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Abstract—Federated Learning (FL) has emerged as a promis-
ing paradigm to train machine learning models collaboratively
while preserving data privacy. However, its widespread adoption
faces several challenges, including scalability, heterogeneous data
and devices, resource constraints, and security concerns. Despite
its promise, FL has not been specifically adapted for commu-
nity domains, primarily due to the wide-ranging differences
in data types and context, devices and operational conditions,
environmental factors, and stakeholders. In response to these
challenges, we present a novel framework for Community-based
Federated Learning called CommunityAI. CommunityAI enables
participants to be organized into communities based on their
shared interests, expertise, or data characteristics. Community
participants collectively contribute to training and refining learn-
ing models while maintaining data and participant privacy
within their respective groups. Within this paper, we discuss
the conceptual architecture, system requirements, processes, and
future challenges that must be solved. Finally, our goal within this
paper is to present our vision regarding enabling a collaborative
learning process within various communities.

Index Terms—Federated Learning; Artificial Intelligence; Ma-
chine Learning; Edge-Cloud Computing;

I. INTRODUCTION

In recent years, Federated Learning (FL) has emerged as
a promising paradigm in machine learning (ML), offering
a unique solution to the problem of balancing data privacy
and collaborative model training. FL enables ML models
to be trained collaboratively across distributed devices while
protecting sensitive data held by these devices. This approach
has found applications in various domains, from healthcare
to finance, aiming to harness the collective intelligence of
decentralized data sources. However, the widespread adoption
of FL faces multifaceted challenges such as encompassing
scalability, data heterogeneity, security and privacy concerns,
and resource constraints [1].

Traditionally, training high-quality learning models requires
well-labeled large datasets (i.e., data points are tagged or
categorized). However, these datasets often contain sensitive
information, making it impractical or insecure to share with
centralized servers for machine learning purposes. FL, as first
introduced by McMahan et al. [2], addresses this challenge
by providing a privacy-preserving approach for knowledge
sharing among collaborative devices. The primary objective
of FL is to enable knowledge transfer in the form of model
parameters (e.g., the weights) between devices and without
exposing the raw data. Each participating device trains a
model locally using its data. Once locally trained, these models

are uploaded to a central server which aggregates the model
parameters (i.e., often by averaging them) and creates a global
model with the knowledge of participating devices [3].

Members within communities can work together to tackle
shared challenges [4], and FL offers a technological solution
that preserves data privacy and fosters collective intelligence.
Community domains typically refer to specific areas or sectors
within a community or society that share common interests,
characteristics, or concerns. These domains can vary widely
and may include fields such as wellness, health monitoring,
education, healthcare, local government, nonprofit organiza-
tions, social services, and more. Essentially, community do-
mains are the different aspects or sectors of community life
where individuals and organizations work together to address
specific needs and issues within that community. Nevertheless,
a community is not limited only to social aspects; a community
can be created even from a group of devices or sensors
that aims to address specific issues (e.g., anomaly detection,
fault classification, etc.). However, the large differences across
community data sources are mostly the reason for the difficulty
in implementing FL in such scenarios [5]. These differences
encompass variations in data types, contextual intricacies,
device heterogeneity, operational conditions, environmental
factors, and the varied interests of involved stakeholders.

Despite its potential, FL has not been tailored to address
the specific demands of community-based domains [6]. In
a community context, FL assumes a high degree of data
similarity across all FL tasks. This means that the data
collected and utilized by different participants or devices in
the community share common patterns, characteristics, or
features that make them suitable for collaborative machine
learning. For instance, let’s assume the Fitness and Wellness
Community where participants aim to weight loss and adopt
healthier lifestyles. The community members use a variety of
wearable devices such as smartwatches, fitness trackers, and
health monitors. These devices collect data on metrics like
heart rate, steps taken, sleep quality, and more. Each device
may produce different data structures. Moreover, devices even
from the same manufacturer and version may produce various
results due to the heterogeneous environmental and operation
conditions. In some cases, the data collected or available for
training may not be very similar in terms of content, charac-
teristics, or patterns. As a result, such potential data variations
can lead to negative knowledge transfer which may affect
model performance. Therefore, there is a need for adapted
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approaches for FL that accommodate data heterogeneity by
allowing specialized submodels for groups of devices that
share similar data structures or characteristics.

In the literature, few works attempted to address the above-
discussed challenges. For example, Hiessl et. al. [7], [8]
introduced an industrial FL, where knowledge exchange can
be performed based on data similarities in manufacturing
industry data. This approach enables clients to select ML
models according to their preferences for FL for industrial
time series data. Their approach can recognize identical data,
and distribute them accordingly. However, a few characteristics
can be used to identify identical data. Nevertheless, this
method does not specify the community identification process.
In addition, the accuracy of identifying similar communities
has not been verified. Moreover, this work is designed for
industrial applications and has not been verified for other
applications such as healthcare and smart cities.

In response to these challenges, we introduce a novel frame-
work called CommunityAI that seeks to organize participants
into communities based on shared interests, expertise, data
similarities, or characteristics. These communities collectively
contribute to the training and refinement of ML models while
ensuring the utmost protection of data and participant privacy
within their respective groups. We assume that stakehold-
ers have the ability to establish diverse FL communities,
where they provide their respective ML models, tasks, and
metadata. FL communities are then created based on similar
configurations (i.e., such as device types, FL algorithms, ML
models, and objectives). In order to address potential data
dissimilarities and prevent negative knowledge transfer caused
by model updates, we use the concept of FL cohorts (i.e.,
FL community subsets). This approach allows knowledge
sharing exclusively within these cohorts and among models
that relate to a community, where multiple characteristics
are considered. These characteristics not only identify data
similarity, but also consider multiple characteristics like shared
interests, expertise, data similarity or characteristics, device
location, or application. The community detection can be done
autonomously and on-the-fly, which further enhances model
learning speed. In this context, the major contributions of this
paper are summarized as follows:

• We introduce a conceptual architecture and explore sys-
tem requirements and underlying processes. The proposed
architecture is designed by considering the distributed
nature of three-tier infrastructures [9], [10].

• We outline various applications across different domains
that can leverage the advantages offered by the Commu-
nityAI framework.

• We present potential research directions that can foster
novel studies in this field and overcome the current
limitations.

The remaining sections are structured as follows. Section
II gives a brief overview of community domains and FL,
data source heterogeneity, and possible applications that may
benefit from the CommunityAI framework. Section III gives

an overview of the CommunityAI framework, system require-
ments, and the architecture and processes of the proposed
framework. In Section IV, we outline research challenges and
future directions. Section V concludes the paper.

II. BACKGROUND AND MOTIVATION

This section gives an overview of (i) community domains
and FL, (ii) data sources, and (iii) CommunityAI appli-
cations.

A. Community Domains and FL

In Figure 1, we name a few possible domains that can
be formed and cater to community needs. Several software
services can be developed for each such domain, which can be
categorized as personalized or general services. For instance,
the Wellness and Fitness Community domain may encompass
physical, mental, or emotional health aspects within a com-
munity. This could involve (sub-)communities such as fitness,
sports activities, stress management, and more. Essentially,
such a community gathers virtually individuals with a common
interest in promoting a healthy and active lifestyle. It brings
together fitness trainers, wearable device users, nutritionists,
and health enthusiasts who aim to harness the power of tech-
nology and data to enhance their well-being. Users can access
personalized guidance, collaborate with trainers, and benefit
from data-driven insights to improve their health. However,
when considering FL approaches, the difficulty arises from
various data sources and data structure heterogeneity. FL
typically involves multiple distributed data contributors, such
as humans, wearable devices, sensors, and different fitness
trackers.
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Fig. 1: Community domains.

The traditional FL approaches can be challenging because
they may not adequately capture nuanced variations and indi-
vidual users’ preferences. For example, one user’s heart rate



data from a high-end smartwatch may differ significantly from
another user’s data collected from a basic fitness tracker. Con-
sequently, a single model might struggle to provide accurate
and personalized recommendations for both users. By allowing
specialized submodels (i.e., cohorts) for groups of devices
that share similar data structures or characteristics, users
may receive more accurate and relevant recommendations for
their devices and data sources. Furthermore, these specialized
submodels reduce the computational load on each device, as
they only need to communicate with their respective submodel
rather than the global model. As a result, the system should
scale more effectively to accommodate more communities,
more users, and data sources.

B. Data sources

Embedded computing devices (ECD) are mechanical or
electronic devices programmed to perform a specific task
[11], and they are the primary source for data in computing
continuum systems. In our daily lives, we use ECDs such as
microwaves, embedded washing machines, engineering calcu-
lators, digital cameras, digital door locks, health care devices,
vehicle components, etc. These devices are designed with
multiple hardware components including sensors and actua-
tors, communication modules, power supply, tiny memory, and
processors (either microcontroller (MC) or microprocessor)
[12]. Due to high Internet availability, ECDs enable Internet
connection further increasing remote accessibility. The Internet
also helps to store a large amount of device activity data
in the cloud. This further increases predictive maintenance,
working conditions such as performance and downtimes. Fur-
ther, depending on their hardware availability and range of
features, they are divided into small-scale (using 8-bit MCs),
medium-scale (using 16-bit or 32-bit MCs, or multiple 8-bit
MCs), or sophisticated-scale (with complex software codes
and hardware components). These enhancements and complex
hardware and software features have attracted attention from
many fields in recent days, and wearable devices are rapidly
gaining popularity.

For example, wearable devices are becoming more common
these days, as they are part of our daily lives. They can
capture data by interacting with users and other devices
through equipped sensors, processors, and connectivity fea-
tures ranging from wearable devices such as smartwatches,
fitness trackers, smart shoes, augmented reality glasses, and
many more as shown in Figure 2 [13]. Figure 2 also shows
various wearable devices, their data similarities (i.e., high-
lighted with green color) and differences, along with their
benefits. Wearable devices monitor several metrics, including
physical activity, regular health metrics (such as heart rate,
sleep, blood pressure, and stress levels), and provide quick
access to information through notifications. Their portability
and constant presence make them ideal for bridging users with
a wide network of devices. In addition to convenience, these
devices can monitor fitness and health, track mood swings,
communicate with people and other devices remotely, provide
real-time analytics, and ensure safety monitoring [14]. Recent
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Fig. 2: An overview of wearable ECD and their benefits.

statistics (by GlobalData1) show that the wearable devices
market is generated $59 billion in 2020. These studies also
confirm that this growth will continue to more than $156
billion by 2024 with a 24.6% growth rate. The limitations of
these devices in terms of memory and computation further
make them dependent on other devices such as the edge,
mobile phones, or cloud centers.

C. CommunityAI Applications

The CommunityAI does not limit itself to specific applica-
tions, and it supports a large number of applications, whereas
only a few are discussed here.

1) Wellness and Fitness Application: Staying fit and healthy
has become a top priority for many individuals. A cutting-
edge system has emerged where people get daily recom-
mendations for their health and fitness journeys. End-users,
via their dedicated apps installed on their smartphones, may
join various communities provided by the CommunityAI (e.g.,
Wellness and Fitness Community), actively contribute their
data to this collaborative effort, and get personalized sport
and activity suggestions based on data collected from various
wearable devices. These devices allow users to provide context
information and many metrics, including heart rate, steps
taken, sleep quality, and more data that might be provided
from other nearby wearable devices (as illustrated in Fig. 2).

The CommunityAI aggregates and analyzes data, trans-
forming it into actionable insights. By employing learning
algorithms, it builds individualized user profiles that consider
factors such as fitness levels, health objectives, and even
daily schedules. This comprehensive understanding enables the
system to offer recommendations that are not only effective
but also adaptive, taking into account a user’s ever-changing
fitness journey. For instance, a high-intensity enthusiast might

1https://www.medicaldevice-network.com/comment/
wearable-technology-iot, Last accessed: December 1, 2023

https://www.medicaldevice-network.com/comment/wearable-technology-iot
https://www.medicaldevice-network.com/comment/wearable-technology-iot


receive guidance on rigorous High-intensity interval training
(HIIT) workouts. At the same time, someone focused on
weight loss might be directed towards a combination of
calorie-conscious dietary plans and cardio exercises.

2) Governing Computing Continuum Systems: Computing
continuum systems are more heterogeneous since they include
a variety of devices. Besides computing business data, these
devices also generate a huge amount of data through logs. This
data is analyzed to monitor their conditions, so that they can
be used more efficiently while avoiding downtime. However,
these systems generate a greater variety of data. For example,
this system consists of custom logs for devices, network
information, infrastructure details and location information
[15]. In this case, each of these categories can be considered
a distinct community. Further, each of these categories can be
subcommunities because of their heterogeneity. For example,
a computing continuum system contains a variety of devices
including EDCs, sensor nodes, IoT, Edge/Fog nodes and cloud
servers. It is important to recognize that each device has
its own characteristics and capabilities. The same applies
to network infrastructure. Based on the requirements, it can
use LoRa, Bluetooth, WiFi, 4G, 5G, or 6G communication
mediums. In this scenario, it is not feasible to use the same
learning approach. Also, it is not efficient to generate a model
by combining all these data. In this case, CommunityAI can
offer more advantages, such as an efficient way of generating
the model and analyzing the data.

3) Industrial Automation: Industrial automation is the ap-
plication of technology and control systems to simplify man-
ufacturing with minimal human intervention while enhancing
efficiency and productivity. Because of the coexistence of
different equipment, machinery, and systems, this application
was heterogeneous. This diversity can be challenging to man-
age since there are so many communication protocols, data
formats, and interfaces to deal with. Using all these diverse
data to train the model may result in an inefficient learning
process. The accuracy of models, however, is more likely to
lead to the highest productivity, which further enhances profits
in the industry. It is not possible to get high-accuracy models
from existing learning models because they are not efficient at
fulfilling the current demands of industrial automation. Never-
theless, Hiessl et. al. [7] designed a model entitled Industrial
federated learning to address this challenge, but this model
needs many predetermined setups. One such requirement is to
define FL cohorts and populations, but there are no specific
methods for doing so. This model still needs to be enhanced
to be more adaptive and dynamic in real-time. Nevertheless,
CommunityAI can define these partitions autonomously in
run-time based on the type of information. For example, the
FL cohort in CommunityAI can be performed according to
Data Distribution Service (DDS) principles [16].

4) Healthcare: Healthcare is another interesting field in
which diverse data can be seen. The structures, formats, and
sources of a wide range of healthcare data types-ranging
from electronic health records (EHRs) to medical imaging
and genomic data strikingly varied in this domain. While

EHRs contain structured data fields, unstructured physician
notes, and diagnostic images, genomic data contains DNA
sequences and genetic variations. Moreover, data originates
from a wide variety of healthcare facilities, such as hospitals,
clinics, laboratories, and wearables, each adhering to unique
standards and storage methods. Healthcare faces formidable
challenges due to heterogeneous data. Unlike previously dis-
cussed applications, healthcare data is processed separately.
For example, there are a variety of models to evaluate only
physician notes, and various algorithms for DNA sequences.
There is no common platform in the healthcare industry where
all patient data can be analyzed. So, patient reports may not
be received on time due to multiple platforms and the fact that
they are not all available at one location. This opens the doors
for all a patient’s or multiple patients’ data to be analyzed
using a common platform with parallel computing nodes. This
further simplifies the analyzing process for different metrics to
decide the root cause of a patient’s disease. Considering this
scenario, the CommunityAI model would be more appropriate,
since it can automatically determine where the data will be
computed and produce accurate models based on the data.

III. COMMUNITYAI: REQUIREMENTS, ARCHITECTURE,
AND PROCESS

This section gives an overview of the CommunityAI frame-
work. We discuss (i) system requirements (i.e., notations,
stakeholders, and metadata), (ii) FL within CommunityAI,
and (iii) the architecture and processes of the proposed
framework.

A. Notations, Stakeholders, and Metadata

The CommunityAI foundational terminology is built upon
the FL notation originally proposed by Bonawitz et al. [17].
This notation encompasses critical elements, such as devices,
FL servers, FL tasks, FL populations, and FL plans. Devices
represent various hardware platforms, including edge devices
and mobile phones, equipped with FL clients that carry out
the computational tasks required for training and assessing
learning models. An FL client establishes communication with
the CommunityAI to execute FL tasks associated with a spe-
cific FL population (i.e., we refer also as FL Community). FL
population refers to a globally unique identifier representing
a shared learning objective across multiple FL tasks. The
CommunityAI aggregates outcomes, which are model updates,
stores the global model and then distributes it to FL clients
within the designated FL population. Furthermore, an FL plan
is associated with an FL task and serves as the instructions for
its federated execution. Such a plan guides the CommunityAI
and the participating FL clients on federated execution. Later,
we consider FL cohorts (i.e., as in the proposed approach [7])
to enable that group multiple FL tasks within the same FL
population and with similarities in data structure (described in
Section III-B).

Within the CommunityAI framework, several stakeholders
are involved in creating and managing communities. These
stakeholders include:



• Users or Participants: Users are the core stakeholders
who join and actively participate in communities based
on their interests, expertise, or data characteristics. They
contribute data, engage in collaborative model training,
and benefit from the insights and recommendations gen-
erated within their respective communities. Furthermore,
participants can include domain experts, data scientists,
fitness trainers, healthcare professionals, or individuals
with specialized knowledge.

• Sensory Data Contributors: Devices and sensors are
active stakeholders as sensory data contributors. They
generate valuable data shared within the community for
collaborative ML. These devices play a critical role in
providing the raw data that forms the foundation of
insights and recommendations. More details about data
sources are discussed in Subsection II-B.

• Community Creators: Community creators are individuals
or organizations responsible for initiating and establish-
ing communities within the CommunityAI framework.
They define each community’s purpose, objectives, ML
models, tasks, and guidelines and often lead in guiding
community activities.

Several requirements exist in the CommunityAI framework
that must be fulfilled before fully operationalization. In order
to facilitate collaboration among FL clients, we recognize
the need to disseminate metadata that describes all involved
stakeholders within the CommunityAI framework. First, we
assume that manufacturers provide metadata that describes
sensors and devices. On the other side, human contributors
can create and set their personal data information on their
own profiles. Second, community creators and FL clients may
have specific criteria for collaborating with other clients. This
could include requirements such as data quality, expertise
level, trustworthiness, or alignment with particular objectives.
Therefore, without proper collaboration criteria, the FL system
may not effectively filter and select appropriate participants,
leading to inefficient or potentially harmful collaborations.

B. FL Communities

FL client choice is a critical aspect in the FL process, which
shortens processes like training and evaluation [18]. We con-
sider that stakeholders can form various FL communities. This
means that a stakeholder for an FL community provides ML
models, tasks, metadata, etc. The next step enables creating
and assigning submitted tasks to their respective populations.
Essentially, an FL population is built with tasks with the
same configurations (e.g., device type, FL algorithm, ML
model, objectives, etc.). When the configuration of a new
task matches the existing population, it is included within the
same population. Otherwise, a new population is created. It is
essential to take into account a valid FL setup, where identical
algorithms and models must be applied to the common data
format. We do consider as a potential solution the proposed
approach in [8], where a population is split into cohorts
representing clusters of tasks with similar data distributions.
In this way, within an FL community, FL clients exclusively

exchange updates with a subset of FL clients whose submitted
FL tasks are in alignment with the same FL communities and
cohort. Note that the proposed approach [8] considers only an
industrial domain and data similarity aspects. In our approach,
we extend FL community selection based on multiple metrics
instead of data similarity, such as shared interests, expertise,
and data characteristics. For the data similarity, a potential
solution can be topic modeling [19] for achieving highly
accurate community separation.
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Fig. 3: FL within CommunityAI.

From a practical point of view, consider a group of devices
that work together to solve a specific learning problem. This
shared learning objective is typically related to a particular
task, such as anomaly detection, natural language processing,
recommendation systems, improving accuracy and device per-
formance, etc. For example, consider a smartwatch or bracelet
where the manufacturer may want to improve heart rate
monitoring results based on individual and environmental con-
ditions in which a device operates. Let’s say two individuals
wearing identical smartwatches from the same manufacturer
and version while participating in a physical activity like
running. The heart rate monitoring effectiveness on a wrist-
based device depends on the skin contact quality, skin tone
and tattoos, or the fit of the device. For instance, skin tone
and the presence of tattoos can affect the optical sensors’
ability to measure heart rate accurately. Darker skin tones and
tattoos may require additional data or produce less accurate
readings. More specifically, the environment plays a significant
role in the accuracy of data collected by the smartwatch or
bracelet. Nevertheless, manufacturers strive for consistency
and accuracy while individual variations and environmental
factors can lead to different results between two devices of
the same version and manufacturer.

Regarding the above-mentioned example, Figure 3 presents
a scenario of FL within CommunityAI where communities



are created from devices with the same data structures, e.g.,
aiming to improve heart rate monitoring results via anomaly
detection (i.e., learning tasks). Embedded sensors or devices
generate data for learning tasks for an FL community (i.e.,
health monitoring community). In the presented scenario,
an FL population corresponds to all tasks with the same
configurations (i.e., M2.1 and M2.2 belong to FL population
2, and since they belong to the same Community C2). As we
witnessed in the example, environmental factors can lead to
different results between two devices of the same version and
manufacturer. This can cause a negative knowledge transfer
by the model updates and decrease the overall model perfor-
mance. Therefore, FL cohorts are considered subsets of an FL
population (as explained in [7], [8]). This enables knowledge
sharing exclusively within, e.g., FL cohort 2, including M2.2
models. Lastly, sharing updates between FL clients dealing
with the same data characteristics and environmental condi-
tions enhances the accuracy of their individual models.

C. Architecture and Processes

As illustrated in Figure 4, Edge Computing serves as a
critical architectural intermediary layer between the cloud
and end-users. When it comes to a platform for enabling
training and deploying a ML model, it can harness the de-
centralized characteristics of such infrastructures. Furthermore,
such infrastructures can support handling the massive data
transfer, which may overcome latency issues. Therefore, the
CommunityAI is designed as a three-tier architecture where
software components can be deployed within the Edge-Cloud
infrastructure.

The CommunityAI architecture is composed of (i) server-
side software components (i.e., which can be deployed and
run in cloud and fog layers) and (ii) client-side software
components (i.e., which can be deployed and run in client
devices such as smartphones or edge/fog devices in proximity
to an end-user). From the infrastructure perspective, the cloud
environment offers ”unlimited” resources and advanced capa-
bilities for orchestration, model execution, and managing the
resources required. The fog layer comprises a set of station-
ary and powerful devices which can be physical or virtual,
featuring various hardware configurations such as CPU, GPU,
storage, and more. This layer has a supportive role in storing,
training, and keeping often-used models near clients. The edge
layer consists of low-powered devices that can make requests
to the system (i.e., users ask for recommendations) or act
as participating client device that contributes their local data
and computational resources to the FL training process. These
devices typically have limited resources, relying on CPUs
and batteries for power, but often, they possess sufficient
hardware capabilities to execute model training operations.
Within the edge layer, we have embedded computing devices
that generate various data information about the environment
or data for specific purposes. As illustrated in Figure 4, the
server-side software components are (i) run-time Orchestra-
tion,(ii) FL Scheduler, (iii) Community Management,
(iii) Adaptation Management, (iv) FL Processing, (v)

ML Base and Trained Models, (vi) Coordinator, and (vii)
FL Community. First, we describe software components that
deal with architecture considerations such as run-time aspects,
deployment, monitoring, adaptation, and resource manage-
ment. Secondly, we explain the software components related
to the FL process within the CommunityAI framework. Lastly,
we describe the client-side software components.

1) Software Architecture Considerations: The run-time or-
chestration component determines the optimal software com-
ponent placement to ensure reliable and low-latency service
delivery to end-users. Software components (e.g., adaptation
management software sub-components) can be deployed geo-
graphically closer to end-users, such as fog devices for better
service delivery. Furthermore, this component monitors the
overall system and deployment of software components in
the Edge-Cloud infrastructure. In addition, the run-time or-
chestration component determines where to deploy often-used
ML models in proximity to clients so that the communication
cost is optimized. The community management component
provides an API that allows various stakeholders to create
communities. The stakeholders are trustable end-users who
can create various communities, define their metadata (e.g.,
collaboration criteria, preferences, etc.), and submit tasks using
the provided API. Both device/community metadata files and
ML base models are stored within their respective databases.
The adaptation management component enhances flexibility
and responsiveness to changing conditions and user needs.
More specifically, it automatically allocates computational
resources to scale up or down based on the user number,
data volume, and processing demands. In other words, it
provides several functions, such as resource allocation and
scaling (i.e., elasticity [20]), identifying and responding to
security breaches or unauthorized access attempts, and ensur-
ing the system remains efficient and responsive. Lastly, the
coordinator component is responsible for several tasks within
the CommunityAI framework. First, this component enables
communication with other devices and users, registering them
to the system, and getting metadata files from these resources.
Secondly, the coordinator component shares a requested ML-
base model with the registered clients (i.e., the sharing process
is explained in Section III-C2). Essentially, the coordinator
component provides a communication channel for transmit-
ting the model weights between the central server and the
participating clients in a secure way.

2) FL Components and Process: FL components within
the server-side of the CommunityAI are (i) FL Scheduler,
(ii) FL Processing, and (iii) FL Community. A detailed
lifecycle of a trained model in an FL system is given in [3].
Initially, a typical FL workflow is typically driven by a model
engineer (i.e., a stakeholder) who defines the problem to be
solved and develops a suitable model architecture for FL.
Clients generate the data for model training as well as submit
FL tasks with metadata (i.e., including details such as targeted
devices - device or resource a task is meant to operate on).
The FL Scheduler component is responsible for mapping the
task into the corresponding FL population and then providing
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scheduling instructions to initiate FL task execution with that
FL population. FL Processing component converts the FL task
to an FL plan. After translating the FL task into a plan, the FL
Processing generates a global ML model suitable for the task.
This model is typically created based on the specifics of the
FL plan. Afterward, with the global ML model in place, the
FL Processing initiates the FL process for a given FL cohort
by establishing connections with all the FL clients within
that cohort who have FL tasks to perform. FL Community
component is responsible for maintaining such information.
On the other side, similar to the FL Processing that operates
on the server-side, there is a corresponding component on the
client-side (see Section III-C3). The resulting metrics from
these client-side operations are provided to the FL Community
component and used to update and manage cohorts.

3) CommunityAI Client: The client-side software com-
ponents are composed of four software components (i)
CommunityAI Client, (ii) Runtime Management, (iii)
FL Management, and (iv) Community Manager. Runtime
Management contains a set of crucial responsibilities essen-
tial for maintaining the efficient operation of a device or
system. More specifically, it continuously monitors internal
hardware metrics, discovers and monitors nearby resources

such as sensors, etc. Moreover, it gets metadata files from
other nearby devices and shares them with the coordinator via
the CommunityAI Client component. The FL Management
component provides a set of software tools that enable the
execution of instructions provided by the FL Processing. These
instructions typically pertain to tasks such as training or
evaluating machine learning models on local edge devices.

Essentially, the FL Management component plays a role
similar to the FL Processing but is responsible for tasks on in-
dividual client devices. When client devices execute evaluation
plans specified in the FL plan, they generate performance met-
rics or measurements. The Community Manager shares these
metrics with the FL processing component via the coordinator.
The FL Processing shares these metrics as well as with the
FL Community (i.e., server-side components). Furthermore,
training can also be delegated to nearby edge devices through
CommunityAI Client. Outsourcing or offloading a training
process to these trusted edge devices with available resources
becomes a practical solution. It ensures that additional training
or computation can continue without overburdening a single-
edge device. Lastly, note that a CommunityAI Client can be
a stakeholder who initiates a community (i.e., submits tasks,
models, etc.), or a user with data that joins a community and



participates in the training process and subsequently uses such
models on their machines.

IV. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

CommunityAI aims to facilitate the seamless sharing and
knowledge transfer within FL communities. This can involve
information dissemination, expertise, and best practices, help-
ing community participants learn from each other. In other
words, CommunityAI aims to harness AI power by enabling
collaboration to enhance the way communities function, en-
abling them to thrive, adapt, and address complex challenges.
Nevertheless, forming FL communities using FL techniques
and orchestrating architecture components in dynamic envi-
ronments introduces several challenges. We identify four main
research directions that must be further investigated in the
future:

1) Metadata Model and Sharing Protocol: Metadata refers
to information about communities, devices, data, or clients that
is not the raw data itself but provides context or criteria for
collaboration. In the FL context, this could include information
about the types of data a client has, its expertise, its willingness
to collaborate, or any specific criteria it requires for partici-
pating in FL tasks. Furthermore, such metadata information
should be represented in a structured way, such as the format,
attributes, and semantics of the metadata that FL clients can
share with each other. Such a model would allow stakeholders
to describe themselves and their collaboration preferences
standardized and securely. Another important aspect is sharing
protocol. Essentially, sharing protocol is a set of rules and
procedures dictating how FL clients securely and selectively
exchange metadata. Hence, it is important to explore methods,
communication channels, and security approaches that might
be involved in the exchange process.

2) Advanced Community Filtering: The CommunityAI
framework organizes participants into communities based on
shared interests, expertise, data similarities, or characteristics.
However, there is a need for more advanced and adaptive
methods to identify and establish such communities. More-
over, it is crucial to acknowledge that participants within
communities may change their characteristics over time. These
changes can result from evolving interests, skill development,
shifting device usage, etc. Therefore, it is important to ex-
plore advanced community detection algorithms that consider
multiple characteristics as well as adapt to evolving partici-
pant characteristics. Additionally, verifying the accuracy and
effectiveness of community identification processes remains
an important issue that must be addressed.

3) Predicting Negative Knowledge Transfer: Negative
knowledge transfer may occur when information from one
participant adversely affects the performance of another par-
ticipant’s model. This can result in decreased model quality.
By predicting such instances, FL communities can proactively
take steps to mitigate these effects, ensuring high model
quality. Therefore, it is worth exploring methods that detect
potential negative knowledge transfer early, preventing unnec-
essary training iterations, data exchanges, and resource usage.

This enhances the efficiency of the FL process, particularly
on resource-constrained devices. However, developing accu-
rate methods for predicting negative knowledge transfer is a
significant challenge.

4) Privacy-preserving CommunityAI: FL effectively tackles
privacy concerns through local data storage; however, sup-
plementary privacy-preserving methods are needed to guar-
antee the non-disclosure of sensitive information during the
model aggregation phase. Hence, it is important to explore
methods for designing resilient and privacy-conscious models
that can exhibit strong performance across various domains
while safeguarding the sensitive data of individual clients or
domains. Furthermore, trust establishment within a community
represents another significant challenge that requires further
exploration in developing advanced methods.

V. CONCLUSION

CommunityAI is an FL-based framework designed to group
participants into communities based on shared interests, exper-
tise, or data characteristics, fostering collaboration in various
domains like health, education, industrial automation, and
other domains. Participants within the framework range from
computing devices and sensors to humans working together in
these communities to train and improve machine learning mod-
els collaboratively. Notably, the FL approach and collaborative
process prioritizes data and participant privacy by ensuring
that data is shared and used only within their respective
groups or communities. Within this paper, we presented vision
aspects and represented an initial step toward introducing the
CommunityAI framework. In our forthcoming research, our
goal is to deliver a comprehensive technical framework that
encompasses both technical and architectural elements. Ad-
ditionally, the research challenges we have identified require
thorough investigation in the future.
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