators is still in its 
early stages and tends to be closed due to their black box structure and proprietary 
inference frameworks. This creates barriers for widespread adoption and usage. 
For instance, the Edge TPU, currently found only in Google Pixel smartphones, 
is limited to running models built with TensorFlow (Developers 2022). 

Looking ahead, AI accelerators are expected to play a crucial role in IoT 
devices. With the introduction of powerful AI SoCs, there is potential for significant 
improvements in inference performance. As hardware accelerators and software 
frameworks continue to evolve and upgrade, more AI applications will be able to 
execute directly on IoT devices.
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9.5 Model Optimization for IoT Devices 

The limited computing resources on IoT devices necessitate developers to make 
trade-offs between model accuracy and real-time performance requirements, leading 
to the inability to deploy SOTA models. A fundamental challenge of this trend is the 
constrained resources of devices. Therefore, performance optimization has been a 
primary research direction for both academia and industry. 

9.5.1 Lightweight Model Design 

To optimize the computational overhead of DL inference, one approach is to ensure 
the lightweight nature of the DL models themselves. This can be achieved through 
the design of a lightweight model or the compression of a trained model. For 
example, SqueezeNet demonstrates such optimization by achieving comparable 
accuracy to AlexNet while utilizing only 2% of the parameters (Iandola et al. 2016). 

The key innovation of SqueezeNet lies in its novel convolution method and 
the introduction of a fire module. As shown in Fig. 9.2, the fire module consists 
of a squeeze layer and an expand layer. The squeeze layer employs a 1 . × 1 
convolution kernel to alter the number of channels while maintaining the resolution 
(H. ×W) of the feature map to achieve compression. The subsequent expand layer 
utilizes 1 . × 1 and 3 . × 3 convolutional layers, whose outputs are combined to obtain 
the fire module’s output. SqueezeNet follows a similar network design concept 
as VGG, utilizing stacked convolutional operations, with the difference being 
the incorporation of the fire module. Furthermore, ShuffleNet integrates group 
convolution to significantly decrease the number of parameters and computational 
complexity (Zhang et al. 2018). Group convolution divides channels into subgroups, 
where the output of each subgroup depends solely on the corresponding input 
subgroup. To address potential issues caused by group convolution, ShuffleNet 
(Zhang et al. 2018) introduces the shuffle operation, which rearranges the channels 
within each part to create a new feature map. The architecture of ShuffleNet is 
inspired by ResNet (Targ et al. 2016), transitioning from the basic ResNet bottleneck 
unit to the ShuffleNet bottleneck unit and stacking multiple ShuffleNet bottleneck 
units to form the complete model. 

9.5.2 Model Pruning 

Numerous researchers have explored techniques to reduce model complexity in DL 
models through parameter sharing and pruning. In many neural networks, the com-
putationally intensive matrix multiplication in fully connected layers leads to a large 
number of model parameters and computing. To overcome this challenge, circulant



9 Intelligence Inference on IoT Devices 179

Input 

GConv1 

Feature 

GConv2 

Output 

Channels Channels Channels 

Channel Shuffle 

Fig. 9.2 Grouping convolution used in the lightweight model ShuffleNet 

Fig. 9.3 Fast ConvNets reduce operations by pruning convolution kernels 

projections have been proposed as a method to accelerate the computation of fully 
connected layers. As shown in Fig. 9.3, by employing a weight matrix with circulant 
projections (Cheng et al. 2015), memory requirement is reduced from .O(d2) to 
.O(d) for a matrix of size d . × d. Furthermore, the multiplication of rotation matrices 
can be accelerated using fast Fourier transform (FFT). This technique reduces the 
computational complexity from .O(d2) to .O(dlogd) for the multiplication of a 1 . × d 
vector and a d . × d matrix. Given the significant role of CNN models in mobile 
vision, various approaches have been proposed for parameter pruning and sharing 
algorithms specifically tailored to CNNs. Fast ConvNets achieves computational 
reduction by pruning convolution kernels (Lebedev & Lempitsky 2016). 

The commonly used technique for implementing convolution operations in DL 
libraries such as TensorFlow and Caffe is referred to as im2col. This process 
involves three steps: (1) During convolution, the input image is transformed into
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a matrix by sliding the convolution kernel. Each column in the matrix represents 
the information of a small window processed by the kernel. Rows in the matrix 
correspond to the product of the kernel’s height, width, and number of input 
channels, while the column represents the product of the height and width of 
the single-channel image output by the convolution layer, representing the overall 
processing of the small window. (2) By reshaping the convolution kernel, a matrix 
is obtained where the rows correspond to the number of output image channels and 
the columns match the row values of the previous matrix. (3) The im2col operation 
converts complex convolution operations into matrix multiplications. The process 
involves performing matrix multiplication between two matrices and reshaping 
the resulting matrix into the final output. By leveraging existing optimization 
algorithms and libraries for efficient matrix operations, such as the BLAS algebraic 
operation library, im2col benefits from optimized matrix operations. Techniques 
like parameter pruning in Fast ConvNets (Lebedev & Lempitsky 2016) further 
reduce the matrix dimension after expansion, leading to accelerated computational 
workload for matrix multiplication. 

9.5.3 Model Quantization 

Quantization is a technique used to compress DL models by reducing the number of 
bits required for each parameter. In traditional DL models, parameters are typically 
represented using 16-bit floating-point numbers. However, experimental studies 
have shown that using lower-precision representations can significantly reduce 
memory consumption and computation time without compromising precision. In 
some cases, researchers have even employed 1-bit representations for storing 
parameters during both training and inference, achieving comparable results by 
using values of 1 or . −1 (Rastegari et al. 2016). Additionally, other studies have 
investigated the use of vector quantization and product quantization techniques to 
compress models and further improve their efficiency. 

Vector quantization and product quantization are widely used data compression 
techniques that involve grouping scalar data into vectors and quantizing them as 
a whole in the vector space, resulting in lossless data compression. By applying 
product quantization to the connection layer and the convolution layer, it is possible 
to achieve benefits such as reduced model size and improved operation time. These 
techniques are effective in optimizing DL models for improved efficiency and 
performance (Wu et al. 2016). As illustrated in Fig. 9.4, the main concept involves 
partitioning the input space into M equally sized subspaces, where each subspace 
of the weight matrix is assigned a sub-codebook obtained through a clustering 
algorithm. A codebook consists of multiple codewords, and the core idea of the 
algorithm is to approximate all subvectors of the same dimension in the space using 
a limited number of codewords. During inference, the input vector is divided into M 
sub-vectors, which are then multiplied only with the codewords in their respective 
subspaces. The final output can then be obtained based on the index of the pre-
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Fig. 9.4 Model compression method based on product quantization 

calculated codebook mapped to the output matrix. Consequently, the computational 
complexity is reduced from the original .O(CsCt ) to .O(CsK +CtM), where . Cs and 
. Ct denote the input and output dimensions, respectively. K represents the number of 
codewords in each codebook. Experimental results demonstrate that the algorithm 
can achieve a 4–6. × increase in computational speed and reduce the model size by 
15–20. × with only a marginal 1% loss of accuracy. 

9.5.4 Knowledge Distillation 

Knowledge distillation (KD) is an effective algorithm widely used for compressing 
DL models. When employing small models for classification inference, relying 
solely on one-hot encoding in the training set is insufficient. This encoding method 
treats categories as independent entities and fails to capture the relationships 
between them. However, by allowing the small model to learn from the probability 
distribution generated by a larger model, additional supervision signals are provided, 
and similarity information between categories is incorporated, facilitating easier 
learning. For example, in the recognition of handwritten digits, certain images 
labeled as 3 may bear a resemblance to 8 or 2. One-hot encoding is unable to capture 
such nuances, whereas a pre-trained large model can provide this information. 
As a result, researchers modify the loss function to align the small model with 
the probability distribution outputted by the large model, a process known as KD 
training.
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The effectiveness of KD training has been demonstrated in two datasets: 
handwriting recognition and speech recognition. However, (Romero et al. 2014) 
argue that directly mimicking the outputs of large models poses challenges for 
small models. Additionally, as the model depth increases, emulating the large model 
becomes more difficult as the supervision signal from the final layer needs to 
propagate to the earlier layers. To address this challenge, the researchers propose 
Fitnets, which involve incorporating supervisory signals in the middle layers. By 
comparing and minimizing the discrepancy between the outputs of the intermediate 
layers in both the large and small models, the small model can learn from the larger 
model during an intermediate step of prediction. Here, the “small” refers to the 
width of the layers rather than the depth. This training approach, known as hint 
training, involves pre-training the parameters of the first half of the small model 
using hint training. Subsequently, KD training is employed to train all parameters, 
enabling the small model to better emulate the knowledge of each layer in the larger 
model. However, it is important to note that this more active learning method may 
not be universally applicable due to the significant capacity gap between large and 
small models. 

Building upon the work of (Yim et al. 2017), researchers have extended the 
concepts and applications of KD. Instead of having the small model directly fit 
the output of the large model, the focus is on aligning the relationships between 
the layers of the two models. These relationships are defined by the inner product 
between layers. A matrix of size .M ×N is constructed to represent this relationship, 
where each element .(i, j) corresponds to the inner product between the . i − th

channel of layer A and the .j − th channel of layer B. Yim et al. propose a 
two-stage method: first, adjusting the parameters of the small model based on the 
feature similarity preservation (FSP) matrix of the large model to align the layer 
relationships; then, continuing fine-tuning the small model parameters using the 
original loss function, such as cross-entropy. This approach aims to preserve the 
feature similarity between the two models while maintaining the original learning 
objective (Yim et al. 2017). 

9.6 Inference Library for IoT Devices 

The inference performance of on-device models is influenced by multiple factors, 
including hardware, models, and software, such as DL execution engines or 
libraries. DL libraries aim to enable on-device inference, and several major vendors 
have developed their own DL libraries, including TFLite (Haris et al. 2022), Core 
ML (Deng 2019), NCNN (Courville & Nia 2019), MNN (Jiang et al. 2020; Zhang 
et al. 2023), etc. TensorFlow and Caffe have been deprecated and replaced by their 
lightweight implementations, TFLite and PyTorchMobile, respectively. This work 
provides a summary of popular DL libraries such as TFLite (Haris et al. 2022), 
PyTorchMobile, NCNN (Courville & Nia 2019), MNN (Jiang et al. 2020), MACE 
(Lebedev & Belecky 2021), and SNPE (Zhang et al. 2022). Table 9.1 presents
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Table 9.1 A comparison of representative DL libraries on mobile devices 

Library Developer 
CPU 
FP32 

CPU 
INT8 

GPU 
FP32 

GPU 
INT8 

DSP 
INT8 

TFlite Google � � � � �
Pytorch Mobile Facebook � �
NCNN Tencent � � � �
MNN Alibaba � � � �
MACE Xiaomi � � � �
SNPE Qualcomm � � � � �

a comparison of these DL libraries, considering their support for various model 
precision and hardware configurations. 

Current DL libraries often do not fully leverage the capabilities of different hard-
ware platforms. Each DL library typically supports at least one hardware platform, 
such as CPU, although PyTorchMobile lacks GPU acceleration support (Courville 
& Nia  2019). Interestingly, the DL library that achieves the best performance for a 
given model can vary depending on the specific hardware used. This difference in 
inference performance can be attributed to two main factors. Firstly, the hardware 
ecosystem exhibits a high level of fragmentation due to variations in architecture, 
such as Big. Little Core, cache size, GPU capacity, etc. Secondly, the heterogeneity 
of model structures also plays a role. The implementation of depth-wise convolution 
operators, for example, differs significantly from that of traditional convolution 
operators, as they have distinct cache access patterns (Zhang et al. 2022). 

Even when using the same GPU, DL libraries provide different backend options. 
For example, MNN offers three backends: Vulkan, OpenGL, and OpenCL (Jiang 
et al. 2020). Interestingly, different backend choices can be more suitable for 
different models and devices. This may seem unexpected since MNN’s Vulkan 
backend is primarily designed for cross-platform compatibility, including desktop, 
while OpenGL and OpenCL are mobile-specific programming interfaces that are 
highly optimized for mobile devices. This phenomenon can be attributed to both 
the underlying design of these backends and how DL developers implement the DL 
operators on top of them. 

TFLite and SNPE provide acceleration capabilities for INT8 models running 
on DSP. For example, Qualcomm DSP is equipped with AI capabilities, such as 
HTA and HTP (Zhang et al. 2022), which are integrated with Hexagon vector 
extension (HVX) acceleration. The Winograd algorithm is also utilized to accelerate 
convolution calculations on the DSP. Furthermore, the energy-saving benefits of the 
DSP are particularly significant compared to the speed of inference. 

To achieve optimal performance when executing models on devices, developers 
often need to integrate multiple DL libraries and dynamically select the appropriate 
one based on the current model and hardware platform. However, this approach is 
seldom implemented in practice due to the substantial overhead in terms of software 
complexity and development efforts. There is a need for a more lightweight system 
that can efficiently leverage the best performance from different DL libraries.
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9.7 Inference Systems for IoT Devices 

A considerable amount of research has been dedicated to exploring the collaborative 
utilization of local and cloud resources for inference. In contrast to the traditional 
completely offloading tasks to the server, these studies leverage the inherent 
characteristics of CNNs to optimize the offloading process (Donta & Dustdar 2022). 
Existing literature addresses the offloading of CNN inference to various destina-
tions, including IoT devices within the local network (Xu et al. 2020; Mao et al. 
2017), third-party IoT devices that possess the CNN computational graph (Almeida 
et al. 2022), and a choice between devices and servers through model selection 
(Han et al. 2016). Although these research endeavors share close relationships, the 
systems developed in these studies often have distinct requirements, such as the 
inclusion of multiple devices in a local area network, diverse optimization goals, 
such as distributing computations in a share-nothing setup, or significant overhead 
associated with maintaining multiple models. 

9.7.1 Edge Cache-Based Inference 

DL applications typically depend on real-time data provided by IoT devices, 
demonstrating specific similarity traits: (1) Temporal similarity: sequential frames in 
video streams captured by cameras frequently reveal similarities, such as consistent 
background or scene elements. (2) Spatial similarity: individuals’ daily movement 
patterns, such as recurring travel between places like a laboratory and a restaurant, 
often show a high degree of repetition. Although variations in the captured images 
can occur due to alterations in lighting or background, image feature extraction 
algorithms like Speeded Up Robust Features (SURF) can capture these disparities 
(Xu et al. 2021). Note that despite the pronounced similarity between frames, they 
are not identical. The recurrent use of identical data can lead to a decrease in 
model accuracy. Consequently, the effective use of caching strategies is crucial to 
maintaining a balance between accuracy and efficiency. In this regard, there are 
some representative properties as follows. 

Starfish enables the execution of multiple mobile vision applications on wearable 
devices while effectively managing computing resources and shared memory 
(LiKamWa & Zhong 2015). Its workflow is shown in Fig. 9.5. Researchers initially 
identified the need to parallelize multiple vision applications on existing wearable 
devices for simultaneous recognition and prediction tasks. However, these algo-
rithms often rely on common data preprocessing steps such as grayscale processing, 
size adjustment, and feature extraction. Executing these algorithms separately on 
the same input image by different applications leads to redundant operations and 
memory consumption. To address this, Starfish decouples the CV library from the 
application, running it as an independent process (Core). API calls are transformed 
into cross-process calls, allowing the Core process to handle CV library calls
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Fig. 9.5 The overview of Starfish framework 

from all vision applications. A cache mechanism is employed to reduce redundant 
calculations and storage, with the API called by the CV library being key cached 
elements. Starfish, built on Android and optimized for the OpenCV (Bradski et al. 
2000) library, effectively mitigates redundant operations and enhances resource 
utilization. 

DeepMon leverages caching in mobile CV to enhance the performance of CNN 
inference (Huynh et al. 2017). The camera captures a series of video streams, and 
each frame is processed to convert it into an information stream that is then outputted 
to the users. The authors observe that consecutive frames in the video stream 
captured by IoT devices, such as smartphones and smart glasses, often contain 
significant pixel similarities, as vision applications typically require the camera to 
remain focused on a specific scene (e.g., object recognition, selfies) for a certain 
duration. Exploiting this pixel similarity, the author proposes using it as a cache 
to reduce the computation required by the CNN. However, traditional CNNs are 
considered a black box, where the output is obtained directly from the input image. 
The nature of convolution operations necessitates the dependence of output results 
on each frame’s input image. To address this challenge, the authors redesign the 
forward algorithm of each CNN layer, enabling the (partial) computation results 
from the previous frame to be reused in the intermediate calculation process. 

Guo and Hu (2018) incorporate a cross-application caching mechanism to 
minimize redundant calculations on the same or similar sensor input data, such 
as images. For instance, when both an image recognition application and an AR 
application utilize the same CNN model for image recognition, the output of CNN 
models can be cached. The cache lookup key is a variable-length feature vector that 
developers can specify, such as SIFT, SURF, etc. Furthermore, Potluck assigns an 
importance value to each cache item, indicating its frequency of use and potential 
time-saving benefits. Given the limited storage capacity, priority is given to caching 
the more important items. To find the most suitable cache entry, Potluck employs a 
nearest neighbor algorithm. The authors implement Potluck as a background service 
on the Android system and demonstrate its ability to reduce computing delay by up 
to 2.5–10. × when used in applications.
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Fig. 9.6 The Neurosurgeon (Kang et al. 2017) framework tailored for computing offloading-based 
framework 

9.7.2 Computing Offloading-Based Inference 

Table 9.2 presents a comprehensive comparison of inference systems based on 
computing offloading. Note that these systems are specifically designed for a 
particular class of CNNs that are optimized for tasks such as classification and object 
detection. Among these systems, one notable work in this area is Neurosurgeon 
(Kang et al. 2017), as illustrated in Fig. 9.6, a framework that focuses on selecting 
an optimal split point to offload models between the devices and servers, with 
the aim of minimizing latency or energy consumption. However, the evaluation of 
Neurosurgeon primarily involves simple sequential CNN models, and the offloading 
decisions tend to be polarized, either offloading nothing or offloading everything, 
depending on the network conditions. Another relevant work is Hu et al. (2019), 
which introduces a scheduling scheme for partitioning DNNs under different 
network conditions to minimize either overall latency or throughput. However, it 
should be noted that the proposed scheduler lacks support for SLO deadlines, which 
are important in real-time applications. MCDNN (Han et al. 2016) is a framework 
that enables parallel computing for multiple applications. It uses a shared feature 
extraction layer and dynamically selects smaller, faster models to optimize accuracy 
and efficiency. The model selection is based on model catalogs, allowing for flexible 
adaptation to task requirements and available resources. 

In terms of the compression of transferred data, JALAD (Li et al. 2018), 
SPINN (Laskaridis et al. 2020), and DynO (Almeida et al. 2022) incorporate the 
quantization scheme. However, it should be noted that SPINN utilizes a fixed 8-
bit quantization level that is uniform across the split layers, without considering 
the dynamic range of the data or the resilience of each layer to quantization. 
DynO’s compression method includes the compression method used in SPINN. 
DynO offers greater adaptability by dynamically selecting the optimal combination 
of bitwidth and split points based on performance targets and networking conditions. 
On the other hand, JALAD utilizes a decoupled DL model to make offloading 
decisions using a joint accuracy- and latency-aware execution framework (Li 
et al. 2018). However, JALAD is associated with a significant accuracy drop 
to achieve performance improvements. Additionally, JALAD only provides static 
configurations and lacks the ability to adapt to dynamic network conditions during 
runtime, limiting its efficiency on resource-constrained devices.
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Clio (Huang et al. 2020) and SPINN (Laskaridis et al. 2020) focus on different 
aspects of model offloading: Clio considers the width of models, while SPINN 
focuses on the depth. However, these approaches require additional training for 
early classifiers or slicing-aware schemes, leading to increased computational 
overhead for pre-trained models. In contrast, DynO can directly target any pre-
trained models without incurring additional costs. DynO proposes a distributed 
CNN inference framework that splits the computation between the client device 
and a more powerful remote end. It utilizes an online scheduler to optimize latency 
and throughput and minimize cloud workload and associated costs through device-
offloading policies. 

Early-Exit (EE)-based inference is a strategy that allows for accelerated inference 
by implementing early exits from specific branches within a model, capitalizing 
on the observation that early layers of models often capture significant features. 
One example of this approach is BranchyNet, which introduces supplementary side 
branches in addition to the main branch of the model (Teerapittayanon et al. 2016). 
BranchyNet enables the early termination of the inference process at an earlier 
layer when certain conditions are satisfied, resulting in substantial computational 
savings. It dynamically selects the branch that achieves the shortest inference time 
while maintaining a specified level of accuracy. By incorporating additional side 
branch classifiers, EE-based inference allows for early termination when processing 
easier samples with high confidence, while more challenging samples utilize more 
or all layers to ensure accurate predictions. This adaptive approach optimizes both 
inference speed and accuracy based on the characteristics of the input data. Another 
work, Edgent (Li et al. 2018), integrates BranchyNet to resize DNNs and enhance 
the efficiency of the inference process. By reducing the latency requirement, Edgent 
dynamically adjusts the optimal exit point in BranchyNet, resulting in improved 
accuracy. Additionally, Edgent utilizes adaptive partitioning, enabling collaborative 
and on-demand co-inference of DNNs. 

In addition, another approach in this field focuses on exploiting the variability 
in the difficulty of different inputs to adapt the computations. Various works have 
been done in this area, including dynamic DNNs that adjust the depth of models 
(Panda et al. 2016; Kouris et al. 2022; Laskaridis et al. 2020; Panda et al. 2016), 
dynamic channel pruning (Jayakodi et al. 2020), or progressive inference schemes 
for generative adversarial network-based image generation (Jayakodi et al. 2020). 
These approaches offer flexibility in tuning the trade-off between accuracy and 
efficiency in the inference system. 

9.8 Challenges and Opportunities of Inference 

Despite the aforementioned benefits, the implementation of inference for IoTs still 
encounters various challenges and presents opportunities, as outlined below:
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Model Optimization. With the advent of large models, how to run large sizes 
such as transformer-based models on IoT devices is an interesting direction. The 
acceleration of quantized models in inference is not universal and depends on 
the involved hardware (Zhang et al. 2022). However, there is significant potential 
to improve the inference speed of quantized models through software optimiza-
tions. By automating the compression, researchers can explore algorithms and 
strategies to effectively balance the trade-off between model size reduction and 
inference performance. On the other hand, the development trend for lightweight 
models on IoT devices is to achieve a similar trade-off in inference. 

Algorithm-Hardware Codesign. The lightweight DL models and compression 
techniques should take into consideration the underlying hardware architecture, 
enabling hardware-algorithm codesign to achieve more efficient inference. DL 
developers should prioritize optimization for heterogeneous processors (Guo 
et al. 2023), expanding support for various types of operators and enhancing 
single-operation performance. In many scenarios, more powerful CPUs and 
accelerators, especially GPUs and DSPs, can significantly accelerate inference 
(Zhang et al. 2023). This encourages DL researchers to design models well-
suited for GPU computing, emphasizing operators with high parallelism while 
minimizing memory-intensive operations that hinder parallelism. 

Neural Network Hardware Accelerator. To design a reasonable scheduling 
mode in a complex and multi-application operating environment, it is vital to 
consider the relatively primitive driver management compared to CPU and GPU. 
There is a significant research opportunity to address this gap by introducing 
flexibility in SoCs to effectively handle and adapt to the evolving requirements 
of improved DL operations. The addition of flexibility can enhance silicon 
efficiency and lead to cost-friendly solutions. Consequently, the integration 
of dynamic reconfigurability into SoCs is expected. However, it is crucial 
to minimize power consumption and area in SoCs that incorporate extra 
logic. Therefore, research efforts focused on reducing power consumption and 
optimizing the area of such SoCs are actively pursued. 

DL Library Selection. It is crucial to assess the advantages and disadvantages 
of various DL libraries and devise a solution that can unify their strengths. 
Otherwise, the issue of inference performance fragmentation may persist for 
an extended period, as resolving it requires substantial engineering efforts. 
Achieving optimal performance in mobile DL applications often necessitates the 
integration of multiple DL libraries and dynamic loading based on the current 
model and hardware platform. However, this approach is seldom implemented 
due to the considerable overhead in terms of software complexity and develop-
ment efforts. There is a need for a more lightweight system that can harness the 
superior performance of different DL libraries. 

Developing Benchmarks. Proper benchmark standards are crucial for accurately 
evaluating the inference performance (Ren et al. 2023). To enable meaningful 
comparisons of DL models, optimization algorithms, and hardware platforms, a 
universal and comprehensive set of quality metrics specific to inference is essen-
tial. Currently, benchmark datasets and models predominantly focus on CNNs
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evaluated on the ImageNet (Azizi et al. 2023). To ensure a more comprehensive 
evaluation, it is necessary to develop additional benchmark datasets, libraries, 
and DL models that cover a wider range of applications and input data types. 
This will facilitate a more thorough assessment of inference performance. 

Explainability in Inference. The adoption of AI in critical domains has raised 
concerns about transparency and accountability. Explainable AI (XAI) aims to 
address these concerns by providing transparency in DL algorithms (Adadi & 
Berrada 2018). However, ensuring explainability in the context of intelligent 
inference remains a challenging and underexplored research area, particularly 
considering the trade-off between optimization and accuracy. Resolving this 
challenge is essential for the responsible deployment of AI. 

Complex Audio Processing Models. Most existing research focuses predom-
inantly on image-processing tasks, leaving a notable gap in the exploration 
of similar methods for audio-processing models. However, we posit that the 
techniques developed for image processing can also be effectively applied to 
these audio scenarios. Specifically, when addressing RNN-based models, such as 
LSTMs (Yu et al. 2019) and GRUs (Jiao et al. 2020), their recurrent nature intro-
duces dependencies between samples that are absent in CNNs. Consequently, this 
poses a challenge in offloading computations, as the RNNs must be transferred 
alongside the computation. While the partitioning strategies employed in prior 
studies demonstrate applicability to various DNN architectures by automatically 
identifying split-point dependencies, RNNs necessitate specialized treatment. 
The future of inference systems is expected to encompass a wide range of 
architectures and use cases, showcasing their versatility and applicability in 
various domains. 

Resource Allocation for Inference. The collaborative DNN inference applica-
tion scenarios are characterized by dynamic environments where future events 
are challenging to predict accurately. To effectively handle large-scale tasks, 
it is crucial to have robust online edge resource coordination and provisioning 
capabilities (Donta et al. 2023; Adadi & Berrada 2018; Dustdar & Murturi 2020; 
Alkhabbas et al. 2020; Tsigkanos et al. 2019). Real-time joint optimization of 
heterogeneous computing, communication, and cache resource allocation, along 
with customized system parameter configuration based on task requirements, is 
necessary. Addressing the complexity of algorithm design, an emerging research 
direction focuses on efficient resource allocation strategies driven by data-driven 
adaptive learning. 

Enhancing Security in Inference. Ensuring the credibility of services in dis-
tributed collaborative inference requires the design of a robust distributed 
security mechanism (Flamis et al. 2021; Sedlak et al. 2022). This mechanism 
plays a vital role in authenticating subscribers, controlling access to collaborative 
inference tasks, ensuring model and data security on devices, and facilitating 
mutual authentication between different devices. Furthermore, ongoing research 
explores the use of blockchain technology to enhance the security and privacy 
of devices and data in collaborative inference. This avenue holds promise and
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warrants further exploration in future collaborative DNN inference, particularly 
regarding privacy issues. 

9.9 Conclusion 

This chapter provides a comprehensive review of the current state of DL operating 
on IoT devices. It discusses various methods for accelerating DL inference across 
devices, edge servers, and the cloud, highlighting their utilization of the unique 
structure of DNN models and the geospatial locality of user requests in edge com-
puting. The analysis emphasizes the crucial trade-offs between accuracy, latency, 
and energy that need to be considered. Despite significant progress, numerous 
challenges persist, including performance improvements, hardware and software 
optimization, resource management, benchmarking, and integration with other 
networking technologies. These challenges can be overcome through technological 
innovations in algorithms, system design, and hardware accelerations. As DL 
innovation continues at a rapid pace, it is anticipated that new technical challenges 
in edge computing will arise, providing further opportunities for innovation. 
Ultimately, this review aims to stimulate discussion, attract attention to the field 
of inference, and inspire future research endeavors. 
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