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Abstract—Zero-touch network is anticipated to inaugurate the
generation of intelligent and highly flexible resource provisioning
strategies where multiple service providers collaboratively offer
computation and storage resources. This transformation presents
substantial challenges to network administration and service
providers regarding sustainability and scalability. This article
combines Distributed Artificial Intelligence (DAI) with Zero-
touch Provisioning (ZTP) for edge networks. This combination
helps to manage network devices seamlessly and intelligently by
minimizing human intervention. In addition, several advantages
are also highlighted that come with incorporating Distributed
AI into ZTP in the context of edge networks. Further, we draw
potential research directions to foster novel studies in this field
and overcome the current limitations.

Index Terms—Distributed Artificial Intelligence; Edge Net-
works; Edge Resource Federation; Internet of Things; Zero-touch
Provisioning

I. INTRODUCTION

The Internet of Things (IoT) has witnessed a rapid rise in
recent years. Connected devices have integrated with various
areas of our societies, such as electric grids, transportation,
and industries [1]. This paradigm change leads to rethinking
the processes related to IoT systems. Indeed, IoT systems
that deal with people, connected devices, and data produced
in their respective environments have to guarantee seamless
management and integration of all these actors. The primary
driving force in fostering this digital transformation is, thus,
the integration of multiple functional systems to provide faster,
steadier, more cost-effective, and overall better services. In
particular, there’s a need for automating resource provision-
ing in complex and broad scenarios like the device-edge-
cloud computing continuum. Currently, most technologies,
especially cloud-based services focus on centralized strategies
[2]. However, centralized approaches cannot work in these
broad scenarios. In this regard, Zero-touch Provisioning (ZTP)
represents an appealing direction. This class of approaches
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aims at providing methods to seamlessly and automatically
manage the devices in a network, adapting to changes without
requiring direct human intervention [2]. Such approaches are
primarily implemented with Machine Learning (ML) methods.

The challenge is how to let AI approaches govern such
complex systems [3]. Research on Distributed Artificial In-
telligence (DAI) goes in this direction. DAI has seen waves
of popularity over the decades [4]. With AI research focus
recently shifting towards decentralized and widespread sys-
tems, DAI is now studied with renewed interest. In particular,
when managing networks with limited or no human contact,
it is essential to separate knowledge and learning mechanisms
over the infrastructure. This separation optimizes the system,
makes it work at scale, and preserves privacy. DAI methods
can be crucial in providing this separation, ensuring that
individual nodes in the network can compute with local data
only [5]. Moreover, DAI methods can allow more accurate and
robust prediction models by combining knowledge from many
data sources separated by computational limits, administrative
boundaries, or privacy restrictions. Furthermore, distributing
AI minimizes resources or costs needed in moving the infor-
mation.

Still, there are open issues on letting multiple distributed
computing agents communicate and produce effective solu-
tions in real, complex and heterogeneous scenarios such as
ZTP [6]. The limited computational capabilities of devices in
edge networks need novel methods to learn where to compute,
how and when to distribute the data, how to guarantee an
optimal model management to keep the performance adequate,
and how to be security-aware.

The integration of DAI for Zero-touch provisioning at edge
networks has intriguing implications, especially considering
the advances proposed by 5G and 6G technologies [7]. In
more detail, ZTP can foster several relevant advantages [8],
as highlighted in Fig. 1. In summary, automating the logical
setup of the network reduces the effort that IT teams have
to put into the configuration phase. Most of the remaining
work involves cabling and booting devices. Furthermore,
when dealing with large and widely distributed networks,
the autonomy provided by ZTP reduces the time needed to
operationalize the networks. Moreover, ZTP leads to less
complex and more effective management at run-time, re-
ducing the probability of human error and enabling faster
updates. Overall, it provides the ability to exploit large-
scale computation and efficiently utilize spatially distributed
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Fig. 1. Benefits of zero-touch provisioning in the computing continuum.

computing resources in a decentralized manner with low-
operating costs, low latency, faster model convergence, and
decentralized control [9]. On the other hand, software-defined
management is not risk-free. Misconfigurations caused by
automated processes may be challenging to detect, leading
to complex error detection. Furthermore, managing a network
on a high abstraction level means exchanging data and po-
tentially sensitive information, introducing security threats.
Consequently, the ML methods must emphasize distributed
and privacy-preserving intelligence [10]. Finally, harmonically
managing independent or partially correlated agents that make
decisions in complex, heterogeneous systems requires studying
new ways of coordination.

To the best of our knowledge, this article is the first work
targeting DAI in Zero-touch Provisioning for the computing
continuum. The key objective is to introduce a novel edge
computing architecture that combines DAI and ZTP into one
platform and offers better services to the users. The major
contributions of this article are as follows.

• Design a ZTP-enabled edge computing architecture to
support intelligent service provisioning while enhancing
computation, communication, and storage functionalities
to the users.

• We aim to highlight the challenges that come with
DAI, ZTP, and their combination in the context of edge
networks.

• We also discuss the network and service management
challenges while offering computation and resource man-
agement solutions with ZTP in edge networks.

• Finally, we introduce potential research directions that
can foster novel studies in this field and overcome the
current limitations.

The remaining sections are structured as follows. Section II
discusses the advantages of DAI in ZTP-enabled edge net-
works, where we introduce a novel edge computing archi-
tecture in the computing continuum. Section III highlights
several potential challenges that still need to be addressed for

the proper deployment of ZTP in edge networks. Finally, we
conclude our discussion in Section IV.

II. DISTRIBUTED AI IN ZTP FOR EDGE NETWORKS

Traditional edge computing brings cloud services to the net-
work’s edge. However, edge computing, while offering com-
putation, communication, storage, and resource solutions, has
several evolving challenges related to end-to-end service and
network management. To address such ripening challenges,
we propose a new collaborative service management model,
combining DAI, edge resource federation, and ZTP concepts.
The edge-enabled ZTP framework is a trusted collection of
services and related resources that intelligently integrates the
infrastructures of distributed computing continuum service
providers and ultra-reliable communication technologies to
achieve low latency, scalability, and cost-efficient edge data
transmission and processing, as shown in Fig. 2. This frame-
work consists of two major units:

• Edge Intelligence for Zero Touch Networks: Edge
intelligence plays a crucial role in realizing the concept
of Zero Touch Networks. Fundamentally, this technology
facilitates data processing at a local level, granting edge
devices the ability to independently assess and respond
to data without relying on centralized decision-making.
The use of distributed decision-making processes reduces
latency, optimises network resources, and guarantees real-
time responsiveness, as illustrated in Fig. 2. Edge in-
telligence enables the deployment of machine learning
models at the edge, facilitating the implementation of
predictive maintenance, anomaly detection, and dynamic
load balancing. These features enable networks to func-
tion effectively, reduce the need for human involvement,
and smoothly adjust to dynamic circumstances.

• Distributed AI for Edge Networks: DAI facilitates the
deployment of AI capabilities to the periphery of network
infrastructures. Edge devices equipped with AI models
can make real-time decisions, process data locally, and
function independently. Recent advances in DAI exhibits
high scalability, making it well-suited to networks that
experience an increasing quantity of devices and services.
AI models have the capability to be tailored to fulfil
specified criteria, hence guaranteeing self-governance and
protection of edge operations. AI deployment at the edge
of networks has several advantages, including improved
efficiency, decreased reliance on centralized control, and
the fulfilment of Zero Touch Network and Service Man-
agement objectives.

In summary, edge computing and ZTP technology can
present new business opportunities to network operators, het-
erogeneous IoT users, and cloud service providers. Further
combining DAI and edge resource federation in the ZTP
networks, customers can experience rapid data accessibility,
seamless network coverage, interoperable data migration, and
innovative services, which will eventually help to enhance
user happiness [11]. The key techniques of edge-enabled ZTP
networks are discussed below.



IEEE COMPUTER, VOL. XX, NO. X, NOVEMBER 2023 3

.

.

.

Distributed Intelligence Distributed Intelligence
Network 
Security 

Self-healing 
Optimization 

Decision and  
Control Human Machine 

Coordination 

Users
Satisfaction

Increase
Efficiency

Zero-touch Provisioning

Edge #2Edge #1 Edge #3 Edge #5Edge #4 Edge #6

Camera 
Network

Internet of Things

Industry 4.0
Networks

MIMO

mmWave

Storage Service

Sensitive 
Applications

Healthcare 
Networks

Predictive  
Analytics

Peer-to-peer Networks

Edge Resource 
 Federation

User Applications

Ed
ge

 In
te

llig
en

ce
  

fo
r Z

er
o 

To
uc

h 
N

et
w

or
ks

D
istributed AI  

for Edge N
etw

orks

Functionality

Connectivity

5G/6G

Features

Fig. 2. Zero-touch network in the computing continuum.

TABLE I
DIFFERENCE BETWEEN CENTRALIZED EDGE AI AND DISTRIBUTED EDGE AI

Parameters Centralized Edge Intelligence ZTP-enabled Distributed Edge AI
Model Traditional supervised learning Unsupervised and policy-based reinforcement learning
Privacy No privacy for handling users data Support privacy and security on data handling
Training Time Training on large data exponentially increases time Training on local edge devices helps to optimize time
Heterogeneity Low High
Scalability Not Scalable Highly scalable
Applications Traffic monitoring, data storage and analysis keystroke prediction, smart city, autonomous vehicle
Computation Cost incur high cost over the edge network As the model only shares learnable parameters, cost decreases

Performance Due to centralized architecture, edge AI
suffers from low accuracy

As the model share knowledge, performance of the
network increases gradually

Automation Medium High

A. Edge Resource Federation

Standard edge computing and cloud computing models,
delivering services to end-users, suffer from inflated resource
mismanagement. There is a need for a unique and collective
service provisioning strategy, where overcrowded edge devices
interoperably communicate with nearby underloaded edge
devices or cloud servers and share the excessive workload.

Edge federation, also known as edge resource federation, is
a combined resource provisioning strategy for edge networks.
Edge federation manages the resources of the different edge
devices offered by service providers and brings the edge
resources into one platform [12]. In essence, edge federa-
tion aims for low latency, scalability, and cost-effectiveness
by seamlessly integrating edge-to-edge and edge-to-cloud re-
sources into one platform. Network Function Virtualization
(NFV), Software-Defined Networking (SDN), containerization
and container orchestration, as well as multi-access edge com-
puting (MEC) are anticipated as critical enablers for automated
edge resource federation.

The edge federation model has two key advantages. First, it
has the capability to gather edge services under one platform
and handle dynamic service requests coming from different
users while optimizing network resources and service delay.
Second, edge federation combines different edge infrastruc-
tures and resources offered by different service providers by

optimizing service deployment costs. As expected, combin-
ing DAI and edge federation techniques can introduce new
responsive service assistance models, which could be a win-
win solution for edge infrastructure providers, edge service
providers, and end-users. Overall, we can summarize some of
the benefits as follows:

• Reliable interconnection between edge and cloud.
• Moving computing resources to the network edge.
• Consistent user satisfaction ratio.
• Building an edge hierarchy model.
• Easy knowledge sharing among user devices.

B. Distributed Intelligence

In contrast to cloud AI, centralized edge AI trains ML
models in nearby suitable computing devices and then de-
ploys the models across distributed end devices, endowing the
devices with local decision-making strategies [13]. However,
centralized edge AI faces a number of challenges, including
a lack of coordination among edge devices, a lack of global
knowledge, and limited scope for edge federation. The present
edge networks must be updated to use distributed intelligence,
where edge devices can communicate and share end-device
data models [14].

Distributed AI can solve complex understanding, learning,
and decision-making problems by modeling them as multi-
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agent systems. The agents, or edge nodes in the DAI network,
can operate independently and communicate asynchronously
to combine partial solutions. Owing to the large data scale,
DAI systems are resilient, flexible, and by definition, loosely
connected. In contrast to monolithic or centralized AI sys-
tems, which have tightly connected and geographically close
processing nodes, DAI systems do not require all relevant
data to be gathered in a single location. Instead, many DAI
systems work with small subsets of data, making them easy to
employ. In Table I, we have briefly presented the advantages
of incorporating DAI in edge networks compared to traditional
AI.

One of the most critical challenges in distributed edge
computing is data gravity. Data gravity refers to the capability
of a rich source of data to attract applications and services.
Edge networks can be considered such rich data sources, with
ZTP attracting users for edge services and applications while
ensuring high throughput and optimized latency.

Data gravity poses two fundamental issues. First, end-users
place tremendous strain on the edge servers to manage all
the generated and processed data, resulting in high processing
costs for data analysis and training. Data gravity is solved by
not collecting all data from end devices. Instead, only essential
training data should be collected without noise in it.

Another issue is the heterogeneity of edge devices. Edge
devices are generally made by various infrastructure providers,
and services have varying requirements. As a result, a model
trained on an edge server will likely not fit all the other
edge devices, making it always challenging for distributed
edge networks. Therefore, the ZTP considers all such complex
network- and system-based challenges into one frame and
solves them using the DAI. Further, this framework has the
capabilities to bring DAI to innumerable edge devices and
allow it to scale across a wide variety of applications. Overall,
we can summarize some of the key benefits as follows:

• Improve the decision-making capabilities of local devices.
• Increase user data security and privacy.
• Reduce data transmission costs to remote servers.
• Continuously update model and knowledge.
• Allow training with small and heterogeneous user data.

In the context of Industry 4.0, implementing a smart factory
highlights the benefits of utilizing DAI for ZTP. Within this
particular environment, the edge devices situated within the
factory exhibit AI capabilities that enable them to process
sensor data in real time [15]. For example, when a machine
sensor detects a possible issue, edge AI promptly recognizes
it, implements corrective measures, and reduces the delay in
critical decision-making. On the other hand, a centralized or
cloud-based AI system necessitates data transmission to a
distant location for analysis, potentially causing unfavourable
delays and operational hazards. This example demonstrates the
considerable enhancement of ZTP through the implementation
of DAI at the edge, with a special focus on its impact in the
context of Industry 4.0. This approach effectively improves
production efficiency and reduces downtime by facilitating
real-time, localized, and informed decision-making.

{---Edge---} {---ZTP Edge--} {---Datacenter---}{---IoT---}
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Fig. 3. Computation strategy in zero-touch edge networks.

C. Zero-touch Provisioning

There is a trend toward ever more on-demand offering
of storage and resource management capabilities. With the
increasing number of resources being managed, delivering and
managing dynamic user service requests becomes ever more
complex. To overcome this complexity, ETSI offers the idea
of zero-touch network provisioning as a new breed of network
management functionality, seeking to integrate network func-
tionality, cutting-edge communication technologies (eMBB,
URLLC, and mMTC), as well as automatically carrying out
edge computing processes.

Distributed AI is expected to be a key facilitator of self-
learning capabilities, leading to lower operating costs, quicker
time-to-value processes, and a smaller chance of human errors.
Although there is a rising desire to use DAI in a ZTP network,
there may also be limitations and risks associated with doing
so. The abilities of ZTP networks are specified on fully
combined self-3s life cycle functions (i.e., self-fulfilling, self-
serving, and self-assuring) to automatically satisfy and respond
to customer resource demands. However, to implement this in
real-time, we need to take advantage of network controllers
and advanced communication technologies such as 5G or 6G.

Inspired by existing cloud service models, such as security-
as-a-service, database-as-a-service, etc., ZTP can also be pro-
vided to end-users as a service model. Under this umbrella,
computation, communication, and ephemeral storage can be
provided to the end user or other IoT vendors. ZTP providers
should be able to personalize the resources the customer would
like to avail based on their needs. For instance, customers
could manage the entire life cycles of edge applications on
their IoT devices, including application deployment, config-
uration, starting, and stopping. This requires managing the
computational and storage resources on each device, as well as
the communication resources for message exchange and data
flow among edge application components.

In addition, multiple vendors could install specific IoT
devices (with additional computation and storage resources)
using ZTP technology. This transformation enables computa-
tion execution near the data sources, as presented in Fig. 31.

1Inspired from Distributed Artificial Intelligence at the Edge and beyond,
https://engineering.cmu.edu/accelerator/news/2021/03/03-ai-fusion.html

https://engineering.cmu.edu/accelerator/news/2021/03/03-ai-fusion.html
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In such a multi-vendor edge infrastructure, idle resources on
individual edge devices can be rented out to other vendors as
a service. Overall, we can summarize some of the benefits as
follows.

• 100% full automation of network devices.
• Shorter time for execution on remote servers.
• Reduce the chances of human errors.
• Easy to fix and auto upgrade technical programs.
• Easy upgrade of hardware equipment.

III. POTENTIAL CHALLENGES AND FUTURE DIRECTIONS

This section provides a list of challenges and possible future
research directions for implementing ZTP and the usability of
DAI in Edge networks.

A. Challenges

The ultimate goal of ZTP is to add convenience to edge
network management, limiting human intervention. However,
using ZTP in edge networks does entail challenges.

• Cascading Failures: With cascading failures, a low-level
failure may lead to failures also on higher levels. ZTP
has no mechanism to control such cascades. Instead, ZTP
may report a single problem as multiple, making failure
analysis more difficult.

• Anomaly Detection The ZTP model does not support,
maintain, or automate service lifecycles in the entire com-
puting continuum. Moreover, while monitoring services,
ZTP has no mechanisms for causing alarms on individual,
anomalous activities (e.g., faulty nodes), and few for
responding to them.

• Data Heterogeneity:The concept of distributed computing
continuum data heterogeneity spans a wide range of
data types, sources, and spatiotemporal properties. The
significance of this lies in its ability to offer extensive
perspectives, tailor-made solutions and facilitate data in-
tegration for a more nuanced understanding [15]. Never-
theless, certain issues need to be addressed in distributed
networks. These challenges encompass data integration,
quality, and scalability complications in broad and diverse
environments.

• Limits Orchestration: ZTP can automate small tasks
and initial setups such as activating licenses, running
containerized apps, bootstrapping virtual machines, and
even updating device firmware. However, current ZTP
implementations lack mechanisms for automating pro-
cesses and workloads. We consider it a challenge because
manual work degrades the value of zero touch.

• Security: There is a vast number of connected devices
with continuous services in the computing continuum.
Maintaining security on autonomous systems running on
those devices with no human intervention is more chal-
lenging. DAI may help to design efficient and dynamic
mechanisms across the continuum to detect unforeseen
threats or vulnerabilities.

B. Research Directions

This section fills this gap by providing possible open
challenges for further research.

• Light-weight AI/ML: Resource-constrained end devices
and edge nodes need low latency. Light-weight AI/ML
algorithms minimize both resource usage as well as the
time spent computing without affecting the prediction
accuracy. ML model compression, which reduces the
amount of redundant data in the models, is one way
of achieving lightweight ML models. However, novel
methods for lightweight AI/ML algorithms in ZTP are
needed to further increase energy efficiency in edge
networks.

• Semantic Interoperability: The computing continuum in-
terconnects a set of devices that are heterogeneous in
terms of, e.g., technologies, device standards, data for-
mats, etc. This lack of interoperability limits the utility
of ZTP in the computing continuum. It is thus necessary
to bridge the gap between the ZTP and the computing
continuum by developing intelligent interoperable proto-
cols.

• Privacy: IoT, cloud, data centers, gateways, etc., are all
generating and exchanging massive volumes of sensitive
data. The privacy of these data must be ensured while
designing the ZTP for the computing continuum, as ZTP
precludes human intervention.

• Low-latency: A number of time-critical use case scenar-
ios such as medical, industry, smart city, etc, require rapid
decisions. Designing low-latency mechanisms in ZTP
is thus essential for the computing continuum. Future
research can focus on developing techniques through
intelligent agents that can prioritize time-critical requests
and process them autonomously.

• ZTP for Intelligent Protocols: There is an ever-growing
number of computing devices in the computing con-
tinuum, and a vast number of data transmissions be-
tween them, so developing adaptive and intelligent data
protocols is challenging. In this context, ZTP can help
fault diagnosis and autonomous decision making mech-
anisms in these protocols. In particular, broker-based
publish/subscribe communication patterns may benefit
more from ZTP and distributed AI, which may increase
their adaptability and efficiency. There is huge scope for
research into making existing data protocols intelligent
with the help of ZTP.

• Explainability: ZTP will autonomously select config-
uration states for large distributed systems, which will
determine their behavior. In that regard, is crucial to
develop sidecar tools able to explain why that specific
configuration was selected. To do that, causality is emerg-
ing as a candidate technology to provide explainability to
self-adaptive systems.

• Generative AI for ZTP: In general, AI or ML techniques
can predict issues by analyzing data. However, all these
predictions are likely to be expected. In view of the
computing continuum’s complexity constraints, there is a
possibility for unpredictable issues in the future. It is pos-
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sible to identify or solve unpredictable issues within the
systems using recent advances in large language models
and generative AI technology. It remains challenging to
identify potential computing nodes to perform generative
AI in the computing continuum. Also, tracing accuracy of
generative AI decisions on-the-fly is another challenging.
Further research on the use of generative AI for ZTP must
provide additional benefits to the computing continuum
as a whole.

IV. CONCLUSION

In this article, we showed the benefits of combining dis-
tributed AI and Zero-touch Provisioning in the device-edge-
cloud computing continuum. We discussed the pivotal role
that distributed AI approaches maintain in creating ZTP.
Moreover, we emphasized the constraints and challenges that
may impede the integration of distributed AI in edge-enabled
ZTP networks. We also shed light on several potential research
solutions for establishing an intelligent and autonomous edge
environment in light of the specified research challenges.
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