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INTRODUCTION

EEP Learning (DL) has demonstrated that it can solve

<D real-world problems in challenging areas ranging from

—Computer Vision (CV) [1] to Natural language Process-
g (NLP) [2]. Complementary with the advancements in

“obile edge computing (MEC) [3] and energy-efficient
I accelerators, visions of intelligent city-scale platforms
r critical applications, such as mobile augmented real-

(MAR) [4], disaster warning [5], or facilities manage-

ment [6], seem progressively feasible. Nevertheless, the
(Varcelerating pervasiveness of mobile clients gave unprece-
“ttented growth in Machine-to-Machine (M2M) communi-
<chtion [7], leading to an insurmountable amount of net-
ork traffic. A root cause is the intrinsic limitation of
obile devices that allows them to realistically host a single
htweight Deep Neural Network (DNN) in memory at
a: time. Hence, clients must frequently offload inference
quests since the local resources alone cannot meet the
mplex and demanding requirements of applications that
(t¢ly on multiple highly accurate DNNs [8].
" The downside to offloading approaches is that by con-
. %antly streaming high-dimensional visual data, the limited
andwidth will inevitably lead to network congestion re-
Iting in erratic response delays, and it leaves valuable
ient-side resources idle.

Split Computing (SC) emerged as an alternative to al-
leviate inefficient resource utilization and to facilitate low-
latency and performance-critical mobile inference. The basic
idea is to partition a DNN to process the shallow layers
with the client and send a processed representation to
the remaining deeper layers deployed on a server. The
SC paradigm can potentially draw resources from the en-
tire edge-cloud compute continuum. However, current SC
methods are only conditionally applicable (e.g., in highly
bandwidth-constrained networks) or tailored toward spe-
cific neural network architectures. Still, even methods that
claim to generalize towards a broader range of architectures
do not consider that mobile clients can typically only load
a single model into memory. Consequently, SC methods are
impractical for applications with complex requirements re-
lying on inference from multiple models concurrently (e.g.,

MAR). Mobile clients reloading weights from its storage into
memory, and sending multiple intermediate representations
for each pruned model would incur more overhead than
directly transmitting image data with fast lossless codecs
to an unmodified model. Moreover, due to the conditional
applicability of SC, practical methods rely on a decision
mechanism that periodically probes external conditions
(e.g., available bandwidth), resulting in further deployment
and runtime complexity [9].

This work shows that we can address the increasing need
to reduce bandwidth consumption while simultaneously
generalizing the objective of SC methods to provide mobile
clients access to low-latency inference from remote off-the-
shelf discriminative models even in constrained networks.

We draw from recent advancements in lossy learned
image compression (LIC) and the Information Bottleneck
(IB) principle [10]. Despite outperforming handcrafted
codecs [11f], such as PNG, or WebP [12], LIC is unsuitable
for real-time inference in MEC since they consist of large
models and other complex mechanisms that are demand-
ing even for server-grade hardware. Moreover, research in
compression primarily focuses on reconstruction for human
perception containing information superfluous for M2M
communication. In comparison, the deep variational infor-
mation bottleneck (DVIB) provides an objective for learned
feature compression with DNNs, prioritizing information
valuable for machine interpretability over human percep-
tion.

With DVIB, we can conceive methods universally appli-
cable to off-the-shelf architectures. However, current DVIB
methods typically place the bottleneck at the penultimate
layer. Thus, they are unsuitable for most common dis-
tributed settings that assume an asymmetric resource allo-
cation between the client and the server. In other words, the
objective of DVIB contradicts objectives suitable for MEC,
where we would ideally inverse the bottleneck’s location to
the shallow layers.

To this end, we introduce Shallow Variational Information
Bottleneck (SVIB) that accommodates the restrictions of mo-
bile clients while retaining the generalizability of DVIB to
arbitrary architectures. Although shifting the bottleneck to
the shallow layers does not formally change the objective,



we will demonstrate that existing methods for mutual infor-
mation estimation lead to unsatisfactory results.

Specifically, we introduce FrankenSplit: A novel training
and design heuristic for variational feature compression
models embeddable in arbitrary DNN architectures with
pre-trained weights for high-level vision tasks.

FrankenSplit is refreshingly simple to implement and
deploy without additional decision mechanisms that rely
on runtime components for probing external conditions.
Moreover, by deploying a single lightweight encoder, the
client can access state-of-the-art accuracy from multiple
large server-grade models without reloading weights from
memory for each task. Lastly, the approach does not re-
quire modifying discriminative models (e.g., by finetuning
weights). Therefore, we can directly utilize foundational off-
the-shelf models and seamlessly integrate FrankenSplit into
existing systems.

We open-source our repository ['| as an addition to the
community for researchers to reproduce and extend our
experiments. In summary, our contributions are:

o Thoroughly exploring how shallow and deep bottle-
neck injection differ for feature compression.

e Introducing a novel saliency-guided training method to
overcome the challenges of SVBI to train a lightweight
encoder with limited capacity and demonstrate how the
compressed features are usable for several downstream
tasks without predictive loss.

o Introducing a generalizable architecture design heuris-
tic for a variational feature compression model to ac-
commodate arbitrary DNN architectures for discrimi-
native models.

Section 2| discusses relevant work on SC and LIC. Sec-
tion [l discusses the limitations of SC methods and moti-
vates neural feature compression. Section [ describes the
problem domain. Section [5| progressively introduces the
solution approach. Section [6] extensively justify relevant
performance indicators and evaluates several implementa-
tions of FrankenSplit against various baselines to assess our
method’s efficacy. Lastly, Section [7| summarizes this work
and highlights limitations to motivate follow-up work.

2 RELATED WORK
2.1 Neural Data Compression
2.1.1 Learned Image Compression

The goal of (lossy) image compression is minimizing bitrates
while preserving information critical for human perception.
Transform coding is a basic framework of lossy compres-
sion, which divides the compression task into decorrelation
and quantization [13]]. Decorrelation reduces the statistical
dependencies of the pixels, allowing for more effective
entropy coding, while quantization represents the values
as a finite set of integers. The core difference between
handcrafted and learned methods is that the former relies on
linear transformations based on expert knowledge. Contrar-
ily, the latter is data-driven with non-linear transformations
learned by neural networks [14].

Ballé et al. introduced the Factorized Prior (FP) entropy
model and formulated the neural compression problem by

1. https:/ /github.com /rezafuru/FrankenSplit
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finding a representation with minimal entropy [15]. An
encoder network transforms the original input to a latent
variable, capturing the input’s statistical dependencies. In
follow-up work, Ballé et al. [16] and Minnen et al. [17]
extend the FP entropy model by including a hyperprior as
side information for the prior. Minnen et al. [17] introduce
the Joint Autoregressive and Hierarchical Priors (JAHP)
entropy model, which adds a context model to the existing
scale hyperprior latent variable models. Typically, context
models are lightweight, i.e., they add a negligible number
of parameters, but their sequential processing increases the
end-to-end latency by orders of magnitude.

2.1.2 Feature Compression

Singh et al. demonstrate a practical method for the Infor-
mation Bottleneck principle in a compression framework
by introducing the bottleneck in the penultimate layer and
replacing the distortion loss with the cross-entropy for im-
age classification [18]. Dubois et al. generalized the VIB for
multiple downstream tasks and were the first to describe
the feature compression task formally [19]. However, their
encoder-only CLIP compressor has over 87 million parame-
ters. Both Dubois and Singh et al. consider feature compres-
sion for mass storage, i.e., they assume the data is already
present at the target server. In contrast, we consider how
resource-constrained clients must first compress the high-
dimensional visual data before sending it over a network.

Closest to our work is the Entropic Student (ES) pro-
posed by Matsubara et al. [20], [21], as we follow the same
objective of real-time inference with feature compression.
Nevertheless, they simply apply the learning objective, and
a scaled-down version of autoencoder from [15], [16]. More-
over, they do not analyze the intrinsic differences between
feature and image compression nor explain their solution
approach. Contrastingly, we carefully examine the problem
domain of resource-conscious feature compression to iden-
tify underlying issues with current methods, allowing us
to conceive novel solutions with significantly better rate-
distortion performance.

2.2 Split Computing
We distinguish between two orthogonal approaches to SC.
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Split runtime systems are characterized by performing no
or minimal modifications on off-the-shelf DNNs. The ob-
jective is to dynamically determine split points according
to the available resources, network conditions, and intrinsic
model properties. Hence, split runtimes primarily focus on
profilers and adaptive schedulers. Kang et al. performed
extensive compute cost and feature size analysis on the
layer-level characterizations of DNNs and introduced the
first split runtime system [22]. Their study has shown that
split runtimes are only sensible for DNNs with an early
natural bottleneck, i.e,, models performing aggressive di-
mensionality reduction within the shallow layers. However,
most modern DNNs increase feature dimensions until the
last layers for better representation. Consequently, follow-
up work focuses on feature tensor manipulation [23[-[25].

Split Runtimes



We argue against split runtimes since they introduce con-
siderable complexity. Worse, the system must be tuned
toward external conditions, with extensive profiling and
careful calibration. Additionally, runtimes raise overhead
and another point of failure by hosting a network-spanning
system. Notably, even the most sophisticated methods still
rely on a natural bottleneck, evidenced by how state-of-the-
art split runtimes still report results on superseded DNNs
with an early bottleneck [26], [27].

2.2.2 Atrtificial Bottleneck Injection

By shifting the effort towards modifying and re-training an
existing base model (backbone) to replace the shallow layers
with an artificial bottleneck, bottleneck Injection retains the
simplicity of offloading. Eshratifar et al. replace the shallow
layers of ResNet-50 with a deterministic autoencoder net-
work [28]]. A follow-up work by Jiawei Shao and Jun Zhang
further considers noisy communication channels [29]. Mat-
subara et al. [30], and Sbai et al. [31] propose a more general
network agnostic knowledge distillation (KD) method for
embedding autoencoders, where the output of the split
point from the unmodified backbone serves as a teacher.
Lastly, we consider the work in [20] as the state-of-the-art
for bottleneck injection.

Although bottleneck injection is promising, there are two
problems with current methods. They rely on deterministic
autoencoder for crude data compression or are intended for
a specific class of neural network architecture.

This work addresses both limitations of such bottleneck
injection methods.

3 THE CASE FOR NEURAL DATA COMPRESSION

Based on the following assumptions and observations, we
consider local inference with mobile-friendly models or-
thogonal to our work.

First, we assume an asymmetric resource allocation be-
tween the client and the server, i.e., the latter has con-
siderably higher computational capacity. Additionally, we
assume that server-grade hardware unsuitable for mobile
clients must achieve state-of-the-art performance for non-
trivial discriminative tasks with inference times suitable for
latency-sensitive applications.

Although progress in energy-efficient ASICs and em-
bedded AI with model compression with quantization,
channel pruning, etc., permit constrained clients to execute
lightweight DNNSs, they are bound to reduced predictive
strength relative to their contemporary unconstrained coun-
terparts [32]. This assumption is sensible considering the
trend for DNNs towards pre-trained foundational models
with rising computational requirements due to increasing
model sizes [33] and demanding operations [34].

Lastly, mobile devices cannot realistically load model
weights for multiple models simultaneously, and it is un-
reasonable to expect that a single compressed model is
sufficient for applications with complex requirements that
rely on various models concurrently or in quick succession.

Consistent with CICOs reporting an accelerating rise of
M2M communication [7]], we conclude that it is inevitable
that the demand for inference models to solve intelligent
tasks will lead to an increase in transmitting large volumes
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of high-dimensional data, despite the wide availability of
onboard Al accelerators.

3.1 Limitations of Split Computing

Still, it would be useful to leverage advancements in energy-
efficient mobile chips beyond applications where local in-
ference is sufficient. In particular, SC can potentially draw
resources from an entire edge-cloud commute continuum
while binary on- or offloading decision mechanisms will
leave valuable client or server-side resources idle. Figure
illustrates generic on/offloading and split runtimes.
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Fig. 1: Prediction with On/Offloading and Split Runtimes

Nevertheless, both SC approaches discussed in sec-
tion are only conditionally applicable. In particular,
split Runtimes reduce server-side computation for inference
tasks with off-the-shelf models by onloading and executing
shallow layers at the client. This approach introduces two
major limitations.

First, when the latency is crucial, this is only sensible if
the time for client-slide execution, transferring the features,
and remotely executing the remaining layers is less than
the time of directly offloading the task. Consequently, more
recent work [25]-[27] relies on carefully calibrated dynamic
decision mechanisms that periodically measure external and
internal conditions (e.g., client state, hardware specifica-
tions, and network conditions) to measure ideal split points
or whether direct offloading is preferable. Second, since the
shallow layers must match the deeper layers, split runtimes
cannot accommodate applications with complex require-
ments which are a common justification for MEC (e.g.,
MAR). Constrained clients would need to swap weights
from the storage in memory each time the prediction model
changes to classify from a different set of labels. Worse, the
layers must match even for models predicting the same
classes with closely related architectures (e.g., ResNet50
and ResNet101). Hence, it is particularly challenging to
integrate split runtimes into systems that can increase the
resource efficiency of servers by adapting to shifting and
fluctuating client conditions [35], [36]. For example, when
a client specifies a target accuracy and a tolerable lower



bound, the system could select a ResNet101 that can hit the
target accuracy but may temporarily fall back to a ResNet50
to ease the load when necessary.

3.2 Execution Times with Resource Asymmetry

Table [ summarizes the execution times of ResNet variants
that classify a single tensor with dimensions 3 x 224 x 224
to demonstrate the limitation incurred by partitioning ex-
ecution of a model when there is considerable resource
asymmetry between a client and a server. Specifically, the
client is an Nvidia Jetson NX2 equipped with an Al accel-
erator, and the server hosts an RTX 3090. Section [f] details
evaluation setup and hardware configuration. Like other

TABLE 1: Execution Times of Split Models

Model Split Head Head Tail Rel. Exec.  Contribution

Index  [NX2] (ms) [3090] (ms) [3090] (ms) [NX2] (%)  [NX2] (%)

ResNet50 Stem 1.5055 0.1024 4.9687 23.25 0.037
Stage 1 8.2628 0.9074 4.0224 67.26 0.882

ResNet101 Stem 1.5055 0.1024 9.8735 13.23 0.021
Stage 1 8.2628 0.9074 8.9846 47.91 0.506

ResNet152 Stem 1.5055 0.1024 14.8862 9.18 0.015
Stage 1 8.2628 0.9074 13.8687 37.34 0.374

widespread architectural families, ResNets organize their
layers into four top-level layers, while the top-grained ones
recursively consist of finer-grained ones. The terminology
differs for architectures, but for the remainder of this work,
we will refer to top-level layers as stages and the coarse-
grained layers as blocks.

Split point stem assigns the first preliminary block as
the head model. It consists of a convolutional layer with
batch normalization [37] and ReLU activation, followed by
a maxpool. Split point stage 1 additionally assigns the first
stage to the head.

Notice how the shallow layers barely constitute the
overall computation even when the client takes more time
to execute the head than the server for the entire model.
Further, compare the percentage of total computation time
and relate them to the number of parameters. At best, the
client contributes to 0.02% of the model execution when
taking 9% of the total computation time and may only
contribute 0.9% when taking 67% off the computation time.

Despite a reasonably powerful mobile-friendly Al accel-
erator, it is evident that utilizing client-side resources to aid
a server is inefficient. Hence, SC methods commonly include
some form of quantization and data size reduction.

3.3 Feature Tensor Dimensionality and Quantization

To further explain the intuition of our claims and present
some preliminary empirical evidence, we conceive a hypo-
thetical SC method that typically starts with some statistical
analysis of the output layer as illustrated in Figure2] Exclud-
ing repeating blocks, the feature dimensionality is identical
for ResNet50, 101, and 152. The red line marks the cutoff
where the size of the intermediate feature tensor is less
than the original input. ResNets (including more modern
variants), among numerous modern architectures, do not
have an early natural bottleneck and will only drop below
the cutoff from the first block of the second stage (S3RB1-
2). Since executing until S3RB1-2 is only about 0.06% of
the model parameters of ResNetl52, it may seem like a
negligible computational overhead. However, as shown in
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Table I} even when executing 0.04% of the model, the client
will make up 37% of the total computation time.
Nevertheless, more modern methods reduce the num-
ber of layers a client must execute with feature tensor
quantization and other clever (typically statistical) meth-
ods that statically or dynamically prune channels [9]. For
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Fig. 2: Output Dimensionality Distribution for ResNet

our hypothetical method, we use the execution times from
Table [I} except we generously assume that it can apply
feature tensor quantization and channel pruning to reduce
the expected data size without a loss in accuracy for the
ImageNet classification task [38] and with no computational
costs. Moreover, we reward the client for executing deeper
layers to reflect deterministic bottleneck injection methods,
such that the output size of the stem and stage one are
802816 and 428168 bits, respectively. Note that, for stage
one, this is roughly a 92% reduction relative to its original
FP32 output size at no additional computational cost. Yet,
the plots in Figure [3| show that offloading with PNG, let
alone more modern lossless codecs (e.g., WebP), will beat SC
in total request time, except when the data rate is severely
constrained. Evidently, using reasonably powerful energy-
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Fig. 3: Inference Latency for SC and Offloading

efficient AI accelerators to execute the shallow layers of a
target model is not an efficient use of client-side resources.

3.4 The advantage of learned methods

In a narrow sense, most SC more modern methods consider
minimizing transmitting data with feature tensor quanti-
zation and other clever (typically statistical) methods that
statically or dynamically prune channels, which we reflected
with our hypothetical SC method.



While dimensionality reduction can be seen as a crude
approximation to compression, it is not equivalent to it [17].
With compression, the aim is to reduce the entropy of the
latent under a prior shared between the sender and the
receiver [14]. Dimensionality reduction (especially chan-
nel pruning) may seem effective when evaluating simple
datasets (e.g., CIFAR-10 [39]). However, this is more due
to the overparameterization of deep neural networks. Pre-
cisely, for a simple task, we can prune most channels or in-
ject a small autoencoder for dimensionality reduction at the
shallow layers that may appear to achieve unprecedented
compression rates relative to the unmodified head’s feature
tensor size. In Section [6.3.7, we will show that methods may
seem to work reasonably well on a simple dataset while
completely faltering on more challenging datasets.

From an information-theoretic point of view [40], fea-
ture tensor (especially non-spatial) dimensionality to assert
whether it is a suitable bottleneck is not an ideal mea-
sure. Instead, we should consider the information content
of the feature tensor. Notably, due to the data processing
inequality, as Section [4.1| will elaborate on, the information
content of a feature tensor will always be at most as high
as the unprocessed input respective to the task. Although
dimensionality reduction across spatial dimensions is an
effective inductive bias to force a network to discern signals
from noise during optimization,

When treating the model itself as a black box, the raw
output size measured as C' x H x W x Precision is not
a suitable approximation of the data’s entropy, i.e., it is
not a meaningful way to assert whether a layer may be a
split point. Conversely, with learned approaches, we can
optimize a model to compress the input according to its
information content and be selective toward the signals
we require for tasks we are interested in. Moreover, in
Section [6.3.6, we show that with learned transforms and a
parametric entropy model, increasing the latent dimension-
ality, reduces the compressed data size.

To summarize, the potential of SC is inhibited by primar-
ily focusing on shifting parts of the model execution from
the server to the client. SC’s viability is not determined by
how well they can partially compute a split network but
by how well they can reduce the input size. Therefore, we
pose the following question: Is it more efficient to focus the
local resources exclusively on compressing the data rather than
executing shallow layers of a network that would constitute a
negligible amount of the total computation cost on the server?

In Figure [} we sketch predictions with our proposed
approach. There are two underlying distinctions to common
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Fig. 4: Prediction with Variational Bottleneck Injection

SC methods. First, the model is not split between the client
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and the server. Instead, it deploys a lightweight encoder,
and the decoder replaces the shallow layers, i.e., the dis-
criminative model is split within the server. The decoder’s
purpose is to restore and transform the compressed signals
and may match multiple backbones and tasks.

Second, compared to split runtimes, the decision to
apply the compression model may only depend on internal
conditions. It can decouple the client from any external com-
ponent (e.g., server, router). Ideally, applying the encoder
should always be preferable if a mobile device has the mini-
mal required resources. Still, since our method does not alter
the backbones, we do not need to serve additional models to
accommodate clients that cannot apply the encoder. We can
simply route the input to the original input layer, similar
to split runtimes, without a runtime that influences client
decisions based on external conditions.

This work aims to demonstrate that advancements in
energy-efficient Al accelerators for providing constrained
clients with demanding requirements (low latency, high
accuracy) access to state-of-the-art foundational models
are best leveraged with neural compression methods. The
following describes the limitations of existing work for
constrained devices which we must address to conceive a
method suitable for MEC.

4 PROBLEM FORMULATION

The goal is for constrained clients to request real-time
predictions from a large DNN while maximizing resource
efficiency and minimizing bandwidth consumption with
compression methods. Figure |5| illustrates the possible ap-
proaches when dedicating client resources exclusively for
compression. Strategy a) corresponds to offloading strate-
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gies with CPU-bound handcrafted codecs. Although learned
methods can achieve considerably lower bitrates with
comparable distortion than commonly used handcrafted
codecs [14]], we must consider that the latency overhead
incurred by the DNNs (even if executed on Al accelera-
tors) may dominate the reduced transfer time. Strategy b)
represents recent LIC models outperforming handcrafted
baselines but relying on large DNNs and other complex
mechanisms. Strategy c) is our advocated method with an
embeddable variational feature compression method and
draws from the same underlying Nonlinear Transform Cod-
ing (NTC) framework as b). It may seem straightforward to



reduce the size of LIC models by prioritizing information
sufficient for a particular set of tasks rather than recon-
structing the original input. Nevertheless, the challenge
is to reduce enough overhead while achieving sufficiently
low bitrates without sacrificing predictive strength to make
variational compression models suitable for real-time pre-
diction with limited client resources and varying network
conditions.

Specifically, to overcome the limitations of SC methods
described in Section |3} in addition to offloading with strat-
egy a) and b), (i) we require a resource-conscious encoder
that is maximally compressive about a useful representation
without increasing the predictive loss. Additionally, (ii) the
decoder should exploit the available server-side resources
but still incur minimal overhead on the backbone. Lastly,
(iii) a compression model should fit for different down-
stream tasks and architectural families (e.g., CNNs or Vision
Transformers).

Our solution approach in Section [5| must focus on two
distinct but intertwined aspects. First is an appropriate
training objective for feature compression with limited
model capacity. The second concerns a practical implemen-
tation by introducing an architectural design heuristic for
edge-oriented variational autoencoders. Hence, the follow-
ing formalizes the properties of a suitable objective function
and describes why related existing methods are unsuitable
for SVBL

4.1 Rate-Distortion Theory for Model Prediction

By Shannon’s rate-distortion theory [41]], we seek a mapping
bound by a distortion constraint from a random variable
(r.v)) X to an r.v. U, minimizing the bitrate of the outcomes
of X. More formally, given a distortion measure D and a
distortion constraint D, the minimal bitrate is

min I(X;U) s.t. D(X,U) < D, 1)

Py x

where I(X;U) is the mutual information and is defined as

I(X;U) = //p(x, u) log (p(:c,u)) dxdz )

p(x)p(u)

In lossy image compression, U is typically the recon-
struction of X of the original input, and the distortion is
some sum of squared errors d(z,Z). Since the r-d theory
does not restrict us to reconstruction [42], we can apply dis-
tortion measures relevant to M2M communication. Notably,
when our objective is to minimize predictive loss rather than
reconstructing the input, we keep information that may be
important for human perception but excessive for model
predictions.

To intuitively understand the potential to discard signifi-
cantly more information for discriminative models, consider
the Data Processing Inequality (DPI). For any 3 r.v.s X, Y, Z
that form a Markov chain X <+ Y <+ Z where the following
holds:

I(X;Y) > I(X;2) ®)

Then, describe the information flow in an n-layered se-
quential DNN, layer with the information path by viewing
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layered neural networks as a Markov chain of successive
representations [43]:

I(X;Y) > I(Ry;;Y) > I(Ry; Y) > ... I(Ry; Y) > (YY)

@
In other words, due to the DPI, the final representation be-
fore a prediction R,, cannot have more mutual information
with the target than the input X and typically has less. In
particular, for discriminative models for high-level vision
tasks that map a high dimensional input vector with strong
pixel correlatiops to a small set of labels, we can expect
I(X;Y) > I(R,,Y).

4.2 From Deep to Shallow Bottlenecks

When the task is to predict the ground-truth labels Y from a
joint distribution Px y, the rate-distortion objective is essen-
tially given by the information bottleneck principle [10]. By
relaxing the (1) with a lagrangian multiplier, the objective is
to maximize:

I(ZY) - pI(Z; X) (5)

Specifically, an encoding Z should be a minimal sufficient
statistic of X respective Y, i.e., we want Z to contain rel-
evant information regarding Y while discarding irrelevant
information from X. Practical implementations differ by the
target task and how they approximate (5). For example, an
approximation of I(Z;Y) for an arbitrary classification task
the conditional cross entropy (CE) [11]:

D:H(PYaP?\Z) (6)

Unsurprisingly, using (6) for estimating the distortion mea-
sure in (5) for end-to-end optimization of a neural compres-
sion model is not a novel idea (Section 2.1.2). However, a
common assumption in such work is that the latent variable
is the final representation R,, before performing the predic-
tion, i.e., the encoder must consist of an entire backbone
model which we refer to as Deep Variational Information Bot-
tleneck Injection (DVBI). Conversely, we work with resource-
constrained clients, i.e., to conceive lightweight encoders,
we must shift the bottleneck to the shallow layers, which
we refer to as Shallow Variational Bottleneck Injection (SVBI).
Intuitively, the existing methods for DVBI should generalize
to SVBI should, e.g., approximating the distortion term with
() as in [18]. Although by shifting the bottleneck to the
shallow layers, the encoder has less capacity for finding a
minimal sufficient representation, the objective is still an
approximation of (I). Yet, as we will show in Section [6.3.7)
applying the objective from [[18] will result in incomparably
worse results for shallow bottlenecks.

In the following, elaborate on Head Distillation (HD)
[30], [31] that poses an objective that is a suboptimal
approximation of (I), but surprisingly yields significantly
better results. Moreover, we bridge the gap between deep
and shallow bottleneck injection by formulating the VIB
objective for HD.

4.3 Head Distilled Deep Variational IB

Ideally, the bottleneck is embeddable in an existing predictor
Pr without decreasing the performance. Therefore, it is not
the hard labels Y that define the task but the soft labels Y7



For simplicity, we handle the case for one task and defer
how SVBI naturally generalizes to multiple downstream
tasks and DNNs to Section[6.3.5]

To perform SVBI, take a copy of Pr. Then, mark the
location of the bottleneck by separating the copy into a head
Py, and a tail P;. Importantly, both parts are deterministic,
i.e., for every realization of r.v. X there is a representation
Pr(x) = h such that Pr(z) = Pj(P(z)). Lastly, replace the
head with an autoencoder and a parametric entropy model.
The encoder is deployed at the sender, the decoder at the
receiver, and the entropy model is shared.

We distinguish between two optimization strategies to
train the bottleneck’s compression model. First, is direct
optimization corresponding to the DVIB objective in (§),
except we replace the CE with the standard KD loss [44]
to approximate I(Z;Y). Second is indirect optimization and
describes HD with the objective:

I(Z;H) — B I(Z; X) @)

Unlike the former, the latter does not directly correspond
to for a representation Z that is a minimal sufficient
statistic of X respective Y7. Instead, it replaces Y with a
proxy task for the compression model to replicate the output
of the replaced head, i.e., training methods approximating
optimize for a Z that is a minimal sufficient statistic
of X respective H. Figure [f] illustrates the difference be-
tween estimating the objectives (5) and (7). Intuitively, with
faithful replication of H, the partially modified DNN has
an information path equivalent to its unmodified version.
A sufficient statistic retains the information necessary to
replicate the input for a deterministic tail, i.e., the final
prediction does not change. The problem of (7) is that it
is a suboptimal approximation of (I). Although sufficiency
holds, it does not optimize Z respective Y7. The marginal
distribution of Y7 now arises from the rv. X and the
parameters of Py. Moreover, since maximizing I(Z; H) is
only a proxy objective for I(Z;Y7), it corresponds to the
Markov chain Y7 < H < X < Z. Notice how X is
now conditional independent of Y. Consequently, when
training a compression model with (7), we skew the rate-
distortion optimization towards a higher rate than necessary
by setting the lower bound for the distortion estimation too
high.

Teacher (Head) D

5 37 -
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Fig. 6: Bottom: direct optimization. Top: Head Distillation

5 SOLUTION APPROACH

We embed a stochastic compression model that we jointly
optimize with an entropy model. Categorically, we follow
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NTC [14] to implement a neural compression algorithm. For
an image vector x, we have a parametric analysis transform
ga(x; ¢¢) maps x to a latent vector z. Then, a quantizer @
discretizes z to Z, such that an entropy coder can use the
entropy model to losslessly compress Z to a sequence of bits.

It may seem redundant to have a synthesis transform.
Instead, we could directly feed the encoder output to the
tail of a backbone model. However, this locks the encoder to
only a single backbone and disregards the server resources.
Thus, we start diverging from NTC for image compression.
As shown in Figure [7] rather than an approximate inverse
of the analysis, the parametric synthesis transforms g (Z; 0,)
maps Z to a representation h that is suitable for various tail
predictors and downstream tasks.

P, 41
P, E P2
Pr.. Un

........................................

e feA{e e e {=

Fig. 7: Diagram of Model Components

5.1 Loss Function for End-to-end Optimization

Our objective resembles variational image compression op-
timization, as introduced in [15], [16]]. Further, we favor
HD over direct optimization as a distortion measure, as
the former yields considerably better results even with a
suboptimal loss function (Section [6.3.7).

Analogous to variational inference, we approximate the
intractable posterior p(Z|z) with a parametric variational
density q(Z|x) as follows (excluding constants):

weighted rate

- —
Exnpe DKL [0lP2]2] = Exnp,Eznq[—log p(z]2) — log p(2) ]
distortion
(8)

By assuming a gaussian distribution such that the likelihood
of the distortion term is given by

we can use the square sum of differences between h and h
as our distortion loss.

The rate term describes the cost of compressing z. Anal-
ogous to the LIC methods discussed in Section 2.1} we apply
uniform quantization Z = | Z]. Since discretization leads to
problems with the gradient flow, we apply a continuous
relaxation by adding uniform noise n  ~ U(—3,3).
Combining the rate and distortion term, we derive the loss
function for approximating objective (7) as

L =||Pn(x) - (gs(ga(@; dg) +n:04) |5 + B log(ga(x; 6,) J(rn;
10



Note, in the relaxed lagrangian of (I), the weight is on the
distortion while we weight the rate term to align closer to
the variational information bottleneck objective. Moreover,
omitting the second term (8 = 0) and the entropy model
would result in the head distillation objective for determin-
istic bottleneck injection.

We will show that the loss function (10) can yield strong
results, despite corresponding to the objective in (7), ie.,
it is only a suboptimal approximation of (1) using H as a
proxy target. In the previous subsection, we established that
as the remaining layers further process a representation h,
its information content decreases monotonously. Intuitively,
the shallow layers extract high-level features, while deeper
layers are more focused. Hence, the suboptimality stems
from treating every pixel of H equally crucial to the re-
maining layer. The implication here is that the MSE in
overly strictly penalizes pixels at spatial locations which
contain redundant information that later layers can safely
discard. Contrarily, the loss may not penalize the salient
pixels enough when h is numerically close to h.

5.2 Saliency Guided Distortion

We can improve the loss in by introducing additional
signals that regularize the distortion term. The challenge
is finding a tractable method that emphasizes the salient
pixels necessary for multiple instances of a high-level vision
task (e.g., classification on various datasets and labels).
Moreover, the methods” overhead should only impact train
time, ie., it should not introduce any additional model
components or operations during inference.

HD is an extreme form of Hint Training (HT) [45],
where the hint becomes the primary objective rather than
an auxiliary regularization term. Sbai et al. perform deter-
ministic bottleneck injection with HD using the suboptimal
distortion term [31]. Nevertheless, their method only con-
siders crude dimensionality reduction without a parametric
entropy model as an approximation to compression, i.e., it
is generalized by the loss in ({[)(3 = 0). Matsubara et al.
add further hints from the deeper layers by extending the
distortion term with the sum of squared between the deeper
layers [21], [30]:

This approach has several downsides besides prolonged
train time. In particular, even if could approximate the
objective in , the distortion term may now dominate the
rate term, i.e., without exhaustively tuning the hyperparam-
eters for each distortion term, the optimization algorithm
should favor converging towards local optima. We show in
Section that pure HD can significantly outperform this
method using the loss in Equation (1) without the hints from
the deeper layers.

Ideally, we could improve the performance with signals
from deeper layers near the bottleneck. The caveat is that the
effectiveness of knowledge distillation decreases for teach-
ers when the student has considerably less capacity than the
teacher . Hence, we should not directly introduce hints
at the encoder. Instead, we regularize the distortion term
with class activation mapping (CAM) [47].

Although CAMs are typically used to improve the ex-
plainability of DNNs, we use a variant of Grad-CAM
for generating saliency maps to measure a spatial location’s
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importance at any stage. Figure [§|illustrates some examples
of saliency maps when averaged over the deeper backbone
stages. Specifically, for each sample, we can derive a vector

Fig. 8: Extracted Saliency Maps using Grad-CAM

S, where each s; € S is a weight term for a spatial location
salient about the conditional probability distributions of the
remaining tail layers. Then, we should be able to improve
the rate-distortion performance by regularizing the distor-
tion term in (10) with

1 .
Laistortion =71 L1472 81 3¢ > (hi—hi)* (1)

Where L; is the distortiont term from Equation (10), and
v1,72 are nonnegative real numbers summing to 1. We
default to y1 = 72 = % in our experiments.

Figure [0 describes our final training setup. Note that we
only require computing the CAM maps once, and they are
architecturally agnostic towards the encoder, i.e., we can re-
use them to train various compression models.

Extracted Saliency Maps

oad Saliency Map
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—

Guided Distortion
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—>54T
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Rate Estimation
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Fig. 9: Training Setup

5.3 Network Architecture

The beginning of this section broke down our aim into three
problems. We addressed the first with SVBI and proposed
a novel training method for low-capacity models. To not
inflate the significance of our contribution, we refrain from
including efficient neural network components based on
existing work in efficient neural network design. A gen-
eralizable resource-asymmetry-aware autoencoder design
remains; components should be reusable and attachable to
at least directly related network architectures once trained.



5.3.1

We introduce a minimal taxonomy described in Figure
for our approach. The top-level, Archtype, describes the pri-
mary inductive bias of the model. Architectural families de-
scribe variants (e.g., ResNets such as ResNet, Wide ResNet,
ResNeXt [49], etc.). Lastly, directly related refers to the same
architecture of different sizes (e.g., Swin-T, Swin-S, Swin-B,
etc.). The challenge is to conceive a design heuristic that can

Model Taxonomy

Vision Models

Archtype CNNs Vision Transformers ConvNeXt

Hierarchical Vision

Family ResNets Transformers ConvNeXts
Directl i

y ResNet50/101/152 Swin-T/S/B/L. ConvNeXt-S/B/L
Related

Fig. 10: Simple Taxonomy with Minimal Example

exploit the available server resources to aid the lightweight
encoder with minimal overhead on the prediction task. We
assume that, after training an embedded compression model
with one particular backbone as described in Section
it is possible to reuse the encoder or decoder for different
backbones with little effort based on the following two
observations.

5.3.2 Bottleneck Location by Stage Depth

First is how most modern DNNs consist of an initial em-
bedding followed by a few stages (Described in Section [3.T).
Within directly related architectures, the individual com-
ponents are identical. The difference between variants is
primarily the embed dimensions or the block ratio of the
deepest stages. For example, the block ratio of ResNet-50
is 3:4:6:3, while the block ratio of ResNet-101 is 3:4:23:3.
Therefore, the stage-wise organization of models defines a
natural interface for SVBi. For the remainder of this work,
we define the shallow layers as all the layers before the stage
with the most blocks.

5.3.3 Decoder Blueprint by Inductive Bias

This second observation is how archetypes introduce dif-
ferent inductive biases (e.g., convolutions versus atten-
tion modules with sliding windows), leading to diverging
representations among non-related architectures. Thus, we
should not disregard architecture-induced bias by directly
repurposing neural compression models for SC.

For example, a scaled-down version of Ballé et al.’s [15]
convolutional neural compression model can yield strong
rate-distortion performance for bottlenecks reconstructing a
convolutional layer [20] of a discriminative model. How-
ever, we will show that this does not generalize to other
architectural families, such as hierarchical vision transform-
ers [50].

One potential solution is to use identical components
for the compression model from a target network. While
this approach may be inconsequential for decoders, given
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the homogeneity of server hardware, it is inadequate for
encoders due to the heterogeneity of edge devices. Ven-
dors have varying support for the basic building blocks
of a DNN, and particular operations may be prohibitively
expensive for the client.

Consequently, regardless of the decoder architecture,
we account for the heterogeneity with a universal encoder
composed of three downsampling residual blocks of two
stacked 3 x 3 convolutions, totaling around 140k parameters.
Since the mutual information between the original input
and shallow layers is still high, it should be possible to add
a decoder that maps the representation of the encoder to
one suitable for different architectures based on invariance
towards invertible transformations of mutual information.
Specifically, for invertible functions ¢, v, it holds that:

I(X;Y) = 1(¢(X);9(Y))

Specifically, we introduce decoder blueprints for directly re-
lated architectures. Blueprints use the same components
as target backbones, with some further considerations we
describe in the following.

(12)

5.3.4 Resource-Asymmetry Aware Network Design

The number of parameters for conventional autoencoders
is typically comparable between the encoder and decoder.
Increasing the decoder parameters does not change the
inability to recover lost signals (Section , i.e., it does
not offset the limited encoder capacity for accurately dis-
tinguishing between valuable and redundant information.

Nevertheless, when optimizing the entire compression
pipeline simultaneously, the training algorithm should con-
sider the decoder’s restoration ability, which in turn should
help the encoder parameters converge towards finding a
minimal sufficient statistic respective to the task. Hence,
Inspired by [51], we partially treat decoding as an image
restoration problem and add restoration blocks with optional
upsampling (e.g., deconvolutions or PixelShuffle [52]) be-
tween backbone-specific transformation blocks. In other
words, our decoder is a restoration model we jointly train
with the encoder, such that the optimization process is
informed on how faint the bottleneck’s output signal can
be to remain recoverable. The decoder size can be as large
as the pruned layers, i.e.,, our method does not reduce
computational time on the server. To summarize, our net-
work architecture is a general design heuristic, ie., the
individual components are interchangeable with the current
state-of-the-art building blocks for vision models. Figure
illustrates one of the reference implementations we will use
for our evaluation in Section [6] The number in parenthe-
ses represents stage depth. We include implementations of
other reference blueprints in the accompanying repository
with descriptive configurations. Multiple downstream tasks
are supported by attaching different predictors on the pre-
trained backbones from foundational models.

6 EVALUATION
6.1 Training & Implementation Details

We optimize our compression models initially on the 1.28
million ImageNet [38] training samples for 15 epochs, as
described in section 5.1] and section with some slight
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Namely, (i) ResNet [59] for classic residual CNNSs. (ii) Swin

Task 2
Y Transformer [50] for hierarchical vision transformers, which
are receiving increasing adaptation for a wide variety of vi-
sion tasks. (iii) ConvNeXt [60] for modernized state-of-the-
. Predictors | art CNNs. Table R2lsummarizes the relevant characteristics of
& L & a ‘ the unmodified backbones subject to our experiments.
é’ Swin Stage (2) ’ él Swin Stage (2) | él Swin Stage (2) |
% 7z i 3 1 TABLE 2: Overview of Backbone Performance on Server
E.) Swin Stage (6) ’ ;;l Swin Stage (18) I ;;J Swin Stage (30) I
Pre-trained Backbones . Inference TOp—l Acc.
________ oo Biod Backbone Ratios  Params (ms) (%)
Decocer - RELU Swin-T 2:2:62  28.33M 477 81.93
win- :2:6: . . .
SRE 5 SwinS 22182 4974M 895 83.46
® gf’ g gﬂ 5 Swin-B 2:2:30:2 71.13M 13.14 83.88
gl 5] |¢ CEED ConvNeXtT  3:3:93  2859M  5.12 82.70
] & ” Cony 32 ConvNeXt-S  3:3:27:3  50.22M 5.65 83.71
RelLU ConvNeXt-B  3:3:27:3  88.59M 6.09 84.43
ResNet-50 3:4:6:3 25.56M 517 80.10
ResNet-101 3:4:23:3  44.55M 10.17 81.91
Fig. 11: Reference Implementation with Swin backbones ResNet-152  3:8:36:3  60.19M 15.18 82.54
6.2.1 Baselines

practical modifications for stable training. We use Adam
optimization [53] with a batch size of 16 and start with an
initial learning rate of 1 - 1073, then gradually lower it to
1 x 107% with an exponential scheduler.

We aim to minimize bitrate without sacrificing predictive
strength. Hence, we first seek the lowest § resulting in
lossless prediction.

To implement our method, we use PyTorch [54], Com-
pressAl [55] for entropy estimation and entropy coding,
and pre-trained backbones from PyTorch Image Models [56].
All baseline implementations and weights were either taken
from CompressAl or the official repository of a baseline. To
compute the saliency maps, we use a modified XGradCAM
method from the library in [57] and include necessary
patches in our repository. Lastly, to ensure reproducibility,
we use torchdistill [58].

6.2 Experiment Setting

The experiments reflect the deployment strategies illus-
trated in Figure [5| and Figure @} Ultimately, we must eval-
uate whether FrankenSplit enables latency-sensitive and
performance-critical applications. Regardless of the particu-
lar task, a mobile edge client requires access to a DNN with
high predictive strength on a server. Therefore, we must
show whether FrankenSplit adequately solves two problems
associated with offloading high-dimensional image data
for real-time inference tasks. First, whether it considerably
reduces the bandwidth consumption compared to existing
methods without sacrificing predictive strength. Second,
whether it improves inference times over various communi-
cation channels, i.e., it must remain competitive even when
stronger connections are available.

Lastly, FrankenSplit should still be applicable as newer
DNN architectures emerge, i.e., the evaluation should assess
whether our method generalizes to arbitrary backbones.
However, since it is infeasible to perform exhaustive experi-
ments on all existing visual models, we focus on three well-
known representatives and a subset of their variants instead.

Since our work aligns closest to learned image compression,
we extensively compare FrankenSplit with learned and
handcrafted codecs applied to the input images, i.e., the
input to the backbone is the distorted output. Comparing
task-specific methods to general-purpose image compres-
sion methods may seem unfair. However, FrankenSplit's
universal encoder has up to 260x less trainable parameters
and further reduces overhead by not including side infor-
mation or a sequential context model.

The naming convention for the learned baselines is the
first author’s name, followed by the entropy model. Specif-
ically, we choose the work by Balle et al. [15], [16] and
Minnen et al. [17] for LIC methods since they represent
foundational milestones. Complementary, we include the
work by Cheng et al. [61] to demonstrate improvements
with architectural enhancement.

As the representative for disregarding autoencoder size
to achieve state-of-the-art r-d performance in LIC, we chose
the work by Chen et al. [62] Their method differs from other
LIC baselines by using a partially parallelizable context
model, which trades off compression rate with execution
time according to the configurable block size. However, due
to the large autoencoder, we found evaluating the inference
time on constrained devices impractical when the context
model is purely sequential and set the block size to 64x64.
Additionally, we include the work by Lu et al. [63] as a
milestone of the recent effort on efficient LIC with reduced
autoencoders but only for latency-related experiments since
we do not have access to the trained weights.

As a baseline for the state-of-the-art SC, we include the
Entropic Student (ES) [20], [21]. Crucially, the ES demon-
strates the performance of directly applying a minimally
adjusted LIC method for feature compression without con-
sidering the intrinsic properties of the problem domain
we have derived in Section Il One caveat is that we
intend to show how FrankenSplit generalizes beyond CNN
backbones, despite the encoder’s simplistic CNN architec-
ture. Although Matsubara et al. evaluate the ES on a wide



range of backbones, most have no lossless configurations.
However, comparing bottleneck injection methods using
different backbones is fair, as we found that the choice does
not significantly impact the rate-ddistortion performance.
Therefore, for an intuitive comparison, we choose ES with
ResNet-50 using the same factorized prior entropy model as
FrankenSplit.

We separate the experiments into two categories to as-
sess whether our proposed method addresses the above-
mentioned problems.

6.2.2 Criteria rate-distortion performance

We primarily measure the bitrate in bits per pixel (bpp)
which is sensible because it permits directly comparing
models with different input sizes. Choosing a distortion
measure to draw meaningful and honest comparisons is
challenging for feature compression. Unlike evaluating re-
construction fidelity for image compression, PSNR or MS-
SSIM does not provide intuitive results regarding predictive
strength. Similarly, adhering to the customs of SC by report-
ing absolute values, such as top-1 accuracy, gives an unfair
advantage to experiments conducted on higher capacity
backbones and veils the efficacy of a proposed method.
Consequently, we evaluate the distortion with the relative
measure predictive loss. To ensure a fair comparison, we give
the LIC and handcrafted baselines a grace threshold of 1.0%
top-1 accuracy, considering it is possible to mitigate some
predictive loss incurred by codec artifacts [64]. For example,
if a model has a predictive loss of 1.5% top-1 accuracy, we
report it as 0.5% below our definition of lossless prediction.
However, for FrankenSplit, we set the grace threshold at
0.4%, reflecting the configuration with the lowest predictive
loss of the ES. Note that the ES improves rate-distortion per-
formance by finetuning the backbone weights by applying a
secondary training stage. In contrast, we put our work at a
disadvantage by training FrankenSplit exclusively with the
methods introduced in this work.

6.2.3 Measuring latency and overhead

The second category concerns with execution times of pre-
diction pipelines with various wireless connections. To ac-
count for the resource asymmetry in MEC, we use NVIDIA
Jetson boardsE] to represent the capable but resource-
constrained mobile client, and the server hosts a powerful
GPU. Table B summarizes the hardware we use in our
experiments.

TABLE 3: Clients and Server Hardware Configuration

Device Arch CPU GPU

Server x86 16x Ryzen @ 3.4 GHz RTX 3090
Client (TX2) arm64x8 4x Cortex @ 2 GHz Vol. 48 TC
Client (NX)  armé64x8 4x Cortex @ 2 GHz Pas. 256 CC

6.3 Rate-Distortion Performance

We measure the predictive loss by the drop in top-1 accuracy
from Table 2| using the ImageNet validation set for the stan-
dard classification task with 1000 categories. Analogously,

2. nvidia.com/en-gb/autonomous-machines/embedded-systems/
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we measure filesizes of the entropy-coded binaries to calcu-
late the average bpp. Figure [12[shows rate-distortion curves
with the Swin-B backbone. The architecture of FrankenSplit-
FP (FS-FP) and FrankenSplit-SGFP (FS-SGFP) are identical.
We train both models with the loss functions derived in Sec-
tion The difference is that FS-SGFP is saliency guided,
i.e., FS-FP represents the suboptimal HD training method
and is an ablation to our proposed solution.

6.3.1 Effect of Saliency Guidance

Although FS-FP performs better than almost all other mod-
els, it is trained with the suboptimal objective discussed in
Section Empirically, this is demonstrated by FS-SGFP
outperforming FS-FP on the r-d curve. By simply guiding
the distortion loss with saliency maps, we achieve a 25%
lower bitrate at no additional cots.

/
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Fig. 12: Rate-distortion curve for ImageNet

6.3.2 Comparison to the ES

Even without saliency guidance, FS-FP consistently outper-
forms ES by a large margin. Specifically, FS-FP and FS-
SGFP achieve 32% and 63% lower bitrates for the lossless
configuration.

We ensured that our bottleneck injection incurs compa-
rable overhead for a direct comparison to the ES. Moreover,
the ES has an advantage due to fine-tuning tail parameters
in an auxiliary training stage. Therefore, we attribute the
performance gain to the more sophisticated architectural
design decisions described in Section 5.3}

6.3.3 Comparison to Image Codecs

For almost all lossy codec baselines, Figure (12| illustrates
that FS-(SG)FP has a significantly better r-d performance.
Comparing FS-FP to Ballé-FP demonstrates the r-d gain
of task-specific compression over general-purpose image
compression. Although the encoder of FrankenSplit has 25x
fewer parameters, both codecs use an FP entropy model
with encoders consisting of convolutional layers. Yet, the
average file size of FS-FP with a predictive loss of around
5% is 7x less than the average file size of Ballé-FP with
comparable predictive loss.



FrankenSplit also beats modern general-purpose LIC
without including any of their complex or heavy-weight
mechanisms. The only baseline, FrankenSplit does not
convincingly outperform is Chen-BJHAP. Nevertheless, in-
curred overhead is as vital for real-time inference, which we
will evaluate Section

6.3.4 Generalization to arbitrary backbones

In the previous, we intentionally demonstrated the rate-
distortion performance of FrankenSplit with a Swin back-
bone since it backs up our claim from Section that the
synthesis transform can map the CNN encoder output to
the input of a hierarchical vision transformer. Nevertheless,
we found that the choice of backbone has a negligible impact
on the rate-distortion performance. Additionally, due to the
relative distortion measure, different backbones will not
lead to significantly different rate-distortion curves for the
baseline codecs, i.e., when we measure by predictive loss,
we get nearly identical results. Arguably, allowing operators
to reason in predictive loss is more valuable than by-model
absolute values, as it permits measuring whether and how
much performance drop clients can expect decoupled from
the backbones they use.

The insignificance of teacher choice for rate-distortion
performance is consistent with all our claims and findings.
With the objective in (7), we learn the representation of a
shallow layer, which generalizes well since such representa-
tions can retain high mutual information with the original
input.

What remains is to demonstrate the necessity of our
heuristic regarding inductive bias with decoder blueprints.
As Sectiondetailed, the decoder consists of interchange-

TABLE 4: Effect of Blueprints on a Backbone

Blueprint-Backbone  File Size (kB)  Predictive Loss (%)

8.70 0.00

Swin-Swin 5.08 0.40
3.19 0.77

19.05 2.49

ConvNeXt-Swin 15.07 3.00
10.05 3.35

22.54 0.82

ResNet-Swin 18.19 0.99
8.27 1.34

able restoration and transformation blocks. Irrespective of
the backbone, restoration blocks are residual pixel shuffles
or transpose convolutions. Contrarily, the transformation
block depends on the target backbone, and we argued
that the r-d performance improves when the transforma-
tion block induces the same bias as the target backbone.
Specifically, we create a synthesis transform blueprint for
each of the three architectural families (Swin, ResNet, and
ConvNeXt) that results in comparable rate-distortion per-
formance from Figure for their intended variations.
For example, for any ConvNeXt backbone variation, we
train the bottleneck with the ConvNeXt synthesis blueprint.
However, as summarized in Table 4} once we attempt to
use the ResNet or ConvNeXt restoration blocks, the rate-
distortion performance for the Swin-B is significantly worse.
Most notably, the lossless configuration for Swin-Swin has
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less than half the average file size of ConvNeXt-Swin with
2.49% predictive loss.

6.3.5 Generalization to multiple Downstream Tasks

We argue that SVBI naturally generalizes to multiple down-
stream tasks for two reasons. First, the head distillation
method optimizes our encoder to learn high-level represen-
tations, i.e., the mutual information between the bottleneck
output and the original input is still high. Additionally,
hierarchical vision models are primarily feature extractors.
Since the bottleneck learns to approximate the representa-
tion from a challenging distribution, embedding the same
compression module on backbones or predictors trained
for other tasks should be possible. We provide empirical
evidence by finetuning a predictor prepared on ImageNet
for different datasets.

For FrankenSplit, we applied none or only rudimentary
augmentation to evaluate how our method handles a type
of noise it did not encounter during training. Hence, we
include the Food-101 [65] dataset since it contains noise
in high pixel intensities. Additionally, we include CIFAR-
100 [39]. Lastly, we include Flower-102 [66] datasets to
contrast more challenging tasks.

We freeze the entire compression model trained on the
ImageNet dataset and finetune the tails separately for five
epochs with no augmentation, a learning rate of 5 - 10~°
using Adam optimization. The teacher backbones achieve
an 87.73%, 88.01%, and 89.00% top-1 accuracy, respec-
tively. Figure summarizes the rate-distortion perfor-
mance for each task. Our method still demonstrates clear
rate-distortion performance gains over the baselines. More
importantly, notice how FS-SGFP outperforms FS-FP on
the r-d curve for the Food-101 dataset, with a comparable
margin to the ImageNet dataset. Contrarily, on the Flower-
102 datasets, there is noticeably less performance difference
between them. Presumably, on simple datasets, the subop-
timality of HD is less significant. Considering how simpler
tasks require less model capacity, the diminishing efficacy
of our saliency-guided training method is consistent with
our claims and derivations in Section @ The information
of the shallow layer may sulffice, i.e., the less necessary the
activations of the deeper layers are, the better a minimal
sufficient statistic respective H approximates a minimal
sufficient statistic respective Y.

6.3.6 Effect of Tensor Dimensionality on R-D Performance

In Section we argued that tensor dimensionality is not
a suitable measure to assess whether it is worthwhile to
perform some client-side execution.

To provide further evidence, we implement and train
additional instances of FrankenSplit and show results in
Figure FS-SGFP(S) is the model with a small encoder
(1407000 parameters) we have used for our previous results.
FS-SGFP(M) and FS-SGFP(L) are medium and large models
where we increased the (output) channels C' = 48 to
96 and 128, respectively. Besides the number of channels,
we’ve trained the medium and large models using the
same configurations. On the left, we plot the rate-distortion
curves showing that increasing encode capacity naturally
results in lower bitrates without additional predictive loss.
For the plot on the right, we train further models with
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C = {48,64,96, 108,120,128} using the configuration re-
sulting in lossless prediction. Notice how increasing output
channels will result in higher dimensional latent tensors
C x 28 x 28 but inversely correlates to compressed file
size. An obvious explanation is that increasing the encoder
capacity will yield more powerful transforms for better
entropy coding and uniform quantization.

6.3.7 The Limitations of Direct Optimization for SVBI

In Section we mentioned that direct optimization does
not work for SVBI as it does for DVBI, where the bottle-
neck is at the penultimate layer. Specifically, it performs
incomparably worse than HD despite the latter’s inherent
suboptimality. Contrasting the rate-distortion performance
on the simple CIFAR-10 [39] dataset summarized in the
left with the rate-distortion performance on the ImageNet
dataset on the right in Figure (15 provides empirical evi-
dence. Other than training direct optimization methods for
more epochs to account for slower convergence, all models
are identical and optimized with the setup described in
Section[6.1} On the simple task, SVBI-CE and SVBI-KD yield
moderate performance gain over JPEG. Since sufficiency is
a necessary precondition for a minimal sufficient statistic
which may explain why the objective in (§) does not yield
good results when the bottleneck is at a shallow layer, as
the mutual information I(Y’; Y') is not adequately high. This
becomes especially evident when the same method entirely
falters on the more challenging ImageNet dataset. Despite
skewing the rate-distortion objective heavily towards high
bitrates, it does not result in H to be a sufficient statistic of
H.

Since the representation of the last hidden layer and
the representation of the shallow layer are so far apart in
the information path, there is insufficient information to
minimize D(H; H). When the joint distribution Px y arises
from a simple dataset, I(Y;Y) has just enough information
to propagate down for the compression model to come
close to a sufficient statistic of Z respective Y. However,
when Py y arises from a challenging dataset, where the
information content of I(Y;Y) is not enough to approxi-
mate a sufficient statistic, it performs significantly worse.
A final observation is that we should not assume feature
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Fig. 15: Contrasting the r-d performance

compression methods demonstrating excellent results on
simple tasks will naturally generalize, especially when not
supplemented with relative evaluation metrics.

6.4 Prediction Latency and Overhead

We exclude entropy coding from our measurement, since
not all baselines use the same entropy coder. For brevity,
the results implicitly assume the Swin-B backbone for
the remainder of this section. Inference times with other
backbones for FrankenSplit can be derived from Table
Analogously, the inference times of applying LIC models
for different unmodified backbones can be derived using
Table 2} Notably, the relative overhead decreases the larger
the tail is, which is favorable since we target inference from
more accurate predictors.

6.4.1 Computational Overhead

We first disregard network conditions to get an overview of
the computational overhead of applying compression mod-
els. Table[f|summarizes the execution times of the prediction
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TABLE 7: Total Latency with Various Wireless Standards

Overhead Prams  Inf. Server+NX Inf. Server+TX2 Standard/
Backbone (%) (m/s) (m/s) Data Rate codec Tr(a;zi)?er TOt?Iln[;l;XZ] TOt?IL[SI)\IX]
Swin-T 251 783 975 (Mbps)
Swin-S 141 11.99 13.91 FS-SGEFP (0.23) 142.59 160.48 158.53
Swin-B 1.00 16.12 18.04 FS-SGFP (LL) 209.89 227.78 225.83
ConvNeXt-T 3.46 6.83 8.75 BLE/ Minnen-MSHP 348.85 415.89 393.01
ConvNeXt-S 1.97 8.50 10.41 0.27 Chen-BJHAP 40.0 6167.79 3441.41
ConvNeXt-B 0.90 9.70 11.62 WebP 865.92 879.06 879.06
ResNet-50 3.50 13.16 10.05 PNG 2532.58 2545.72 2545.72
ResNet-101 2.01 8.13 15.08 FS-SGFP (0.23) 321 21.09 19.15
ResNet-152 148 18.86 20.78 FS-SGFP (LL) 472 2261 20.66
4G/ Minnen-MSHP 7.85 74.89 52.01
12.0 Chen-BJHAP 0.9 6128.69 3402.31
ipeline’s components. Enc. NX/TX2 refers to the encodin WebP 19.48 32.63 32.63
PP P / & PNG 56.98 70.13 70.13
. . . . . FS-SGFP (0.23) 0.71 18.6 16.65
TABLE 6: Inference Pipeline Components Execution Times FS-SGFP (LL) 1.05 18.93 16.99
Wi-Fi/ Minnen-MSHP 1.74 68.78 45.9
Model : Prams  Enc. [NX/TX2]  Dec.  Full [NX/TX2] 54.0 Chen-BJHAP 0.2 6127.99 3401.61
ne./Dec. (ms) (ms) (ms) WebP 433 17.47 17.47
FrankenSplit 3 bee v 2.00 1634 PNG 12.66 2581 2581
: y : FSSGFP (0.23)  0.58 18.46 16.51
Balle 3.51M/ 27.27/ 41.71/
allé-FP S siM 6on 1.30 e 5G/ FS-SGFP (LL) 0.85 18.73 16.78
Ballé-SHP 8.30M/ 28.16/ 151 4281/ 66.9 Minnen-MSHP 1.41 68.44 45.56
ates 5.90M 50.89 : 65.54 Chen-BJHAP 0.16 6127.95 3401.57
. 14.04M/ 29.51/ 44.17/ WebP 3.49 16.64 16.64
WHETTER ML 9 ey 5239 G 67.05 PNG 10.22 23.36 23.36
) 21.99M/ 412817/ 4416.7/
Minnen-JHAP “yg 597 4789.89 275.18 5078.2
16.35M/ 2167.34/ 2457.7/
ChengJHAP ") o7m 4153.95 P2 44443 o f he baselines b both rel
5.28M/ 2090.88/ 2456.8/ setting favors the baselines because both rely on entropy
Lu-JHAP 352.85 . .
4.37M 5011.56 5377.8 coding and sequential CPU-bound transforms. Table [7]sum-
36.73M/ 3111.01/ 3167.3/ ; ; ;
Chen-BJHAP ey e 4316 ey marizes how our method performs in various standards.

time on the respective client device. Analogously, dec. refers
to the decoding time at the server. Lastly, Full NX/TX2 is the
total execution time of encoding at the respective client plus
decoding and the prediction task at the server. Lu-JHAP
demonstrates how LIC models without a sequential context
component are noticeably faster but are still 9.3x-9.6x slower
than FrankenSplit despite a considerably worse r-d perfor-
mance. Comparing Ballé-FP to Minnen-MSHP reveals that
including side information only incurs minimal overhead,
even on the constrained client. On the server, FrankenSplit’s
is slightly slower than some baselines due to the attention
mechanism of the decoder blueprint for the swin backbone.
However, unlike all other baselines, the computational load
of FrankenSplit is near evenly distributed between the
client and the server, i.e., FrankenSplit's design heuristic
successfully considers resource asymmetry. The significance
of considering resource asymmetry is emphasized by how
the partially parallelized context model of Chen-BHJAP
leads to faster decoding on the server. Nevertheless, it is
slower than other JHAP baselines due to the overhead of the
increased encoder size outweighing the performance gain of
the blocked context model on constrained hardware.

6.4.2 Competing against Offloading

Unlike SC methods, we do not reduce the latency on the
server, i.e., performance gains of FrankenSplit solely stem
from reduced transfer times. The average compressed file-
size gives the transfer size from the ImageNet validation set.
Using the transfer size, we evaluate transfer time on a broad
range of standards. Since we did not include the execution
time of entropy coding for learned methods, the encoding
and decoding time for the handcrafted codecs is set to 0. The

Due to space constraints, we only include LIC models with
the lowest request latency (Minnen-MSHP) or the lowest
compression rate (Chen-BJAHP). Still, with Table E] and the
rate-distortion results from the previous subsection, we can
infer that the LIC baselines have considerably higher latency
than FrankenSplit.

Generally, the more constrained the network is the more
we can benefit from reducing the transfer size. In particu-
lar, FrankenSplit is up to 16x faster in highly constrained
networks, such as BLE. Conversely, offloading with fast
handcrafted codecs may be preferable in high-bandwidth
environments. Yet, FrankenSplit is significantly better than
offloading with PNG, even for 5G. Figure plots the
inference latencies against handcrafted codecs using the
NX client. For stronger connections, such as 4G LTE, it is
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still 3.3x faster than using PNG. Nevertheless, compared to
WebP, offloading seems more favorable when bandwidth
is high. Still, this assumes that the rates do not fluctuate
and that the network can seamlessly scale for an arbitrary
number of client connections. Moreover, kept the encoder
as simple and minimal as possible without applying any
further architectural optimizations.

7 CONCLUSION

In this work, we introduced a novel lightweight compres-
sion framework to facilitate critical MEC applications re-
lying on large DNNs. We demonstrated that a minimal-
istic implementation of our design heuristic is sufficient
to outperform numerous baselines. However, our method
still has several limitations. Notably, it assumes that the
client has an onboard accelerator. Moreover, the simplis-
tic Factorized Prior entropy model is not input adaptive,
ie., it does not adequately discriminate between varying
inputs. Although adding side information with hypernet-
works taken from LIC trivially improves rate-distortion per-
formance, our results show that it may not be a productive
approach to directly repurpose existing image compression
methods. Hence, conceiving an efficient way to include task-
dependent side information is a promising direction.
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