
Active Inference on the Edge: A Design Study*
Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology (TU Wien), Vienna 1040, Austria.
Email: {b.sedlak, v.casamayor, pdonta, dustdar}@dsg.tuwien.ac.at

Abstract—Machine Learning (ML) is a common tool to interpret
and predict the behavior of distributed computing systems, e.g., to
optimize the task distribution between devices. As more and more
data is created by Internet of Things (IoT) devices, data processing
and ML training are carried out by edge devices in close proximity.
To ensure Quality of Service (QoS) throughout these operations,
systems are supervised and dynamically adapted with the help of
ML. However, as long as ML models are not retrained, they fail to
capture gradual shifts in the variable distribution, leading to an
inaccurate view of the system state. Moreover, as the prediction
accuracy decreases, the reporting device should actively resolve
uncertainties to improve the model’s precision. Such a level of
self-determination could be provided by Active Inference (ACI)
– a concept from neuroscience that describes how the brain
constantly predicts and evaluates sensory information to decrease
long-term surprise. We encompassed these concepts in a single
action-perception cycle, which we implemented for distributed
agents in a smart manufacturing use case. As a result, we showed
how our ACI agent was able to quickly and traceably solve an
optimization problem while fulfilling QoS requirements.

Index Terms—Active Inference, Machine Learning, Edge Intel-
ligence, Service Level Objectives, Markov Blanket

I. INTRODUCTION

Recent years have reported a constant transition of logic
from the central cloud towards the edge of the network [1],
thus, closer to the Internet of Things (IoT) devices that actually
generate data. This transition includes the training of Machine
Learning (ML) models (i.e., to save bandwidth and improve
privacy), as well as data processing (i.e., to decrease latency)
[2]. As soon as training has finished, ML models are a common
measure to interpret and predict the behavior of distributed
systems, e.g., to estimate the impact of redeployment [3] or
forecast potential system failures [4], which must be circum-
vented to ensure the Quality of Service (QoS).

ML models are applied throughout the Computing Contin-
uum (CC), i.e., from the cloud, over the fog, to the network
edge – close to where models were trained. However, in many
cases, ML models are not retrained, although new observa-
tions would be available [3], [4]; this inevitably leads to an
inaccurate view of the system state, which, in turn, decreases
the quality of any inference mechanism that uses the ML
model. Imagine an elastic computing system, like envisioned
in [5], [6], which observes the system through a set of metrics,
evaluates whether QoS requirements – also called Service
Level Objectives (SLOs) – were fulfilled, and dynamically
reconfigures the system to ensure SLOs are met. If the variable

* Funded by the European Union (TEADAL, 101070186). Views and
opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union. Neither the European Union
nor the granting authority can be held responsible for them.

distribution changes and the ML model is not adjusted, this
makes it impossible to interpret the metrics correctly, and any
consequential reconfiguration will fail to fulfill its purpose.

Ensuring the precision of an ML model requires a continuous
feedback mechanism; such behavior could, for example, be
achieved by optimizing a value function, as in reinforcement
learning [7], [8]. However, we believe that this requires a more
holistic approach, which starts with making the SLOs first-class
citizens during the ML training process. Further, we want to
highlight the responsibility of any service that uses the ML
model to actively resolve or report ambiguities. Such a level
of self-determination could be provided by Active Inference
(ACI), a concept from neuroscience that describes how the
brain constantly predicts and evaluates sensory information to
decrease long-term surprise. ACI combines various concepts
that have already been rudimentarily implemented in distributed
systems, e.g., causal inference to identify dependencies between
system parts [3], or dynamic adaptations of the system to ensure
QoS – called homeostasis. This shows the potential of ACI.

In this paper, we advance one step further by combining the
ACI concepts in a comprehensive design study of an ACI agent
that optimizes the throughput of a smart factory. Internally,
the agent follows an action-perception cycle: First, it estimates
which parameter assignments would violate given SLOs, then
it compares this expectation with new observations, and finally,
it adjusts its beliefs (i.e., the ML model) accordingly. The
agent focuses on exploring values that promise a high through-
put while avoiding such that are likely to violate the SLOs.
Furthermore, it favors solutions that are likely to improve the
model precision, which, in turn, provides the agent with a clear
understanding of the causal relations between model variables.
Hence, the contributions of this article are the following:

• A novel ML paradigm based on ACI that continuously
evaluates the quality of predictions. Thus, agents improve
the model precision to ensure QoS for ongoing operations.

• The composite representation of an agent’s behavior
throughout the action-perception cycles. The distinct fac-
tors can be fine-tuned to determine the agent’s preferences.

• A complete design study for a smart manufacturing agent
that paves the way for other researchers to implement ACI
in related automative use cases.

The remainder of the paper is structured as follows: Sec-
tion II provides background information on ACI principles in
distributed systems; in Section III we present existing work
that included ACI; within Section IV we outline the design
process of an ACI agent, which we implemented and evaluated
in Section V. Finally, Section VI concludes the paper.

ar
X

iv
:2

31
1.

10
60

7v
1

 [
ee

ss
.S

Y
]

 1
7

N
ov

 2
02

3

II. BACKGROUND

We consider ACI an unknown concept for most readers
outside of neuroscience; therefore, we use this section to
summarize core concepts of ACI according to Friston et
al. [8]–[12]. This includes but is not limited to (1) free
energy minimization, (2) hierarchical organization of beliefs,
(3) action-perception cycles, and (4) Bayesian inference and
belief updating. Following that, we delineate our view of the
intersection between ACI and distributed systems, in particular
edge computing.

A. Active Inference Principles

To interpret observable processes, agents construct generative
models, e.g., a person would reason that it rains due to water
drops falling from the sky. Based on these observations, the
agent can learn to understand real-world processes. However,
if the generative model and the process diverge, the agent
will eventually be “surprised”, e.g., because water drops were
caused by a neighbor watering her plants. The discrepancy
(or uncertainty) between the agent’s understanding of the
process and reality is called Free Energy (FE); a more accurate
understanding decreases FE at the same time.

More formally, the surprise ℑ(o|m) of observation o given
model m is the negative log-likelihood of the observation. The
surprise itself is capped by the FE of the model – expressed as
the Kullback-Leibler divergence (DKL) between approximate
posterior probability (Q) of the hidden states (x) and their exact
posterior probability (P). While mathematical approaches, such
as exemplified in Eq. (1) & (2), provide a much-needed notation
for working with the FE principle, in practice, many variables
are computationally intractable, e.g., the true probability P .

ℑ(o|m) = − ln

Model Evidence︷ ︸︸ ︷
P (o|m) (1)

F [Q, o] = DKL[Q(x)||P (x|o,m)] + ℑ(o|m)︸ ︷︷ ︸
(Variational) Free Energy

≥ ℑ(o|m) (2)

Internally, agents organize their generative models in hi-
erarchical structures; each level interprets lower-level causes
and, based on that, provides predictions to higher levels. For
example, suppose it rains with a certain probability, I bring
an umbrella. This is commonly known as Bayesian inference
and allows agents to use existing beliefs (widely known as
priors) to calculate the probability of related events. Such
decision processes can be segregated into self-contained causal
structures (i.e., Markov blankets), e.g., one to interpret the
weather and another to dress. As the agent infers that it
is raining, he decides to pick the umbrella. However, when
dressing, the agent only considers the weather (rainy or sunny)
and disregards lower-level observations that led him to conclude
that it’s raining (e.g., humidity or obscurity).

ACI agents constantly engage in action-perception cycles,
where they (1) predict sensory inputs, actively seek the infor-
mation, and update their beliefs depending on the outcome –
widely known as predictive coding. Afterward, they (2) can
adjust the world to their existing beliefs through their own

actions. While pragmatic actions (e.g., picking an umbrella)
fulfill agents’ preferences (e.g., staying dry), agents improve
their decision-making by exploring the environment through
epistemic actions. For example, a mere look at the sky reveals
that the neighbor has watered her plants, avoiding surprise when
wrongfully leaving with an umbrella. The agent thus updates
its prior beliefs (i.e., rain→ water) according to new data (i.e.,
rain → water ← flowers) to form posterior beliefs.

B. ACI Principles in Distributed Systems

ACI encompasses multiple concepts; although there exist
few implementations that combine them in one framework,
most of them can be encountered in distributed systems. In
the following, we review the principles described above and
map them to existing concepts as far as possible:

1) Causal Inference: Causal structures (e.g., Bayesian net-
works [13]) can be trained to identify dependencies between
parts of distributed systems. As pointed out by [14], causal
structures have the fundamental advantage (over deep learning)
of justifying their actions or recommendations, thus improving
trustworthiness. Distributed systems can explain how metrics
(e.g., latency or CPU load) are related to the system state [5],
backtrack which service or device caused a system failure [3],
or predict the impact of redeployment [15].

2) Free Energy Minimization: AI models are trained to
improve their prediction accuracy, which, in turn, reduces their
FE. Energy-based models [16], in particular, rate uncertainty as
(free) energy. To ensure model accuracy over time, one option
is to continuously report prediction errors (e.g., [17]). However,
in many cases, systems lack adequate feedback loops and thus
fail to capture gradual shifts in the variable distributions (e.g.,
[3], [15], [18]) While ML training is essential to decrease FE,
epistemic actions often suffice to reduce uncertainties about
expected outcomes: Distributed systems resolve contextual in-
formation before executing pragmatic actions, e.g., identify a
low-utilized agent for load balancing or task offloading [19],
[20], or evaluate resource availability before scaling a system
[5], [21]. It is the general tradeoff between seeking either prag-
matic value (exploitation) or information (exploration); multi-
agent systems (e.g., [22]) control this through a hyperparameter
called “exploration rate”, which fosters early exploration of a
global value space but decays over time as agents report little
improvement. To improve generative models whenever feasible,
this is also implemented for edge-based systems [19].

3) Homeostasis: The ultimate goal for an ACI agent is
to persist over time; this requires maintaining certain internal
variables under control. This concept is called homeostasis and
can be found in various systems: The human body, for example,
requires a core temperature of 37° for chemical processes;
distributed systems, on the other hand, specify QoS require-
ments as SLOs [5], [6], [21], [23]. While the human body
has its own temperature-controlling mechanisms, distributed
systems rely on elasticity strategies to ensure QoS, e.g., by
scaling computational resources to cap response time. Although
surprise plays a significant role here, e.g., when reporting
SLO violations, the preferred strategy is to engage with the
environment to correct this instead of changing the perception.

III. RELATED WORK

While, to the best of our knowledge, there exists no complete
implementation of ACI in distributed systems; a handful of
research works have combined ACI with computer science:

The authors in [24] discuss ACI as a general computational
framework, highlighting how existing research used ACI for
(simulating) sensory processing. Touching on the design of
ACI agents, Heins et al. [25] provide a Python simulation that
exemplifies how to structure action-perception cycles. Heins et
al. further remark that existing ACI research largely focuses on
formally constructing models in isolated environments such as
Matlab SPM (e.g., [11]) rather than putting them into action,
e.g., to improve the precision of ML models. A more hands-
on application of ACI is thus to extend reinforcement learning
with ACI principles [7], [8]. However, most research to date
either uses only a few ACI principles or is not applied enough
to easily transfer presented concepts to distributed systems.

The work in [22] is, therefore, an exception because it
embeds ACI into the IoT and describes how ACI can improve
the behavior of adaptive agents. Thus, individual agents
may dynamically regroup into hierarchical teams, federate
knowledge, and collectively strive after a common goal (i.e.,
a search task). By emphasizing the exchange of experiences
between agents, they were able to speed up the convergence
of the distributed task. However, while they focused on FE
minimization, they did not treat the other two principles we
identified for ACI in distributed systems: causal inference
and homeostasis. In this paper, we will present an agent that
uses all three ACI principles to infer actions, maintain agents’
internal equilibrium, and persist over time. Nevertheless, we
will use the representation from [22] for FE minimization.

IV. ACTIVE INFERENCE DESIGN PROCESS

In the following, we will walk through the design of an ACI
agent by (1) building upon ACI background information to
draw an action-perception loop, (2) describing a use case where
the agent trains a model from scratch to optimize performance,
(3) marking the boundaries of the generative model trained, and
(4) defining the agent’s behavior throughout the cycles.

A. Action-Perception Loop

To continuously ensure the precision of ML models and any
consequential action, we will employ self-evidenced agents,
i.e., they reason about their environment and train models
autonomously. To that extent, ACI agents operate in action-
perception cycles; each iteration aims to improve the accuracy
of the model, infer optimal actions, and thus persist over time.
As such, agents can be embedded into distributed systems, e.g.,
to maintain the QoS for a distributed task.

Fig. 1 provides a high-level overview of the steps that are
repeated by the agent: Initially, a set of SLOs define the agent’s
preferences (e.g., delay ≤ δ) and establishes its expectations
prior to evaluating any sensory data. The agent then assembles
a causal graph to determine which factors influence these
parameters; the conditional probability table contains the degree

Fig. 1: Overview of the action-perception cycle in ACI

Fig. 2: A factory producing machine parts in batches

to which they are affected. Afterward, the agent starts to
continuously predict the probability of observations, might
actively seek a corresponding input, and then compares the
event against the expectation. To decrease FE, the agent now
has three options: (1) adjust its beliefs accordingly, i.e., update
the causal graph and conditional probabilities; (2) change the
environment toward its preferences, e.g., executing elasticity
strategies; or (3) resolve contextual information to improve
decision-making.

B. Use Case Description

The following use case is embedded in the smart manufac-
turing environment, which provides numerous opportunities for
sensor-oriented analysis and dynamic adaptation of production.
Fig. 2 provides a high-level overview of the use case:

Within a factory, machine parts are fabricated in batches of
12 to 30 pieces; a larger batch size increases the throughput and
utilization of the factory engine. Each batch must be completed
within 500 ms; thus, an increasing batch size decreases the
timeframe for processing each part. The engine’s utilization
is supposed to impact the processing duration, though the
magnitude is unknown. Also, due to a consecutive assembly
step, the distance between parts should be above 5 cm. Given
this setup, the factory manager would like to know the largest
batch size that fulfills all constraints. However, because they
lack historical data, it is difficult to answer this by training
an ML model; this issue must be actively explored. Ideally,
the learning process would also be autonomous and allow the
factory to simultaneously produce their goods.

To provide the factory manager with the optimal batch size,
we supervise the factory engine through an ACI agent. The
resulting smart engine now enters what can be understood

TABLE I: Model variables and their boundaries

Name Unit Description Range

batch size num number of machine parts per batch [12, 30]
utilization % utilization of the factory engine [1, 100]
distance cm space between two machine parts [1,∞[
part delay ms processing time per machine part [1,∞[
batch delay ms total time for batch processing [1,∞[

as a continuous calibration mechanism: throughout its action-
perception cycle, it (1) estimates if an increase or decrease
in batch size would violate the given constraints (i.e., its
SLOs), (2) compares the expectation with the result, and (3)
continuously explores the value space by slightly varying the
batch size. The agent thus gradually approaches solutions that
promise high throughput while satisfying all constraints.

C. Generative Model Setup

While the use case showed how ACI can help solve opti-
mization problems, we will now dive deeper into the generative
model created by the agent. The design process is loosely
oriented towards the guidance provided by Parr et al. [26],
which depicts an abstract sequence of steps to design ACI
systems. The main questions we aim to answer are:

1) What is part of the generative model, and what are the
interfaces to the exterior?

2) What is the hierarchical and temporal depth of the model,
and how do they affect causal inference?

3) What are the model variables and prior beliefs – what
can be modified (i.e., learned), and what is immutable?

To predict whether a batch size would fulfill the SLOs, agents
must identify the variables that have an impact on them. These
could be extracted through a causal structure (e.g., [3], [15]) or,
in the absence of training data, come from expert knowledge,
which can be updated over time. The manager initially believes
that variables are related as depicted by the Directed Acyclic
Graph (DAG) in Fig. 3; the respective variables are described
in Table I. Variables in ACI represent an interface between the
generative model and the exterior world, i.e., if the utilization
of the physical engine changes, this is reflected through the
respective variable (i.e., utilization), which in turn determines
the internal view of the system state. Information provided
through interface variables is used to construct the generative
model, but also to evaluate SLO fulfillment (e.g., batch delay
≤ 500 ms). To that extent, it needs to analyze the respective
variable (from the DAG), as well as its parent, child, and
spouse nodes. This subset provides a causal filter to the variable
state, called Markov blanket. A central premise is that all these
sensory variables accurately reflect the exterior; otherwise,
subsequent decisions (e.g., decreasing batch size to decrease
delay) would perpetuate any measurement error.

For the given use case, we use an SLO-induced boundary
as our natural limit on temporal depth: Equal to the maximum
batch delay (bd), each action-perception cycle lasts 500 ms.
Within each cycle, the agent predicts the engine’s behavior (i.e.,
reflected through the metrics) over the next 500 ms; afterward,

Fig. 3: Initial beliefs of relations between model variables

the prediction is compared against the events observed during
that time. While the cycle’s length can be chosen freely,
longer periods decrease the prediction accuracy or increase
the computational complexity (i.e., to evaluate the SLO once,
it must consider multiple cycles or fractions of them). The
hierarchical depth, on the other hand, is determined by the
number of variables and edges in the model. A deeper hierarchy
would increase the complexity of model training and inference;
however, the use case does not provide variables other than the
ones already contained in the DAG.

So far, it only remains to explain what priors are in the
given example: Priors are our assumptions about the system
before verifying them, e.g., which batch size should provide
the highest throughput without violating the SLOs. Priors are
subject to the learning process, while SLOs are fixed; each
action-perception cycle aims to improve the generative model’s
accuracy, thus decreasing FE. As we will see in Section V, the
initial beliefs (i.e., before evaluating any cycle) speed up the
convergence of ACI to the optimal solution.

D. Active Inference Agent

To find the optimal batch size, the central mechanism of the
agent is the action-perception cycle shown in Fig. 1. Initially,
the agent has little information available to form priors or
infer a fitting batch size; however, as the agent samples the
environment through its interface variables, each cycle adds
new observations (sn) to the total amount of known samples
(sk). The agent’s behavior throughout each cycle (i.e., how
it interprets sensory information and which action it takes) is
determined by three main factors: (1) pragmatic value (pv) of
actions; (2) ambiguity or risk assigned (ra) to actions; and
(3) epistemic value or information gained (ig) by actions. The
following notation of these factors is related to [22], [26],
though the composition is different. The only parameter that
the agent can actively set is batch size; the remaining variables
are causally influenced by this factor. Thus, if the agent changes
the batch size, this is reflected through the related variables.

The pragmatic value that emerges from higher batch size
is simple: more throughput. Therefore, we define pv(bs) =
bs × 100

30 , which encourages the agent to increase batch size.
The multiplier 100

30 scales the factor to the range [1, 100], which
is equal for all three factors. Contrarily, high batch size might
exceed bd ≤ 500ms or d ≥ 5cm, i.e., the SLOs associated with
batch delay and distance (d). To evaluate the risk of violating
the SLOs we consider how often past observations for a batch
size (skb) have violated the SLOs. The ra, e.g., for batchsize =
20, would thus be determined by the rate between samples that

fulfilled the SLOs and the total number of samples (|skb|); this
is formalized in Eq. (3) & (5). As long as the list of samples for
a batchsize (or short bs) is empty (i.e., |skb| = 0), the agent
interpolates the value with the prior and latter ra as reference
points, e.g., if the agent knows ra(30) = 90 and ra(20) = 20,
in the absence of samples for batchsize = 25, it infers that
ra(25) = 55. This interpolation is contained in Eq. (4).

ra(bs) = 100−

inter(bs), if |skb| = 0

valid(bs)
|skb| × 100, otherwise

(3)

inter(bs) = rai−1 + (bs− bsi−1)×
(rai+1 − rai−1)

(bsi+1 − bsi−1)
(4)

valid(bs) =

|skb|∑
i=1

[(bdi ≤ 500) ∧ (di ≥ 5)] (5)

The ig of an action is determined by the ambiguity that it
resolves; in other words, we aim to make future predictions less
surprising. Reviving the idea of surprise from Eq. (1), we now
require the surprise for sn given sk: Eq. (7) shows how the total
surprise is the sum of surprises of new samples; f(x) describes
the probability density function1 with µ = s̄k and σsk . For
each sn, the surprise is appended to a list of past surprises
S = S∪surprise(sn, sk); Sx ∈ S contains all values with x =
batchsize. If a batchsize has reported repeatedly surprising
values, it supposedly provides more information gain: This is
reflected through Eq. (6) because the median surprise (S̃x) will
rise above the global average (S̄). To foster exploration of prior
unknown batchsize, in the absence of surprise values, e.g.,
|S25| = 0, it assumes ra(25) = max(S).

ig(bs) =

(
S̃bs

S̄

)
× 100 (6)

surprise(sn, sk) =

|sk|∑
i=1

− log f(di) (7)

Ultimately, to evaluate the potentials but also risks that
emerge from each batchsize, the three factors are merged into
a common one – (cf). Since all factors are scaled to the range
[1, 100], they can be combined as cf(bs) = pv(bs)− ra(bs) +
ig(bs). At the end of each cycle, the agent resolves cf(x) for
x = [12, 30] and chooses the highest scoring as new batchsize.

V. EVALUATION

To evaluate the ideas presented in the last Section, we provide
a Python implementation of the ACI agent that comprises the
action-perception loop to create a generative model. Although
we did not embed the agent in a physical engine to measure
sensory information, we used a compatible data set generated
with [27] to simulate an equal behavior. The prototype of the
agent, the data, as well as the analysis are available on GitHub2.
The agent starts the simulation by processing a batch of items

1A function that described the likelihood of an observation o in a continuous
range given that the probabilities are distributed with O ∼ N (µ, σ).

2https://anonymous.4open.science/r/analysis-20F6/DATE/

(a) Batch size / cycle (b) Risk / batch size

Fig. 4: History of best scoring batch size and associated risk

and observes for each item a set of metrics, which represent
the variables from Table I. In each round, the agent computes
the factors that determine its behavior (i.e., pv, ra, and ig)
as described, chooses the highest common factor (cf), and
instructs the engine to operate with the new batchsize. This
concludes one iteration in the action-perception cycle.

A. Comparative Analysis & Results

We evaluated two main aspects of the implementation: (1)
which batch size it chooses at the end of each cycle, and (2) how
well the generative model can reflect the partially observable
relation between utilization and part delay.

Fig. 4a tracks the chosen batch size depending on the cf
score: The blue line depicts the agent’s behavior when starting
with batchsize = 12, and the red line when starting with 30,
i.e., the safest or most ambitious priors. Agent30 reaches a
batch size of 21 after 5 iterations; whether this is a good (or
optimal) solution is determined by multiple opposite factors:
As batch size increases, both pa and ra rise. To provide more
detail, Fig. 4b contains the ra that agent30 assigned to each
batchsize after 100 iterations. Operating with batchsize = 21,
agent30 reported SLO violations for 12% of all observations.
If this cannot be tolerated, the ra must be adjusted accordingly;
otherwise, 21 presents a very high (if not optimal) pv because
any larger batch size would be more than three times more
likely to violate the SLOs, according to their ra. Complemen-
tarily, the green line shows the agent’s behavior if it simply
increases or decreases the batch size depending on whether
SLOs were fulfilled for the current batch.

While one goal was to reach a high pv, the agent’s intrinsic
motivation is to decrease the FE by developing an accurate gen-
erative model. This includes estimating the magnitude of causal
relations such as utilization → part delay. Therefore, after
receiving a number of samples, the agent can use (polynomial)
regression to infer part delay for unknown utilization. Fig. 5a
shows a 2D representation of this relation for 2500 processed
batch items, supervised by agent12; the red line represents
the agent’s internal model after training on all observations,
and the red line after training on only 30 values. After the
first round, agent12 decided to explore only batchsize ≥ 19,
thus, Fig. 5a contains no observations for utilization [45, 60].
The distribution of prediction errors between the regression
functions and all items is shown in Fig. 5b. We observe that

(a) Polynomial regression function (b) Prediction errors

Fig. 5: Estimated relation between utilization and part delay

a larger sample size improved the accuracy, but also that a
relatively small number of samples (i.e., 30) provided initially
acceptable results.

VI. CONCLUSION

An ML model should not only reflect a generative process
at one moment; ideally, it should persist over time without
losing its precision. However, as long as the model is not
retrained, a lack of continuous feedback inevitably leads to
poor accuracy. Thus, any system that aims to dynamically adapt
its service must supervise its inference mechanisms to ensure
QoS is fulfilled. With the intention to solve this, we presented a
distributed agent that is based on Active Inference – a concept
from neuroscience that describes how the brain constantly
predicts and evaluates sensory information to decrease long-
term surprise. Operating in cycles, the agent maximizes the
model evidence by exploring the space of values that fulfill the
QoS. Thus, the agent improves any decision-making based on
the ML model because ambiguities are repeatedly resolved.

To solve a smart manufacturing use case, we presented a
design study that defines the agent’s behavior when creating
a generative model. Which action the agent takes and how it
adapts its beliefs is determined by three main factors: pragmatic
value, assigned risk (of violating SLOs), and information gain.
We implemented the ACI agent in Python and tracked each
cycle’s preferred action – including the factors that led to it –
and the agent’s causal understanding between two variables.
After 5 cycles, the agent converged to a solution that pre-
sented an optimal tradeoff between high pragmatic value and
negligible SLO violations. Further, the agent needed only 30
observations (i.e., 2 cycles) to estimate a previously unknown
variable relation. Exploring causalities between variables and
constructing the agent’s behavior from empirical factors makes
the produced solutions traceable. Based on these results, we see
a strong potential for ACI to support elastic computing systems
by continuously ensuring the precision of ML models.

REFERENCES

[1] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge Intelligence: The Confluence of Edge Computing and Artificial
Intelligence,” IEEE Internet of Things Journal, Aug. 2020.

[2] V. C. Pujol, P. K. Donta, A. Morichetta, I. Murturi, and S. Dustdar, “Edge
intelligence—research opportunities for distributed computing continuum
systems,” IEEE Internet Computing, vol. 27, no. 4, pp. 53–74, 2023.

[3] P. Chen, Y. Qi, and D. Hou, “CauseInfer: Automated End-to-End Perfor-
mance Diagnosis with Hierarchical Causality Graph in Cloud Environ-
ment,” IEEE Transactions on Services Computing, 2019.

[4] A. Morichetta, V. C. Pujol, S. Nastic, T. Pusztai, P. Raith, S. Dustdar,
D. Vij, Y. Xiong, and Z. Zhang, “Demystifying deep learning in predictive
monitoring for cloud-native SLOs,” 2023.

[5] B. Sedlak, V. Casamayor Pujol, P. K. Donta, and S. Dustdar, “Controlling
Data Gravity and Data Friction: From Metrics to Multidimensional
Elasticity Strategies,” in IEEE SSE 2023, Chicago, IL, USA, Jul. 2023.

[6] S. Nastic, A. Morichetta, T. Pusztai, S. Dustdar, X. Ding, D. Vij, and
Y. Xiong, “SLOC: Service Level Objectives for Next Generation Cloud
Computing,” IEEE Internet Computing, vol. 24, no. 3, May 2020.

[7] E. C. Martı́nez, J. W. Kim, T. Barz, and M. Cruz, “Probabilistic Modeling
for Optimization of Bioreactors using Reinforcement Learning with
Active Inference,” Computer Aided Chemical Engineering, 2021.

[8] K. J. Friston, J. Daunizeau, and S. J. Kiebel, “Reinforcement Learning
or Active Inference?” PLOS ONE, vol. 4, no. 7, p. e6421, Jul. 2009.

[9] K. Friston, “Life as we know it,” Journal of The Royal Society Interface,
vol. 10, no. 86, p. 20130475, Sep. 2013.

[10] M. Kirchhoff, T. Parr, E. Palacios, K. Friston, and J. Kiverstein, “The
Markov blankets of life: autonomy, active inference and the free energy
principle,” Journal of The Royal Society Interface, 2018.

[11] R. Smith, K. J. Friston, and C. J. Whyte, “A step-by-step tutorial on active
inference and its application to empirical data,” Journal of Mathematical
Psychology, vol. 107, p. 102632, Apr. 2022.

[12] N. Sajid, P. J. Ball, T. Parr, and K. J. Friston, “Active inference:
demystified and compared,” Neural Computation, vol. 33, no. 3, pp. 674–
712, Mar. 2021.

[13] J. Pearl, Probabilistic reasoning in intelligent systems : networks of
plausible inference. San Mateo, Calif. : Morgan Kaufmann, 1988.

[14] N. Ganguly et al., “A Review of the Role of Causality in Developing
Trustworthy AI Systems,” Feb. 2023.

[15] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar,
“Answering what-if deployment and configuration questions with wise,”
ACM SIGCOMM Computer Communication Review, 2008.

[16] Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton, “Energy-Based
Models for Sparse Overcomplete Representations,” Journal of Machine
Learning Research, vol. 4, pp. 1235–1260, Dec. 2003.

[17] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li,
“AIˆ2: Training a Big Data Machine to Defend,” in IEEE Big Data
Security, Apr. 2016, pp. 49–54.

[18] M. Simsek, B. Kantarci, and Y. Zhang, “Detecting Fake Mobile Crowd-
sensing Tasks: Ensemble Methods Under Limited Data,” IEEE Vehicular
Technology Magazine, vol. 15, no. 3, pp. 86–94, Sep. 2020.

[19] X. Huang, L. He, and W. Zhang, “Vehicle Speed Aware Computing
Task Offloading and Resource Allocation Based on Multi-Agent Rein-
forcement Learning in a Vehicular Edge Computing Network,” in IEEE
International Conference on Edge Computing (EDGE), Oct. 2020.

[20] H. Guo, J. Liu, and J. Lv, “Toward Intelligent Task Offloading at the
Edge,” IEEE Network, vol. 34, no. 2, pp. 128–134, Mar. 2020.

[21] J. Fürst, M. Fadel Argerich, B. Cheng, and A. Papageorgiou, “Elastic
Services for Edge Computing,” in 2018 14th International Conference
on Network and Service Management (CNSM), Nov. 2018, pp. 358–362.

[22] G. Levchuk, K. Pattipati, D. Serfaty, A. Fouse, and R. McCormack, “Ac-
tive Inference in Multiagent Systems: Context-Driven Collaboration and
Decentralized Purpose-Driven Team Adaptation,” in Artificial Intelligence
for the Internet of Everything. Academic Press, Jan. 2019.

[23] T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, S. Nastic, X. Ding,
D. Vij, and Y. Xiong, “A Novel Middleware for Efficiently Implementing
Complex Cloud-Native SLOs,” in 2021 IEEE 14th International Confer-
ence on Cloud Computing (CLOUD), Sep. 2021, pp. 410–420.

[24] M. G. Vilas, R. Auksztulewicz, and L. Melloni, “Active Inference as a
Computational Framework for Consciousness,” Review of Philosophy and
Psychology, vol. 13, no. 4, pp. 859–878, Dec. 2022.

[25] C. Heins, B. Millidge, D. Demekas, B. Klein, K. Friston, I. Couzin, and
A. Tschantz, “pymdp: A Python library for active inference in discrete
state spaces,” Journal of Open Source Software, May 2022.

[26] T. Parr, G. Pezzulo, and K. J. Friston, Active Inference: The Free Energy
Principle in Mind, Brain, and Behavior. The MIT Press, Mar. 2022.

[27] B. Sedlak, I. Murturi, P. K. Donta, and S. Dustdar, “A Privacy Enforcing
Framework for Transforming Data Streams on the Edge,” IEEE Transac-
tions on Emerging Topics in Computing, 2023.

	Introduction
	Background
	Active Inference Principles
	ACI Principles in Distributed Systems
	Causal Inference
	Free Energy Minimization
	Homeostasis

	Related Work
	Active Inference Design Process
	Action-Perception Loop
	Use Case Description
	Generative Model Setup
	Active Inference Agent

	Evaluation
	Comparative Analysis & Results

	Conclusion
	References

