
1

Scheduling Multi-Server Jobs with Sublinear
Regrets via Online Learning

Hailiang Zhao, Shuiguang Deng, Senior Member, IEEE, Zhengzhe Xiang, Xueqiang Yan, Jianwei Yin,
Schahram Dustdar, Fellow, IEEE , and Albert Y. Zomaya, Fellow, IEEE

Abstract—Nowadays, multi-server jobs, which request multiple computing devices and hold onto them during their execution,
dominate modern computing clusters. When allocating computing devices to them, it is difficult to make the tradeoff between the
parallel computation gains and the internal communication overheads. Firstly, the computing gain does not increase linearly with
computing devices. Secondly, the device type which dominates the communication overhead is various to different job types. To
achieve a better gain-overhead tradeoff, we formulate an accumulative reward maximization program and design an online algorithm,
i.e., OGASCHED, to schedule multi-server jobs. The reward of a job is formulated as the parallel computation gain aggregated over the
allocated computing devices minus the penalty on the dominant communication overhead. OGASCHED allocates computing devices to
each arrived job in the ascending direction of the reward gradients. OGASCHED has a best-so-far regret with concave rewards, which
grows sublinearly with the number of job types and the time slot length. OGASCHED has several parallel sub-procedures to accelerate
its computation, which greatly reduces the complexity. We conduct extensive trace-driven simulations to validate the performance of
OGASCHED. The results demonstrate that OGASCHED outperforms widely used heuristics by 11.33%, 7.75%, 13.89%, and 13.44%,
respectively.
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1 INTRODUCTION

In today’s computing clusters, many jobs request multiple
computing devices (CPUs, GPUs, etc) simultaneously and
hold onto them during their executions. Typical jobs are
large-scale graph computations and distributed DNN model
trainings [1]. These jobs are referred as multi-server jobs [2],
[3]. Multi-server jobs of diverse device requirements, along
with the other jobs, arrive to the cluster online, which puts
great pressure to current schedulers to achieve a high system
efficiency.

For multi-server jobs, when allocating multiple comput-
ing devices to them, it is difficult to make the tradeoff
between the parallel computation gains and the internal com-
munication overheads. For each multi-server job, the parallel
computation gain is modeled as the speedup on the comple-
tion time with multiple devices, which could be fitted with a
utility function [4]. Correspondingly, the internal communi-
cation overhead is modeled as the cost or latency caused by
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data synchronization and related operations between these
devices. To make a better tradeoff, we need to fully take the
following features of multi-server jobs into consideration.

• The marginal effect of the computation gains decreases.
For instance, in the distributed training of DNNs,
adding Parameter Servers (PSs) or workers (which
request more computing devices) does not improve
the training speed linearly. This is because the av-
eraging of local gradients also takes more time to
finish in each epoch [1], [4]. As a result, in the cluster
of limited resources, it is challenging to allocate an
appropriate number of computing devices to each
job to maximize the overall gains of all jobs.

• The type of device which dominates the communication
overhead is various to different job types. For example,
in Spark, the dominant communication overhead of
the Big Query jobs, which are generally organized as
workflows of tasks, lies in the internal input-output
data transferring between the interdependent CPU-
and memory-intensive tasks [5]. However, the dom-
inant overhead of the distributed training of DNNs
lies in the data averaging and synchronizing between
the GPU-intensive workers [6]. This variety greatly
complicates the analysis on the gain-overhead trade-
off formally.

Despite the vast literature on the online scheduling algo-
rithms and policies [1], [4], [6], [7], [8], [9], [10], [11], their
model formulation and theoretical analysis which place
emphasis on the gain-overhead tradeoff is limited. To fill
the theoretical gap, in this paper, we propose an online
scheduling algorithm, termed as OGASCHED, to learn to
allocate computing devices to multi-server jobs to maximize
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the overall system efficiency, i.e., the resource utilization per
computing device. We try to analyze the tradeoff in a generic
way. The generality is embodied in the following points.
First of all, different from the specific works on deep learn-
ing jobs [4], [6], [1] or query jobs [5], we allow different types
of multi-server jobs to co-locate in the cluster which consists
of heterogeneous computing instances. Different job types
can have different computing device requirements while
different computing instances can be equipped with diverse
quantities and types of computing devices. Secondly, we
adopt general zero-startup non-decreasing utility functions
to model the computation gains in terms of the completion
times. Compared to existing literature, we allow the utilities
to be diverse in their level of concavity. Specifically, we pro-
vide both analysis and experiments on linear, polynomial,
logarithmic, and reciprocal utilities. Thirdly, we makes no
assumptions on the arrival patterns of multi-server jobs.
OGASCHED requests no knowledge on the job arrival dis-
tributions but tries to learn them to make better scheduling
decisions.

In our model formulation, the overall system efficiency
is expressed by the accumulative reward. Time is slotted,
and the accumulative reward is obtained by summing up
the rewards of each time, where a single-time reward is
a linear aggregation of each job’s reward. Further, a job’s
reward at each time is designed as the achieved parallel
computation gain aggregated over the allocated computing
devices minus the penalty on the dominant communication
overhead. At each time, OGASCHED allocates computing
devices to each arrived job in the direction that makes the
gradient of the reward increase. OGASCHED is capable of
handling high dimensional inputs in stochastic scenarios
with unpredictable behaviors. We adopt regret, i.e., the gap
on the accumulative reward between the proposed online al-
gorithm and the offline optimum achieved by an oracle [12],
to analyze the performance lower bound of OGASCHED. We
prove that, OGASCHED has a State-of-the-Art (SOTA) regret,
which is sublinear with the time slot length and the number
of job types. This work fulfills one of the key deficiencies
of the past works in the modeling and analysis of the gain-
overhead tradeoff for multi-server jobs. The contributions
are summarized as follows.

• For the online scheduling of multi-server jobs, we
propose an algorithm, i.e., OGASCHED, to learn to
strike the balance between the computation gain
and the communication overhead. OGASCHED has
no assumptions on the job arrival patterns. With a
nice setup (defined in Sec. 3.1), OGASCHED achieves
a SOTA regret O

(√
|L|T

)
for general concave non-

linear rewards, where T is the time slot length, and L
is the set of job types. To the best of our knowledge,
this is the first work that provides a regret which
grows sublinearly with the number of job types.

• OGASCHED is accelerated by well designed parallel
sub-procedures. The parallelism helps yield a com-
plexity of O

(
log(K)

)
, where K is the number of

device types.
• We conduct extensive trace-driven simulations to

validate the performance of OGASCHED. The sim-
ulation results show that OGASCHED outperforms

widely used heuristics including DRF [13], FAIR-
NESS, BINPACKING, and SPREADING by 11.33%,
7.75%, 13.89%, and 13.44%, respectively. We also
provide large-scale validations.

The rest of this paper is organized as follows. We for-
mulate the online scheduling problem for multi-server jobs
in Sec. 2. We then present the design details of OGASCHED
with regret analysis and discuss its extensions in Sec. 3. We
demonstrate the experimental results in Sec. 4, and discuss
related works in Sec. 5. Finally, we conclude this paper in
Sec. 6.

2 BIPARTITE SCHEDULING WITH REGRETS

We focus on a cluster of heterogenous computing instances
serving several types of multi-server jobs. Different com-
puting instances are configurated with different types and
quantities of computing devices, including GPUs, NPUs,
TPUs, FPGA acceleration cards, etc. Jobs of different types
have different demands on the computing devices.

2.1 Online Bipartite Scheduling

We use a bipartite graph G = (L,R, E) to model the job-
server constraints, as shown in Fig. 1. In graph G, L is the set
of job types and indexed by l whileR is the set of computing
instances and indexed by r. The connections between the
job types and the computing instances are recorded in E .
Because of the job-server constraints, type-l job may only be
served by a subset ofR. We denote the subset byRl = {r ∈
R | (l, r) ∈ E}. Similarly, we use Lr = {l ∈ L | (l, r) ∈ E}
to represent the set of job types that connect to computing
instance r. We designate each job type l ∈ L as port and each
connection (l, r) ∈ E as channel. G is called right d-regular iff
the indegree of each right vertex is d, i.e., ∀r ∈ R, |Lr| = d.

job arrvials

ports computing instanceschannels

job arrvials

job arrvials

(capacity limits)(service locality)(job types)

time slots

L
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Fig. 1. The bipartite graph model for online job scheduling.

Time is discretized, and at each time t ∈ T , {1, ..., T},
from each port, at most one job yields. Let us use

x(t) =
[
xl(t)

]
l∈L
∈
{

0, 1
}|L|

(1)

to describe the job arrival status at time t. The cluster has
K types of computing devices, and computing instance r
has ckr type-k devices, where k ∈ K , {1, 2, ..,K}. For each
type-l job, we denote its requirements on each device by
al = [akl ]k∈K ∈ N|K|. At time t, we use

y(t) =
[
yk(l,r)(t)

]
l∈L,r∈Rl,k∈K

∈ R
∑

l∈L |Rl|×K (2)
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to represent the scheduling decision. Here we allow yk(l,r)(t)

to be fractional1, which can be implemented with time-
sharing and checkpoint techniques [15], [16], [14].

The first constraint y(t) should satisfy is that, on each
computing instance, a job should not be allocated with
computing devices more than it requires. Formally, we have

0 ≤ yk(l,r)(t) ≤ akl ,∀l, r, k, t. (3)

The second constraint y(t) should satisfy is that, the com-
puting devices allocated out from a computing instance
should not more than it has:∑

l∈Lr

yk(l,r)(t) ≤ ckr ,∀r, k, t. (4)

Let us use Y ,
{
y ∈ R

∑
l∈L |Rl|×K | (3) and (4) hold

}
to

represent the solution space.

2.2 Regret Minimizing
The performance metric we use for online bipartite schedul-
ing is the gain obtained by the parallel computations minus
the penalty introduced by the dominant communication
overheads. Specifically, we denote by ql

(
x(t),y(t)

)
the re-

ward of port l at time t , and it is formulated as

ql
(
x(t),y(t)

)
= xl(t)

[∑
k∈K

fk
( ∑
r∈Rl

yk(l,r)(t)
)
−

max
k∈K

{
βk
∑
r∈Rl

yk(l,r)(t)
}]
. (5)

In this formulation, the first part,
∑
k∈K fk(

∑
r∈Rl

yk(l,r)(t)),
is the parallel computation gain, which is linearly aggre-
gated over each type of computing devices. fk(·) is the
gain achieved by

∑
r∈Rl

yk(l,r)(t) type-k computing devices
collaboratively, where fk(·) is a zero-startup concave utility
defined in R+. Note that

∑
r∈Rl

yk(l,r)(t) is the quota of the
type-k computing devices allocated to the port-l job. As
we have analyzed before, {fk(·)}k∈K are concavity because
the marginal effect of parallel computation decreases suc-
cessively when increasing participated computing devices
[17], [18]. We expect {fk(·)}k∈K to be continuously differ-
entiable because the property helps design a policy that
yields a nice lower bound of the reward. The details will
be demonstrated in Sec. 3.3. If {fk(·)}k∈K are not differen-
tiable everywhere, we can apply subgradient ascent related
techniques in the policy design. The second part in (5) is
maxk∈K

{
βk
∑
r∈Rl

yk(l,r)(t)
}

, which reflects the dominant
weighted communication overheads over different types of
computing devices. Take the distributed training of DNNs
as an example, the dominant communication overhead lies
in the averaging and synchronizing of gradients over GPUs
[19], [20]. {βk}k∈K are the coefficients to balance the gain
and the overhead. W.L.O.G., we set each βk ∈ [0, 1]. The-
oretically, the second part of (5) is actually a penalty, the
minimization of which guides the scheduling decisions to
balance the communication overheads of different device
types. Our reward design encourages each job to be served

1. Currently, Machine-Learning-as-a-Service (MLaaS) platform, such
as Alibaba PAI, supports GPU sharing in a space- and time-multiplexed
manner by intercepting CUDA APIs [14].

with the balance between the computation gain and the
communication overhead being striked.

We define the overall reward at time t as the linear aggre-
gation over each port: q

(
x(t),y(t)

)
=
∑
l∈L ql

(
x(t),y(t)

)
.

Based on this, the accumulative reward of scheduling
policy π over the time horizon T is obtained by sum-
ming up the rewards obtained at each time until T :
Qπ
(
{x(t)}T1 , {y(t)}T1

)
=

∑
t∈T q

(
x(t),y(t)

)
, where the

scheduling decisions {y(t)}T1 are made under the guidance
of policy π. In the following, we just use Q and drop the
superscript π for simplification.

We do not make any assumption on the distribution of
the job arrival trajectory {x(t)}T1 . To obtain a non-trivial
performance measure, we cast the multi-server bipartite
scheduling problem into the framework of online learn-
ing, which prompts us to compare the performance of the
online policy π with the best offline stationary policy π∗

[21], [22]. Let us denote by y∗ the optimal offline station-
ary resource allocation decision guided by policy π∗, i.e.,
y∗ = arg supy∈Y Q

(
{x(t)}T1 ,y

)
. Physically, y∗ is the opti-

mal stationary resource reservation decisions for each port
whatever the actual job arrival status x(t) is. Formally, we
define the regret RπT

(
{x(t)}T1

)
for the job arrival trajectory

{x(t)}T1 as

RπT

(
{x(t)}T1

)
, Q

({
x(t)

}T
1
,y∗

)
−Q

({
x(t)

}T
1
,
{
y(t)

}T
1

)
.

The final regret of policy π is further defined as the maxi-
mum regret achieved over every possible job arrival trajec-
tory:

RπT , sup
∀{x(t)}T1

RπT

({
x(t)

}T
1

)
. (6)

Our goal is to find a policy π, under which a sequence
of bipartite scheduling decisions {y(t)}T1 is yielded, to min-
imize RπT .

3 ONLINE GRADIENT ASCENT

To minimize the regret RπT , we resort to an online variant of
the gradient-based methods, online gradient ascent (OGA)
[23]. A series of recent works have prove that OGA achieves
the best possible regret for online caching problems in
different network settings when the rewards are linear [22],
[24], [25], [26]. In this paper, we extend OGA to the online
bipartite scheduling problem for multi-server jobs with non-
linear rewards. Before demonstrating the design details, we
firstly give some preliminary definitions and analysis.

3.1 Preliminaries
Definition 1. NICE SETUP. If all the utilities {fk}k∈K are (i)
linearly separable over computing instances, i.e.,

fk
( ∑
r∈Rl

yk(l,r)

)
=
∑
r∈Rl

fkr

(
yk(l,r)

)
, (7)

and each concave utility fkr (·) is (ii) continuously differentiable
in R+, and (iii) there exist $k

r > 0 such that

(fkr )′(0) ≤ $k
r ,∀r, k, (8)

we say this is a nice setup.

The following proposition shows the convexity of the
regret minimization problem.
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Algorithm 1: OGASCHED

Input: Graph G, requirements a, and capacities c
Output: Scheduling decisions {y(t)}t∈T

1 Initialize y(1) ∈ Y and η0
2 for t from 1 to T do
3 Observe the job arrival status x(t)
4 Calculate the gradient ∇q

(
x(t),y(t)

)
with (9)

5 z(t+ 1)← y(t) + ηt∇q
(
x(t),y(t)

)
6 for each (r, k) in zip(R,K) do in parallel
7 Sort the elements of zk(:,r)(t+ 1) in

descending order
8 first← True
9 while True do

10 B2rk ← ∅
11 if first then
12 B1rk ← ∅,B3rk ← Lr, ŷ ← 0

13 else
14 if ŷk(1,r) > ak1 then
15 B1rk ← {1},B3rk ← Lr\{1}
16 else
17 break

/* Repeat loop */

18 repeat
19 Calculate ρkr with (13)
20 for l ∈ Lr do
21 if l ∈ B1rk then
22 ŷk(l,r) ← akl

23 else if l ∈ B3rk then
24 ŷk(l,r) ← zk(l,r)(t+ 1)− ρkr/2
25 if ŷk(l,r) < 0 then
26 Srk ← {l, l + 1, ..., |Lr|}
27 break

28 B3
rk ← B3

rk\Srk, B2
rk ← B2rk ∪ Srk

29 until Srk = ∅;
30 first← False

31 y(t+ 1)← ŷ
32 Update ηt+1 from ηt

33 return the sequence of decisions {y(t)}t∈T

Proposition 1. CONVEXITY. (i) The feasible solution space Y
is convex. (ii) With a nice setup, at each time t, the single-slot
reward function q

(
x(t),y(t)

)
is a concave function of y(t).

As a continuously differentiable concave function of
y(t), the derivative of q(·) at time t is

∂q
(
x(t),y(t)

)
∂yk(l,r)(t)

=

{
xl(t)

(
(fkr )′

(
yk(l,r)(t)

)
− βk

)
k = k∗

xl(t)(f
k
r )′(yk(l,r)(t)) o.w.,

(9)
where k∗ is defined as

k∗ = argmax
k∈K

{
βk
∑
r∈Rl

yk(l,r)

}
. (10)

3.2 Online Gradient Ascent

In this section, we give the design details of the OGA-based
bipartite scheduling policy.

Definition 2. THE OGA POLICY. With any feasible initial
bipartite scheduling decision y(1) ∈ Y , at each time t ∈ T ,
the OGA policy gets y(t + 1) in the direction of ascending the
gradient of q

(
x(t),y(t)

)
:

y(t+ 1) = ΠY
(
y(t) + ηt∇q

(
x(t),y(t)

))
, (11)

where ηt is the step size, and ΠY(z) = argminŷ∈Y
∥∥ŷ − z∥∥2

2
is

the Euclidean projection of z onto Y .

To implement the projection for large-scale scenar-
ios with low complexity, we propose OGASCHED. Before
demonstrating the design details, we firstly introduce the
KKT conditions of the projection:

∀l, r, k :


2
(
ŷk(l,r) − zk(l,r)

)
+ ρkr = 0∑

l∈Lr
ŷk(l,r) = ckr & ρkr > 0

ŷk(l,r) = akl & µkl,r > 0

ŷk(l,r) = 0 & λkl,r > 0.

(12)

where ρ is the dual variable for (4), µ is the dual variable
for y(t) ≤ a, and λ is the dual variable for y(t) ≥ 0.

For each r ∈ R and each k ∈ K, we divide the ports
l ∈ L into three disjoint sets:

B1rk =
{
l ∈ Lr | ∀(l, r, k) : ŷk(l,r) = akl

}
B2rk =

{
l ∈ Lr | ∀(l, r, k) : ŷk(l,r) = 0

}
B3rk =

{
l ∈ Lr | ∀(l, r, k) : 2

(
ŷk(l,r) − zk(l,r)

)
+ ρkr = 0

}
,

where

ρkr =
2

|B3rk|

( ∑
l∈B3

rk

zk(l,r) − ckr +
∑
l∈B1

rk

akl

)
,∀r, k. (13)

Our algorithm, termed as OGASCHED, works by solving
the equation system (12) iteratively. The number of pro-
jections is linearly propotional to the size of the solution’s
dimensions, i.e.,

∑
l∈L |Rl|×K . Nevertheless, we can do the

projections for different combinations of r and k in parallel
because they are not interwoven. Thus, the time complexity
of OGASCHED is of O

(
|L| × log(K

∑
l∈L |Rl|)

)
in each

time slot, where the log(·) operator comes form the sorting
operation (step 7). The multiplier |L| outside log(·) comes
from the repeat loop (step 18 ∼ step 29). In our experiments,
the repeat loop’s execution count is significantly less than
the number of job types |L|.

3.3 Regret Analysis

In this section, we discuss the regret of OGASCHED. The
main result is summarized in Theorem 1.

Theorem 1. REGRET UPPER BOUND. With a nice setup, the
regret of OGASCHED is upper bounded by

ROGASCHED
T ≤

√
2T
∑
k∈K

∑
r∈R

ākckr

×
√∑
l∈L

∑
r∈Rl

(
(β∗)2 +K($∗r)2

)
, (14)
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where āk = maxl∈L a
k
l , β∗ = maxk∈K βk, and $∗r =

maxk∈K$
k
r .

Proof. The result is based on the non-expansiveness prop-
erty of Euclidean projection and the concavity of {fkr (·)}r,k.
Our proof has two parts. The first part gives the general
form of the upper bound while the second part gives the
specific upper bounds of involved variables.

At each time t > 1, for the y(t) yielded by OGASCHED,
we have

‖y(t)− y∗‖2 =
∥∥ΠY(y(t− 1) + ηt∇q(t− 1)

)
− y∗

∥∥2
(i)

≤ ‖y(t− 1)− y∗‖2 + η2t ‖∇q(t− 1)‖2

+ 2ηt∇q
(
y(t− 1)

)T(
y(t− 1)− y∗

)
, (15)

where ∇q
(
y(t − 1)

)
is a shorthand for ∇q

(
x(t − 1),y(t −

1)
)
. (i) is because the non-expansiveness property of the

Euclidean projection. By moving ‖y(t − 1) − y∗‖2 to the
LHS of (15) and summing the inequality telescopically over
T , we have

T+1∑
t=2

∇q(y(t− 1))T(y∗ − y(t− 1)
)

(i)

≤ η
∑T
t=1 ‖∇q(y(t))‖2

2
+
‖y(1)− y∗‖2 − ‖y(T )− y∗‖2

2η
(ii)

≤ ηT (max ‖∇q‖)2
2

+
diam(Y)2

2η
. (16)

Inequality (i) is because ∀t ∈ T we set ηt ≡ η. In (ii), we use
the fact that ‖y(T )−y∗‖ ≥ 0. In (15), max ‖∇q‖ is the max-
imum Euclidean norm of the gradient of q(x(t),y(t)) over
every possible y(t), and diam(Y) is the largest Euclidean
distance between any two elements of Y . Because q(·) is a
concave function of y(t), we have

ROGASCHED
T = sup

∀{x(t)}T1

T∑
t=1

(
q
(
x(t),y∗

)
− q
(
x(t),y(t)

))
≤ sup
∀{x(t)}T1

T∑
t=1

∇q
(
y(t)

)T(
y∗ − y(t)

)
B (15)

≤ diam(Y)2

2η
+
ηT (max ‖∇q‖)2

2
. (17)

In the following, we give the upper bound of max ‖∇q‖
and diam(Y), respectively.

1) The upper bound of max ‖∇q‖. With the result of (9),
we have

‖∇q‖2 =
∑
l∈L

∑
r∈Rl

[
xl(t)

2
(

(fk
∗

r )′
(
yk
∗

(l,r)(t)
)
− βk∗

)2]
+
∑
l∈L

∑
r∈Rl

∑
k 6=k∗

xl(t)
2(fkr )′

(
yk(l,r)(t)

)2
=
∑
l∈L

∑
r∈Rl

xl(t)
2

[∑
k∈K

(
(fkr )′

(
yk(l,r)(t)

))2
− 2βk∗(f

k∗

r )′
(
yk
∗

(l,r)(t)
)]

+
∑
l∈L

∑
r∈Rl

xl(t)
2β2
k∗ . (18)

where k∗ is defined in (10). The second part of (18) can be
upper bounded by∑

l∈L

∑
r∈Rl

xl(t)
2β2
k∗ ≤

∑
l∈L

∑
r∈Rl

(β∗)2, (19)

where β∗ = maxk∈K βk. If G is right d-regular, the bound
reduces to d|L|(β∗)2. For the first part of (18), we use (fk

∗

r )′

to replace (fk
∗

r )′
(
yk
∗

(l,r)(t)
)

for simplification. Then we have∑
l∈L

∑
r∈Rl

xl(t)
2
[∑
k∈K

(
(fkr )′

)2 − 2βk∗(f
k∗

r )′
]

≤
∑
l∈L

∑
r∈Rl

∑
k 6=k∗

(
(fkr )′

)2
︸ ︷︷ ︸

PART-A

+
∑
l∈L

∑
r∈Rl

(fk
∗

r )′
(
(fk

∗

r )′ − 2βk∗
)

︸ ︷︷ ︸
PART-B

.

For PART-A we have PART-A ≤ (K−1)
∑
l∈L

∑
r∈Rl

($∗r)2,
where $∗r = maxk∈K$

k
r . If G is right d-regular, the bound

reduces to d|L|(K−1)($∗r)2. To analyze the upper bound of
PART-B, we need to partition the computing instances into
two disjoint sets:

R1 =
{
r ∈ R : $k∗

r ≤ 2βk∗
}

R2 =
{
r ∈ R : $k∗

r > 2βk∗
}
.

∀r ∈ R1, the maximum of (fk
∗

r )′
(
(fk

∗

r )′ − 2βk∗
)

is 0
since (fk

∗

r )′ ≥ 0 holds. ∀r ∈ R2, the maximum is
($k∗

r )2 − 2βk∗$
k∗

r . Thus,

PART-B ≤
∑
l∈L

∑
r∈Rl∩R2

(
($k∗

r )2 − 2βk∗$
k∗

r

)
. (20)

Recall that in (20) Rl is the set of computing instances that
connects to port l. Because βk ∈ [0, 1] holds for each k ∈ K,
∀l ∈ L, r ∈ Rl ∩R2, we have

($k∗

r )2 − 2βk∗$
k∗

r ≤ ($∗r)2 − 2βk∗$
∗
r ≤ ($∗r)2, (21)

Finally, we can get

‖∇q‖2 ≤
∑
l∈L

∑
r∈Rl

(
(β∗)2 +K($∗r)2

)
. (22)

For the upper bound in (22), all the computing instances
r ∈ Rl fall into the set R2.

2) The upper bound of diam(Y). By definition we have

diam(Y) = sup
y,z∈Y

‖y − z‖. (23)

To find the upper bound of ‖y − z‖, we can get

‖y − z‖2 =
∑
l∈L

∑
r∈Rl

∑
k∈K

(
yk(l,r) − zk(l,r)

)2
(i)

≤
∑
l∈L

∑
r∈Rl

∑
k∈K

∣∣yk(l,r) − zk(l,r)∣∣ · akl
≤
∑
l∈L

∑
r∈Rl

∑
k∈K

akl

(
yk(l,r) + zk(l,r)

)
=
∑
k∈K

āk
∑
r∈R

( ∑
l∈Lr

yk(l,r)(t) +
∑
l∈Lr

zk(l,r)(t)
)

(ii)

≤ 2
∑
k∈K

āk
∑
r∈R

ckr , (24)

where āk = maxl∈L a
k
l . In (24), (i) is because the constraint

(3). In (ii), we use the capacity constraint (4). As a result, we
have

diam(Y) ≤
√

2
∑
k∈K

āk
∑
r∈R

ckr . (25)

Combing the result (22) and (25), and set η as diam(Y)
‖∇q‖

√
T

,
we finally get the result.
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The theorem indicates that the suboptimality gap be-
tween OGASCHED and the offline optimal is of Θ(HG×

√
T ),

where HG is a factor characterized the scale of the bipartite
graph G. In addition, we can find that the regret grows
sublinearly with the number of job types |L|. To the best of
our knowledge, this is the best regret for the online bipartite
scheduling problem with non-linear rewards. The proof
also indicates that, to achieve a not-too-bad accumulative
reward, at each time t, the learning rate ηt should be set as

ηt =
diam(Y)

‖∇q(x(t),y(t))‖
√
T
. (26)

3.4 Extending to Multiple Job Arrivals
OGASCHED can be applied to the scenarios where multiple
jobs are yielded from each port in each time slot. In this
case, the job arrival status x(t) is re-formulated as x(t) =[
xl(t)

]
l∈L ∈ N|L|, where xl(t) indicates the number of jobs

arrive at port l at time t. Further, the scheduling decisions at
time t is re-formulated as

y(t) =
[
yj,k(l,r)

]
l,j,r,k

∈ R
∑

l∈L Jl×|Rl|×K ,

where Jl is the maximum number of the type-l jobs arrive
during each time slot, i.e. Jl = maxt∈T xl(t). Correspond-
ingly, the port-l reward is re-formulated as

ql
(
x(t),y(t)

)
=

Jl∑
j=1

1{j ≤ xl(t)}
[∑
k∈K

fk
( ∑
r∈Rl

yj,k(l,r)(t)
)
−

max
k∈K

{
βk
∑
r∈Rl

yj,k(l,r)(t)
}]
,

where 1{p} is the indicator function: 1{p} is 1 if the predi-
cate p is true, otherwise 0. The new formulated problem can
be solved by native OGASCHED after transformations.

3.5 Extending to Gang Scheduling
OGASCHED can be extended to the Gang Scheduling scenar-
ios, where the scheduling decisions for the task instances
of a job follows the ALL-OR-NOTHING property. In other
words, only when all tasks2 of a job are successfully sched-
uled, the job could be launched.

In the following, we show briefly how Gang Scheduling
can be modeled. To start with, for each job type l ∈ L,
we denote the corresponding set of task components by
Ql and indexed by q. Correspondingly, the job requests
al is redefined as al =

[
aq,kl

]
l,q,k

∈ R
∑

l∈L |Ql|×K . Sim-
ilarly, we redefine the scheduling decisions at time t as
y(t) =

[
yq,k(l,r)

]
l,q,r,k

∈ R
∑

l∈L |Ql|×|Rl|×K . As a result, the

solution space Y turns to

Y =
{
yq,k(l,r) |

∑
q∈Ql

1
{ ∑
r∈Rl

∑
k∈K

yq,k(l,r) > 0
}
≥ ml(t),∀l,

0 ≤ yq,k(l,r)(t) ≤ a
q,k
l ,∀l, r, q, k, t,∑

l∈Lr

∑
q∈Ql

yq,k(l,r)(t) ≤ ckr ,∀r, k, t
}
,

2. In practice, not all tasks of a job need to be scheduled. In Ku-
bernetes, the job submitter can specify the minimum number of tasks
that must be scheduled successfully. In the following, we use ml(t) to
represent the minimum number of tasks that should be scheduled at
time t of the type-l job.

where in the first inequality, ml(t) is the minimum number
of task components that should be scheduled at time t of
type-l job. The port-l reward at time t is re-formulated as

ql
(
x(t),y(t)

)
= xl(t)

[∑
k∈K

fk
( ∑
q∈Ql

∑
r∈Rl

yq,k(l,r)(t)
)
−

max
k∈K

{
βk
∑
q∈Ql

∑
r∈Rl

yq,k(l,r)(t)
}]
.

The new formulated problem is more difficult because
Y is no longer a convex set and ql

(
x(t),y(t)

)
is not dif-

ferentiable everywhere. Nevertheless, we can still develop
a similar online scheduling algorithm with the subgradient
ascent and mirror ascent related techniques which retains a
sublinear regret. The design detail is omitted due to space
limits.

4 EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to val-
idate the performance of OGASCHED. Based on the Al-
ibaba cluster trace datasets [27], we firstly examine the
theoretically guaranteed superiority of OGASCHED against
several baselines on the accumulative and average rewards.
Then, we analyze the generality and robustness of it under
different cluster settings. At last, we validate the efficacy
of OGASCHED in large-scale scenarios. The trace-driven
simulation is conducted on a server with 48 Intel Xeon Silver
4214 CPUs, 256 GB memory, and 2 Tesla P100 GPUs. The
code will be released after double-blind review.

Traces. We hybrid the traces from cluster-trace-v2018
and cluster-trace-gpu-v2020 of the Alibaba Cluster Trace
Program. Specifically, we leverage the specifications of the
machines, the arrival patterns and resource requirements of
different kind of jobs to generate our simulation environ-
ment.

Baselines. The following widely used baselines are imple-
mented to make comparisons with OGASCHED.

• DRF [13]. It is adopted by YARN [28] and Mesos [29].
In our scenario, DRF allocates resources to ports that
yield jobs in the ascending order of their dominant
resource shares. The dominant share sl of port l is
calculated as sl = maxk∈K{akl /

∑
r∈Rl

ckr}.
• FAIRNESS. We implement FAIRNESS in this way: at

each time t, we allocate the type-k resource of each
node r to each port l that yield a job according to the
job’s share akl /

∑
l∈Lr

akl .
• BINPACKING. It is optional in Kubernetes with the

name of MOSTALLOCATED strategy and supported
in Volcano as a configurable plugin [30]. Specifically,
it scores the computing instances based on the uti-
lization of resources, favoring the ones with higher
allocation.

• SPREADING. It is similar to BINPACKING in proce-
dures but with an opposite favor. The nodes with
lower utilizations of resources have higher scores.

Default Settings. In default settings, our simulation envi-
ronment has 128 computing instances, each equipped with
6 types of computing devices (CPUs, MEM, GPUs, NPUs,
TPUs, and FPGAs), and 10 job types of different resource
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Fig. 2. Performance verification of OGASCHED. It takes one hour for OGASCHED to finish when T = 8000, β ∈ [0.4, 0.6], and contention level is 11.

requirements. Large-scale validations will be demonstrated
in Sec. 4.3. The computing instances and jobs are carefully
selected from the trace to reflect heterogenity. We support 4
types of utilities:

fkr (y) =


αy linear
α ln(y + 1) log
α−1 − (y + α)−1 reciprocal
α
√
y + 1− α poly,

(27)

The default settings of main parameters are listed in Tab.
1. In this table, the initial learning rate and the decay are
used to tune the learning rate at each time t around the value
(26). Job arrival probability ρ is adopted to adjust the job
arrival status with Bernoulli Distributions. This parameter
is applied on the basis of the actual arrival patterns from the
trace to increase stochasticity. The contention level, located
at the last cell of this table, is designed to tune the level of
resource contention. The larger this value, the more fierce
the contention. The effect of it will be analyzed in detail in
Sec. 4.2.

TABLE 1
Default parameter settings.

PARAMETER VALUE PARAMETER VALUE

job types num. |L| 10 node num. |R| 128

device type num. K 6 time slot num. T 2000

range of α [1.0, 1.5] range of β [0.3, 0.5]

initial learning rate η0 25 decay 0.9999

job arrival prob. ρ 0.7 contention level 10

4.1 Performance Verification
In this section, we compare the performance of OGASCHED
with the baselines in terms of the achieved accumulative
and average rewards.

In Fig. 2(a), the y-axis is the average reward unitl time
t, i.e., 1

t

∑t
τ=1 q

(
x(τ),y(τ)

)
. Compared with the baselines,

OGASCHED has a clear advantage on the performance (with
the increases of 11.33%, 7.75%, 13.89%, and 13.44% com-
pared with DRF, FARINESS, BINPACKING, and SPREADING,
respectively). Besides, it shows that the performance of
OGASCHED has a tendency to increase as the length of the
time horizon increases. The curve of OGASCHED starts steep
and later flattens. The reason is that, as a learning-powered
algorithm, OGASCHED learns the underlying distribution

of job arrival patterns and it can make better decision by
adjusting the step directions. It is interesting to find that
the rewards oscillate at the beginning time slots. One of the
leading factors is that OGASCHED is boosted with a well
designed initial solution. In our experiments, a 8000-time
slot training only takes one hour. Thus, no surprisingly, the
rewards achieved in the beginning can be easily surpassed
when the time slot is sufficiently large.

It is not a surprise that FAIRNESS achieves the best
among the baselines. FAIRNESS adopts a proportional allo-
cation strategy and allocates resources to each non-empty
port without bias, which increases the computation gains
adequately. When the contention is not fierce while the
communication overhead is low, the advantages of FAIR-
NESS will be more steady. By contrast, the advantages of
BINPACKING and SPREADING are respectively high resource
utilization and job isolation, which do not contribute to the
reward directly.

Fig. 2(b) shows that the accumulative rewards achieved
by all the five algorithms. In the beginning, FAIRNESS and
DRF have the slight edge, benefiting by the propotional
allocation idea. Nevertheless, as the time slot increases,
OGASCHED is able to surpass them without difficulty. Fig.
2(c) demonstrates the ratio on the achieved average rewards
between OGASCHED and the baselines. Similarly, the ratios
oscillate at the beginning. After that, they increase steeply
and later flattens.

The hyper-parameters of OGASCHED, especially the ini-
tial learning rate η0 and the decay, have a remarkable impact
on its performance. From Fig. 4 we can find that, a wrong
setting of these hyper-parameters could lead to a poor
performance, even the decrease of the accumulative reward
(which means, the reward is negative in many time slots). At
the last of Sec. 3.3, we claim that, to achieve an accumulative
reward with a lower bound guarantee, at each time t, the
learning rate should be set around (26). Note that in (26),
the learning rate is encouraged to be larger and larger as
time moves, which is counterintuitive and it goes against
the convergence to a local optimum. The curves in Fig. 4(b)
also verify that, setting decay as 0.9999 is better than 1.0001.
The best decay in practice does not follow the guidance of
theory because the regret analysis only gives the worst case
guarantee on the accumulative rewards. In our experiments,
the best range for decay is [0.995, 0.9999].
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Fig. 3. Scalability verification of OGASCHED under different scales of the bipartite graph and the contention levels.

TABLE 2
Generality and Robustness validation under different scenario settings.

Time Horizon Length T Job Arrival Probability ρ Graph DenseAvg. Reward
1000 2000 5000 10000 0.3 0.5 0.7 0.9 ≈ 2 ≈ 2.5 ≈ 3

OGASCHED 2578.53 2886.33 2911.37 3104.98 1904.87 2154.18 3117.29 2938.22 2816.18 2904.51 3127.47
DRF 2422.47 2493.02 2449.23 2497.85 1364.53 2086.59 2503.01 2755.41 2417.08 2786.94 2795.42

FAIRNESS 2532.24 2582.80 2552.41 2436.22 1295.53 1997.19 2628.02 2873.84 2501.54 2857.60 2918.98
BINPACKING 2386.01 2449.15 2444.32 2365.13 1246.39 1897.79 2518.98 2740.19 2374.31 2757.71 2829.19
SPREADING 2382.01 2466.71 2436.60 2362.88 1250.67 1888.06 2519.37 2737.93 2382.87 2766.07 2836.37
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Fig. 4. The performance of OGASCHED with different hyper-parameters.

4.2 Scalability, Generality and Robustness Evaluations

In this section, we evaluate the performance of OGASCHED
under different scales of scenario settings. Fig. 3(a) and Fig.
3(b) demonstrate the impact of the scale of the bipartite
graph G. In these two figures, the left y-axis is the accumu-
lative reward while the right y-axis is the ratio ra/rb, where
ra is the accumulative reward achieved by OGASCHED, and
rb is the baselines’. Firstly, we observe that, whatever the
number of the computing instances is, OGASCHED takes the
leading position. Besides, as |R| increases, all the algorithms
obtain a larger accumulative reward. The result is evident
because a large cluster can provide sufficient computing
devices, which leads to jobs being fully served. It is also
worth noting that, when |R| increases, the superiority of
OGASCHED over the baselines firstly increases then de-
creases. It demonstrates that the resource contention is fierce
when |R| ∈ [128, 256]. In this case, it is necessary for
OGASCHED to be trained with a larger time slot. Fig. 3(b)
shows that the number of job types, i.e., |L|, has a weaker
impact than |R| to the performance of OGASCHED. The
phenomenon verifies the conclusion we have concluded,
i.e., the regret grows linearly with |R|, but it is sublinear
with |L|.

Fig. 3(c) shows the impact of contention level. This pa-
rameter works as a multiplier to the resource requirements

of jobs. We can observe that, when moving contention
level from 0.1 to 1, all the achieved accumulative rewards
increase. This is obvious because a larger resource require-
ment leads to a larger computation gain on the premise of
low contention. However, increasing the multiplier further
leads to the downgrade of performances and the reduction
of the superiority of OGASCHED. Even so, OGASCHED
always performs the best. Fig. 6 shows the average com-
putation gain and communication overhead penalty of each
time slot under different contention levels. We can find that
the penalty increases with the contention level slowly.

Fig. 7 demonstrates the accumulative rewards with dif-
ferent utilities. Because of the diminishing marginal effect,
the rewards with ploy, log, and reciprocal utilities are signif-
icantly less than the rewards with linear utilities. Neverthe-
less, the diminishing marginal effect does not change the
superiority of OGASCHED against the baselines. Even in the
all reciprocal utility settings, for FAIRNESS, OGASCHED has
its advantages.

In addition to the above evaluations, we also test the
generality and robustness of OGASCHED under different
settings of the following parameters: the time horizon length
T , the job arrival probability ρ, and the dense of the bipartite
graph. The graph dense is calculated as

∑
r∈R |Lr|/|R|.

The results are shown in Tab. 2. The two largest values in
each column of the table are made bold. Besides, for each
parameter and each algorithm, the setting which leads to
the largest reward is marked with a light-grey background.
We summarize the key findings as follows.

• Firstly, whatever the parameter settings, OGASCHED
always performs the best, and its performance has a
positive correlation with the time horizon length T .
As we have analyzed, a large time horizon provides
more chances for OGASCHED to learn the underlying
distributions, thereby increasing the reward in the
gradient ascent directions.
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Fig. 5. Large-scale validations. It takes 15 hours for OGASCHED to complete when T = 10000, β ∈ [0.01, 0.015], and contention level is 5.
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Fig. 6. Average computation gain and communication overhead of each
time slot under different contention levels.
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Fig. 7. Accumulative rewards with different utilities.

• Increasing the job arrival probability can lead to
a high resource utilization, thereby increasing the
rewards. However, a large job arrival probability also
brings in a fierce resource contention. A direct conse-
quence of it is that, for OGASCHED, many elements
in the vector y(t) fall into the interior of Y , rather
than the boundaries, thereby leading to a reward
reduction. The phenomenon can be observed when
moving ρ from 0.7 to 0.9.

• Graph dense has a similar effect on the reward to
the job arrival probability. Nevertheless, the reasons
behind are distinct. A larger graph dense increases
the opportunities for a job to be served with a large
possible parallelism, thereby increasing the computa-
tion gain. By contrast, the communication overhead
has a slow rate of growth.

4.3 Large-Scale Validations

To test the efficacy of OGASCHED in large-scale scenarios,
we conduct the following experiments. In these experi-
ments, the number of the job types is set as 100 while the
quantity of the computing instances is 1024 in default. The
results in Fig. 5 show that the superiority of OGASCHED is
preserved even in large-scale scenarios.

5 RELATED WORKS

The design of online job scheduling algorithms that yield
a nice theoretical bound is always the focus of attention
from the research community. Existing online job scheduling
algorithms can be organized in two categories.

In the first category, the online algorithms are elaborately
designed for specific job types, such as DNN model training
[19], [31], [18], [4], [11], [6], [32], big-data query & analytics
[5], [33], multi-stage workflows [34], [10], etc. A typical work
on DNN model training is [11], where the authors fully
take the layered structure of DNNs into consideration and
develop an efficient resource scheduling algorithm based on
the sum-of-ratios multi-dimensional-knapsack decomposi-
tion method. The authors further prove that the proposed
algorithm has a SOTA approximation ratio within a poly-
nomial running time. [6] is another work that fully explores
the Bulk Synchronous Parallel (BSP) property of the DNN
training jobs. The authors develop an algorithm which is
O(ln |M|)-approximate with high probability, where M is
the set of computing devices. These works are designed
for specific job types, and they do not provide a general
analysis on the gain-overhead tradeoff for multi-server jobs.
This paper intends to fill the gap.

In the second category, the type of job are not speci-
fied, while the theoretical superiority is highlighted. The
algorithms are designed with different theoretical basis,
including online approximate algorithms [35], [8], [36],
Online Convex Optimization (OCO) techniques [7], game-
theoretical approaches [9], online learning and DRL-based
algorithms [37], [38], etc. In these works, the performance of
the proposed algorithms are usually analyzed with approx-
imate ratio, competitive ratio, Price of Anarchy (PoA), and
regret. A typical recent work is [7]. The authors develop
an algorithm whose dynamic regret is upper bounded by
O(OPT1−β), where β ∈ [0, 1). None of existing works
analyze the gain-overhead tradeoff and provide a regret of
O(
√
|L|T ) as this paper demonstrates.

6 CONCLUSIONS

In this paper, we study the online scheduling of multi-
server jobs in terms of the gain-overhead tradeoff. The
problem is formulated as an accumulative reward maxi-
mization program. The reward of scheduling a job is de-
signed as the difference between the computation gain and
the penalty on the dominant communication overhead. We
propose an algorithm, i.e. OGASCHED, to learn the best
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possible scheduling decision in the ascending direction of
the reward gradients. OGASCHED is the first algorithm that
has a sublinear regret with respect to the number of the
job types and time slot length, which is a SOTA result for
concave rewards. OGASCHED is well designed to be paral-
lelized, which makes large-scale applications possible. The
superiority of OGASCHED is also validated with extensive
trace-driven simulations. Future extensions may include,
i.e., more elaborate modeling and analysis on the intra-node
and inter-node communication overheads.
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