
Equilibrium in the Computing Continuum through Active Inference

Boris Sedlak∗, Victor Casamayor Pujol, Praveen Kumar Donta, Schahram Dustdar

Distributed Systems Group, TU Wien, 1040 Vienna, Austria

Abstract

Computing Continuum (CC) systems are challenged to ensure the intricate requirements of each computational
tier. Given the system’s scale, the Service Level Objectives (SLOs) which are expressed as these requirements,
must be broken down into smaller parts that can be decentralized. We present our framework for collaborative
edge intelligence enabling individual edge devices to (1) develop a causal understanding of how to enforce their
SLOs, and (2) transfer knowledge to speed up the onboarding of heterogeneous devices. Through collaboration,
they (3) increase the scope of SLO fulfillment. We implemented the framework and evaluated a use case in
which a CC system is responsible for ensuring Quality of Service (QoS) and Quality of Experience (QoE)
during video streaming. Our results showed that edge devices required only ten training rounds to ensure four
SLOs; furthermore, the underlying causal structures were also rationally explainable. The addition of new
types of devices can be done a posteriori, the framework allowed them to reuse existing models, even though
the device type had been unknown. Finally, rebalancing the load within a device cluster allowed individual
edge devices to recover their SLO compliance after a network failure from 22% to 89%.

Keywords: Active Inference, Computing Continuum, Scalability, Edge Intelligence, Transfer Learning,
Equilibrium

1. Introduction

Computing Continuum (CC) systems as envisioned
in [1, 2, 3] are large-scale distributed systems com-
posed of multiple computational tiers. Each tier
serves a unique purpose, e.g., providing latency-
sensitive services (i.e., Edge), or an abundance of vir-
tual, scalable resources (i.e., Cloud). However, the
requirements that each tier must fulfill are equally
diverse, as they span a wide variety of edge devices
and fog nodes. Assume that requirements would be
ensured in the cloud, e.g., by analyzing metrics and
reconfiguring individual devices, massive amounts of
data would have to be transferred. Also, if edge
devices fail to provide their service to a satisfying
degree, the latency for detecting and resolving this
would be high.

∗Corresponding author
Email addresses: boris.sedlak@dsg.tuwien.ac.at

(Boris Sedlak), v.casamayor@dsg.tuwien.ac.at (Victor
Casamayor Pujol), pdonta@dsg.tuwien.ac.at (Praveen
Kumar Donta), dustdar@dsg.tuwien.ac.at (Schahram
Dustdar)

Given the scale of the CC, requirements must be
decentralized; this means, that the logic to evaluate
requirements must be transferred to the component
that they concern. Cloud-level requirements, i.e.,
Service Level Objectives (SLOs), may thus be bro-
ken down into smaller parts that are ensured by the
respective components. To contribute to high-level
goals, each device optimizes its service according to
its scope. This allows SLOs to span the entire CC,
also called Deep SLOs [4]. While it is one challenge
to segregate and disseminate SLOs, ensuring them is
another. Requirements are versatile and may change
over time, every component must itself discover how
its SLOs are related to its actions. For this to hap-
pen, the device could use Machine Learning (ML)
techniques to discover causal relations between its en-
vironment and SLO fulfillment [5]. This promotes the
usage of Active Inference (ACI) [6], a concept from
neuroscience that describes how the brain continu-
ously predicts and evaluates sensory information to
model real-world processes. Given these causal mod-
els, components could adjust their environment ac-
cording to preferences (i.e., SLOs).

1

ar
X

iv
:2

31
1.

16
76

9v
1

 [
cs

.D
C

]
 2

8
N

ov
 2

02
3

Ensuring SLOs autonomously (i.e., evaluating the
environment to infer adaptations) makes components
intelligent [7]; any system (or subsystem) composed
entirely of such intelligent, self-contained components
becomes more resilient and reliable. No central logic
must be employed to ensure SLOs; thus, higher-level
components can rely on SLO fulfillment of underlying
components. Ascending from intelligent edge devices,
the next level would be intelligent fog nodes; those
we see in the ideal position to orchestrate the service
of edge devices. Thereby, edge devices in proximity
are bundled into a device cluster, administered by a
fog node; whenever the Edge is scaled up with new
devices (or device types), existing SLO-compliance
models can be exchanged within the cluster. While
each tier has its own SLOs, their tools for adaptation
can have a different scale, e.g., fog nodes would be
able to shift computations within clusters, from de-
vices that fail their SLOs. Such operations can con-
sider environmental impacts (e.g., network issues),
but also heterogeneous device characteristics.

To realize this vision, we present our framework
for collaborative edge intelligence. Guided by ACI,
individual edge devices gradually develop a causal
understanding to ensure their SLO. This knowledge
is federated through a device cluster; edge devices
of arbitrary types reuse existing models to ensure
their SLOs. Thus, the entire Edge becomes spanned
with SLO-compliant devices, which allows other CC
tiers to construct their service on top. By the same
method, cluster leaders (i.e., fog nodes) infer how to
adjust their environment; each tier may thus achieve
an equilibrium for offering compound service.

Hence, the contributions of this paper are:

• An ACI-based ML technique that allows CC
components to gradually identify causal relations
between environmental metrics and SLO fulfill-
ment. Components can thus evaluate SLOs de-
centralized and update their beliefs according to
new observations.

• The transfer and combination of ML mod-
els between heterogeneous devices to accelerate
their convergence towards SLO-fulfilling config-
urations. This simplifies the onboarding of new
device types in the Edge.

• An offloading mechanism that redistributes load
within an edge-fog cluster according to devices’
capabilities to fulfill SLOs. It improves cluster-

wide QoS and QoE by counterbalancing environ-
mental factors.

The remaining sections of this paper are organized
as follows: Section 2 introduces background knowl-
edge that is a prerequisite for presented concepts.
Section 3 presents our framework for collaborative
edge intelligence. Section 4 contains the prototypical
implementation of the framework and the evaluation
methodology; the respective results are presented in
Section 5. Section 6 provides an overview of exist-
ing research in this field. Finally, we concluded our
paper with a future scope in Section 7. For readers’
convenience, frequently used notations and acronyms
are summarized in Section Nomenclature.

2. Background

The framework presented in this paper builds heav-
ily on two existing concepts that we adapt for our
usage, namely causality and ACI. Although these
topics might be known to some readers, we provide
this section to ensure a solid understanding of their
core aspects and terminology. Furthermore, since
both concepts are not native to computer science (or
distributed systems), we highlight intersections with
these fields as far as possible.

2.1. Causality and Causal Network Graphs

Causality allows modeling causal relations between
events or variables. While spurious correlations can
mislead and hide the true causes, causality answers
why a specific event happened. However, to identify
causal relations, specific experiments and consider-
ation of expert knowledge are required. To define a
general theory for causality, Pearl [8] proposed Struc-
tural Causal Models (SCMs). Such a mathematical
model can be expressed through causal graphs, e.g.,
as Directed Acyclic Graph (DAG). Thus, variables in
the graph can be arranged from cause to consequence.

Causality is a hot topic in research because of
its ability to provide explanations for phenomena
through interpretable graphical models. This is why
many works link causality and machine learning;
see [9] for a comprehensive review. Thereby, causality
can also be embedded into distributed systems, e.g.,
for root cause detection [10]. As another instance,
Lin et al. [11] use causal graphs in Cloud computing
to detect dependencies within a microservices-based
architecture. For such use cases, DAGs are an ideal

2

modeling tool. Interestingly, they monitor SLOs to
trigger causal inference over their causal graphs, be-
ing able to detect the source of the SLO violation.

Another crucial concept for our work – or gener-
ally for scalability in the CC – is the Markov Blanket
(MB). Consider a Bayesian network (BN) represented
as a DAG (e.g., Fig. 3): a random variable is condi-
tionally independent of all other variables, given its
MB. In other words, the MB of a variable shields it
from all external variables. In a DAG, the MB of
a variable consists of its parents, children, and co-
parents. Discovering the structure of BNs and ex-
tracting MBs through data is not a simple task, and
many works are devoted to that; see [12] or [13] for
specific techniques, and [14] for a thorough survey
on the topic. Regardless of the system size, MBs can
achieve modularity; thus, the system can be managed
and controlled on a convenient scale.

Graph-based causal models promise to extend sys-
tems with explainability. Inspired by that, our work
stems from [2, 15] to build MBs around SLO-governed
components. Thus, it becomes possible to isolate sys-
tem variables that affect SLO fulfillment. On the one
hand, this drastically reduces the number of variables
required for analysis thanks to conditional indepen-
dence; the system can thus be managed at scale. On
the other hand, it is possible to leverage the BN to
explain causal effects between variables in the MB
and the SLOs’ behavior (e.g., failure).

2.2. Active Inference

In this work, we use ACI to provide devices with
the capacity to build causal knowledge on how to
fulfill their SLOs. However, we consider ACI an
unknown concept for most readers outside of neu-
roscience; therefore, we use this section to summa-
rize core concepts of ACI according to Friston et
al. [16, 17, 18, 19, 20, 21]. This includes (1) free
energy minimization, (2) hierarchical organization of
beliefs, (3) action-perception cycles, and (4) Bayesian
inference and belief updating.

2.2.1. Core Concepts

To interpret observable processes, agents internally
generate models that resemble these processes, e.g.,
a human could reason that it rains due to water
drops falling from the sky. However, if this gener-
ative model and the real-world process diverge, the
agent will eventually be “surprised”, e.g., because wa-
ter drops were actually caused by a neighbor watering

her plants. The discrepancy (or uncertainty) between
the agent’s understanding of the process and the re-
ality is called Free Energy (FE). In simple terms: the
lower the FE, the higher the prediction accuracy.
More formally, in Eq. (1) & (2), the surprise ℑ(o|m)

of observation o given model m is the negative log-
likelihood of the observation. The surprise itself is
capped by the FE of the model – expressed as the
Kullback-Leibler divergence (DKL) between approx-
imate posterior probability (Q) of the hidden states
(x) and their exact posterior probability (P).

ℑ(o|m) = − ln

Model Evidence︷ ︸︸ ︷
P (o|m) (1)

F [Q, o] = DKL[Q(x)||P (x|o,m)] + ℑ(o|m)︸ ︷︷ ︸
(Variational) Free Energy

≥ ℑ(o|m)

(2)
Internally, agents organize generative models in hi-

erarchical structures; each level interprets lower-level
causes and, based on that, provides predictions to
higher levels. For example, suppose (1) it rains with
a certain probability, (2) I bring an umbrella. This
is commonly known as Bayesian inference and allows
agents to use priors (i.e., existing beliefs) to calcu-
late the probability of related events. Thus, deci-
sion processes can be segregated into self-contained
causal structures (i.e., MBs) that share only a lim-
ited number of interface variables. For example, only
the weather state (rainy or sunny) is considered for
picking the umbrella; any lower-level observations
that determined the agent’s perception of the weather
(e.g., humidity or illumination) are disregarded.
To decrease their FE, ACI agents repeatedly en-

gage in action-perception cycles by (1) predicting sen-
sory inputs, (2) awaiting (or seeking) the outcome,
and (3) updating beliefs. This phase is widely known
as predictive coding. Afterward, they can actively
adjust the environment toward their beliefs. As the
agent’s internal models become increasingly accurate,
causal relationships between the environment and its
preferences (e.g., SLOs) are revealed. Agents’ ability
to discover causal relations, however, is very depen-
dent on the number and accuracy of observations [22].
Luckily, the CC provides an infinite amount of oper-
ational metrics.

2.2.2. Intersection with Distributed Systems

While ACI seems a fitting choice to achieve causal-
ity in the CC, there is only limited work on this in-
tersection. To date, most (non-theoretic) research on

3

Prepare Model

Stream Offloading

Transfer ModelFederate

Optimize SLOsEvaluate SLOs

Improve Model

Adapt Service

Figure 1: High-level overview of the collaborative edge intelli-
gence framework that continuously improves model evidence,
shares this knowledge between edge devices, and optimizes SLO
fulfillment within this cluster.

ACI has not been embedded and evaluated in op-
erative distributed systems (e.g., [19, 23]). To the
best of our knowledge, our latest research [24] is thus
among the few works that embedded ACI into dis-
tributed systems; another work that we want to high-
light is Levchuk et al. [25], which created a decentral-
ized mechanism for team adaptation.

For the remaining paper, our work in [24] pro-
vides valuable reference points; precisely, how ACI
agents can ensure SLO-compliant device configura-
tions. Those agents operated parallel to ongoing pro-
cessing and evaluated rational information (i.e., en-
vironmental states) to adapt generative models ac-
cording to prediction errors. We call such a model
– at its core a BN – an Equilibrium-Oriented SLO-
Compliance (EOSC) model. In the following, we will
extend these EOSC models to achieve equilibrium
within the CC.

3. Collaborative Edge Intelligence

To ensure SLOs throughout computational tiers,
we propose our framework for collaborative edge in-
telligence that is constructed upon our three main
contributions: (1) The continuous model optimiza-
tion based on ACI, which ensures SLOs (locally) on
a device basis; (2) the federation and combination of
EOSC model between edge devices, which decreases
the overhead of training models for different device
types from scratch; and (3) the evaluation of SLOs
on a cluster-level, which can rebalance load within
the cluster according to environmental factors.

These three contributions are described in the re-
spective subsections (3.1 to 3.3); Figure 1 further con-
tains a high-level overview of the framework’s capa-
bilities. On the left, it is depicted how SLOs are eval-

uated to continuously train an ML model and adapt
the service accordingly; this model is then federated
and combined at a (fog) node, which provides the
model to an unknown device type (marked as red).
The fog node analyzes the overall SLO fulfillment in
the cluster; if it appears beneficial to offload compu-
tation from one device to another one (e.g., from the
blue to the red one), this is orchestrated by the fog
node. Logically, the model transfer and load balanc-
ing rely on the SLO fulfillment in the Edge, which
is why all three contributions are required to ensure
SLOs on multiple tiers (or the entire CC).

3.1. Continuous Model Optimization

An accurate generative model allows one to explain
a system’s behavior (e.g., why SLOs were violated),
infer how to adapt the system to ensure SLOs, and
predict how changes will affect this. Further, predic-
tion errors are always propagated back to the agent
so that the model can be improved according to the
experienced deviations. In the following, we will first
present the representation of the EOSC model and
the applied training method. Afterward, this process
is integrated into an ACI agent, which uses this pro-
cess to continuously improve the model accuracy.

3.1.1. Static Model Training and Inference

Within previous work [5], we presented the idea of
obtaining a generative model from processing metrics
and inferring system configurations that fulfill SLOs.
However, it lacked a formal implementation; this will
be the content of this section. Figure 2 summarizes
our method to train the BN, which is required as a
causal structure for our framework:

To report their current state, edge devices produce
metrics throughout ongoing processing; this data
can be used to create a generative model through
Bayesian Network Learning (BNL) (#1). This re-
veals (ideally) causal dependencies between variables,
including the impact of environmental changes (e.g.,
increased incoming requests). To decrease the model
complexity, we identify a minimum number of vari-
ables that are relevant to fulfill system requirements
(i.e., SLOs); we call this subset the MB of the BN
(#2). Given the MB, we estimate the probability
of SLO violations for different hypothetical scenar-
ios and (#3) infer the device configuration with the
highest statistical compliance level. In the following,
we elaborate on these substeps further.

4

Metric []
CPU utilization

Processing delay
Requests / Sec.

...
Bayesian network Markov blanket

Delay

Energy

Service Level Objectives

Probability of SLO violations
Ideal configuration

Workload

#1 BNL

#2 Extract MB

#3 Infer knowledge

Figure 2: Training a Bayesian Network from processing metrics;
this is used to extract the minimum number of variables related
to SLO fulfillment and a configuration that satisfies them.

Bayesian Network Learning. BNL is an efficient way
to generate the most accurate structure from given
data; its two main parts are STRL – structural learn-
ing of causal dependencies (i.e., DAG), and PARL –
parameter learning as quantification of variable de-
pendencies. Structure learning is categorized into
constraint-based (e.g., parent-child or grow-shrink)
and score-based approaches (e.g., Hill-Climb or ge-
netic algorithm) [26]. In this work, we consider a
score-based Hill-Climb Search (HCS) algorithm be-
cause of its rapid convergence, low complexity, and
efficiency when considering limited attributes. The
goal of HCS is to identify the DAG Gfinal from given
data D, ∃! Gfinal = arg max

G∈G∗
score(G,D), where G∗

indicates the set of possible DAGs, and score(G,D)
is calculated using Eq. (3) [27],

score(S,D) = LL(G,D)± (ϕ(|D|) + ||G||) (3)

where LL(G,D) is computed using Eq. (4) ϕ(|D|)
is the Bayesian Information Criterion (BIC) which
can be computed as ϕ(|D|) = 1

2 log(|D|), and ||G|| =∑
(|V|+ |E|), where |V| and |E| denotes number of

vertices and edges in DAG G,

LL(G,D) = |D| ×
|D|∑
i=1

ξ(xi|Parent(xi)) (4)

where |D| denotes the number of rows in dataset
D. ξ denotes entropy; it is calculated as∑

Pr(xi|Parent(xi))× log (Pr(xi|Parent(xi))).

The detailed pseudo-code for the HCS algorithm is
presented in Algorithm 1. HCS starts with an empty
graph (G) and measures the score using Eq. (3). By
adding or removing edges between variables, it cre-
ates a set of neighboring structures and selects the

Algorithm 1 Hill-Climb search (HCS) algorithm

INPUT: D, Ginit, score and C
OUTPUT: Gfinal // Learned Structure

1: G = Ginit, Gfinal = Ginit

2: repeat
3: score = Score(G,D)
4: for each (Xi, Xj) ∈ G∀ i, j ≤ |G|, i ̸= j do
5: if !edge(Xi, Xj) then
6: Gfinal = Gfinal+ edge(Xi, Xj)
7: score

′
= Score(Gfinal, D) using Eq. (3)

8: if score
′
> score then

9: score = score
′

10: else
11: Gfinal = Gfinal− edge(Xi, Xj)
12: end if
13: end if
14: end for
15: until C is satisfied
16: return Gfinal

structure with the highest score. In this way, Algo-
rithm 1 repeats Lines 2-15, until it reaches the max-
imum score, and chooses the best DAG i.e., Gfinal.
For a data set with 5 columns, the resulting graph
could look like Figure 3a. Afterward, as a second
step in the BNL process, the variable relations are
evaluated: For each node in Gfinal, the Conditional
Probability Distribution (CPD) is evaluated through
Maximum Likelihood Estimation (MLE). The MLE
for BNL is calculated using Eq. (5),

MLE(θ|D) = supθLL(θ,D) (5)

where θ ∈ G, and LL(θ,D) = P (D|θ). MLE esti-
mates the model parameters that maximize the like-
lihood of observed data. This determines the CPD of
each node given its parents in the network; the result
is stored in the respective Conditional Probability Ta-
ble (CPT). This concludes parameter learning.

Lemma 1: The time complexity of BNL is O(n×2ω)
Proof: Calculating time complexity for STRL and
PARL is NP-Hard, but there are also some positive
tractability results under certain parameterizations
[28, 29]. In general, the time complexity for BNL
is O(n × 2ω log n), where n indicates the number of
nodes in resulting DAG, and ω denotes the width of
the DAG. However, the algorithm runs similar recur-
sive calls multiple times, and while avoiding identical
recursive calls according to Darwiche[30], the BNL

5

bitrate

streams

CPU

consump

network

(a) Entire DAG

bitrate

streams

CPU

consump

network

(b) MB for network

Figure 3: Causal variable relations in the DAG of a trained BN

needs only O(n× 2ω) for both structure and param-
eter learning.

The ACI agent will use the presented BNL method
for constructing (and later updating) the EOSC
model: STRL trains a DAG through HCS; PARL eval-
uates the conditional variable dependencies through
MLE. Together, they can be used to create a BN
model from data D as model = PARL(STRL(D), D).

Markov Blanket Selection. A BN contains by design
directed relations and conditional dependencies of
random variables; however, to determine the state of
an individual node x, only a part of the network nodes
are influential. This promotes the application of MB
[31, 32, 2], which shield a variable from all nodes that
are conditionally independent of it. Suppose we spec-
ify an SLO according to device capabilities (e.g., net-
work throughput < t) and evaluate it using a single
variable (e.g., network), we want to identify metrics
related to SLO fulfillment. Namely, these are all vari-
ables contained in the MB of network ; the function
MB(model, network) would thus return all blue nodes
in Figure 3b.

In this context, we distinguish between metrics
that statically reflect the system state (e.g., CPU),
and those that represent a parameterizable variable
(e.g., bitrate). However, we summarize both using
the term ”metrics” from a BNL perspective. While
static metrics are essential to explain why an SLO is
in its current state, only parameterizable ones can be
dynamically reconfigured, i.e., they are the possible
action states of the ACI agent. Overall, the sum of
metrics in the MB provides a clear understanding of
why an SLO is in its current state.

Lemma 2: The time complexity for MB selection is
O(P × 2n)

Proof: MB of a target variable usually involve three
stages [33]. (i) Identify a parent-child (PC) set,
which takes more computation i.e., approximately
O(P × 2n+1), where n is the total number of nodes
in DAG, and P denotes size of conditioned set while
searching PC. (ii) Identify spouses: worst case com-
plexity to identify spouses is O(C × (n − C)), where
C is maximum size PC set for n. (iii) Extract MB: Fi-
nally, to extract MB from previous step in worst case,
it needs O(SK×C), where S, and K denotes number
of spouses, and maximum size spouses set from DAG,
respectively. Overall, O(P × 2n+1) + (C × (n− C)) +
(SK×C), asymptotically O(P ×2n) is the worst case
time complexity for MB selection.

Knowledge Extraction. There exist two main cate-
gories of algorithms for extracting knowledge from
BNs, namely Approximate Inference (AxI) and Exact
Inference (EI). Given a BN and system requirements
(i.e., SLOs), we seek to extract probabilities of SLO
violations under different environmental states. This
mechanism works equally for different CC tiers; an
edge device, for example, could use its BN to answer
P (network > t), with t being a custom threshold.
For dynamic reconfiguration, we require inference to
be (1) accurate, (2) converge reliably, and (3) fast for
large networks. We argue that EI and, in particular,
Variable Elimination (VE) [34] as an instance, fulfill
these constraints. In the following, VE is explained:

For a BN with a node set {v1, v2, v3, v4} ∈ V , VE
accepts a list of target variables T = {v1, v2}, vari-
able assignments A = [(v3 : a3)], and an elimination
order O = {v4, v3}. The query provides the condi-
tional probabilities of the variables T given assign-
ments A. Each variable must either be eliminated or
within the target set, thus ∀v ∈ V, v ∈ T ⊕ v ∈ O.
VE iterates over O and eliminates variables from V
while updating the beliefs of the remaining nodes; V
thus eventually contains only T . In the given case, v4
is eliminated first and v3 second; the difference is the
assignment of v3, which introduces evidence in the
form of P ({v1, v2}|v3 = a3). While the elimination
order has no functional consequence, it is relevant for
the efficiency of VE and thus its scalability.

For the following example, recall the DAGs from
Figure 3: We construct a QoS SLO that is ful-
filled if network is below t and infer the proba-
bility of SLO violations for different variable as-
signments. To decrease the complexity, we execute
VE only on mb = MB(model, network), the node

6

list V thus equals {network, streams, bitrate}. For
later usage, we call VE through INFERENCE(mx, T, A),
where mx can be any subset of the BN. We exe-
cute INFERENCE with mb, T = {network}, A =
[(streams : 2), (bitrate : 720)], and arbitrary O.
The result contains all conditional probabilities of
network given the variable assignment; from which
we can extract P (network > t).

This will be our central mechanism for identify-
ing the probabilities of SLO violations given a system
state. If an SLO is violated due to an environmen-
tal change, e.g., higher streams and thus exceeded
network, we can compare possible configurations and
provide the one with the highest probability of ful-
filling the SLO. In the given example, only bitrate
can be parameterized (i.e., configured); to fulfill the
network SLO, the corresponding measure could thus
be to decrease bitrate. This matches our envisioned
level of intelligence, i.e., ”understanding a situation
and reacting according to needs”, and neatly fits the
principles of elastic computing [35].

Lemma 3: The time complexity for knowledge ex-
traction is O(n× τν+1)
Proof: The complexity of knowledge extraction is
primarily determined by the VE process, whereas
other stages are linear or constant. The VE requires
O((𭟋 + n) × τν) [36]. Here, 𭟋 is the number of fac-
tors in the model m, n is the number of nodes in V ,
ν is the induced width of the elimination order i.e.
|O| (for example, |O|=2 for our running case study),
and k is the maximum cardinality of a variable in V .
Since m < n and m is chosen as small as possible, we
can consider VE’s complexity as O(n × τν+1). This
equals the overall knowledge extraction.

Theorem 1: The time complexity for Static Model
Training and Inference is O(n× τν+1)
Proof: The complexity of Static Model Training and
Inference depends on BNL, MB selection, and knowl-
edge extraction. The complexity of BNL, MB se-
lection and knowledge extraction are O(n × 2ω),
O(P × 2n), and O(n × τν+1), respectively (accord-
ing to Lemma 1 – Lemma 3). So, the complexity for
Static Model Training and Inference is O(n×2ω+P×
2n+n× τν+1). We assume, k > 2, P < n and ν < n,
so the asymptotic complexity of Static Model Train-
ing and Inference can be concluded as O(n× τν+1).

3.1.2. Active Inference Cycle

The tools presented in the last section allowed cre-
ating a BN from processing metrics, extracting an
MB, and inferring system configurations that fulfill
given SLOs. Supposed there is sufficient data avail-
able, BNL can be a one-time process; however, there
are two fundamental issues: (1) data shifts, which
likely occur after some time, will inevitably distort
the accuracy of the ML model, and (2) it is impracti-
cal to empirically evaluate how an exponential num-
ber of system configuration impacts SLO fulfillment.
Large and complex systems, such as the CC, require
a different approach, one that creates and updates a
model incrementally according to new observations,
and at the same time draws conclusions for unknown
parameter combinations from existing data.

To evaluate this parameter space of configurations,
we extend the ACI agents from [5] to interpolate be-
tween empirically evaluated combinations; further, to
maintain the model’s FE low, the agent continuously
updates conditional probabilities of variable relation
according to new observations. In theory, our ACI
agents can be employed at any CC tier; neverthe-
less, the running example in this paper is focused on
intelligent edge devices, which collaborate under the
supervision of a fog node. Thus, we raise the granu-
larity of intelligence from the Edge to the Fog. The
causality filter employed by our framework allows to
manage each layer alike – to ensure SLO fulfillment
on a higher scale, any upper layers can build upon
the SLO compliance of lower levels. In the follow-
ing, we will present the different tasks and subtasks
executed by an Edge-based ACI agent; this includes
training and updating the BN, as well as evaluating
its scope of actions according to a set of behavioral
factors. Based on that, the agent decides if and how
to modify the system, which will again be reflected
through system metrics.

Agent and Operation. The ACI agent operates par-
allel to regular device tasks, e.g., serving clients. Al-
though regular operation, model training, and infer-
ence are logically separated, they take place on the
same physical device; Figure 4 contains a visual repre-
sentation of that: assume an edge device that contin-
uously performs a workload, e.g., processing data pro-
vided by clients. The agent observes the device state
and the environment through metrics; thus, it can
evaluate whether processing complies with SLOs, e.g.,
if a request was finished with delay < t. From that

7

Causal Graph || Conditional Probabilities

Suggest Changes

Delay

Energy

Service Level Objectives

Predict Sensory Input

Compare to Event

Update Beliefs

Process Data

Reconfigure

Provide Metrics

Stream DataStream Data

Figure 4: Overview of the Active Inference cycle – learning how to fulfill SLOs by adapting the generative process

data, the agent creates a BN (as in Section 3.1.1),
where conditional probabilities reflect the SLO ful-
fillment under a discrete environmental state. Then,
the agent starts with predictive coding, i.e., forecast-
ing whether future events will fulfill SLOs, comparing
the expectation with actual observations, and updat-
ing the BN accordingly.

After each iteration, the agent infers how to mod-
ify the system configuration to optimize local SLO
fulfillment. Following that approach, the ACI agent
can create a generative model from scratch or update
a BN according to new observations by following its
sensing-acting loop. Thus, it is possible to cancel out
data shifts, which might, e.g., be the result of a model
transfer from one edge device type to another. ACI
can therefore perform the fine-tuning that is required
after such an operation.

Model Boundaries. The trained model reflects the
characteristics of the workload and the environment;
in other words, the accuracy will be higher in pa-
rameter spaces that are more exploited by the agent.
Environmental states that were not present during
model learning, or only to a degree that did not allow
to identify causal relations, can thus only be treated
to a limited extent. This determines the boundaries
of the generative model, which manifest in terms of
temporal or hierarchical depth. In this context, Parr
et al. [21] provided a guideline for model design.

The temporal depth reflects the timely horizon of
predictions, e.g., predictions that cover a short period
(i.e., a low number of observations) have lower preci-
sion than long-term averages. According to [5], it is
a natural choice to align the length of the ACI cycle
to the frequency of new samples coming in. For ex-
ample, if an edge device controls a production engine

that produces items in batches of 500 ms, the ACI cy-
cle (i.e., predicting, comparing, and updating beliefs)
must be completed within this timeframe. On the
other hand, large and complex BNs, i.e., hierarchi-
cally deep ones, require higher computational effort
to execute inference queries, while sparse graphs may
fail to capture all causal relations [14]; predictions will
thus be increasingly inaccurate because dependencies
within the environment were not revealed. Neverthe-
less, executing inference queries on the MB of a target
variable (i.e., a subsection of the graph), is a viable
way to decrease the query complexity.

Regardless of whether dense or sparse, the DAG
and the CPTs, i.e., the main parts of the BN, are
under constant optimization; they are the priors of
the model – the initial assumptions that will be up-
dated according to prediction errors to form posterior
beliefs. For example, assume an edge device that pro-
cesses video streams, for which the ACI agent trains
a model (as presented in Figure 4); variables in the
BN are related, as shown in Figure 3a. Whether
the maximum network capacity (i.e., a QoS SLO) is
reached, is determined by the bitrate and the num-
ber of video streams; these, on the other hand, deter-
mine the CPU utilization of the device and the energy
consumption. While some variable relations can be
updated at will, e.g., the impact of CPU → consump-
tion, others are tied to environmental limitations. For
example, whether bitrate violates an SLO constructed
on network, is dependent on the device characteris-
tics. In the latter case, network is not immutable
but only updated as the environment changes, e.g.,
because the network interface is upgraded.

Free Energy Minimization. To create an accurate
model, the ACI agent operates in cycles; each cycle

8

processes a batch of observations that reflects the en-
vironmental state, including the latest system config-
uration. The agent continuously evaluates the batch,
updates its model, and chooses which system con-
figuration (cnext) to choose for the next iteration.
Throughout these cycles, the ACI agent has one cen-
tral goal: decreasing the FE, or in other words, mini-
mizing surprise of predictions. Therefore, we will first
present how we calculate surprise and then embed it
into the high-level loop executed by the agent.

For calculating the surprise for batch and model
we present Algorithm 2; this can be seen as an imple-
mentation of Eq. (1). To decrease the complexity, we
limit the calculation to variables that directly reflect
SLO fulfillment (VSLO), and execute INFERENCE only
on the MB of VSLO (Line 2). This node set is further
filtered (Line 5) to contain only the evidence variables
(ev) that impact the outcome of var; afterward, in
Line 7, each row in the batch is filtered to contain
only these variables. In Lines 8 & 9, the probabil-
ity of observing var, i.e., the state of the SLO, given
the environment (evidence) is first inferred and then
appended as log likelihood. For each var, the cpt
from model is considered, from which k – the num-
ber of states – can be extracted as a representation of
model complexity. CPT is as a helper function to get
the CPT for a var in model. Together with n – the
number of observations – the BIC is calculated (Line
14). After calculating the surprise for each var×row,
this overall sum is returned.

The surprise has a special role within our ACI cy-
cle, as it determines when and how BNL takes place;
consider therefore Algorithm 3, which shows the high-
level loop executed by the ACI agent. At the begin-
ning of each iteration, the agent ensures that there
exists a model, otherwise, it creates an initial struc-
ture from batch (Lines 1 & 2). Notice, that STRL and
PARL accept now another parameter – model – which
allows to update the DAG and CPTs of model ac-
cording to batch. Whether STRL or PARL is executed
(Lines 7-11) is determined by the surprise magnitude
(s). If s exceeds the median surprise of the last 10
rounds (m10) by a custom factor h, STRL is applied;
otherwise, if s exceeds m10, PARL is applied. This
distinction is necessary because STRL and PARL have
quite different runtimes, as we will reveal in Section 5.
Finally, in Lines 12 & 13, the agent evaluates possi-
ble system configurations and determines which one
it will use for the following iteration. We will explain
these two functions in the next two paragraphs.

Algorithm 2 SURPRISE for model and batch

Require: model, batch, VSLO

Ensure: ℑ // surprise over all observations
1: ℑ ← 0
2: mb← MB(model, VSLO)
3: for each var in VSLO do
4: log likelihood← 0
5: ev ← MB(model, var)
6: for each row in batch do
7: evidence← row ∩ ev
8: p← INFERENCE(mb, var, evidence)
9: log likelihood← log likelihood+ log(p)

10: end for
11: cpt← CPT(model, var)
12: k ← |cpt| // number of states in the CPT
13: n← |batch|
14: bic← (−2)× log likelihood+ k × log(n)
15: ℑ ← ℑ+ bic
16: end for
17: return ℑ

Behavioral Factors. The behavior of the ACI agent,
i.e., how it selects between possible system configura-
tions, is determined by three major factors: The prag-
matic value (pv) defines how well the device fulfilled
client expectations, e.g., if a streamed video’s res-
olution is satisfactory. The risk assigned (ra) deter-
mines how likely the system will fail its service, e.g., if
the stream packets are delivered on time. Lastly, the
information gain (ig) represents the agent’s expec-
tation of how much it can improve model accuracy.
The ig is directly related to surprise minimization,
whereas pv and ra reflect the agent’s capability to
fulfill SLOs. To separate concerns, we divide SLOs
according to their characteristics: pv represents QoE
requirements, while ra contains QoS requirements.
Combined, these three factors determine the behav-
ior of the agent; in the following, we will calculate
each of them.
To infer the optimal device configuration (i.e.,

the one with the highest SLO fulfillment), it would
be necessary to evaluate a potentially exponential
amount of parameter combinations. As discussed be-
fore, this is impractical. To that extent, the agent
limits itself to finding the Bayes-optimal configura-
tion [37], i.e., the optimal under current knowledge.
Therefore, the ACI agent first infers the assignment
for known parameter combinations (ck) that were

9

Algorithm 3 An Iteration in the ACI Cycle

Require: model, batch, ℑ, h, VSLO

Ensure: cnext // Next configuration
1: if model = ∅ then
2: model← PARL(STRL(∅, batch), batch)
3: end if
4: s← SURPRISE(model, batch, VSLO)
5: ℑ ← ℑ ∪ {s}
6: m10 ← median(ℑ10) // over the last 10 values
7: if s > (m10 × h) then
8: model← STRL(model, batch)
9: else if s > m10 then

10: model← PARL(model, batch)
11: end if
12: K ← CALCULATE FACTORS(model)
13: cnext ← BEST CONFIGURATION(K)
14: return cnext

empirically evaluated and then interpolates between
these values to span the entire parameter space. Cal-
culating pv and ra is similar to Algorithm 2 (Lines
5-8): It requires a subset VQ ⊆ VSLO – either QoS or
QoE SLOs – which is used as ev ← MB(model, VQ).
For each row in ck, evidence is constructed equally, so
that INFERENCE(mb, VQ, evidence) provides the joint
probability of all QoS or QoE violations.

ig(c) = e+

(
ℑ̃c

ℑ̄

)
× 100 (6)

In accordance with [24], high surprise indicates
high information insight and, hence, possible im-
provement of the model precision. However, from an
agent’s perspective, is it worth abandoning a suppos-
edly satisfactory configuration (in terms of pv and ra)
to search for a global optimal one? This presents a
tradeoff between exploration of unknown areas and
the tendency to stick to exploited areas; multi-agent
systems commonly model this through hyperparam-
eters (e.g., [25]). In our case, we calculate the ig of
a configuration c ∈ ck as presented in Eq. (6) [24]:
it compares the median surprise (ℑ̃c) for c with the
overall mean surprise (ℑ̄). Configurations with high
ℑ̃c will thus be preferred by the ACI agent.

Parameter Space. By the presented means, the ACI
agent calculates the behavioral factors for all entries
in ck and summarizes them as K (Line 12 of Algo-
rithm 3). For the next step, imagine two configura-
tion parameters {fps, pixel} with their combinations

(a) Interpolation for pv (b) ig after 1 round

Figure 5: Matrices of behavioral factors used by the ACI agent

arranged in a [fps×pixel] 2D matrix. After calculat-
ing K, the unknown spaces in the parameter matrix
are filled by performing linear interpolation1. As a
resulting example, we provide the matrix depicted in
Figure 5a. Later, in Section 4.2, the agent will inter-
polate within a 3D parameter space.
Contrarily to pv and ra, the agent does not ap-

ply interpolation to estimate the ig of an unknown
parameter configuration. Instead, in the absence of
observations for c, it assumes that ig(c) = max(ℑ).
Further, it remains to introduce a hyperparameter
from Eq. 6, namely e. To improve the interpolation of
pv and ra, the agent initially focuses on key positions
of the possible configurations. Figure 5b illustrates
that tendency; the visually highlighted blocks are in-
creased by e = 0.3. When calculating the behavioral
factors, the ACI agent thus initially focuses on these
cornerstones to set up the interpolation; after visiting
c, it subtracts e from ig(c).
To summarize the possible risks but also benefits

that emerge from a configuration c, we combine the
three factors under a common one (u) that is cal-
culated as uc = pvc + rac + igc. The ACI agent
compares the common factors of all possible config-
urations and selects the highest-scoring one (Line 13
of Algorithm 3). By repeating this cycle, the agent
gradually develops an understanding of which areas
in the parameter space are more likely to fulfill SLOs,
e.g., the left-bottom area in Figure 5a.

Theorem 2. The time complexity for Active Infer-
ence Cycle is O(n× 2ω)
Proof. The time complexity for the Active In-
ference Cycle is determined by combining the com-

1In fact, this will be done using the Python scypy package,
which triangulates the input data through a convex hull, and
performs on each triangle linear barycentric interpolation.

10

https://scipy.org/

plexities of Agent and Operation, Model Boundaries,
FE Minimization, Behavioral Factors, and Parame-
ter Space. Except for FE Minimization, all other
stages are computed using constant i.e., O(1) or lin-
ear time i.e., O(n). FE minimization takes O(n3)
(according to Zuker’s RNA prediction approach [38]).
Algorithm 2 makes a key role in FE minimization
and it is mainly depends on number of VSLO and
batch size i.e., |batch|. So, the asymptotic complex-
ity for Algorithm 2 is approximately O(VSLO×batch)
(Note: Constant time excluded.). The complexity
of Algorithm 3 depends on three functions such as
Surprise calculation (SURPRISE), Structure learning
(STRL), and Parameter (PARL) learning. According to
Lemma 1 and Darwiche, we can conclude asymptotic
complexity for ACI cycle iteration when model = ∅
and s > (m10 × h) for all cases is determined as
O(2 × n × 2ω). In summary, the time complexity
for active inference cycle through iteration will take
≈ O(n3)+O(VSLO× batch)+O(n×2ω), and asymp-
totically i.e., ≈ O(n× 2ω).

This concludes the agent’s continuous model op-
timization, which maintains an up-to-date model of
a processing task (i.e., the generative process). The
high accuracy in the EOSC model allows the ACI
agent to infer (Bayes-)optimal device configurations,
which ensures QoS and QoE of ongoing operation. In
the following, we will now focus on the collaboration
between the Edge-based agents.

3.2. Knowledge Transfer within the Cluster

By now, we presented ACI agents that can create
generative models from scratch or update a model
according to new observations. However, if we as-
sume a cluster of nearby devices that process similar
workloads, training EOSC models for every device
seems redundant. Also, if we aim to extend the clus-
ter with more devices (i.e., scaling up horizontally),
model training delays the time until devices operate
according to requirements. Instead, we envision the
federation of knowledge between these edge devices
by exchanging EOSC models within the device clus-
ter. Such a transfer learning approach appears to be a
straightforward process if the models were trained in
the exact same environment [39]. However, the real-
ity is that the Edge is composed of multiple heteroge-
neous device types; the resulting models thus reflect
the characteristics of the device it was trained on,
i.e., its capability to cope with SLOs depends on the

Prepare Model

Classify Devices

EOSC Model

Cluster

Device Char.

Figure 6: Transfer learning between devices in an Edge cluster
according to hardware characteristics

processing hardware. For example, a multi-core de-
vice is certainly capable of processing multiple video
streams, while a single-core one is not. Furthermore,
the behavior of the ACI agent (i.e., which device con-
figurations it favors) and the workload patterns (e.g.,
high demand by clients) determine which areas of the
parameter space are more or less exploited.

Whenever a new device (type) joins a cluster, the
question is whether there exists a device within the
cluster whose environment and characteristics match
the newly-joint device’s. Consider Figure 6, the yel-
low and green devices were already present in the
cluster and shared their EOSC models and device
characteristics (e.g., hardware specs or environmental
factors) with the cluster leader (i.e., standing hierar-
chically above the device cluster). As the red device
joins the cluster, the characteristics are compared to
select a fitting model. In cases where the charac-
teristics of multiple devices are similar, their models
are merged and provided to the newly-joint device.
Thus, the red device builds its EOSC model on top
of existing knowledge in the federation.

In the following, we will dive deeper into this
transfer-learning process by answering (1) how mod-
els are federated between devices, (2) how hardware
characteristics are compared to select a model, and
(3) how models are combined to fit the target device.

11

3.2.1. Cluster-wide Model Exchange

Exchanging EOSC models has two directions: (1)
receiving – when joining a device cluster it might be
preferable to adopt an existing model rather than
training one, and (2) providing – any device might it-
self share its model with devices that join the cluster.
The selection of a fitting model, however, can happen
on any trusted device; we assume for this task either
a cluster leader (i.e., an outstanding device that was
elected due to its capabilities) or a powerful fog node.
To provide an estimation, these models are suppos-
edly smaller than 2 MB, as measured in [5, 24].

When making the architectural decision (i.e., ei-
ther cluster leader or fog node), there are various fac-
tors to consider, among them: network scale, cost,
geographic location, and availability. In cases where
the cluster would be small (e.g., 10 devices), an edge
device (e.g., chosen from Table 3) could cope with
collecting and preparing EOSC models; however, for
larger clusters (e.g., 1000 devices), regular edge de-
vices might fail to do so. In any case, a strong factor
for using fog nodes is their high availability, as fog
nodes could reliably cache a high number of EOSC
models from various edge devices. Either choice, they
assume the same responsibilities, which is why we call
them simply leader node. This leader node periodi-
cally collects the EOSC models of all devices regis-
tered in the cluster, as well as their hardware charac-
teristics. Based on this information, models will be
provided for new device types.

3.2.2. Model Comparison and Selection

Transferring a EOSC model to a newly-joint device
raises two questions: First, is the transfer of an ex-
isting model more efficient than learning the model
from scratch? And second, how to choose the most
convenient model for the new device? Of course, the
second question assumes that the device type is un-
known and the cluster does not contain the respec-
tive trained models so far. The first question will be
answered and discussed as a result of this article; the
second question, however, requires building a hypoth-
esis around how to choose a model.

The dynamism within the training environment
has a decisive impact on the resulting model: applica-
tions with a stable number of user requests do not suf-
fer many dynamics, while applications that are linked
to specific events (i.e., disaster management) can ex-
perience extremely different requirements. However,
we assume that environmental factors are out of our

hands – we are unaware of the dynamics of the envi-
ronment in which the device is set. Due to that, we
focus on the device characteristics when transferring
models between edge devices. To that extent, we get
inspiration from the work of Casamayor et al. [40],
which allows classification of heterogeneous charac-
teristics of the devices found in a cluster, namely their
CPU and GPU capacity. This means that we rel-
atively classify the CPU capacity (p) of the devices
in the cluster in a range [pmin, pmax], and their GPU
capacity (g) from [gmin, gmax]. Given that there are
numerous edge devices without GPU, it is possible
to set gmin = 0. To make this more tangible, in
Section 4.2, we present a list of edge devices whose
hardware is classified accordingly. Finally, we define
each device’s capacities as dc = p + g. To estimate
the similarity of device characteristics and to iden-
tify a device with a matching model, the leader node
selects the device(s) with the closest integer dc.

Indeed, there exist other methods to classify edge
devices’ capacities, as well as to build the proximity
or distance score between them. However, we are
choosing the presented one because it is simple and
can be computed quickly. This is important because
devices are categorized relative to each other; due to
that, the leader node must perform the classification
repeatedly whenever a new device joins the cluster.

3.2.3. Combination and Preparation of Models

Heterogeneous edge devices differ in terms of hard-
ware characteristics; therefore, we identified mod-
els that were trained on comparable devices. How-
ever, with the presented mechanism, there would fre-
quently occur situations in which there is not ex-
actly one device that trumps all others. For ex-
ample, consider a device with type tx that wants
to join a device cluster; there are already numer-
ous device types present, among them ta and tb.
The leader node classifies the device capabilities as
dca = 3, dcb = 5, and dcx = 4. Which EOSC model
should now be provided to tx, the one trained on ta or
on tb? And in case dca = 2 and dcb = 7; is choosing
dca really the smartest choice here?

What we envision for both cases is merging the
models from ta and tb, thus creating a new model
tab that presents the intersection between these two.
In the second case, where dcx does not exactly fall
between dca and dcb, this is done proportionately.
Therefore, what is required is a mechanism to com-
bine EOSC models – still BNs at their cores. To date,

12

merging BNs is an ongoing research field that still
presents various limitations [41, 42]; in most cases, it
is coupled to conditions that the models must fulfill.
Due to this, we limit our work to merging CPTs.
As long as two models ma and mb contain the same

structure (i.e., their DAGs are identical) and their
CPTs have the same cardinality (i.e., variable states),
this can be done as follows: For a random variable r
and its CPT(m, r), each table cell’s expected value (P)
is calculated as shown in Eq. (7); Pa and Pb repre-
sent the probabilities in the cells of ma and mb, the
coefficients wa and wb reflect the distribution of dcx
between dca and dcb. For example, in case dcx is
aligned centrally between them, they take the value
wa = wb = 0.5; otherwise, it is shifted proportionally,
but wa + wb = 1 must always remain true.

Px = (wa × Pa) + (wb × Pb) (7)

Lemma 4. The time complexity for model prepara-
tion is O((q + v)k+1).
Proof. Although multiplying table cells is a simple
process, it has to be done for every CPT in the BN.
Notice, CPTs are multidimensional arrays with k+1
dimensions, where k represents the number of incom-
ing edges for r. So depending on the complexity of
the BN, which consists of v variables with each up to
q states, this can take O((q + v)k+1) multiplications
for a fully connected graph.

If ma and mb do not fulfill the requirements
for simple multiplication, they would have to un-
dergo a transformation process. Nevertheless, in Sec-
tion 4.2.2, we apply a workaround to merge BN whose
CPTs have different cardinalities. Solving this is-
sue on a general level requires dedicating future work
solely to this challenge.
After merging the EOSC models, the leader node

provides the resulting model to the newly-joint de-
vice; once received, we consider the transfer learn-
ing completed. Thereby, it allowed us to decrease
the time required for model training or even skip it
entirely. The big remaining question is now: how
accurately does the resulting model match the char-
acteristics of the new device? This will be evalu-
ated, as it determines the device’s capability to en-
sure SLOs. Nevertheless, consider that any trans-
ferred EOSC model can again be supervised by an
ACI agent. Hence, even though the model would not
match perfectly, the agent can perform the required
fine-tuning to ensure model accuracy.

3.3. Stream Offloading in the Edge-Fog Cluster

Regardless of whether trained by an ACI agent or
transferred from another device, a EOSC model is a
decisive step toward SLO fulfillment. Thus, edge de-
vices are continuously reconfigured to achieve maxi-
mum SLO compliance. However, despite our efforts,
edge devices are still vulnerable to environmental fac-
tors that cannot be controlled, e.g., irregular peaks
in client traffic. While a EOSC model can have a
hard time finding an SLO-compromising device con-
figuration, idle edge devices in close proximity might
be available for offloading computation. Again, to
match our desired level of intelligence, this can be
achieved through collaboration between the agents.
Given that the struggling edge device is part of a de-
vice cluster, it is possible to (1) compare the device’s
capabilities to fulfill their SLOs within their environ-
ment, and (2) balance the load accordingly. Notice,
that shifting the load within the cluster is a (local)
reconfiguration that follows the same rules as in Sec-
tion 3.1; this time, however, on a higher level.

In the following, we describe how to evaluate, ana-
lyze, and optimize the cluster-wide SLO compliance;
the overall process is visible in Figure 7: The edge
devices in the cluster (red & blue) serve their respec-
tive clients, e.g., by processing data, which is subject
to dynamic reconfiguration according to the EOSC
model. Throughout processing, the edge devices sup-
ply their SLO fulfillment to the leader node. Among
that, they provide other factors (i.e., as metrics) that
potentially impact the fulfillment. Environmental
factors (e.g., insufficient hardware, power shortage,
or client demand) can thus be contrasted with the
devices’ capacity to fulfill SLOs. Based on that anal-
ysis, the leader reconfigures the cluster (e.g., by re-
distributing the load) so that QoS and QoE SLOs are
optimized within the cluster.

3.3.1. Cluster-wide Evaluation of SLOs

To analyze SLO fulfillment on a cluster level, the
leader node does not have to evaluate the Edge-based
SLOs again – this is already covered within the Edge
tier. Instead, the leader node merely collects the
SLO compliance rate per device as a combined factor
f = pv×ra. These metrics are collected at the leader
node; depending on the desired amount of historical
data, the high availability of the Fog would again be
beneficial for collecting the data. The question is now
how to transfer metrics: Considering the potential

13

Redistribution

Reconfigure

Stream Data

Redistribution

Offloading Stream

SLO Fulfillment SLO Fulfillment

Analyze Performance

Optimize Assignment

Figure 7: Evaluating SLOs within a cluster of nearby edge devices and reassigning tasks

size of a device cluster, we opt for a push-based ap-
proach, where devices periodically supply their data
to the cluster.

Apart from the SLO fulfillment, edge devices pro-
vide metrics that reflect their current environmen-
tal state. This includes any factors that the leader
node should consider; what cannot be quantified can
also not serve as a basis for cluster-wide optimization.
If a battery-equipped device suffers occasional power
shortages, it can report this conditional to the leader
node, which adapts the network, e.g., by offloading
computations to other devices to decrease its power
drain. However, in the event of an entire network
outage, devices can be incapable of reporting their
state, and another node (e.g., leader) would have to
detect this. Other frequent conditions can be general
network congestion, including poor latency, jitter, or
packet loss, but also devices’ geographic location, user
density, and peak usage times. Given their impact on
the devices’ capacity to fulfill SLOs, the leader node
will rebalance the environment.

3.3.2. Analysis & Optimization per Device

Optimizing the devices’ environments requires
methods to draw conclusions between discrete envi-
ronmental states and their consequential SLO fulfill-
ment. To that extent, we aim – again – to iden-
tify causal relations between metrics; however, this
time on a cluster level. Given a metric set (i.e., re-
flecting the environmental state) and the respective
SLO rates per device, the leader node can construct
a BN and infer how environmental changes impact
the SLO fulfillment. To accelerate the construction
of such a model, the leader node can combine met-
rics from devices of the same type, or even those that
have comparable hardware characteristics (as done in

Section 3.2.2). Although we ascended from an Edge
to a cluster level, we still use the same tool for an-
alyzing and adapting the environment – the EOSC
model. However, to make a distinction, we call this
new instance a EOSC-F (Fog) model. To make the
EOSC-F model training autonomous, it can again be
guided by ACI.

Given a trained EOSC-F model (or rather, its
DAG), it is evident which environmental factors
(σenv) have a causal impact on SLO fulfillment. This
can also help to improve the QoS in the long run,
e.g., by pinpointing issues within the infrastructure.
However, we aim to ensure SLO fulfillment the mo-
ment the QoS or QoE drops; the EOSC-F model can
therefore consider the devices’ environment and re-
distribute client load to ensure maximum SLO ful-
fillment within the cluster. To that extent, we
present Algorithm 4, which distributes a number of
streams (nclient) between the devices (Λ) in the clus-
ter. Notice, that Inference is again executed only
on the variables that relate to SLO fulfillment, i.e.,
MB(model, f), by filtering the model (Line 2 & 10). In
Lines 6-18, the agent then iteratively assigns clients
to the device, whose SLO fulfillment is the least im-
pacted by receiving another stream (ass[λ]+1). This
assumes, that both ass and σenv are part of ev, i.e.,
have an impact on SLO fulfillment. To that extent,
σenv[λ] can contain factors like device characteristics.
After assigning all streams within the cluster, the as-
signment can be orchestrated to the clients.

Lemma 5. The time complexity for client reassign-
ment (Algorithm 4) is O(n2).
Proof. According to the step count method, the al-
gorithm takes Λ interactions for initial assignments.
Then, it take nclients times of Λ. So, the time com-

14

Algorithm 4 Client reassignment algorithm

Require: model, nclient, σenv
Ensure: ass // assignment according to env. state
1: i← 0
2: ev ← MB(model, f)
3: for each λ ∈ Λ do
4: ass[λ] = 0
5: end for
6: while i < nclients do
7: δbest = −∞
8: for each λ ∈ Λ do
9: evidence← ev ∩ (σenv[λ] ∪ ass[λ] + 1)

10: δ ← INFERENCE(ev, f, evidence)
11: if δ > δbest then
12: δbest = λ
13: end if
14: end for
15: ass[δbest]← ass[δbest] + 1
16: i← i+ 1
17: end while
18: return ass

plexity can be defined as O(Λ+(nclients×Λ)), which
is ≈ O((nclients×Λ)). In worst case nclients = Λ = n,
then the asymptotic time complexity for the client
reassignment algorithm is O(n2).

3.3.3. Orchestration and Redistribution

As a last step, the new cluster configuration must
be enforced; in this case, by informing the perti-
nent devices of the new assignment. The leader node
pushes this information to all edge devices that must
alter their configuration. In accordance with Fig-
ure 7, this includes all devices that offload or receive
clients (red & blue); thus, the red device redirects
clients to the blue device.

To improve the SLO fulfillment rate within the
cluster, the assignment considered each device’s en-
vironment to provide an adequate configuration on a
cluster level. Regardless of whether the QoS was im-
pacted by poor network conditions or by poor hard-
ware, if these conditions are packed as stateful in-
formation, the leader node can optimize the cluster
accordingly. Thus, it covers heterogeneities between
edge devices, which themselves might fail to scale
their service given the stress introduced by the en-
vironment.

Theorem 3. The time complexity for proposed

EOSC approach is O(n× τν+1)
Proof. The proposed EOSC consists of three stages
including Static Model Training and Inference, Ac-
tive Inference Cycle, Knowledge Transfer within the
Cluster, and Stream Offloading in the Edge-Fog Clus-
ter. It is measured as (n × τν+1) + (n × 2ω) + ((q +
v)k+1) + (n2). So, the asymptotic complexity of the
proposed work can be concluded as O(n× τν+1).

This concluded the redistribution of client load,
which optimized the overall SLO fulfillment in the
cluster according to the EOSC-F model. To transfer
intelligence to the network edge, or even to the level
of a cluster or fog node, this section provided various
concepts that all had the same goal: ensure SLOs
in the respective system. To that extent, it remains
to provide a prototypical implementation of the pre-
sented ideas, evaluate it according to key aspects, and
argue to what extent it is ready for wider adoption.
This will be the content of the next two sections.

4. Evaluation

In the following, we describe (1) a CC scenario
that requires edge devices to continuously transform
video streams; this use case poses various require-
ments that must be ensured throughout processing.
Afterward, we outline (2) our prototype that ensures
SLOs through collaborative edge intelligence. Essen-
tially, this is the implementation of the framework
presented in this paper. Lastly, we explain (3) the
methodology according to which the prototype will
be evaluated. Section 5 will contain the respective
results.

4.1. Use Case Description

The CC as a distributed system provides unprece-
dented opportunities for service providers and clients
alike, e.g., in terms of processing or requirements as-
surance. As an example, consider a region with fre-
quent natural disasters where the humanitarian situa-
tion should be documented. Therefore, reporters pro-
vide video streams in which vulnerable groups, e.g.,
minors of age, are detected. In the same step, indi-
viduals can be counted or visually highlighted; their
identities, however, must be preserved. The region
suffers from occasional network breakdowns (i.e., this
affects access to global resources like the cloud but not
internal connectivity); the reporting team thus pro-
vides ad hoc networking infrastructure in the form of

15

edge devices, which can be installed in close proxim-
ity to the operation area. Reporters equipped with
IoT cameras are now capturing their surroundings;
the video streams are transformed on edge devices,
where they can be cached as long as global internet
services are unavailable. Once resumed, the videos
are streamed to a cloud platform that provides the
content to worldwide consumers.

Envisioned Solution. Due to the nature of how such
disasters happen, it is impossible to fine-tune the
complete streaming architecture beforehand. There-
fore, the system is unaware of how to ensure its ser-
vice (i.e., characterized by a set of SLOs) within this
highly dynamic environment. To that extent, we ad-
vertise our framework for collaborative edge intelli-
gence as the missing piece: Edge devices are super-
vised by ACI agents, which ensure QoS and QoE
through their EOSC model. Whenever the comput-
ing architecture is extended with new devices (i.e.,
scaled horizontally), existing models can be trans-
ferred to this new device, regardless of whether its
device type is known. Therefore, both devices must
be part of a cluster, in which the leader node identifies
the device whose hardware characteristics are most
similar. Apart from that, the leader node continu-
ously analyzes edge devices’ capacity to comply with
SLOs; in case some devices are excessively loaded or
suffer from short-term network issues, the assignment
between IoT cameras and edge devices is adapted to
optimize the cluster-wide SLO fulfillment.

4.2. Implementation

While the last part of the use case outlined the
envisioned solution, not all of these aspects are im-
plemented and evaluated; in this regard, we focus on
the ideas presented in this paper. This especially con-
cerns the three contributions of the presented frame-
work, i.e., the ACI-based model training, the knowl-
edge transfer between heterogeneous devices, and the
rebalancing of load according to environmental fac-
tors. Aspects such as the bootstrapping of IoT and
edge devices and the leader node election (e.g., fog or
edge) have already been covered, e.g., by Murturi et
al. [43, 44]. The same applies to the cloud-based dis-
tribution of video streams. An exception, however,
is the privacy-preserving stream transformation; for
this, we make use of previously evaluated work [45].
To give our evaluation more rigor, we chose this tool
over simulating the workload and its impact on SLOs.

4.2.1. Prototype

We provide the Python-based prototype of our
framework in a GitHub repository2; it contains all
source code we used to implement the three contri-
butions, as well as the EOSC models for each device
type. The core logic is separated into two classes:
Agent and FogNode. These are the high-level loops
executed in the main thread; all other processes (e.g.,
ACI or VideoProcessor) run in detached threads.
The central library that is applied for training and
updating BNs, as well as running inference queries, is
pgmpy [46]. pgmpy offers ample support of BNL tech-
niques; however our choice is also motivated by per-
sonal preference – the framework’s performance must
be analyzed under different libraries (e.g., as done by
[47]). To improve the portability of our framework
and simplify distribution, we provide a docker im-
age3 that can be executed platform independently4.
The image exposes multiple env variables for config-
uring the solution, e.g., forcing the Agent to create a
EOSC model from scratch or disabling ACI entirely.
The source code also contains the framework for

privacy-preserving stream transformation and the
ML models for face [48] and age detection [49]. To im-
prove the reproducibility of results, we cancel out ir-
regularities in the video streams by processing prere-
corded videos; these are contained in the same repos-
itory. To simulate redirecting IoT devices within
the cluster, it thus suffices to open/close processing
threads on the edge devices; this simplifies network-
ing. The Agent can thus reconfigure the stream as-
signment immediately, at the end of every ACI itera-
tion. Because the use case is focused on video stream-
ing and the number of frames per second (fps) that
are transferred, each iteration lasts up to 1000ms.

4.2.2. Practical Limitations

Merging BN, as presented in Section 3.2.3, is only
possible under the specified conditions, which are not
always given during the ACI process. The number of
states in a CPT, for example, is highly dynamic and
extended as new batches of data are received. To
merge the EOSC models under such circumstances,
we provided a workaround: Instead of merging two
BNs (ma and mb), we extend one of them (e.g., ma).

2https://github.com/borissedlak/workload/tree/main/FGCS
3https://hub.docker.com/repository/docker/basta55/workload/
4In fact the docker image is restricted to daemons with a

linux/arm64 architecture. This is the embedded architecture
for all device in Table 3, except for Laptop (x86 64).

16

The device that trained mb maintains a backup of the
training data (db); this we use to update the CPTs
of ma through PARL5, i.e., mab = PARL(ma, db). No-
tice, that this merges the conditional probabilities of
the models, but not the structure; this remains an
open question. While the resulting models are valid,
we cannot assume that the original training data is
always maintained.
Another limitation is that the DAG of the model

cannot be updated frivolously through STRL; this
triggers numerous updates within the CPTs of the
BN, which are not supported by default in pgmpy.
Although bnlearn [50] promises these features, we
require a package that can be embedded into our
Python environment. Therefore, we make use of
the following workaround: Instead of updating the
DAG of model ma according to new observations
batch, we train a new BN with data = batch ∪ da,
where da reflects again the backup data. So inter-
nally, the ACI agent executes STRL(model, batch) as
PARL(STRL(data), data), which likewise updates the
CPTs with every execution. We consider it out of
scope to solve this limitation within our work.

4.2.3. Variables and SLOs

For the given use case, the agents consider de-
vice and application (i.e., video processing) metrics to
construct EOSC models. Internally, BNL transforms
metrics into model variables, which are used to eval-
uate conditional probabilities. Table 1 contains an
overview of all captured metrics; each row contains a
description, measuring unit, and if it can be used as
parameter. Notice, that only parameterizable vari-
ables can be adjusted by the ACI agent to optimize
SLO fulfillment. For example, pixel and fps are video
stream properties of the IoT device, which are recon-
figured by the edge device according to the agent’s
behavior. The leader node, on the other hand, can
only adjust the number of streams per device; this,
however, was out of scope for an individual device.
The EOSC (or EOSC-F) models can be applied

in different computational tiers to ensure each tier’s
unique requirements; thus, their model variables
might not overlap. The edge-based EOSC model con-
tains the upper part of the variables, i.e., from pixel

5This functionality is natively offered by pgmpy ; by default,
the models are merged proportionally to the number of samples
that ma and db contain. This can be fine-tuned by adjusting
the n prev samples parameter; we use this to prioritize new
observations batch over existing conditional probabilities.

to success, whereas the cluster-based EOSC-F model
treats the lower part. Notice that the metric’s ori-
gin, i.e., if it was measured from system stats or the
application, does not determine where it is used as
a variable. From these variables, we construct SLOs
that reflect the system state in terms of QoS and QoE.
The ACI agent considers this classification when cal-
culating pv and ra (recall Section 3.1.2). In Table 2,
we present four SLOs that must be ensured during
edge-based processing and one that is ensured by the
cluster’s leader node. To simplify the EOSC models,
we include the SLO into BNL and remove the source
variable, i.e., distance instead of distance
We consider the presented SLOs relevant because

(1) network ensures that the combined number of
video streams does not exceed the networking capa-
bilities, (2) in time makes sure that frames are com-
puted within the available time frame, (3) success
guarantees maximal privacy preservation, and (4)
distance ascertains a smooth trajectory for tracked
objects. The maximum slo rate speaks for itself.

4.2.4. Device Classification

Video processing is very dependent on the avail-
ability of GPU acceleration [45]; therefore, we apply
multiple edge devices – with and without GPUs. All
devices applied for this work are listed in Table 3; in
the following, we call them by their ID. The other
columns contain hardware characteristics and – com-
plementarily – the original price of the device. A spe-
cial instance is XavierCPU : while its physical hard-
ware is equal to XavierGPU , we disabled the GPU ac-
celeration (i.e., NVIDIA CUDA) to create another de-
vice type. Overall, our devices differ greatly in terms
of computing capabilities (e.g., missing GPU support
or a highly superior CPU with 16 cores); nevertheless,
as a whole, these devices compose the heterogeneous
edge layer of the CC architecture.
As a prerequisite for transfer learning, we classify

devices in a cluster according to their hardware char-
acteristics. Although this process is dynamic, i.e.,
done repeatedly as devices join or leave or leave the
cluster, we focus our evaluation on a scenario where
the cluster contains all devices from Table 3, exclud-
ing XavierGPU ; the latter will be the device joining
the cluster. As discussed in Section 3.2.2, we classify
these devices relative to each other according to their
CPU and GPU capabilities; the results are contained

6Price as of October 11th 2023 from https://sparkfun.com/

17

Table 1: List of metrics captured by the devices, which are turned into variables by ACI

Name Origin Unit Description Param

pixel IoT num number of pixel contained in a frame Edge
fps IoT num number of frames received per second Edge
bitrate IoT num number of pixels transferred per second No
cpu Edge % utilization of the device CPU No
memory Edge % utilization of the system memory No
streams Edge num number of IoT devices providing data Fog
consumption Edge W energy pulled by the device No
network Edge num data transferred over network interface No
delay App. ms processing time per video frame No
success App. T/F if a pattern (i.e., face) was detected No
distance App. num relative object distance between frames No

slo rate Edge % combined SLO Fulfillment rate (pv × ra) No
device type Edge enum physical device type No
congestion Edge num network congestion that increases latency No

Table 2: Extracted SLOs and their classification.

SLO Condition Tier Type

network network < 1.6 MB/s Edge QoS
in time delay < 1/fps Edge QoS
success success = True Edge QoE
distance distance < 50 Edge QoE

slo rate max(slo rate) Fog Both

in Table 4. To achieve the desired distance between
the scalars, the CPU is aligned between [1 ≤ p ≤ 4]
and the GPU between [0 ≤ g ≤ 2].

4.3. Evaluation Methodology

The implementation of the use case is thus set
up for evaluation. To ensure a solid foundation for
our framework, we will target each of the three pil-
lars (i.e., the contributions) individually. The order
in which they are evaluated resembles the one used
throughout the paper; this makes sense also from a
logical point of view because transfer learning and
stream offloading rely on the underlying ACI mecha-
nism. In the three paragraphs below, we outline the
evaluated aspects and motivate each question. Com-
bined, this represents our evaluation methodology.

Active Inference. Our main interest includes the
executability of the ACI agent on edge devices and
the extent to which the EOSC model improves the
SLO fulfillment within the Edge. Because structure

and parameter learning are recurrent factors in the
evaluation, we will put emphasis on when they hap-
pen. Namely, our questions include:

A-1: Do MBs reduce the complexity of inference?

Increasingly large BNs require mechanisms to limit
the complexity of a system; otherwise, resource-
restricted edge devices may fail to execute the ACI
cycle within an induced time frame. The MB, as a
potential remedy, could achieve this.

A-2: What is ACI’s operational overhead?

Training and updating EOSC models directly on edge
devices allows them to adapt quickly to system dy-
namics. However, any overhead introduced by ACI
must not disrupt regular device operation, e.g., data
processing.

A-3: How long require ACI agents to ensure SLOs?

To optimize SLO fulfillment, the agent must be able to
infer adequate system configuration. However, there
is no guarantee after how many ACI iterations the
model will converge to the desired accuracy. Hence,
we must provide an estimate for this.

A-4-1: Are the produced Bayesian networks inter-
pretable?

Large-scale distributed systems, e.g., the CC, require
trusted and reliable components as a solid founda-
tion. Given that ACI can provide structures that are
empirically verifiable, this promises to increase trust.

18

Table 3: List of devices used for implementing and evaluating the presented methodology

Full Device Name ID Price6 CPU RAM GPU

ThinkPad X1 Gen 10 Laptop 1800 € Intel i7-1260P (16 core) 32 GB Incompatible
Jetson Orin Nano Orin 500 € ARM Cortex A78 (6 core) 8 GB Volta (383 core)
Nvidia Jetson Nano Nano 150 € ARM Cortex A57 (4 core) 4 GB Incompatible
Jetson Xavier NX XavierCPU 300 € ARM Carmel v8.2 (6 core) 8 GB Disabled

Jetson Xavier NX XavierGPU 300 € ARM Carmel v8.2 (6 core) 8 GB Amp (1024 core)

Table 4: Classification of device hardware and assigned scalar

Device ID CPU [1,4] GPU [0,2] Σ

Laptop Very High (4) None (0) 4
Orin High (3) High (2) 5
Nano Low (1) None (0) 1
XavierCPU Medium (2) None (0) 2

XavierGPU Medium (2) Low (1) 3

A-4-2: Is the behavior of ACI agents explainable?

Being able to understand an agent’s decisions allows
to justify (or empirically debug) its behavior, e.g.,
why the agent chose a certain device configuration
at a specific time. If agents follow patterns, this also
simplifies the configuration of hyperparameters.

A-5: What is the operational impact of including BNL
in the ACI cycle?

BNL was identified as the dominant factor for the
complexity of the ACI cycle; therefore, we must ascer-
tain whether edge devices can perform BNL without
limitations. Depending on the results, the two pro-
cesses could be broken up into a federated learning
approach, e.g., to execute sub-steps in the Fog.

A-6: Can changes in variable distribution be handled?

Real-world generative processes are not guaranteed
to stay stable, a small environmental change (e.g., a
new client) might suffice to change the SLO outcome.
Nevertheless, these changes should be detected and
resolved through ACI-based model training.

A-7: Can SLOs be modified during runtime?

In the CC, edge devices can be administered by en-
tities that stand hierarchically above them; these can
change their role in the architecture, or more simply,
their SLOs. If the device could not adapt its existing
EOSC model, it would have to train from scratch.

Knowledge Transfer. After focusing on the train-
ing of EOSC models, we are mainly interested in how
well the created models can be exchanged with other
edge devices, and if this promises to improve the
training time. Ideally, we would thus reuse existing
knowledge instead of “rediscovering” it.

K-1: How high is the SLO fulfillment of transferred
models compared to ACI-trained ones?

Transfer learning can provide ML models (i.e., spe-
cific for one device) to other devices. However, it
is not guaranteed that a transferred model performs
equally to a model specifically trained for a device.
For example, the transferred model might be more
likely to violate SLOs; hence, this must be examined
by comparing the produced results.

K-2: Can knowledge transfer achieve any speedup?

Transferring a trained model removes computational
overhead (A-2) from the recipient; thus, it could de-
crease the overall energy dedicated to model training,
most beneficial for resource-restricted edge devices.
Furthermore, this could decrease the time required
to ensure SLOs (A-3).

K-3: Can merged models decrease the FE compared
to choosing a single one?

Models with low FE can infer SLO-fulfilling sys-
tem configurations with higher accuracy. Exchanging
knowledge within the cluster can include the combi-
nation of multiple eligible models. However, can such
combined models interpret observations with less sur-
prise compared to a single transferred model?

Stream Offloading. To optimize their SLO fulfill-
ment, intelligent edge device continuously adapt their
environment. However, if there are environmental
factors that are out of their scope (e.g., network
failures or hardware limitations), the device cluster
can be the remedy to compensate for these issues.

19

In this context, we want to determine whether the
SLO fulfillment of individual devices can be recov-
ered through collaboration.

S-1: How is the load distributed among resource-
constrained devices?

The Edge, as one CC tier, allows clients to request
services from nearby edge devices; however, this fos-
ters situations where load is highly unbalanced within
the system. This might cause resource-restricted de-
vices to fail their service; once this is detected, the
load must be rebalanced within the system.

S-2: Can the CC hierarchical structure optimize local
SLO fulfillment?

Depending on the scale of SLO failures, individual
devices may be incapable of recovering their service
through local reconfiguration. Nevertheless, higher
entities in the CC (e.g., the device cluster) can eval-
uate and resolve this by employing their own SLOs.

5. Results and Discussion

In the following, we will evaluate the prototype ac-
cording to the presented methodology. We structure
our results according to the three contributions and
the evaluation order used in Section 4.3; based on
the results, we pose derivative questions for future
work. At the end of this section, we take a step back
(i.e., not focusing on particular questions), look at
the results as one coherent framework, and discuss
the applicability of our approach.

5.1. Active Inference

A-1: Do MBs reduce the complexity of inference?

To show whether an MB can decrease the ACI cy-
cle duration, we focus on one of its subparts – the
inference. This makes sense since INFERENCE poses
the highest algorithmic complexity whenever STRL is
not executed. We modify the implementation of Al-
gorithm 2 (Line 2 & 8) to execute INFERENCE either
(1) on the entire BN including all 4 SLOs, (2) the
MB including 4 SLOs, (3) the MB with 2 SLOs, or
(4) the MB with 1 SLO. Then, we execute the ACI
cycle on Laptop and capture the running time of each
configuration over a duration of 10 min; this produces
600 observations for each experiment. Figure 8 visu-
alizes the time that Laptop requires for performing
INFERENCE, given the different MB sizes.

Figure 8: Duration of the ACI cycle depending on the applica-
tion of an MB and the number of SLOs (A-1)

We observe two things: (1) applying an MB reduces
the median execution type significantly, i.e., from 191
ms (grey) to 159 ms (blue) for 4 SLOs, and (2) de-
creasing the number of SLOs gradually reduces the
execution time further. We thus conclude that MBs
can reduce the complexity of VE (A-1).

A-2: What is ACI’s operational overhead?

To evaluate the operational overhead of ACI, we
use pre-trained EOSC models for XavierCPU and
XavierGPU . Each device processes 6 video streams.
We measure the CPU load (%) of the two devices with
one of these two configurations: (1) ACI enabled, and
(2) ACI disabled. We capture the load over 10 min;
this produces 600 observations for each experiment.
In Figure 9, we show the CPU load of XavierCPU

and XavierGPU . The left bar of each device shows
the load when operating with ACI and the right one
without (i.e., disabled) ACI.

We observe: (1) the CPU load is clearly decreased
when processing the videos on a GPU, XavierGPU

with ACI enabled presented a 24% lower load than
XavierCPU , and (2) the ACI background process in-
troduced a computational overhead of 3% for both
devices (left vs. right bar). Overall, this provides
an estimate of the general overhead (A-2); however,
whether this is acceptable depends on the use case.

A-3: How long require ACI agents to ensure SLOs?

To evaluate the time to train a EOSC model, we
count (1) the number of ACI iterations that the agent

20

Figure 9: Overhead introduced by the ACI background process
when operating on XavierCPU or XavierGPU (A-2)

requires to arrive at a (nearly) optimal device con-
figuration, and (2) how often the agent changes the
configuration to get there. The model is trained from
scratch; therefore, the ACI agent (i.e., executed on
Laptop) trains the model over 20 cycles and reports
after each cycle (3) the SLO fulfillment according to
the selected device configuration. We present the re-
sults in Figure 10: The green and red lines represent
the SLO fulfillment (pv & ra); whenever the agent
reconfigures the edge device, we print a blue dot for
both lines in the graph. We observe: (1) the agent
requires roughly 7 cycles to converge to a configura-
tion that satisfied SLOs with more than 90%, which
it then maintains in the same range; (2) this state is
reached after 3 reconfigurations; and (3) pv and ra
showed similar trends in this example. Thus, we an-
swered how long an ACI agent requires to provide an
acceptable configuration (A-3), both in terms of ACI
cycles and the number of reconfigurations.

A-4-1: Are the produced causal graphs interpretable?

To discuss the interpretability of created causal
structures, we compare the DAGs produced by STRL

and highlight at which stage the graph can be empir-
ically explained. We will not consider specific metrics
here but interpret the DAGs according to our expert
knowledge. On Laptop, we train a EOSC model from
scratch and extract the DAGs after {1,3,5,10} rounds
of BNL. Thus, we want to show how the ACI agent
discovers (ideally) causal relations between model
variables. The results are visible in Figure 11: SLO
variables (see Table 2) are colored in green; regular

Figure 10: SLO fulfillment rate (split up into pv and ra) when
operating on a blank Laptop client over 20 ACI cycles (A-3)

variables in blue. We observe: (1) all SLO variables
are influenced by variables that the ACI agent can
control, and (2) memory was the only variable that
could not be related to any other. After studying the
graphs carefully, we could not detect any edge that
appears counterintuitive to us; however, this does not
prove that they are indeed causal. In total, we claim
that the created graph is coherent and the links are
understandable (A-4-1), but it requires sophisticated
experiments to prove causality for each edge.

A-4-2: Is the behavior of ACI agents interpretable?

Complementarily, we were interested in how the
behavior of the ACI agent could be interpreted. In
Figure 12 we present three matrices for each behav-
ioral factor (i.e., pv, ra, and ig). We executed the
ACI agent on Laptop and extracted the matrices after
{1,5,50} iterations. The first row presents the agent’s
initial assumptions on how the parameters are related
to SLO fulfillment (pv & ra) and which rows provide
the most insight (ig).

We observe: (1) the ig is initially high at corner
points in the parameter space (as discussed in Sec-
tion 3.1.2), which are visited in the first ACI itera-
tions – this is evident because at round 5 only one cell
with e = 0.3 remains; (2) the interpolation improves
as transitions in the heatmap become smoother (from
top to bottom); (3) the highest SLO fulfillment is at
pixel = 300, fps = 14; and (4) the agent develops
clear preferences in terms of pv (i.e., bottom-left cor-
ner), while the optimal ra is located in the center of

21

bitratein_time

success

fps

pixel

streams

distance

CPU consump

network

memory

(a) DAG after 1 round

bitrate

in_time

success

fpspixel

streams

distance

CPU

consump

network

memory

(b) DAG after 3 round

bitrate

in_time

success

fps

pixel

streams

distance

CPU

consump

network

memory

(c) DAG after 5 rounds

bitrate

in_time

success

fps

pixel

streams

distance

CPU consump

network

memory

(d) DAG after 10 rounds

Figure 11: Progress of the DAG after {1,3,5,10} rounds of parameter training when creating a model with ACI on Laptop (A-4-1)

the parameter space. Areas to avoid would be, e.g.,
pixel = 120, because image detection requires more
detail, or fps > 22 because the processing time frame
shrinks. Overall, we argue that the visualizations al-
low understanding the agent’s behavior (A-4-2).

A-5: What is the operational impact of including
BNL in the ACI cycle?

To answer whether BNL can be applied on regular
edge devices, we train a EOSC model on XavierGPU

and measure the execution time of STRL and PARL,
i.e., the BNL sub-steps from Algorithm 3. In Fig-
ure 13 we visualize the execution time of STRL and
PARL over 100 ACI iterations, respectively 1.5 min of
operation. We observe: (1) PARL runs with a stable
runtime of around 250ms, (2) the time required for
STRL increases as more and more training data be-
comes available, and (3) running STRL after 100 ACI
iterations took more than 20s. We conclude that PARL
might be run on the employed edge device because it
can be completed within less than 1000ms (i.e., the
time frame for concluding the ACI cycle from Sec-
tion 4.2.1). However, the runtime of STRL presents
an obstacle because the ACI agent might thus have
to skip iterations until the ongoing execution of STRL
is finished. Hence, it would be advisable to perform
STRL on another device (A-5) or find a way to de-
crease the runtime, e.g., by updating the DAG re-
gardless of existing CPTs.

A-6: Can changes in variable distribution be han-
dled?

Variable distributions can change due to various
external factors; to evaluate how well the system can

handle this, we either (1) simulate a peek usage time
by increasing the number of processed video streams
from 1 to 6, or (2) distort the video content with a
Gaussian blur of 5px, which could resemble a foggy
video setting. We measure the impact on the SLO ful-
fillment (pv & ra) over 20 ACI cycles and visualize to
what extent the EOSC model is capable of restoring
satisfactory (i.e., close to original) SLO rates. Fig-
ure 14 shows in both subfigures the SLO fulfillment
rate of Laptop, when the disruptive factor was intro-
duced (i.e., after 3 iterations), and at which points
the ACI agent reconfigured the system (blue dots).

We observe: (1) after the stream change, Laptop
took 11 ACI cycles (incl. 4 reconfigurations) to re-
cover the SLO fulfillment, and (2) the information
loss introduced by the video manipulation could not
be recovered, although SLO fulfillment was improved
as far as possible. Hence, we conclude that the system
was able to adapt to changes in the variable distribu-
tion (A-6); however, only as long as the device can
compensate for this factor. In fact, the SLO fulfill-
ment could not be recovered after the video change
because the agent did not have an equivalent counter-
measure, e.g., increasing the resolution sufficiently.

A-7: Can SLOs be modified during runtime?

Requirements might change during operation; to
simulate this, we modify the distance SLO from 50
to 20 (i.e., clearly stricter) and measure the SLO ful-
fillment rate before and after the modification. Ad-
ditionally, we capture the surprise (Algorithm 2) to
show if SLO outcomes reflected the expectations of
the agent. Figure 15 shows in the upper part the SLO
fulfillment rate over 40 ACI cycles; the SLO changes
after 3 iterations. The lower part shows the agent’s

22

(a) pv matrix after 1 round (b) ra matrix after 1 round (c) ig matrix after 1 round

(d) pv matrix after 5 rounds (e) ra matrix after 5 rounds (f) ig matrix after 5 rounds

(g) pv matrix after 50 rounds (h) ra matrix after 50 rounds (i) ig matrix after 50 rounds

Figure 12: Behavioral factors (i.e., pv, ra, and ig) interpolated by the ACI agent to evaluate possible device configurations (A-4-2)

surprise at each round and when STRL or PARL hap-
pen.

We observe: (1) after the SLO change, the agent
experienced 9 rounds of high surprise, i.e., >> 35,
(2) after 2 reconfigurations, the state prior to the
SLO change was recovered, although final SLO rates
(mean 0.91) are slightly below previous (mean 0.94),
and (3) the magnitude of the surprise was decisive for

the decision between STRL and PARL (as envisioned
in Algorithm 3). However, as known from Figure 13,
STRL can exceed the ACI time frame multiple times;
hence, the ACI agent is forced to wait for this pro-
cess to finish. This could be solved, e.g., by offloading
STRL. Nevertheless, we conclude that the system was
able to handle SLO changes during runtime (A-7).

23

0

5

10

15

20

ST
RL

 ti
m
e
(s
)

0 20 40 60 80 100
ACI Cycle Iteration

0.00

0.15

0.30

PA
RL

 ti
m
e
(s
)

Figure 13: Duration of structure and parameter learning on
the XavierGPU when training the BN from scratch (A-5)

(a) Stream changes (b) Video changes

Figure 14: Changes in the variable distribution caused (a) by
higher number of video streams or (b) lower video quality (A-
6)

5.2. Knowledge Transfer

K-1: How high is the SLO fulfillment of transferred
models compared to ACI-trained ones?

Transfer learning promises to accelerate model
training, but we must ascertain that transferred mod-
els perform equally to trained ones. For this, we as-
sume that XavierGPU wants to join the device clus-
ter. According to Table 4, Laptop and XavierCPU

are eligible for providing their model, i.e., their hard-
ware scalars (2 & 4) are the closest to XavierGPU

(3). Hence, we merge their EOSC models and trans-
fer the result to XavierGPU . Next, we compare the
SLO fulfillment of the merged model with a separate
run, where a model is trained from scratch. We place
both runs into Figure 16; the blue line represents

Figure 15: Impact of changing the distance SLO during run-
time, combined with the respective surprise values measured
(A-7)

the combined model, and the grey one was trained
from scratch. Additionally, we indicate each time the
agents changed the configuration.

We observe: (1) the merged model does not face
any substantial improvements of its initially high SLO
fulfillment; (2) the agent required 14 rounds to arrive
at a comparable SLO rate – this also matches our
experience from Figure 10, where Laptop required 7
to 16 ACI rounds for training; and (3) the final rates
are within the range [0.85,0.95]. From that, we con-
clude that the results produced by the trained model
were comparable to the merged model (K-1), and
that KT could achieve a speedup of 14 rounds (K-2),
assuming that the transferred model was ready for
usage. Nevertheless, this is only valid for the given
setup (i.e., these two devices); it is not possible yet
to derive general implications of our approach.

K-3: Can merged models decrease the FE compared
to choosing a single one?

As discussed in Section 2.2, it is hard to estimate
the FE of a model, but we consider the fact that sur-
prise is bounded by FE. Although low surprise does
not imply low FE, we use it as an indicator: We
transfer a model to XavierGPU (merged from Laptop
and XavierCPU as above) and calculate the surprise

24

Figure 16: Difference in SLO fulfillment between an agent using
a transferred model or training from scratch (K-1 & K-2)

throughout multiple ACI cycles. This we compare
against alternative runs, in which XavierGPU uses one
of the EOSC models of the other devices (from Table
Table 3). Furthermore, we count the usage of PARL.
The results are presented in Figure 17; each of the
colored lines represents one of the respective models,
which were copied to XavierGPU . The blue line, how-
ever, describes the combined model. The lower figure
shows for each run when PARL was executed.

We observe: (1) the models trained on Orin and
Nano produced initially very high surprise (>> 50),
indicating that these models fit XavierGPU the least;
(2) nevertheless, the agent was able to improve these
models and converge to an area where all 5 models
provide similar surprise after 25 iterations; (3) the
combined model provided initially the best values and
only performed PARL twice; and (4) interestingly, al-
though close to each other, the combined model pro-
duces after 25 rounds the highest surprise (33), while
XavierCPU reached 17. This shows, that the frequent
retraining performed by the other devices (colored tri-
angles in the lower graph) allowed the other models
to surpass XavierGPU . This raises the question if it
would be advisable to always run PARL, regardless of
the surprise magnitude – Are there even situations
when the CPTs should be updated less frequently?
Combined, we can answer that the merged model
had initially less surprising values (K-3); however,
frequent retraining may achieve even better results.

Figure 17: Overall surprise measured per batch when operat-
ing on the XavierGPU with existing models or one combined
especially for this device. Paired with the frequency the CPTs
are updated through parameter learning (K-3)

5.3. Stream Offloading

S-1: How is the load distributed among resource-
constrained devices

To offload computations within the cluster, we aim
to show how low-resource devices are relieved from
excessive load. For this, we assume 25 IoT devices
that are either assigned Equal to the edge devices or
Random. As an indicator for maximum SLO fulfill-
ment, we added Single, where each device processes
one stream; Table 5 shows an overview of each sce-
nario’s assignment. After operating with Equal or
Random, the leader node starts to optimize the envi-
ronment, i.e., using the EOSC-F model to distribute
the 25 streams depending on the device capabilities
(Infer). This new assignment is then provided to the
edge devices. We thus simulated an offloading or load
rebalancing, e.g., Nano dropped from 5 (or 3) to 1
stream. In Figure 19, we show each device’s SLO ful-
fillment rate per scenario. The left bars of Figure 19b
show the cluster-wide average of the SLO fulfillment
and the right bar the weighted average according to
the number of streams (slo rate× stream). To get a
feeling of the heterogeneous device capabilities, Fig-
ure 18 provides a regression function that shows how
the SLO fulfillment per device is impacted by the
number of streams.

25

Table 5: Streams assigned to each device for evaluated scenarios

Device ID Single Equal Rand Infer

Laptop 1 5 4 9
XavierGPU 1 5 8 5
XavierCPU 1 5 5 1
Orin 1 5 4 9
Nano 1 5 3 1

Sum Σ 5 25 25 25

Figure 18: Regression curves between environmental demand
for edge devices (streams) and their respective SLO fulfillment
rates (pv × ra)

We observe: (1) the average SLO fulfillment clearly
improved by using Infer (0.81) instead of Random
(0.64) or Equal (0.60); (2) this is also reflected by the
weighted average (right bars of Figure 19b), which
puts Laptop and Orin in focus that processed 9
streams each; (3) the weighted average of Infer comes
close to the one of Single (0.89), even though the clus-
ter processed 25 instead of only 5 streams. From that,
we conclude that the intelligent cluster was able to in-
corporate restricted edge devices (e.g., Nano) into the
architecture (S-1), and that the overall SLO compli-
ance improved by following our approach.

S-2: Can the CC hierarchical structure optimize local
SLO fulfillment?

To improve the SLO fulfillment whenever individ-
ual devices lack the required scope, we will resolve
such SLO failures within the cluster. Therefore, we
consider a condensed device cluster consisting of Lap-
top and Orin. S-1 showed that they have comparable
processing capabilities; therefore, it is fair to split 10
streams equally between them. Figure 20 provides

(a) SLO fulfillment per device

(b) Average and weighted average per batch

Figure 19: SLO fulfillment within the edge-fog cluster when
distributing load according to Infer, Random, or Equal. Single
is an upper bar for this device constellation (S-1)

the DAG internal to the EOSC-F model: Blue nodes
are environmental factors, from which only stream
can be configured (recall Section 4.2.3); slo rate rep-
resents the common factor f = pv × ra. We simu-
late network congestion7for Orin – which the leader
node can evaluate through congestion – and redis-
tribute the load according to the EOSC-F model, i.e.,
Orin = 8,Laptop = 2. Then, we compare the overall
SLO fulfillment before and after offloading; the re-
sults are shown in Figure 21. The two lines show the
SLO fulfillment (f) of Laptop (red) and Orin (blue)
over 50 ACI iterations; after 10 rounds, the network
gets congested. In round 30, the cluster leader re-
balanced the load according to its EOSC-F model;
although it is possible to rebalance earlier, we de-
cided to observe the system behavior until manually
rebalancing in round 30.

We observe: (1) the network issue crushed the SLO
fulfillment of Laptop from around 0.9 to a minimum
of 0.2 at round 15; (2) the edge device was able to
improve the rate in the following 20 iterations by re-
configuration, until reaching a local optimum at 0.43.
Further, (3) the cluster-wide SLO compliance was
clearly improved through rebalancing, i.e., at round
15 the sum of fLaptop + fOrin was 1.03, at round 30 it
was 1.33, while at round 45 it rose to 1.54. We con-
clude that the intelligent cluster was able to resolve

26

slo_rate

streams congestion

device
type

Figure 20: DAG internal to the EOSC-F model

0 10 20 30 40 50
ACI Cycle Iteration

0.2

0.4

0.6

0.8

1.0

SL
O
fu
lfi
llm

en
t r
at
e

Laptop
Orin
Net. Issue
Rebalance

Figure 21: Recovering network congestion by rebalancing the
load within the device cluster according to the EOSC-F model;
both devices initially processed 5 streams, 3 are offloaded to
Orin (S-2)

the introduced network issue (S-2) by redistributing
the load according to the EOSC-F model. However,
to draw general conclusions, we aim to consider a
larger range of potential issues.

5.4. Summary and Implications

This section summarizes the presented results and
highlights their implications for the applicability of
our framework. To that extent, we can report that (1)
edge devices were gradually able to ensure local SLO
compliance without prior knowledge; it took them
16 rounds to identify factors that impact SLO fulfill-
ment and adapt the environment accordingly, (2) the
underlying causal structures and the transitions be-
tween device configuration were empirically explain-
able; this increases traceability and trust of ML mod-
els, and (3) shifted variable distributions were can-
celed out through continuous model retraining; edge

7Internally, we increase the processing delay according to
congestion; this increases the overall latency and causes the
in time SLO to fail more likely. The EOSC-F model can then
consider congestion as an environmental factor for Algorithm 4.

devices took 9 rounds to interpret an unprecedented
increase in demand, while SLO failures introduced by
poor video quality could not be fully recovered. Fur-
ther, (4) the causality filter based on MBs decreased
the complexity of inference and sped up SLO eval-
uation by 17%, and (5) our framework introduced
a negligible CPU overhead of 3%, which makes it a
suitable choice for resource-restricted devices.

It turned out that (6) BNL, or in particular struc-
ture learning, surpassed the given time frame for
continuous model adaptation; nevertheless, param-
eter learning alone took less than 250 ms. Thus,
(7) models transferred between nearby devices could
be continuously improved, even in cases where they
fit poorly; this improves the reusability of models in
the heterogeneous Edge, (8) the SLO fulfillment of
devices with transferred models equaled the one of
self-trained models; this accelerated the distribution
of SLO-compliance models within one computational
tier by up to 16 rounds, (9) rebalancing the load af-
ter a network error increased the overall SLO fulfill-
ment from 1.03 to 1.54; this showed that collabora-
tion within this tier increased the scope of SLO fail-
ures that could be covered. A closing observation is
that (10) shifts in the variable distribution showed
the same effects on SLO fulfillment as low accuracy
after transferring a model to an unknown device type.
To our framework, they did not provide any funda-
mental differences, which is why they could both be
resolved through continuous model training.

6. Related Work

This section provides recently published related
works that discuss (1) the training and application
of causal ML models on the Edge, (2) transfer learn-
ing approaches in the CC, and (3) methods of load
balancing and computation offloading that are pop-
ular across the CC. Following that, we highlight for
each of these fields the research gap that our work
aims to fill.

6.1. Causal ML Training on the Edge

Sudharsan et al. [51] developed an Edge2Train

model to analyze real-time data on the fly. With
Edge2Train, Support Vector Machine (SVM) models
are trained offline in edge nodes using real-time IoT.
Adopting causality to Edge2Train can help converge
the most efficient training models quickly. Diagnos-
ing the root cause of performance degradation in the

27

CC is a challenging issue, and Chen et al [10] use
causal inference (CauseInfer) mechanisms to pin-
point the root causes within the system. CauseInfer
determines fault propagation paths that can be de-
termined explicitly, without production systems be-
ing instrumented. A similar approach (called Nazar)
is designed by Hao et al. in [52], where they apply
mobile devices to diagnose root causes in distributed
systems. Further, this approach enhances its training
models through cause-specific adaptive mechanisms.
Through experiments, Nazar confirmed that training
models can be improved due to cause-specific adap-
tation while monitoring a large number of devices.

Lin et al. introduced Microscope in [11], a micro-
service environment to diagnose the possible root
causes of abnormal services in distributed systems
through causal graphs. Lin et al. demonstrate that
Microscope can construct a service causal graph in
real time and infer the root cause of abnormal ser-
vices. Tariq et al. present the What-If Scenario Eval-
uator (WISE) tool in [53], which predicts the effect
of potential configuration and deployment changes
on content delivery networks (CDN). WISE initially
learns causal relations among existing response time
distributions. Based on the available datasets, it esti-
mates possible future response time distributions. Fi-
nally, it allows network designers to express possible
deployment scenarios without knowing how variables
will affect response time.

There evidently exists work that identifies and ap-
plies causal understanding to ensure system require-
ments; however, with the exception of Nazar [52],
they treat model training as a one-time process.
Hence, drifts (or shifts) in the variable distribution
stay undetected. Further, it is impractical to assume
that sufficient training data is available to arrive at
this causal understanding; this is also the shortcom-
ing of Nazar. Contrarily, our approach, which focuses
on ACI, is able to gradually create causal models over
multiple iterations (i.e., as new training data becomes
available), and continuously ensures model accuracy
by updating beliefs according to prediction errors.

6.2. Transfer Learning in the CC

Goyal et al. present MyML [54], a hardware-friendly
model transfer for edge nodes. MyML uses trans-
fer learning to create small, lightweight, custom ML
models based on user preferences. This approach is
hardware-friendly, bottom-up pruning, which can be

utilized on any mobile edge platform because of its
ability to handle large, compute-intensive ML mod-
els. In addition, systolic array-based edge acceler-
ators are introduced to prevent cloud interactions.
Wu et al. present a novel approach to online trans-
fer learning for both heterogeneous and homogeneous
labels of multi-source domains [39]. This approach is
very efficient in online classification, and the weights
are dynamically adjusted depending on the source do-
main. The work fits well into the CC due to the com-
plex heterogeneity of devices within the system. Hsu
et al. provide a clustering mechanism that consid-
ers the similarity of domains and tasks for transfer
learning [55]. They provided a similarity function for
cross-task transfer learning that is based on similari-
ties between domains.

Xing et al. introduced a model called RecycleML in
[56] that enables multi-modality among edge devices,
where knowledge is shared by transforming common
latent features into their lower layers. Further, it pro-
vides task-specific knowledge transfer between mod-
els through the retraining of higher layers beyond the
latent space shared by both models, thus reducing
the need for labeled data. Sharma et al. proposed
a knowledge transfer technique between edge devices
to lower computational intensity without losing ac-
curacy and convergence speed [57]. In this, the stu-
dent network takes the knowledge from the teacher
network to achieve this goal. Using an IoT testbed,
Kolcun et al. [58] evaluated various machine learning
classifiers’ convergence speed and accuracy. These
testbeds considered both data- and resource-specific
constraints. The results of each local testbed’s train-
ing models are transmitted to the gateway to mini-
mize global training model overhead.

Transferring ML models is an important measure
for relieving resource-restricted devices from training;
teacher devices can therefore consider the context of
the student to provide a tailored model. This is an
important feature since edge devices have heteroge-
neous characteristics; however, none of the presented
works considered low-level hardware characteristics
to identify potential teachers among nearby devices.
Further, while it is possible to combine models, the
presented techniques are not applicable to the causal
structures that we require for decentralized SLO as-
surance. To that extent, our framework uses hard-
ware classification to find adequate models within a
device cluster and creates a tailored model by merg-

28

ing the conditional probabilities of BNs.

6.3. SLO-Induced Load Balancing and Offloading

Elasticity is one of the most effective ways to en-
sure requirements of dynamic workloads by automat-
ically provisioning or de-provisioning resources based
on demand [35]. SLOC is a novel elastic framework
developed by Nastic et al. in [59], that allows users
to provide and consume cloud resources in an SLO-
native manner while guaranteeing performance. Its
primary goal is to provide better support for SLOs
by exploiting and advancing current elasticity man-
agement solutions. Further, Furst et al. bring elastic
service principles from the cloud to edge computing
[60]. They evaluated elastic and non-elastic services
at the edge while processing images to latency SLOs,
and noticed improved service provisioning through
elasticity.

Tran and Kim introduce an edge serverless auto-
scaling method based on traffic prediction that can
be used against a Kubernetes cluster [61]. In this
work, system resource usage is optimized to ensure
latency SLOs. No additional resources are required
to perform this operation; this optimizes the amount
of available resources. Hazra et al. [62] proposed
efficient heuristic-based transmission scheduling and
graph-based computational offloading (TSCO) through
mixed linear programming to achieve energy effi-
ciency and minimize latency. A single- and multi-task
load balancing with a prioritization approach to com-
puting Deep Neural Networks (DNNs) at the edge
has been presented by Karjee et al. in [63]. In these
approaches, prioritized tasks are distributed among
IoT and edge nodes to balance energy, lower latency,
and continue task execution without restarting the
system. Lim and Lee proposed a load-balancing ap-
proach for distributing mobile devices tasks within
a cloud-edge continuum using graph coloring [64].
Through this process, computing resources are scaled
with increased edge resource utilization.

A trilayer mobile hybrid hierarchical peer-to-peer
(MHP2P) model was proposed by Duan et al. in
[65] as a cloudlet for efficient load balancing strat-
egy through mobile edge computing (MEC). MHP2P
promises high reliability, scalability, and efficiency in
service lookups. Moreover, there is a load-balancing
scheme to ensure that MHP2P loads are evenly dis-
tributed between MEC servers and queries. Rao et
al. presented another load-balancing strategy for P2P
systems through virtual servers [66]; it presents three

basic load-balancing schemes whose main difference
is the amount of information required for rearrange-
ment. In [67],Menino proposed efficient failure detec-
tion mechanisms for unstructured overlay networks.
This approach aims to identify efficient neighborhood
overlays, which dynamically identify and maintain
each node in P2P networks.

SLOs are an efficient way for modeling and en-
forcing requirements; thus, high-level SLOs can be
segregated and enforced at the respective CC compo-
nent. Nevertheless, the remaining question is whether
the component has the required scope to recover
SLO failures (e.g., by offloading computation), but
it is impractical to evaluate SLOs in the cloud (e.g.,
MHP2P). Hence, ad-hoc hierarchical structures could
provide a remedy, which Menino [67] are the only
ones to use among the related work. However, they
all assume prior knowledge of which variables im-
pact SLO fulfillment. Contrarily, our approach (1)
gradually increases the SLO scope by forming device
clusters that can span the entire CC, and (2) evalu-
ates causal relations among environmental variables
to shift the load from impacted devices.

7. Conclusion and Future Work

This paper presented a novel framework for collab-
orative and distributed edge intelligence that ensures
decentralized SLO fulfillment. It allows CC systems
to break down high-level requirements and enforce
them at the component that they concern; thereby,
we create self-adaptive devices that themselves en-
sure dynamic requirements. For each of its compo-
nents, the framework is able to develop causal rea-
soning between environmental factors and SLO ful-
fillment. Resource-restricted devices that cannot cre-
ate this knowledge themselves were able to exchange
and combine causal models according to their hard-
ware characteristics. This accelerates the onboard-
ing of unknown device types and simplifies horizon-
tal scaling within the Edge. Contrarily, any attempt
to achieve this centrally would struggle with hetero-
geneous device characteristics, the induced network
latency, and the communication overhead. To cre-
ate advanced SLOs with an increased scope, devices
collaborated as clusters under the supervision of a
Fog node; this forms higher-level components that
can again supervise their own set of SLOs. As a con-
sequence, the cluster was able to use its extended en-

29

vironment to resolve SLO violations, e.g., by offload-
ing computation among pertinent devices. Erecting
these hierarchical structures allows us to fulfill the in-
tricate requirements of multiple computational tiers.

We provided a prototype of the framework for a dis-
tributed video transformation use case and evaluated
it according to twelve aspects; the results showed the
potential of our approach for ensuring SLOs through-
out CC tiers. For future work, we aim to dynamically
assemble hierarchical structures and evaluate limita-
tions regarding the number of SLOs and devices that
can be managed. Further, this work builds heavily
on the analysis of causal relations between SLO ful-
fillment and environmental factors; however, to claim
true causality, dedicated experiments must be inte-
grated into the framework. Once this is established,
our framework will provide the necessary causal links
to tame requirements within the CC.

Acknowledgement

Funded by the European Union (TEADAL,
101070186). Views and opinions expressed are how-
ever those of the author(s) only and do not necessarily
reflect those of the European Union. Neither the Eu-
ropean Union nor the granting authority can be held
responsible for them.

Nomenclature

This section provide a summary of notations (6)
and acronyms (7) used in this paper.

References

[1] P. Beckman, et al., Harnessing the computing continuum
for programming our world, in: Fog Computing, John Wi-
ley & Sons, Ltd, 2020, pp. 215–230.

[2] S. Dustdar, V. C. Pujol, P. K. Donta, On Distributed
Computing Continuum Systems, IEEE Transactions on
Knowledge and Data Engineering 35 (4) (2023) 4092–4105.
doi:10.1109/TKDE.2022.3142856.

[3] W. Tärneberg, et al., The 6G Computing Continuum
(6GCC): Meeting the 6G computing challenges, in: In-
ternational Conference on 6G Networking, 2022.

[4] V. Casamayor-Pujol, A. Morichetta, I. Murturi, P. K.
Donta, S. Dustdar, Fundamental Research Challenges for
Distributed Computing Continuum Systems, Information
14 (2023) 198. doi:10.3390/info14030198.

[5] B. Sedlak, V. C. Pujol, P. K. Donta, S. Dustdar, De-
signing Reconfigurable Intelligent Systems with Markov
Blankets, in: F. Monti, S. Rinderle-Ma, A. Ruiz Cortés,

Table 6: Frequently used notations.

Notation Meaning

DKL Kullback-Leibler divergence
x Hidden states of a model
P Exact posterior probability
Q Approximate posterior probability
ℑ Surprise for observation
m Model

mab Merged BN model ma and mb

v Number of variables in a BN
o Observation
D Datasets
G Graph
G∗ Set of possible DAGs for a G

Gfinal DAG
LL(G,D) Log-likelihood for G of D

ϕ(|D|) BIC
V Vertex set of G
E Edge set of G
ξ Entropy

MLE Maximum Likelihood Estimation
ω Width of DAG
n Number of nodes (V) in DAG
P Size of conditioned set while searching PC
C max(PC set) for n
S Number of Spouses from Gfinal

K Maximum size Spouses from Gfinal

T Target variables
O Elimination order

mb Markov blanket
t Threshold

pv Pragmatic value
ra Risk assigned
ig Information gain
u Combined behavioral factors
f Combined SLO fulfillment
K Behavioral factors of known configurations
ev Evidence variable list

VSLO SLO target variables list
VQ Subset of VSLO, either QoS or QoE
e Constant for visiting state more frequently
h Factor for choosing between STRL and PARL

ℑ̃c Median surprise for configuration c
ℑ̄ Mean overall surprise
c Configuration
q Number of states for a variable r in a BN
p CPU capacity
g GPU capacity
dc Device capacity
w Coefficient for relative device capacity
kr Incoming edges for a variable r in a BN
r Random variable

σenv Environment factors
Λ Physical devices

nclients Number of streams
da backup data to create ma

Z. Zheng, M. Mecella (Eds.), Service-Oriented Comput-
ing, Lecture Notes in Computer Science, Springer Na-
ture Switzerland, Cham, 2023, pp. 42–50. doi:10.1007/

30

https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.3390/info14030198
https://doi.org/10.1007/978-3-031-48421-6_4

Table 7: Frequently used acronyms and their meaning

Acronym Meaning

AxI Approximate Inference
ACI Active Inference
BIC Bayesian Information Criterion
BN Bayesian Network

BNL Bayesian Network Learning
CC Computing Continuum

CDN Content Distribution Networks
CPTs Conditional Probability Tables
CPU Central Processing Unit
DAG Directed Acyclic Graph
DL Deep Learning

DNN Deep Neural Networks
EI Exact Inference

EOSC Equilibrium-Oriented SLO-Compliance
FE Free Energy

GPU Graphics Processing Unit
HCS Hill-Climb Search
IoT Internet of Things
KT Knowledge Transfer
MB Markov Blanket

MEC Mobile Edge Computing
ML Machine Learning

MLE Maximum Likelihood Estimation
P2P Peer-to-Peer
PC Parent-Child

PERL Parameter Learning
QoE Quality of Experience
QoS Quality of Service
TL Transfer Learning

SCM Structural causal models
SLOs Service Level Objectives
STRL Structure Learning
SVM Support Vector Machine
VE Variable Elimination

WISE What-If Scenario Evaluator

978-3-031-48421-6_4.
[6] K. Friston, L. Da Costa, N. Sajid, C. Heins, K. Ueltzhöffer,

G. A. Pavliotis, T. Parr, The free energy principle made
simpler but not too simple (May 2023). doi:10.48550/

arXiv.2201.06387.
[7] H. Kokkonen, L. Lovén, N. H. Motlagh, A. Kumar, J. Par-

tala, T. Nguyen, V. C. Pujol, P. Kostakos, T. Leppänen,
A. González-Gil, E. Sola, I. Angulo, M. Liyanage, M. Ben-
nis, S. Tarkoma, S. Dustdar, S. Pirttikangas, J. Riekki,
Autonomy and Intelligence in the Computing Continuum:
Challenges, Enablers, and Future Directions for Orches-
tration (Feb. 2023). doi:10.48550/arXiv.2205.01423.

[8] J. Pearl, Causal inference in statistics: An overview,
Statistics Surveys 3 (2009) 96–146, publisher: Amer.
Statist. Assoc., the Bernoulli Soc., the Inst. Math. Statist.,
and the Statist. Soc. Canada. doi:10.1214/09-SS057.

[9] N. Ganguly, D. Fazlija, M. Badar, M. Fisichella, S. Sikdar,
J. Schrader, J. Wallat, K. Rudra, M. Koubarakis, G. K.
Patro, W. Z. E. Amri, W. Nejdl, A Review of the Role
of Causality in Developing Trustworthy AI Systems (Feb.
2023). doi:10.48550/arXiv.2302.06975.

[10] P. Chen, Y. Qi, D. Hou, CauseInfer: Automated End-

to-End Performance Diagnosis with Hierarchical Causal-
ity Graph in Cloud Environment, IEEE Transactions
on Services Computing (2019). doi:10.1109/TSC.2016.

2607739.
[11] J. Lin, P. Chen, Z. Zheng, Microscope: Pinpoint Perfor-

mance Issues with Causal Graphs in Micro-service Envi-
ronments, in: C. Pahl, M. Vukovic, J. Yin, Q. Yu (Eds.),
Service-Oriented Computing, Lecture Notes in Computer
Science, Springer International Publishing, Cham, 2018,
pp. 3–20. doi:10.1007/978-3-030-03596-9_1.

[12] I. Tsamardinos, C. F. Aliferis, A. Statnikov, Time and
sample efficient discovery of Markov blankets and direct
causal relations, Association for Computing Machinery,
New York, USA, 2003. doi:10.1145/956750.956838.

[13] A. Niculescu-Mizil, R. Caruana, Inductive Transfer for
Bayesian Network Structure Learning, in: Proceedings of
the Eleventh International Conference on Artificial Intel-
ligence and Statistics, PMLR, 2007, pp. 339–346, iSSN:
1938-7228.

[14] M. J. Vowels, N. C. Camgoz, R. Bowden, D’ya like DAGs?
A Survey on Structure Learning and Causal Discovery
(Mar. 2021). doi:10.48550/arXiv.2103.02582.

[15] V. C. Pujol, P. Raith, S. Dustdar, Towards a new
paradigm for managing computing continuum applica-
tions, in: 2021 IEEE Third International Conference on
Cognitive Machine Intelligence (CogMI), 2021, pp. 180–
188. doi:10.1109/CogMI52975.2021.00032.

[16] K. Friston, Life as we know it, Journal of The Royal So-
ciety Interface 10 (86) (2013) 20130475. doi:10.1098/

rsif.2013.0475.
[17] M. Kirchhoff, T. Parr, E. Palacios, K. Friston, J. Kiver-

stein, The Markov blankets of life: autonomy, active infer-
ence and the free energy principle, Journal of The Royal
Society Interface (2018).

[18] K. J. Friston, J. Daunizeau, S. J. Kiebel, Reinforcement
Learning or Active Inference?, PLOS ONE 4 (7) (2009)
e6421. doi:10.1371/journal.pone.0006421.

[19] R. Smith, K. J. Friston, C. J. Whyte, A step-by-step tu-
torial on active inference and its application to empiri-
cal data, Journal of Mathematical Psychology 107 (2022)
102632. doi:10.1016/j.jmp.2021.102632.

[20] N. Sajid, P. J. Ball, T. Parr, K. J. Friston, Active in-
ference: demystified and compared, Neural Computation
33 (3) (2021) 674–712. doi:10.1162/neco_a_01357.

[21] T. Parr, G. Pezzulo, K. J. Friston, Active Inference: The
Free Energy Principle in Mind, Brain, and Behavior, The
MIT Press, 2022. doi:10.7551/mitpress/12441.001.

0001.
[22] G. Camps-Valls, A. Gerhardus, U. Ninad, G. Varando,

G. Martius, E. Balaguer-Ballester, R. Vinuesa, E. Diaz,
L. Zanna, J. Runge, Discovering causal relations and
equations from data, Physics Reports 1044 (2023) 1–68.
doi:10.1016/j.physrep.2023.10.005.

[23] C. Heins, B. Millidge, D. Demekas, B. Klein, K. Friston,
I. Couzin, A. Tschantz, pymdp: A Python library for ac-
tive inference in discrete state spaces, Journal of Open
Source Software (May 2022). doi:10.21105/joss.04098.

[24] B. Sedlak, V. C. Pujol, P. K. Donta, S. Dustdar, Active
Inference on the Edge: A Design Study (Nov. 2023). doi:
10.48550/arXiv.2311.10607.

[25] G. Levchuk, K. Pattipati, D. Serfaty, A. Fouse, R. McCor-
mack, Active Inference in Multiagent Systems: Context-

31

https://doi.org/10.1007/978-3-031-48421-6_4
https://doi.org/10.48550/arXiv.2201.06387
https://doi.org/10.48550/arXiv.2201.06387
https://doi.org/10.48550/arXiv.2205.01423
https://doi.org/10.1214/09-SS057
https://doi.org/10.48550/arXiv.2302.06975
https://doi.org/10.1109/TSC.2016.2607739
https://doi.org/10.1109/TSC.2016.2607739
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1145/956750.956838
https://doi.org/10.48550/arXiv.2103.02582
https://doi.org/10.1109/CogMI52975.2021.00032
https://doi.org/10.1098/rsif.2013.0475
https://doi.org/10.1098/rsif.2013.0475
https://doi.org/10.1371/journal.pone.0006421
https://doi.org/10.1016/j.jmp.2021.102632
https://doi.org/10.1162/neco_a_01357
https://doi.org/10.7551/mitpress/12441.001.0001
https://doi.org/10.7551/mitpress/12441.001.0001
https://doi.org/10.1016/j.physrep.2023.10.005
https://doi.org/10.21105/joss.04098
https://doi.org/10.48550/arXiv.2311.10607
https://doi.org/10.48550/arXiv.2311.10607

Driven Collaboration and Decentralized Purpose-Driven
Team Adaptation, in: Artificial Intelligence for the Inter-
net of Everything, Academic Press, 2019.

[26] M. Scanagatta, A. Salmerón, F. Stella, A survey on
bayesian network structure learning from data, Progress
in Artificial Intelligence 8 (2019) 425–439.

[27] P. K. Donta, B. Sedlak, V. Casamayor Pujol, S. Dustdar,
Governance and sustainability of distributed continuum
systems: a big data approach, Journal of Big Data 10 (1)
(2023) 53. doi:10.1186/s40537-023-00737-0.

[28] J. Kwisthout, Most probable explanations in bayesian net-
works: Complexity and tractability, International Journal
of Approximate Reasoning 52 (9) (2011) 1452–1469.

[29] M. Scutari, C. Vitolo, A. Tucker, Learning bayesian net-
works from big data with greedy search: computational
complexity and efficient implementation, Statistics and
Computing 29 (2019) 1095–1108.

[30] A. Darwiche, Bayesian networks, Foundations of Ar-
tificial Intelligence 3 (2008) 467–509. doi:10.1016/

S1574-6526(07)03011-8.
[31] C. Aliferis, et al., Local Causal and Markov Blanket Induc-

tion for Causal Discovery and Feature Selection for Clas-
sification Part I: Algorithms and Empirical Evaluation,
Journal of Machine Learning Research 11 (2010) 171–234.

[32] V. Casamayor Pujol, P. Raith, S. Dustdar, Towards a
new paradigm for managing computing continuum appli-
cations, in: IEEE 3rd International Conference on Cogni-
tive Machine Intelligence, CogMI 2021, 2021, pp. 180–188.

[33] T. Gao, Q. Ji, Efficient markov blanket discovery and
its application, IEEE transactions on Cybernetics 47 (5)
(2016) 1169–1179. doi:10.1109/TCYB.2016.2539338.

[34] N. Zhang, D. Poole, A simple approach to Bayesian net-
work computations, in: Engineering-Economic Systems,
Stanford University, 1994.

[35] S. Dustdar, Y. Guo, B. Satzger, H.-L. Truong, Principles
of Elastic Processes, Internet Computing, IEEE 15 (2011)
66–71. doi:10.1109/MIC.2011.121.

[36] D. Ren, J. Guo, X. Hao, Bayesian network variable elimi-
nation method optimal elimination order construction, in:
ITM Web of Conferences, Vol. 45, EDP Sciences, 2022.

[37] D. Ghio, A. L. M. Aragon, I. Biazzo, L. Zdeborová,
Bayes-optimal inference for spreading processes on ran-
dom networks, Physical Review E 108 (4) (2023) 044308.
doi:10.1103/PhysRevE.108.044308.

[38] G. Lei, Y. Dou, W. Wan, F. Xia, R. Li, M. Ma, D. Zou,
Cpu-gpu hybrid accelerating the zuker algorithm for rna
secondary structure prediction applications, in: BMC ge-
nomics, Vol. 13, BioMed Central, 2012, pp. 1–11.

[39] Q. Wu, H. Wu, X. Zhou, M. Tan, Y. Xu, Y. Yan, T. Hao,
Online Transfer Learning with Multiple Homogeneous or
Heterogeneous Sources, IEEE Transactions on Knowledge
and Data Engineering 29 (7) (2017) 1494–1507. doi:10.

1109/TKDE.2017.2685597.
[40] V. C. Pujol, A. Morichetta, S. Nastic, Intelligent Sam-

pling: A Novel Approach to Optimize Workload Schedul-
ing in Large-Scale Heterogeneous Computing Contin-
uum, in: 2023 IEEE International Conference on Service-
Oriented System Engineering (SOSE), 2023, pp. 140–149,
iSSN: 2642-6587. doi:10.1109/SOSE58276.2023.00024.

[41] M. Vagnoli, R. Remenyte-Prescott, Updating conditional
probabilities of Bayesian belief networks by merging ex-
pert knowledge and system monitoring data, Automa-

tion in Construction 140 (2022) 104366. doi:10.1016/

j.autcon.2022.104366.
[42] M. Vanǐs, Z. Lokaj, M. Šrotýř, A Novel Algorithm for

Merging Bayesian Networks, Symmetry 15 (7) (2023)
1461. doi:10.3390/sym15071461.

[43] I. Murturi, S. Dustdar, A Decentralized Approach for Re-
source Discovery using Metadata Replication in Edge Net-
works, IEEE Transactions on Services Computing 15 (5)
(2022) 2526–2537. doi:10.1109/TSC.2021.3082305.

[44] S. Dustdar, I. Murturi, Towards Distributed Edge-based
Systems, in: 2020 IEEE Second International Confer-
ence on Cognitive Machine Intelligence (CogMI), IEEE,
Atlanta, GA, USA, 2020, pp. 1–9. doi:10.1109/

CogMI50398.2020.00021.
[45] B. Sedlak, I. Murturi, P. K. Donta, S. Dustdar, A Privacy

Enforcing Framework for Transforming Data Streams on
the Edge, IEEE Transactions on Emerging Topics in Com-
puting (2023). doi:10.1109/TETC.2023.3315131.

[46] A. Ankan, J. Textor, pgmpy: A Python Toolkit for
Bayesian Networks (Apr. 2023).

[47] Q. Zhang, X. Che, Y. Chen, X. Ma, M. Xu, S. Dust-
dar, X. Liu, S. Wang, A Comprehensive Deep Learn-
ing Library Benchmark and Optimal Library Selection,
IEEE Transactions on Mobile Computing (2023) 1–14doi:
10.1109/TMC.2023.3301973.

[48] Linzaer, Ultra-Light-Fast-Generic-Face-Detector-1MB,
https://github.com/Linzaer/Ultra-Light-Fast-Generic-
Face-Detector-1MB (Feb. 2022).

[49] R. Rothe, R. Timofte, L. V. Gool, DEX: Deep EXpecta-
tion of Apparent Age from a Single Image, in: 2015 IEEE
International Conference on Computer Vision Workshop
(ICCVW), IEEE, Santiago, Chile, 2015, pp. 252–257.
doi:10.1109/ICCVW.2015.41.

[50] M. Scutari, Learning Bayesian Networks with the bnlearn
R Package, Journal of Statistical Software 35 (2010) 1–22.
doi:10.18637/jss.v035.i03.

[51] B. Sudharsan, J. G. Breslin, M. I. Ali, Edge2Train: a
framework to train machine learning models (SVMs) on
resource-constrained IoT edge devices, in: Proceedings
of the 10th International Conference on the Internet of
Things, IoT ’20, Association for Computing Machinery,
New York, NY, USA, 2020, pp. 1–8. doi:10.1145/

3410992.3411014.
[52] W. Hao, Z. Wang, L. Hong, L. Li, N. Karayanni, C. Mao,

J. Yang, A. Cidon, Monitoring and Adapting ML Mod-
els on Mobile Devices (May 2023). doi:10.48550/arXiv.
2305.07772.

[53] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, M. Am-
mar, Answering what-if deployment and configuration
questions with wise, ACM SIGCOMM Computer Commu-
nication Review (2008). doi:10.1145/1402946.1402971.

[54] V. Goyal, R. Das, V. Bertacco, Hardware-friendly User-
specific Machine Learning for Edge Devices, ACM Trans-
actions on Embedded Computing Systems 21 (5) (2022)
62:1–62:29. doi:10.1145/3524125.

[55] Y.-C. Hsu, Z. Lv, Z. Kira, Learning to cluster in order
to transfer across domains and tasks, in: Sixth Inter-
national Conference on Learning Representations (ICLR
2018), 2018. doi:10.48550/arXiv.1711.10125.

[56] T. Xing, S. S. Sandha, B. Balaji, S. Chakraborty, M. Sri-
vastava, Enabling Edge Devices that Learn from Each
Other: Cross Modal Training for Activity Recognition, in:

32

https://doi.org/10.1186/s40537-023-00737-0
https://doi.org/10.1016/S1574-6526(07)03011-8
https://doi.org/10.1016/S1574-6526(07)03011-8
https://doi.org/10.1109/TCYB.2016.2539338
https://doi.org/10.1109/MIC.2011.121
https://doi.org/10.1103/PhysRevE.108.044308
https://doi.org/10.1109/TKDE.2017.2685597
https://doi.org/10.1109/TKDE.2017.2685597
https://doi.org/10.1109/SOSE58276.2023.00024
https://doi.org/10.1016/j.autcon.2022.104366
https://doi.org/10.1016/j.autcon.2022.104366
https://doi.org/10.3390/sym15071461
https://doi.org/10.1109/TSC.2021.3082305
https://doi.org/10.1109/CogMI50398.2020.00021
https://doi.org/10.1109/CogMI50398.2020.00021
https://doi.org/10.1109/TETC.2023.3315131
https://doi.org/10.1109/TMC.2023.3301973
https://doi.org/10.1109/TMC.2023.3301973
https://doi.org/10.1109/ICCVW.2015.41
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.1145/3410992.3411014
https://doi.org/10.1145/3410992.3411014
https://doi.org/10.48550/arXiv.2305.07772
https://doi.org/10.48550/arXiv.2305.07772
https://doi.org/10.1145/1402946.1402971
https://doi.org/10.1145/3524125
https://doi.org/10.48550/arXiv.1711.10125

Proceedings of the 1st International Workshop on Edge
Systems, Analytics and Networking, ACM, Munich Ger-
many, 2018, pp. 37–42. doi:10.1145/3213344.3213351.

[57] R. Sharma, S. Biookaghazadeh, M. Zhao, Are Existing
Knowledge Transfer Techniques Effective For Deep Learn-
ing on Edge Devices?, in: Proceedings of the 27th In-
ternational Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’18, Association for Com-
puting Machinery, New York, NY, USA, 2018, pp. 15–16.
doi:10.1145/3220192.3220459.

[58] R. Kolcun, D. A. Popescu, V. Safronov, P. Yadav, A. M.
Mandalari, Y. Xie, R. Mortier, H. Haddadi, The Case for
Retraining of ML Models for IoT Device Identification at
the Edge (Nov. 2020). doi:10.48550/arXiv.2011.08605.

[59] S. Nastic, A. Morichetta, T. Pusztai, S. Dustdar, X. Ding,
D. Vij, Y. Xiong, SLOC: Service Level Objectives for Next
Generation Cloud Computing, IEEE Internet Computing
24 (3) (May 2020). doi:10.1109/MIC.2020.2987739.

[60] J. Fürst, M. Fadel Argerich, B. Cheng, A. Papageorgiou,
Elastic Services for Edge Computing, in: 2018 14th Inter-
national Conference on Network and Service Management
(CNSM), 2018, pp. 358–362.

[61] M.-N. Tran, Y. Kim, Optimized resource usage with hy-
brid auto-scaling system for knative serverless edge com-
puting, Future Generation Computer Systems 152 (2024)
304–316. doi:10.1016/j.future.2023.11.010.

[62] A. Hazra, P. K. Donta, T. Amgoth, S. Dustdar, Cooper-
ative transmission scheduling and computation offloading
with collaboration of fog and cloud for industrial iot ap-
plications, IEEE Internet of Things Journal 10 (5) (2023)
3944–3953.

[63] J. Karjee, S. Praveen Naik, N. Srinidhi, Energy Pro-
filing based Load-Balancing Approach in IoT-Edge for
Split Computing, 2021 IEEE 18th India Council Inter-
national Conference (INDICON) (2021) 1–6doi:10.1109/
INDICON52576.2021.9691607.

[64] J. Lim, D. Lee, A Load Balancing Algorithm for
Mobile Devices in Edge Cloud Computing Environ-
ments, Electronics 9 (4) (2020) 686. doi:10.3390/

electronics9040686.
[65] Z. Duan, C. Tian, N. Zhang, M. Zhou, B. Yu, X. Wang,

J. Guo, Y. Wu, A novel load balancing scheme for mo-
bile edge computing, Journal of Systems and Software 186
(2022) 111195. doi:10.1016/j.jss.2021.111195.

[66] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, I. Sto-
ica, Load Balancing in Structured P2P Systems, Vol. 2735,
2004, journal Abbreviation: Lecture Notes in Computer
Science Publication Title: Lecture Notes in Computer Sci-
ence. doi:10.1007/978-3-540-45172-3_6.

[67] V. H. Menino, A Novel Approach to Load Balancing in
P2P Overlay Networks for Edge Systems, 2021.

33

https://doi.org/10.1145/3213344.3213351
https://doi.org/10.1145/3220192.3220459
https://doi.org/10.48550/arXiv.2011.08605
https://doi.org/10.1109/MIC.2020.2987739
https://doi.org/10.1016/j.future.2023.11.010
https://doi.org/10.1109/INDICON52576.2021.9691607
https://doi.org/10.1109/INDICON52576.2021.9691607
https://doi.org/10.3390/electronics9040686
https://doi.org/10.3390/electronics9040686
https://doi.org/10.1016/j.jss.2021.111195
https://doi.org/10.1007/978-3-540-45172-3_6

	Introduction
	Background
	Causality and Causal Network Graphs
	Active Inference
	Core Concepts
	Intersection with Distributed Systems

	Collaborative Edge Intelligence
	Continuous Model Optimization
	Static Model Training and Inference
	Active Inference Cycle

	Knowledge Transfer within the Cluster
	Cluster-wide Model Exchange
	Model Comparison and Selection
	Combination and Preparation of Models

	Stream Offloading in the Edge-Fog Cluster
	Cluster-wide Evaluation of SLOs
	Analysis & Optimization per Device
	Orchestration and Redistribution

	Evaluation
	Use Case Description
	Implementation
	Prototype
	Practical Limitations
	Variables and SLOs
	Device Classification

	Evaluation Methodology

	Results and Discussion
	Active Inference
	Knowledge Transfer
	Stream Offloading
	Summary and Implications

	Related Work
	Causal ML Training on the Edge
	Transfer Learning in the CC
	SLO-Induced Load Balancing and Offloading

	Conclusion and Future Work

