
Towards IoT Processes on the Edge

Schahram Dustdar(B) and Ilir Murturi

Distributed Systems Group, TU Wien, Vienna, Austria
{dustdar,imurturi}@dsg.tuwien.ac.at

Abstract. Edge computing is a fundamental enabler for the prolifera-
tion of the Internet of Things (IoT). Resources, including compute and
storage, are increasingly located at the edge of the network and bridge
the gap between the cloud and IoT entities. Edge computing enables
low-latency, privacy-awareness, and resilient applications. Many of the
applications are in fact business process-based and are distributed over
edge as well as cloud resources. Edge devices can be used to analyze high-
volume IoT data streams for on-premises monitoring and alerting, and at
the same time to aggregate and forward these data to other premises or
the cloud for long-term storage and analytics. Many operational and busi-
ness challenges can be solved by running applications on edge resources
or on-premises of Edge-Cloud infrastructure. However, the broad range of
IoT application requirements concerning latency, QoS, or fault-tolerance,
combined with the heterogeneous and dynamic nature of edge networks,
make it particularly challenging to develop, configure, deploy, and oper-
ate such applications. In this paper, we discuss some of the research
issues with span the domains of business processes engineering and edge
computing.

Keywords: Edge-Cloud continuum · Distributed processes

1 Introduction

In recent years, the Internet of Things (IoT) has been diffused into the society,
and many services are constructed on the top of IoT technologies in various
industries such as Industrial Manufacturing, Healthcare, Lifestyle, Automotive,
and Smart Building, just to name a few. At the same time, it is well accepted
that a centralized architecture does not scale well regarding the enormous num-
ber of devices, although the system infrastructure of central computers process-
ing those data have improved by cloud computing technologies. In contrast to
a fully distributed and decentralized architecture (e.g., peer-to-peer network),
many IoT services need to maintain a partially centralized design to operate the
service. Nonetheless, the significant portion of decentralization is often achieved
by delegating functions from central servers to edge computing devices [1]. Edge
devices are essentially computers close to the edge of the network, hence, closer
to the sensors, which create the data streams to be processed later. Edge devices,
therefore, can be utilized to process data streams pumped into an IoT system
c© Springer Nature Switzerland AG 2021
M. Aiello et al. (Eds.): Papazoglou Festschrift, LNCS 12521, pp. 167–178, 2021.
https://doi.org/10.1007/978-3-030-73203-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73203-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-73203-5_13


168 S. Dustdar and I. Murturi

by providing analytics capabilities, providing decision functions as to which data
has to be forwarded to a cloud infrastructure or not and possibly also providing
decisions based on modeled business processes as well as business models.

Another important aspect in the age of the IoT is the heterogeneity of IoT
components. Several vendors provide different products not only across differ-
ent layers but also for the same type of components. Different products may
have different operating systems, available support for programming languages,
resource constraints, and so on. In contrast to our expectations, each device’s
functions are hard-coded in most of the current implementations. This causes
inflexibility and limited extensibility for future changes. This leads to a plethora
of point-to-point solutions being developed based on proprietary protocols. Any
change being made to one IoT component leads to many possible changes in
many other components thus leading to a situation which resembles the state of
software infrastructure in the age of enterprise computing before the emergence
of Web services and Service Oriented Architectures and their respective middle-
ware infrastructure such as Enterprise Service Bus (ESB). This insight led us to
(re-)design IoT systems into a distributed and decentralized architecture that is
scalable not only in numbers but also concerning its heterogeneity as well as its
notion of processes being supported.

A similar problem to managing heterogeneous entities with different func-
tionalities in highly distributed yet still partially centralized settings has been
addressed by business process management (BPM) for several years. Before the
establishment of business process engines (BPE), or workflow engines, processes
were directly implemented in information systems. In other words, tasks and
their sequences were hard-coded altogether in the source code of the informa-
tion system. This style of design causes inflexibility and low extensibility against
changes demanded from ones in business requirements. As a solution to this prob-
lem, BPEs enable overseeing the execution and maintenance of workflows and
their enactments with high flexibility and extensibility by integrating different
data sources and execution entities spread across IT applications and services.

1.1 Background

A business process consists of a set of related structured events, tasks, decisions,
inputs, and outputs. Events happen in the environment and trigger tasks in
a business process. Tasks are the smallest units, which can be performed by
various entities such as people, machines, or software within the business process.
A process may contain decisions based on certain business rules apart from the
process itself. Inputs can be physical goods or in-materialistic (such as filling out
a form and inputting data) required to complete a business process in question,
including information. A process produces outputs, which is the goal of the
process, to the environment.

A business process engine (BPE) is a software middleware overseeing the
technical instantiations of business processes and their associated activities. A
BPE copes with more than one application and services regardless of their layers



Towards IoT Processes on the Edge 169

(e.g., front-end, back-end, or middleware), boundaries (e.g., internal or exter-
nal services), or vendors. A BPE becomes involved in interlinking and inter-
processing between activities by routing and transforming data across differ-
ent components, rather than executing each activity itself. Those interlinks are
automated based on the process specification often given by a business process
modeling language, which the BPE supports. Users can change how activities
are interlinked by updating the process model.

Among others, BPE’s benefits in the context of BPM that are relevant to
the rest of this article can be summarized with two aspects: flexibility and mon-
itoring. Since a BPE separates each activity’s actual technical execution and
its coordination (orchestration), we can change the process specification with-
out changing the technical implementation, thus acquiring flexibility for future
changes, which might be referred to as extensibility or agility depending on the
context. Monitoring is a fundamental property of BPEs as it allows an under-
standing of utilized resources and their time as well as involved actors and addi-
tional auditing information.

1.2 Distributed Process Execution

Several approaches have been proposed to enable the distributed execution of
business processes. Essentially, the BPE engine is replicated among computation
entities (i.e., distributed clouds), and process activities are distributed among
available entities. Muthusamy et al. [2] presents a Service Level Agreement (SLA)
driven approach to BPM for service-oriented applications in environments such
as cloud computing platforms. Initially, the proposed approach decomposes a
business process into a set of dependent activities. Afterward, each activity is
mapped into a set of distributed computation entities (i.e., execution engines)
closer to the data sources. The coordination among activities (i.e., communica-
tion/messaging) is achieved by emitting and consuming events over the PADRES
distributed publish/subscribe platform. The proposed approach aims to mini-
mize the overall communication costs by executing process activities as closely
as possible to the data source. A comprehensive survey on the distributed exe-
cution of business processes is provided by Wutke [3].

A similar approach can be adopted in the context of Edge-Cloud contin-
uum systems. One the one hand, various mechanisms for resource coordination
[4], service deployment [5], controlling elasticity in application [6], IoT system
deployment [7], or monitoring [8] can be dynamically placed at the edge. On the
other hand, a service deployment mechanism provides functionality to accept
requests to deploy an IoT application (i.e., service) comprised of a set of small
tasks (i.e., microservices [9]) and distribute them into the Edge-Cloud infras-
tructure. When placing decision mechanisms at the edge, a challenging aspect
is each edge device’s resource capabilities. For instance, the service deployment
mechanism’s main prerequisite is the real-time monitoring of available resources
in the infrastructure. Placing both functions on the same edge device is computa-
tionally and network demanding; therefore, some functions should be delegated



170 S. Dustdar and I. Murturi

to available edge devices or other computation entities that meet their Qual-
ity of Service (QoS). Thereby, distributing functionalities and dynamically place
them in the heterogeneous and dynamic edge networks enable relieving com-
plex computations to occur on a single computation entity. The same appears
when considering distributing IoT application components over edge resources
or on-premises of Edge-Cloud infrastructure.

2 An Overview of Edge-Cloud Continuum

Edge computing is positioned as one important architectural layer in addition to
fog and cloud. It can be considered as paramount to systems including (but not
limited to) IoT deployments and the cloud, providing data and control facilities
to participating IoT devices. Up to now, several comprehensive surveys have
been published, describing the edge computing paradigm and its challenges [10,
11]. According to [12], the Edge-Cloud architecture is divided into three layers:
the cloud layer, the fog layer, and the edge layer (as illustrated in Fig. 1). A
comprehensive description for each layer is given below.

Fog node 
Service Providers

Cloud Layer

Fog Layer

Edge Layer

Fog Servers

Fog Servers

Smart City

Intelligent
Transportation

Smart Factory

Cloud 

Fig. 1. An overview of Edge-Cloud architecture.

2.1 The Edge Layer

The edge layer is the lowest layer of the architecture, which represents the edge
of the network. As can be denoted in Fig. 1, various domains such as smart city,



Towards IoT Processes on the Edge 171

intelligent transportation, or smart factories can benefit from available compu-
tation devices closer to the IoT domain. Essentially, this leads to having various
edge networks formed for different contexts. Generally speaking, edge networks
are highly dynamic, heterogeneous, and resource-constrained environments. Such
environments are composed of a set of low-powered end devices with various com-
putation capabilities (e.g., smartphones, smartwatches, Raspberry Pis, etc.) and
IoT resources (e.g., sensors, actuators, etc.).

Edge devices at this layer provide their computation and storing capabilities
to process the IoT data streams generated by IoT resources. Essentially, these
devices enable processing data streams as close as possible to the data sources
and handling the most substantial network traffic that may occur. Nevertheless,
resource-constrained edge devices do not pose the ability to process vast amounts
of data. Consequently, processing such data on a single edge device may cause
high-latency and poor overall performance. To overcome such challenges intro-
duced by resource-constrained devices, distributing processes become a crucial
aspect. Recent developments suggest adding more computation devices in edge
networks. Concretely, through forming peer-to-peer edge networks, the scope of
resources is extended, and the opportunity to distribute processes among devices
becomes feasible.

Edge-to-edge collaboration, respectively, an edge network, provides a seamless
opportunity for placing control mechanisms closer to the end-users, which results
in creating more autonomous environments and less dependent on the external
environments (i.e., cloud, or fog). For instance, in a smart home, residents should
be able to control their devices and process data locally without depending on
the cloud resources. However, it is worth noting that even though extending
resource scope through edge-to-edge collaboration provides many benefits, there
are still many complex tasks that cannot be processed at this layer. Thus, in such
situations, the edge devices must forward their processing to the upper layers
(i.e., fog or cloud systems).

2.2 The Fog Layer

The fog layer includes a set of powerful devices in charge of managing, con-
necting, and enabling sharing resources among different edge networks. This
layer essentially represents the external environment where several fog nodes are
connected, offering computation and storage resources for edge networks and
roaming end-devices in proximity. Similarly, fog devices (e.g., servers and base
stations) are connected, forming fog infrastructure. In contrast to the edge net-
works, the fog infrastructure tends to be composed of stationary and powerful
devices (typically maintained and provided by Telco operators). Several tasks
can be deployed at this layer, for example, processing data streams, caching,
device management, and privacy protection.

At first glance, one can note that both layers provide similar features. Gen-
erally speaking, edge and fog paradigms foresee enabling more computation
resources closer to the end-users and the IoT/sensor domain - at the edge of
the network, respectively. However, the most significant difference between the



172 S. Dustdar and I. Murturi

two layers is administrative differences and responsibilities. Furthermore, fog
nodes (e.g., deployed in base stations) may provide their services for larger geo-
graphical areas. For instance, intelligent transportation systems may benefit from
connecting and processing vehicle data in fog infrastructure [13].

Even though fog infrastructure provides more powerful devices, long-term
data storage is impractical—similarly, processing tasks with heavy computation
requirements are infeasible. Thus, in such situations, fog devices must forward
their data and heavy computation tasks to the upper layer. Nonetheless, both
layers provide low-latency services since the end-devices are closer to the source
where the data is produced and consumed.

2.3 The Cloud Layer

The cloud layer provides “unlimited” computational and storage resources. This
layer includes cloud servers that are deployed far away from the end devices and
the IoT domain. Essentially, the cloud-based servers perform computationally
intensive operations received from lower-layers of the architecture. Such envi-
ronments provide advanced features for both end-users and service providers,
such as performance configurations and security controls. Moreover, this com-
puting utility has been seen as a critical component for the development, deploy-
ment, and execution of IoT platforms promising to meet the general community’s
everyday needs.

Despite the numerous resources available, this paradigm faces increasing
challenges in meeting new IoT applications’ stringent requirements. At present,
geographically distributed IoT devices with intensive data generation cannot
efficiently utilize resources available in Cloud environments [12]. Transferring
intense and large amounts of data to a centralized cloud over Wide Area Net-
works (WAN) generates latencies and poses risks of service unavailability due
to the non-persistent connectivity or eventually scheduled system maintenance.
On the other hand, real-time distributed applications require fast response time,
high-availability, and increased privacy, which centralized environments such as
clouds often fail to fulfill.

3 Use Cases of Edge-Cloud Systems

3.1 Emergency Situations

To motivate our subsequent discussion, we consider emergencies such as natural
disasters (e.g., earthquakes, fires, floods) in the city. Emergencies like earth-
quakes may affect various city zones, which can damage infrastructure, cause
injury or loss of life, and trap people under buildings. In such situations, time
is valuable, and drones may be used to analyze the entire situation and help
rescue teams find and communicate with victims under a collapsed building. In
this scenario, we consider multiple connected drones (i.e., form an edge neighbor-
hood) flying over the city’s affected areas (i.e., neighborhoods) aiming to provide



Towards IoT Processes on the Edge 173

services for the rescue teams in finding victims under a collapsed building. Each
drone (i.e., edge node) is equipped with various computation capabilities and
integrated sensors (e.g., radar sensor, infrared cameras, etc.). We consider that
drones are multi-purpose devices where the rescue teams may request to deploy
various services depending on the emergency. Meanwhile, base stations may pro-
vide computational and storage capabilities (i.e., fog nodes) and provide docker
charge stations for charging drones. At the same time, cloud capabilities may be
used to store data for long terms.

E2

E3

E4

E1

Fog node 
 Charge station

Deploy services

4G/5G

Rescue team

Use services

Cloud

4G/5G Edge
neighborhood

(1)
(2)

(3)
(4)

En

(5)

Fig. 2. IoT public safety service.

We assume that a rescue team deploys (1) a public safety IoT service that
detects a dangerous zone in the affected area (i.e., discovering cracks, smoke,
hazardous gases, etc.) (as illustrated in Fig. 2). Such service aims at assisting
rescue teams (2) in finding a safe path and avoiding dangerous zones. The ser-
vice is dependent on various resources such as multiple infrared cameras, radar
sensors, and an electronic nose that are integrated into numerous drones. Since
each drone is a potential candidate to run the service, it is evident that each
node should be able to automatically discover resources in a decentralized man-
ner and make them available at runtime. In such use case scenarios, we cannot
depend on physically static entities to provide their services (3–4). Additionally,
the edge neighborhood cannot be built as a centralized edge-system and depen-
dent on particular nodes. This due to the network dynamicity (i.e., drones may
join (5) and leave often), connectivity and latency issues, and the master drone
may run out of energy or get out of the connection range. As a result, shift-
ing various processes closer to the edge and dynamically place them in the most
suitable nodes is crucial. Thus, deploying decentralized decision mechanisms and
dynamically placing them makes edge networks autonomous environments and
less dependent on centralized nodes that are located far away.



174 S. Dustdar and I. Murturi

3.2 Smart Building Evacuation

The building evacuation is another example that can benefit from enabling the
executing of various processes on edge. We consider a smart building, equipped
with an infrastructure that supports inhabitants to evacuate the building safely
in case of fire. On each floor, several IoT sensors are deployed and connected
to servers (e.g., fog nodes) through edge gateways. We consider a goal-driven
IoT system (GDS) [7], which is composed of a set of devices with individual
functionalities that connect and cooperate temporally to achieve the user goal.
For instance, in a smart meeting room, a GDS could be dynamically formed by
connecting the motion detection sensor, smart screen, and speakers to achieve
the goal (e.g., safe evacuation). The motion detection sensor detects the presence
of the people. The smart screen displays the location(s) of the fire and possible
safe paths for evacuation. Speakers also play a voice message asking people to
evacuate the building.

The servers are responsible for dynamically forming and enacting GDSs that
facilitate the evacuation of the building. Essentially, each computation entity
may become responsible for forming and enacting GDSs seamlessly. Assume
that communication between the edge gateways on one floor and the on-premise
server is lost, e.g., due to the fire. The edge gateway decides whether to connect
to the cloud or collaborate with other edge devices to form and enact GDSs
automatically. In case the connection to the cloud can not be established, or due
to the high-latency, the edge gateways collaborate to form and enact GDSs at
the edge network. Generally speaking, such GDSs include fewer IoT sensors and
should require less computational resources compared to those formed by the
fog or the cloud. As a result, deploying IoT systems at the edge overcomes many
undesired and critical situations.

4 Distributed Processes on the Edge

In the past few years, researchers in edge and fog computing have been mostly
focused on proposing multiple techniques for resource allocation problems aiming
to minimize various trade-offs such as latency, bandwidth, energy consumption,
or maximizing the utilization of resources at the edge. In general, IoT appli-
cations and their associated business process models are deployed according to
the following models [14]: i) everything in the cloud, ii) everything in the edge,
and iii) hybrid edge-cloud model. Essentially, allocation techniques may deploy
software components entirely on a single environment (e.g., cloud or edge) [5],
or components are deployed and executed in both cloud and edge.

Recent developments within distributed systems have led to emerging com-
mercial cloud-based IoT and cloud/edge integration solutions. Edge computing
platforms such as EdgeX Foundry1, AWS IoT Greengrass2, or Google IoT Edge3

1 https://www.edgexfoundry.org/.
2 https://aws.amazon.com/greengrass/.
3 https://cloud.google.com/solutions/iot.

https://www.edgexfoundry.org/
https://aws.amazon.com/greengrass/
https://cloud.google.com/solutions/iot


Towards IoT Processes on the Edge 175

promise to bridge the gap between the IoT and the cloud by providing a flex-
ible runtime for applications running at the edge. However, these systems are
extremely limited in their operational capabilities, missing elasticity features, and
lack of self-adaptive mechanisms required in dynamic edge and IoT settings.

In general, the proposed solutions assumed that application demands remain
static and do not change over time. This implies that hardware resources are
reserved more than needed to guarantee application functionality when the
workload is increased. However, over-provisioning in resource-constrained edge
infrastructures is highly impractical, resource-expensive, and decreases system
performance considerably. Furthermore, application developers or end-users can-
not specify QoS and elastic requirements of the application, as well as there is
no mechanism support to enact them. To fill this gap, we identify challenges and
potential solutions that the IoT applications deployed in Edge-Cloud architec-
ture must overcome to fulfill their full potential.

4.1 IoT Application Requirements

Future IoT systems for the described Edge-Cloud continuum architectures need
to hide their operational complexity from application developers. In particular,
programmers should not have to deal with the heterogeneity of the edge network
setting. For instance, developers should be able to express the context in which
IoT application components are allowed to run and their requirements (e.g., QoS,
elastic requirements, etc.) in a high-level way [15]. In particular, identifying the
current and future demands of IoT applications from various areas is decisive
for any contemporary IoT system’s success. However, this necessitates that the
programming model is intuitive for developers but expressive enough to help
the execution system perform runtime decisions on (re)scheduling and scaling
operations.

To overcome such challenges, as a potential candidate for defining these
requirements, we consider a declarative language called Simple Yet Beautiful
Language (SYBL) [6] and its runtime mechanism for controlling elasticity in
applications. SYBL enables the user to specify elastic requirements at different
granularities and enables applications to scale in elasticity space (cost, resources,
and quality). In essence, SYBL allows the user to define: i) monitoring (i.e.,
specifying metrics to be monitored), ii) constraints (i.e., specifying the limits in
which the monitored metrics are allowed to oscillate), iii) strategies (i.e., speci-
fying actions to be taken when a constraint is violated), and iv) priorities (i.e.,
specifying constraints priority to be executed first). Furthermore, SYBL pro-
vides features such as enabling the user to achieve various trade-offs, such as
specifying demands on the relation between cost, resources, and quality. For
instance, when the cost is high, the IoT application needs to scale up to achieve
higher service quality. Or, the IoT application should scale down in order to
optimize the usage and the cost. Nevertheless, an extension to the language, as
well as to the runtime mechanism, is required. Moreover, developing novel high-
level constraints and enforcement strategies related to the IoT applications and
Edge-Cloud architecture is crucial.



176 S. Dustdar and I. Murturi

4.2 IoT System Deployment and Resilient Application Runtime

As we explore new IoT systems, IoT applications, and the heterogeneous edge
networks, distributing system components and application processes among var-
ious computation entities becomes increasingly apparent. For instance, an IoT
system can comprise a set of dependent software components (i.e., controlling
module, scheduler, resource manager, etc.) that can be deployed individually on
multiple edge devices. Thus, we analyze and discuss the pros and cons of three
main IoT system architectures that enable distributing application tasks among
edge devices, such as centralized, distributed, and decentralized.

In the centralized architecture, a single edge device acts as a master device
responsible for monitoring and distributing tasks among other available compu-
tation entities in the Edge-Cloud continuum. In essence, placing a set of func-
tionalities on a single edge device may be feasible in the context of small and
non-dynamic edge networks (e.g., smart homes). As mentioned previously, cen-
tralized architecture does not scale easily, while a master edge device may be
overwhelmed quickly due to resource limitations. In contrast, the distributed
solution treats all edge devices equally in terms of system responsibilities. In
an environment without a master device, nodes in proximity are consensually
coordinated and distribute processes to some SLA agreement. In practice, dis-
tributed solutions may face latency issues when nodes need to find consensus
to distribute processes, and the number of nodes in topology is limited. How-
ever, regardless of the approach, both solutions may have plenty of advantages
in various IoT scenarios.

In the decentralized architecture, the master device functionalities may be
placed statically (i.e., at design time) or dynamically (i.e., with self-adaptive
capabilities). However, the dynamic nature of edge networks requires the con-
tinuous re-evaluation of placement decisions for such functionalities. Thus, a
possible solution is considering election based algorithms. For instance, through
initiating an election between edge devices, the most suitable node (e.g., in terms
of computation power) is elected as a master device. In fact, through exchanging
election results, nodes in the network come to the same result independently of
each other. Such a solution denotes a very decentralized approach to automat-
ically electing the master device and succeeding over the challenges introduced
by mobile devices and possible failures in edge networks. However, to overcome
the obstacles with resource-constrained edge devices, further improvements are
required. For instance, the master device must delegate various functionalities
to other nodes to handle the computation and network overheads.

To overcome such aforementioned challenges, a possible solution is to elect new
coordinators (i.e., superpeers [16]) in the system. Each coordinator is responsi-
ble for managing a set of nodes in the edge network. As the network size grows,
new coordinators are introduced on the system as well. In particular, coordina-
tors provide similar functionalities as the master device. However, the master
device becomes a supervising node responsible for managing coordinators, moni-
toring, and distributing applications among coordinators. For instance, a user can
submit a request to the master device for application deployment. The master



Towards IoT Processes on the Edge 177

device examines his/her geographically location and asks the closest coordinators
to determine if their group can meet the application requirements. Afterward, the
coordinator who fulfills application demands gets the application and distributes
it to the group’s edge devices. Nevertheless, various scheduling algorithms, com-
munication protocols, self-adaption techniques, and monitoring tools are required
to deploy IoT systems in a decentralized manner.

Another important aspect is executing software components on heteroge-
neous environments (i.e., edge layer, fog layer, or in the cloud layer). To this
end, we require a homogeneous runtime platform that follows the “run once,
run anywhere” model. Thus, to overcome such challenges, as a potential candi-
date for executing IoT applications, we consider Docker4 or Java-based OSGi5.
Nevertheless, an extension is required for the runtime mechanism to monitor the
edge device’s real-time internal resources (e.g., CPU, memory, storage), network
QoS, and application performance (e.g., application responsiveness).

5 Summary and Conclusions

In recent years, processing IoT data streams closer to the end-users and IoT
domain has received significant attention from the research community and
industry stakeholders. Enabling to process data closer to the end-user can
solve several operational and business challenges. Since then, we have seen a
rapidly increasing number of available resources in IoT infrastructures. Essen-
tially, resources with computation and storage capabilities (i.e., perceived as edge
devices) promise to offer various services and enable processing data with low-
latency, high-availability and increased privacy. However, with acquainting new
IoT scenarios and their stringent requirements (i.e., latency, QoS, dynamicity,
or fault-tolerance), deploying IoT systems and processing data on a single edge
device becomes impractical. To that end, in this paper, we discussed some of the
research issues and the necessity of decentralizing IoT systems and distributing
processes among devices at the edge.

Acknowledgment. Research supported by the Research Cluster “Smart Communi-
ties and Technologies (Smart CT)” at TU Vienna.

References

1. Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81
(2016)

2. Muthusamy, V., Jacobsen, H.-A.: BPM in cloud architectures: business process
management with SLAs and events. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM
2010. LNCS, vol. 6336, pp. 5–10. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15618-2 2

4 https://www.docker.com/.
5 https://www.osgi.org/.

https://doi.org/10.1007/978-3-642-15618-2_2
https://doi.org/10.1007/978-3-642-15618-2_2
https://www.docker.com/
https://www.osgi.org/


178 S. Dustdar and I. Murturi

3. Wutke, D.: Eine infrastruktur für die dezentrale ausführung von bpel-prozessen
(2010)

4. Tsigkanos, C., Murturi, I., Dustdar, S.: Dependable resource coordination on the
edge at runtime. Proc. IEEE 107(8), 1520–1536 (2019)

5. Avasalcai, C., Dustdar, S.: Latency-aware distributed resource provisioning for
deploying IoT applications at the edge of the network. In: Arai, K., Bhatia, R.
(eds.) FICC 2019. LNNS, vol. 69, pp. 377–391. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-12388-8 27

6. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: an extensible language
for controlling elasticity in cloud applications. In: 2013 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud, and Grid Computing, pp. 112–119. IEEE
(2013)

7. Alkhabbas, F., Murturi, I., Spalazzese, R., Davidsson, P., Dustdar, S.: A goal-
driven approach for deploying self-adaptive IoT systems. In: IEEE International
Conference on Software Architecture (ICSA 2020), pp. 1–11. IEEE (2020)

8. Bajrami, X., Murturi, I.: An efficient approach to monitoring environmental con-
ditions using a wireless sensor network and NodeMCU. e & i Elektrotechnik und
Informationstechnik, 135(3), 294–301 (2018)

9. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60(4), 64–72 (2017)

10. Shi, W., Cao, J., Zhang, Q., Li, Y., Lanyu, X.: Edge computing: vision and chal-
lenges. IEEE Internet of Things J. 3(5), 637–646 (2016)

11. Avasalcai, C., Murturi, I., Dustdar, S.: Edge and fog: a survey, use cases, and future
challenges. Fog Comput. Theory Pract. 43–65 (2020)

12. Dustdar, S., Avasalcai, C., Murturi, I.: Edge and fog computing: vision and research
challenges. In: 2019 IEEE International Conference on Service-Oriented System
Engineering (SOSE), pp. 96–9609. IEEE (2019)

13. Hussain, M.M., Alam, M.S., Sufyan Beg, M.M.: Fog computing model for evolving
smart transportation applications. Fog Edge Comput. Principles Paradigms 22(4),
347–372 (2019)

14. Ashouri, M., Davidsson, P., Spalazzese, R.: Cloud, edge, or both? towards decision
support for designing IoT applications. In: 2018 Fifth International Conference on
Internet of Things: Systems, Management and Security, pp. 155–162. IEEE (2018)

15. Dustdar, S., Guo, Y., Satzger, B., Truong, H.-L.: Principles of elastic processes.
IEEE Internet Comput. 15(5), 66–71 (2011)

16. Jesi, G.P., Montresor, A., Babaoglu, O.: Proximity-aware superpeer overlay topolo-
gies. In: Keller, A., Martin-Flatin, J.-P. (eds.) SelfMan 2006. LNCS, vol. 3996, pp.
43–57. Springer, Heidelberg (2006). https://doi.org/10.1007/11767886 4

https://doi.org/10.1007/978-3-030-12388-8_27
https://doi.org/10.1007/978-3-030-12388-8_27
https://doi.org/10.1007/11767886_4

	Towards IoT Processes on the Edge
	1 Introduction
	1.1 Background
	1.2 Distributed Process Execution

	2 An Overview of Edge-Cloud Continuum
	2.1 The Edge Layer
	2.2 The Fog Layer
	2.3 The Cloud Layer

	3 Use Cases of Edge-Cloud Systems
	3.1 Emergency Situations
	3.2 Smart Building Evacuation

	4 Distributed Processes on the Edge
	4.1 IoT Application Requirements
	4.2 IoT System Deployment and Resilient Application Runtime

	5 Summary and Conclusions
	References




