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Abstract—Lightweight neural networks exchange fast infer-
ence for predictive strength. Conversely, large deep neural net-
works have lower prediction error but incur prolonged inference
times and high energy consumption on resource-constrained
devices. This trade-off is unacceptable for latency-sensitive and
performance-critical applications. Offloading inference tasks to a
server is unsatisfactory due to the inevitable network congestion
by high-dimensional data competing for limited bandwidth and
leaving valuable client-side resources idle. This work demon-
strates why existing methods cannot adequately address the need
for high-performance inference in mobile edge computing. Then,
we show how to overcome current limitations by introducing
a novel training method to reduce bandwidth consumption in
Machine-to-Machine communication and a generalizable design
heuristic for resource-conscious compression models. We exten-
sively evaluate our proposed method against a wide range of
baselines for latency and compressive strength in an environment
with asymmetric resource distribution between edge devices
and servers. Despite our edge-oriented lightweight encoder, our
method achieves considerably better compression rates.

Index Terms—Split Computing, Edge Computing, Edge Intel-
ligence, Neural Compression, Feature Compression, Knowledge
Distillation

I. INTRODUCTION

Advancements in mobile edge computing (MEC) gave un-
precedented growth in Machine-to-Machine (M2M) communi-
cation [8], enabling critical latency and performance-sensitive
applications, such as disaster warning or cognitive assistance.
However, the accelerating pervasiveness of mobile devices
relying on high-dimensional data for visual applications has
led to an insurmountable amount of network traffic exceeding
all expectations. Numerous streams of visual sensor data com-
peting for limited bandwidth will inevitably lead to network
congestion, incurring intolerable response delays. Applying
handcrafted image codecs such as PNG or WebP [25] before
offloading inference tasks can mitigate network load. The
caveat is that lossy codecs significantly drop prediction per-
formance. Contrarily, lossless codecs cannot adequately reduce
traffic due to limited potential for low bitrates. One solution
is to forgo offloading entirely by onloading the inference
task to the client. Although various solutions to execute

lightweight DNNs exist [9], they are unacceptable where
accurate inference is indispensable. Split Computing (SC)
emerged as an alternative to the binary on or offload decision
mechanism to address the needs of critical mobile applications.
The basic idea is to split a neural network to process the
shallow layers on constrained devices and send a reduced
representation to the remaining deeper layers deployed on
a server. SC is an attempt at combining the advantages of
off and onloading by exploiting the available resources across
the entire compute continuum (e.g., Edge, Fog, Cloud). SC is
based on the same assumption as onloading, that mobile clients
are increasingly equipped with energy-efficient AI accelerators
capable of executing lightweight DNNs. However, current SC
methods have limited applicability due to requiring a carefully
calibrated runtime system or their specificity towards certain
DNN architectures. Arguably, the potential of SC is inhibited
by primarily focusing on shifting parts of the model execution
from the server to the client. Due to fluctuating network
conditions and the inherent resource asymmetry between the
client and the server, finding the right balance is challenging,
i.e., applying the same assumptions for onloading to SC is
a fallacy. In other words, conceiving methods focusing on
repurposing the mobile chips to execute shallow layers based
on the assumption that they are suitable for lightweight DNNs
ignores that server-grade hardware can execute the same layers
by orders of magnitudes faster. Hence, the viability of SC
methods is not determined by how well they can partially
compute a split network but by how well they can reduce
the input size. Therefore, we pose the following question: Is
it more efficient to focus the local resources on compressing
the data rather than executing shallow layers of a network that
would constitute a negligible amount of the total computation
cost on the server?

To this end, we draw from recent advancements in lossy
learned image compression (LIC) [46]. Despite outperforming
handcrafted codecs, LIC is unsuitable for real-time inference
in MEC since they consist of large autoencoders and other
complex mechanisms that are demanding even for server-
grade hardware. Moreover, research in compression primarily
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focuses on reconstruction for human perception containing
information superfluous for M2M communication, i.e., we re-
quire novel methods tailored for feature compression. Feature
compression has its roots in the information bottleneck (IB)
principle [43] and provides the underlying objective to fit
existing LIC training objectives for machine interpretability.
Nevertheless, analogous to the deep variational IB (DVIB) [1],
current neural feature compression methods typically place
the bottleneck at the penultimate layer, i.e., a distributed
DVIB assumes the client hosts almost the entire network.
Contrastingly, the opposite is needed in MEC.

In this work, we coin the term Shallow Variational Infor-
mation Bottleneck Injection (SVBI) to address the increasing
network traffic by M2M communication for visual tasks.
Specifically, we introduce FrankenSplit, a novel training and
design heuristic for embeddable feature compression models.
The design heuristic of FrankenSplit generalizes SC to arbi-
trary DNN architectures, such that it is not limited to a single
encoder-decoder pair. Complementary, the training method
demonstrates how allocating resources to neural compres-
sion instead of partially computing shallow layers alleviates
the limitation of SC to rely on complex runtime systems
and to utilize local resources only under specific conditions.
Importantly, our encoder has only 0.14M with a compres-
sion rate that can provide state-of-the-art image classification
performance in highly constrained environments with a data
rate of 0.25 Mbps in around 0.15 seconds. For reference,
MobileNetV2/V3 [16], [37] see widespread praise in MEC
for their lightweight architecture with comparably mediocre
accuracy despite having 25x-39x more parameters than our
encoder.

We summarize the contributions of this work as:
• Thoroughly exploring how shallow and deep bottleneck

injection differ for feature compression to identify the
distinct challenges of the former.

• Introducing a novel saliency-guided training method to
overcome the challenges of SVBI to train a lightweight
encoder with limited capacity.

• Introducing an autoencoder design heuristic that permits
attaching various decoders from arbitrary DNN architec-
tures to one universal encoder.

Section II summarizes relevant work on SC and LIC. Sec-
tion III describes the problem domain and progressively intro-
duces the solution approach. Section III extensively justifies
relevant performance indicators and evaluates several imple-
mentations of FrankenSplit against various baselines to assess
our method’s efficacy. Lastly, Section V facilitates future
research directives by summarizing key insights and current
limitations.

II. RELATED WORK

A. Neural Data Compression

1) Learned Image Compression: The goal of (lossy) image
compression is minimizing bitrates while preserving infor-
mation critical for human perception. Transform coding is

a basic framework of lossy compression, which divides the
compression task into decorrelation and quantization [13].
Decorrelation reduces the statistical dependencies of the pix-
els, allowing for more effective entropy coding, while quan-
tization represents the values as a finite set of integers. The
core difference between handcrafted and learned methods is
that the former relies on linear transformations based on expert
knowledge. Contrarily, the latter is data-driven with non-linear
transformations learned by neural networks [3].

Ballé et al. introduced the Factorized Prior (FP) entropy
model and formulated the neural compression problem by
finding a representation with minimal entropy [4]. An encoder
network transforms the original input to a latent variable,
capturing the input’s statistical dependencies. The parametric
entropy model is fitted towards the train data to approximate
the unknown marginal distribution and remains fixed during
inference. In follow-up work, Ballé et al. [5] and Minnen et
al. [32] extend the FP entropy model with input adaptivity
by including a hyperprior as side information for the prior.
Minnen et al. [32] introduce the Joint Autoregressive and
Hierarchical Priors (JAHP) entropy model, which adds a
context model to the existing scale hyperprior latent variable
models. Typically, context models are lightweight, i.e., they
add a negligible number of parameters, but their sequential
processing increases the end-to-end latency by orders of mag-
nitude. The entropy models introduced by Ballé et al. and
Minnen et al. are foundational for most recently published
work on variational image compression.

2) Feature Compression: Feature compression has its roots
in the (Deep Variational) Information Bottleneck principle [1],
[43]. Singh et al. demonstrate a practical method for the
Information Bottleneck principle in a compression framework
by introducing the bottleneck in the penultimate layer and
replacing the distortion loss with the cross-entropy for image
classification [42]. Dubois et al. generalized the VIB for multi-
ple downstream tasks and were the first to describe the feature
compression task formally [10]. However, their encoder-only
CLIP compressor has over 87 million parameters. Both Dubois
and Singh et al. consider feature compression for mass storage,
i.e., they assume the data is already present at the target server.
In contrast, we consider how resource-constrained clients must
first compress the high-dimensional visual data before sending
it over a network.

Closest to our work is the Entropic Student (ES) pro-
posed by Matsubara et al. [30], [31], as we follow the same
objective of real-time inference with feature compression.
Nevertheless, they simply apply the learning objective, and a
scaled-down version of autoencoder from [4], [5]. Moreover,
they do not analyze the intrinsic differences between feature
and image compression nor explain their solution approach.
Contrastingly, we carefully examine the problem domain of
resource-conscious feature compression to identify underlying
issues with current methods, allowing us to conceive novel
solutions with significantly better rate-distortion performance.
Additionally, we establish a link between the VIB principle
and bottleneck injection in SC to draw insights from our results
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and facilitate a promising research direction in MEC.

B. Split Computing
SC is a bandwidth and latency-aware deployment strategy

for providing resource-constrained devices access to compute-
intensive deep learning models. We distinguish between two
orthogonal approaches to SC.

1) Split Runtimes: Split runtime systems are characterized
by performing no or minimal modifications on off-the-shelf
DNNs. The objective is to dynamically determine split points
according to the available resources, network conditions, and
intrinsic model properties. Hence, split runtimes primarily
focus on profilers and adaptive schedulers. Kang et al. per-
formed extensive compute cost and feature size analysis on
the layer-level characterizations of DNNs and introduced the
first split runtime system [17]. Their study has shown that split
runtimes are only sensible for DNNs with an early natural
bottleneck, i.e., models performing aggressive dimensionality
reduction within the shallow layers. However, most modern
DNNs increase feature dimensions until the last layers for
better representation. Consequently, follow-up work focuses
on input or feature tensor manipulation [2], [20], [21]. We
argue against split runtimes since they introduce considerable
complexity. Worse, the system must be tuned toward external
conditions, with extensive profiling and careful calibration.
Additionally, runtimes raise overhead and another point of fail-
ure by hosting a network-spanning system. Notably, even the
most sophisticated methods still rely on a natural bottleneck,
evidenced by how state-of-the-art split runtimes still report
results on old superseded DNNs with an early bottleneck [23].

2) Artificial Bottleneck Injection: Bottleneck Injection
methods retain the simplicity of offloading without the need
for a complex runtime system by shifting the effort towards
modifying and re-training an existing base model (backbone)
to replace the shallow layers with an artificial bottleneck.
Eshratifar et al. replace the shallow layers of ResNet-50
with a deterministic autoencoder network [11]. A follow-up
work by Jiawei Shao and Jun Zhang further considers noisy
communication channels [41]. Matsubara et al. [29], and Sbai
et al. [38] propose a more general network agnostic knowledge
distillation (KD) method for embedding autoencoders, where
the output of the split point from the unmodified backbone
serves as a teacher. Lastly, we consider the work in [30] as
the state-of-the-art for bottleneck injection.

Although bottleneck injection is promising, there are two
problems with current methods. They typically rely on autoen-
coder for crude data compression or are intended for a specific
class of neural network architecture, such as convolutional
neural networks (CNNs).

This work addresses both limitations of naive bottleneck
injection methods.

III. PROBLEM FORMULATION & PROPOSED METHOD

The aim is to request real-time predictions from a large
remote DNN while maximizing resource efficiency and min-
imizing bandwidth consumption. Figure 1 illustrates deploy-
ment strategies we will consider during evaluation. Notably,

the receiver has significantly more resources than the sender.
Strategy a) corresponds to existing offloading strategies with
CPU-bound handcrafted codecs applied to the input and is
undesirable since lossy codecs achieve low bitrates at a high
predictive loss. In strategy b), we utilize the onboard accel-
erator and apply a LIC method. Although they achieve low
bitrates at a considerably less predictive loss, they incur an
excessive overhead. Strategy c) is our proposed method with
an embeddable variational compression model. To overcome
the limitations of a) and b), (i) we require a resource–
conscious encoder that is maximally compressive about a
useful representation without increasing the predictive loss.
Additionally, (ii) the decoder should exploit the available
server-side resources but still incur minimal overhead on the
backbone. Lastly, (iii) a compression model should fit for
different downstream tasks and architectural families (e.g.,
CNNs or Vision Transformers). Our solution approach focuses
on two distinct but intertwined aspects. First is an appropriate
training objective for feature compression with limited model
capacity. The second concerns a practical implementation by
introducing an architectural design heuristic for edge-oriented
autoencoders.

A. Rate-Distortion Theory and the Information Bottleneck

By Shannon’s rate-distortion theory [40], we seek a mapping
from a random variable (r.v.) X to an r.v. Z, minimizing the
bitrate the outcomes of X and can be reconstructed according
to a distortion constraint Dc. More formally, given a distortion
measure D and a distortion constraint Dc, the minimal bitrate
is

min
PZ|X

I(X;Z) s.t. D(X,Z) ≤ Dc (1)

where I(X;Z) is the mutual information between the input
and latent vector and is defined as

I(X;Z) =

∫ ∫
p(x, z) log

(
p(x, z)

p(x)p(z)

)
dxdz (2)

In image compression, the distortion measure is between the
original input x and distorted reconstruction x̃. Nevertheless,
when data is only seen by machines, optimizing for perceptual
quality results in Z to retain redundant information.

Consider the Data Processing Inequality (DPI). For any 3
r.v.s X,Y, Z that form a Markov chain X ↔ Y ↔ Z the
following holds:

I(X;Y ) ≥ I(X;Z) (3)

Additionally, as argued by Tishby and Zaslavsky [44], we can
view layered neural networks as a Markov chain of successive
representations and describe the information flow in an n-
layered sequential DNN, layer with the information path:

I(X;Y ) ≥ I(R1;Y ) ≥ I(R2;Y ) ≥ . . . I(Rn;Y ) ≥ I(Ỹ ;Y )
(4)

In other words, the final representation before a prediction Rn

for a discriminative task cannot have more mutual information
with the target than the input X and typically has less. Empiri-
cally, this is established by how slight perturbations and certain
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Fig. 1: Edge Inference Deployment Strategies

transformations do not affect predictions. Hence, when the task
is to predict the ground-truth labels Y from a joint distribution
PX,Y , the rate-distortion objective is essentially given by the
information bottleneck principle [43]. By relaxing the (1) with
a lagrangian multiplier, the objective is to maximize:

I(Z;Y )− βI(Z;X) (5)

Specifically, an encoding Z should be a minimal sufficient
statistic of X respective Y , i.e., we want Z to contain
relevant information regarding Y while discarding irrelevant
information from X . Practical implementations differ by the
target task and how they approximate (5). For example, an
approximation of I(Z;Y ) for an arbitrary classification task
is the conditional cross entropy (CE):

D = H(PY , PỸ |Z) (6)

Unsurprisingly, using (6) for estimating the distortion measure
in (5) for end-to-end optimization of a neural compression
model is not a novel idea. However, a common assumption in
such work is that the latent variable is the final representation
Rn before performing the prediction, i.e., the encoder must
consist of an entire backbone model which we refer to as
Deep Variational Information bottleneck Injection (DVBI).
Conversely, we work with resource-constrained clients, i.e., to
conceive lightweight encoders, we must shift the bottleneck to
the shallow layers, which we refer to as shallow variational
bottleneck injection (SVBI). Figure 2 illustrates the concept
of bottleneck injection. Intuitively, the existing methods for
DVBI should generalize to SVBI should, e.g., approximating
the distortion term with (6) as in [42]. Although by shifting the
bottleneck to the shallow layers, the encoder has less capacity
for finding a minimal sufficient representation, the objective
is still an approximation of (1).

Head Distillation (HD) [29], [38] is an alternative method
that naturally relates to shallow bottleneck. In HD, the re-
moved head network teaches the artificial bottleneck. However,
we will show that HD is a suboptimal approximation of (1) for

Fig. 2: Modifying an existing network

variational compression. In the following, we bridge the gap
between deep and shallow bottleneck injection by formulating
the VIB objective for HD.

B. (Head) Distilled Deep Variational Information Bottleneck

Ideally, the bottleneck is embeddable in an existing predictor
PT without decreasing the performance. Therefore, it is not
the hard labels Y that define the task but the soft labels YT .
For simplicity, we handle the case for one task and defer how
SVBI naturally generalizes to multiple downstream tasks and
DNNs to Section IV-C6.

To perform SVBI, take a copy of PT . Then, mark the
location of the bottleneck by separating the copy into a head
Ph and a tail Pt. Importantly, both parts are deterministic,
i.e., for every realization of r.v. X there is a representation
Ph(x) = h such that PT (x) = Ph(Pt(x)) = Pt(h). Lastly,
replace the head with an autoencoder and entropy model. The
encoder is deployed at the sender, the decoder at the receiver,
and the entropy model is shared.

We distinguish between two optimization strategies to train
the compression model. First, is direct optimization corre-
sponding to the DVIB objective in (5), except we replace the
CE with the standard KD loss [15] to approximate I(Z;Y ).
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Second is indirect optimization and describes HD with the
objective:

I(Z;H)− β I(Z;X) (7)

Unlike the former, the latter does not directly correspond to (1)
for a representation Z that is a minimal sufficient statistic of
X respective YT . Instead, it replaces Y with a proxy task for
the compression model to replicate the output of the replaced
head, i.e., training methods approximating (7) optimize for
a Z that is a minimal sufficient statistic of X respective
H . Figure 3 illustrates the difference between estimating the
objectives (5) and (7). Intuitively, with faithful replication
of H , the partially modified DNN has an information path
equivalent to its unmodified version. A sufficient statistic
retains the information necessary to replicate the input for a
deterministic tail, i.e., the final prediction does not change.
The problem of (7) is that it is a suboptimal approximation
of (1). Although sufficiency holds, it does not optimize Z
respective YT . The marginal distribution of YT now arises
from the r.v. X and the parameters of PT . Moreover, since
maximizing I(Z;H) is only a proxy objective for I(Z;YT ),
it corresponds to the Markov chain YT ↔ H ↔ X ↔ Z.
Notice how X is now conditional independent of YT , breaking
the assumption from the previous subsection that the original
input is maximally informative of our target task. In other
words, X is now conditionally independent of YT , and the
conditional mutual information I(X;YT |H) tells us by how
much we “overshoot” in our estimation. Consequently, when
training a compression model with (7), we skew the rate-
distortion optimization towards a higher rate than necessary
by setting the lower bound for the distortion estimation too
high. Nevertheless, while Singh et al. demonstrated how direct
optimization works well for DVBI [42], we show how it results
in r-d performance poorer than handcrafted codecs for SVBI
in Section IV. Interestingly, HD results in considerably better
r-d performance despite its inherent suboptimality, which is
why it is the focus of this work.

C. End-to-end Optimized Feature Compression for Partial
Distilled Networks

Unlike most work on artificial bottleneck injection, our
bottleneck is not a deterministic autoencoder. Instead, we em-
bed a stochastic compression model. Categorically, we follow
nonlinear transform coding [3] (NTC) to implement a neural
compression algorithm. For an image vector x, we have a
parametric analysis transform ga(x;φg) maps x to a (partially)
decorrelated latent vector z. Then, a quantizer Q discretizes
z to z̄, such that an entropy coder can losslessly compress z̄
to a sequence of bits. Here, we start diverging from NTC for
image compression. Rather than an approximate inverse of the
analysis, the parametric synthesis transform gs(z̄; θg) maps z̄
to a representation h̃ that is suitable for various tail predictors
and downstream tasks. The practical implementation of our
objective resembles variational autoencoder-based image com-
pression optimization, as introduced in [4], [5]. Analogous to
variational inference, we approximate the intractable posterior

p(z̃|x) with a parametric variational density q(z̃|x) as follows
(excluding constants):

Ex∼pxDKL

[
q‖pz̃|x

]
= Ex∼pxEz̃∼q[−log p(x|z̃)︸ ︷︷ ︸

distortion

−

weighted rate︷ ︸︸ ︷
log p(z̃) ]

(8)
By assuming a gaussian distribution such that the likelihood
of the distortion term is given by

Px|z̃(x | z̃, θg) = N (x | gs(z̃; θg), 1) (9)

we can use the square sum of differences between h and h̃ as
our distortion loss.

The rate term describes the cost of compressing z̃, which
we assume is in a fully factorized form. Analogous to the
LIC methods discussed in Section II-A, we apply uniform
quantization z̄ = bz̃e, which is essentially rounding to the
nearest integer. Discretization leads to problems with the
gradient flow. Hence, we apply a continuous relaxation by
adding uniform noise η ∼ U(− 1

2 ,
1
2 ). Combining the rate and

distortion term, we derive the loss function for approximating
objective (7) as

L = ‖Ph(x) - (gs(ga(x;φg)+η; θg)‖22 +β log(ga(x; θg)+η)
(10)

Note, in the relaxed lagrangian of (1), the weight is on the
distortion while we weight the rate term to align closer to the
variational information bottleneck objective. Moreover, omit-
ting the second term (β = 0) results in the head distillation
objective for naive bottleneck injection.

Since the loss in (10) is an approximation of the objective
(7), the model weights will not converge towards an optimum
for objective (1). However, notice how the root of the subopti-
mality stems from treating every pixel of H equally crucial to
the remaining layer. In the previous subsection, we established
that as the remaining layers further process a representation
h, its information content decreases monotonously. More in-
tuitively, the shallow layers extract high-level features, while
deeper layers are more focused. The implication here is that
the MSE in (10) may overly strictly penalize pixels at spatial
locations which contain redundant information that later layers
can safely discard. Contrarily, the loss may not penalize the
salient pixels strictly enough when h̃ is close to h numerically.
This insight explains why the objective in (5) does not yield
good results when the bottleneck is at a shallow layer, as the
mutual information I(Y ; Ỹ ) is not sufficiently high. Since the
representation of the last hidden layer and the representation of
the shallow layer are so far apart in the information path, there
is insufficient information to minimize D(H; H̃). Effectively,
the low information content I(Y ; Ỹ ) explains why there is not
enough signal to propagate down from the deeper layers.

Finally, to solve the suboptimality (10), assume we have
access to a vector S. Each si ∈ S is a weight term for a spatial
location, which is salient about the conditional probability
distributions of the remaining tail layers. Then, we should be
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Fig. 3: In the left, the knowledge is transferred by the soft labels of the teacher. In the right, the replaced head directly transfers
the knowledge to the embedded model

able to improve the rate-distortion performance by replacing
the distortion term in (10) with

Ldistortion =
1

N

∑
i

(hi − h̃i)2 · si (11)

D. Saliency Maps
Class Activation Mapping (CAM) is a method to increase

the explainability of trained models [47]. Nevertheless, it
effectively measures the importance of each spatial location.
As illustrated in Figure 4, CAM allows us to extract attention
maps from a pre-trained teacher model at any layer. The
original literature extensively covers computing the saliency
maps, so we do not cover the details. To derive vector S for

Fig. 4: Extracted Saliency Maps using Grad-CAM

the loss in (11), we use one of the Grad-CAM variants [39]
to calculate and persist a saliency map for each sample as
a preliminary step. Nevertheless, for data augmentation, it
is preferable to calculate the maps ad-hoc, which is feasible
depending on the CAM strategy. Since Grad-CAM allows us
to derive pixel importance at any layer, each saliency map is
the unweighted average of the maps created by the top-level
layers.

E. Network Architecture

The beginning of this section broke down our aim into three
problems. We addressed the first with SVBI and proposed a
novel training method for low-capacity models. To not inflate
the significance of our contribution, we refrain from including
efficient neural network components based on existing work
in efficient neural network design. A generalizable resource-
asymmetry-aware autoencoder design remains; components
should be reusable and attachable to arbitrary network archi-
tectures once trained.

When performing predictions with the latent, it may seem
redundant to have a synthesis transform. Since we cannot
increase the information content of Z, we could directly feed
the encoder output to the tail of a backbone model. However,
this locks the encoder to only a single backbone. The challenge
is to conceive a design heuristic that can exploit the available
server resources to aid the lightweight encoder with minimal
overhead on the prediction task.

1) Inter- and Intra-architecture module re-attachment: We
assume that, after training an embedded compression model
with one particular backbone as described in Section III-C,
it is possible to reuse the encoder or decoder for different
backbones with little effort based on the following two obser-
vations.

First is how most modern DNNs consist of an initial embed-
ding followed by a few top-level layers. The top-level layers
consist of coarse-grained layers, while the coarse-grained ones
recursively consist of finer-grained ones. The terminology
differs for each work, but here we will refer to top-level
layers as stages and the coarse-grained layers as blocks. Within
architectural families, the individual components are identical.
The difference between variants is primarily the embed dimen-
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sions or the block ratio of the deepest stages. For example,
the block ratio of ResNet-50/Swin-T is 3:4:6:3/2:2:6.2, while
the block ratio of ResNet-101/Swin-S is 3:4:23:3/2:2:18:2.
Importantly, stages define the shallow layers (head model)
as all the layers before the deepest stage. Additionally, there
is a natural interface for the decoder to attach to multiple
backbones with minimal effort, which we refer to as intra-
architecture module re-attachment.

This second observation is how network families introduce
different inductive biases (e.g., convolutions versus attention
modules with sliding windows), leading to diverging represen-
tations among non-related architectures. Therefore, it is naive
to disregard architecture-induced bias by directly repurposing
neural compression models for SC. For example, Matsubara
et al. [31] use a scaled-down version of Ballé et al.’s [4]
convolutional neural compression model, demonstrating strong
rate-distortion performance for bottlenecks reconstructing a
convolutional layer. However, we will show that this does not
generalize to other architectural families, such as hierarchical
vision transformers [24].

One potential solution is to leverage identical components
from a target network. While this approach may be incon-
sequential for decoders, given the homogeneity of server
hardware, it is inadequate for encoders due to the heterogeneity
of edge devices. Vendors have varying support for the basic
building blocks of a DNN, and particular operations may be
prohibitively expensive for the client. Consequently, regardless
of the encoder or decoder, we account for the heterogeneity
with a universal encoder composed of three downsampling
residual blocks of two stacked 3 × 3 convolutions, totaling
around 140k parameters.

Since the mutual information between the original input
and shallow layers is still high, it should be possible to
add a that maps the representation of the encoder to one
suitable for different architectures based on invariance towards
invertible transformations of mutual information. Specifically,
for invertible functions φ, ψ, it holds that:

I(X;Y ) = I(φ(X);ψ(Y )) (12)

We refer to re-mapping a representation from one family to
another as inter-architecture module re-attachment.

2) Resource-Asymmetry Aware Network Design: The num-
ber of autoencoder parameters is typically comparable between
the encoder and decoder. Increasing the decoder parameters
does not change the inability to recover lost signals (Sec-
tion III-A), i.e., it does not offset the limited encoder capacity
for accurately distinguishing between valuable and redundant
information. Nevertheless, when optimizing the entire com-
pression pipeline simultaneously, the training algorithm should
consider the ability for restoration by the decoder, which in
turn should help the encoder parameters to converge towards
finding a minimal sufficient statistic respective to the task.
Hence, Inspired by [22], we partially treat decoding as an
image restoration problem and add restoration blocks with
optional upsampling between backbone-specific transforma-

tion blocks. The incurred latency is minimal and is offset by
skipping the shallow layers.

To summarize, our network architecture is a general design
heuristic, i.e., the individual components are interchangeable
with the current state-of-the-art building blocks for vision
models. Figure 5 illustrates the purpose of the decoder in
restoring and transforming the latent. Moreover, it captures
the essence of FrankenSplit as the re-usability through (re-
) attaching arbitrary networks regardless of their architecture
and target task. Due to space constraints, the figure does not

Fig. 5: Multiple decoders spanning from a single encoder and
multiple tails attached to a single decoder. The number in
parenthesis represents stage depth.

accurately represent the exact architectures of the models, and
we cannot describe each decoder architecture in detail. Instead,
the accompanying repository contains descriptive configura-
tions.

IV. EVALUATION

A. Experiment Setting

The experiments reflect the deployment strategies illus-
trated in Figure 1. Ultimately, we aim to demonstrate that
FrankenSplit enables latency-sensitive and high-performance
applications. Regardless of the particular task, a mobile edge
client requires access to a DNN with high predictive strength
on a server. Therefore, we must show whether FrankenSplit ad-
equately solves two problems associated with offloading high-
dimensional image data for real-time inference tasks. First,
whether it considerably reduces the bandwidth consumption
compared to existing methods without sacrificing predictive
strength. Second, whether it improves inference times over
various communication channels, i.e., to not limit FrankenSplit
to specific network conditions, it must remain competitive even
when stronger connections are available (e.g., 4G LTE)

Lastly, FrankenSplit should still be applicable as newer and
more powerful DNN predictors emerge, i.e., it is vital to
evaluate whether our method generalizes to arbitrary back-
bones. However, since it is infeasible to perform exhaustive
experiments on all existing visual models, we focus on three
well-known representatives and a subset of their variants
instead. Namely, (i) ResNet [14] for classic residual CNNs.
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(ii) Swin Transformer [24] for hierarchical vision transformers,
which are receiving increasing adaptation for a wide variety
of vision tasks. (iii) ConvNeXt for modernized state-of-the-art
CNNs. Table I summarizes the relevant characteristics of the
unmodified backbones subject to our experiments.

TABLE I: Overview of Used Backbone Models on the Server

Backbone Stage Ratios Params Inference
(ms)

Top-1 Acc.
(%)

Swin-T 2:2:6:2 28.33M 4.77 81.93
Swin-S 2:2:18:2 49.74M 8.95 83.46
Swin-B 2:2:30:2 71.13M 13.14 83.88

ConvNeXt-T 3:3:9:3 28.59M 5.12 82.70
ConvNeXt-S 3:3:27:3 50.22M 5.65 83.71
ConvNeXt-B 3:3:27:3 88.59M 6.09 84.43

ResNet-50 3:4:6:3 25.56M 5.17 80.10
ResNet-101 3:4:23:3 44.55M 10.17 81.91
ResNet-152 3:8:36:3 60.19M 15.18 82.54

1) Baselines: Since our work aligns closest to learned
image compression, we extensively compare FrankenSplit with
learned and handcrafted codecs applied to the input images,
i.e., the input to the backbone is the distorted output. Com-
paring task-specific methods to general-purpose image com-
pression methods may seem unfair. However, FrankenSplit’s
universal encoder has up to 260x less trainable parameters and
further reduces overhead by not including hyper networks for
side information or a sequential context model.

The naming convention for the learned baselines is the first
author’s name, followed by the entropy model. Specifically, we
choose the work by Balle et al. [4], [5] and Minnen et al. [32]
for LIC methods since they represent foundational milestones.
Complementary, we include the work by Cheng et al. to
demonstrate improvements with architectural enhancement.

As the representative for disregarding autoencoder size to
achieve state-of-the-art r-d performance in LIC, we chose the
work by Chen et al. Their method differs from other LIC
baselines by using a partially parallelizable context model,
which trades off compression rate with execution time ac-
cording to the configurable block size. However, due to the
large autoencoder, we found evaluating the inference time on
constrained devices impractical when the context model is
purely sequential and set the block size to 64x64. Additionally,
we include the work by Lu et al. [26] as a milestone of the
recent effort on efficient LIC with reduced autoencoders but
only for latency-related experiments since we do not have
access to the trained weights. Nevertheless, according to their
results, we can assume a near-identical r-d performance as the
work by Cheng et al.

As a baseline for the state-of-the-art SC, we include the En-
tropic Student (ES) [30], [31]. Crucially, the ES demonstrates
the performance of naively applying a minimally adjusted
LIC method for feature compression without considering the
intrinsic properties of the problem domain we have derived
in Section III-A. One caveat is that we intend to show how
FrankenSplit generalizes beyond CNN backbones, despite the
encoder’s simplistic CNN architecture. Although Matsubara et
al. evaluate the ES on a wide range of backbones, most have

no lossless configurations. However, comparing bottleneck
injection methods using different backbones is fair, as we
found that the choice does not significantly impact the r-
d performance. Therefore, for an intuitive comparison, we
choose ES with ResNet-50 using the same factorized prior
entropy model as FrankenSplit.

We separate the experiments into two categories to assess
whether our proposed method addresses the abovementioned
problems.

2) Criteria rate-distortion performance: We primarily mea-
sure the bitrate in bits per pixel (bpp) which is sensible
because it permits directly comparing models with different
input sizes. Choosing a distortion measure to draw meaning-
ful and honest comparisons is challenging for feature com-
pression. Unlike evaluating reconstruction fidelity for image
compression, PSNR or MS-SSIM does not provide intuitive
results regarding predictive strength. Similarly, adhering to the
customs of SC by reporting absolute values, such as top-1
accuracy, gives an unfair advantage to experiments conducted
on higher capacity backbones and veils the efficacy of a
proposed method. Consequently, we evaluate the distortion
with the relative measure predictive loss. To ensure a fair
comparison, we give the LIC and handcrafted baselines a grace
threshold of 1.0% top-1 accuracy, considering it is possible to
mitigate some predictive loss incurred by codec artifacts [27].
For example, if a model has a predictive loss of 1.5% top-
1 accuracy, we report it as 0.5% below our definition of
lossless prediction. However, for FrankenSplit, we set the
grace threshold at 0.4%, reflecting the configuration with the
lowest predictive loss of the ES. Note that the ES improves r-d
performance by finetuning the backbone weights by applying
a secondary training stage. In contrast, we put our work at
a disadvantage by training, FrankenSplit exclusively with the
methods introduced in this work.

3) Measuring latency and overhead: The second category
concerns with execution times of prediction pipelines with
various wireless connections. To account for the resource
asymmetry in MEC, we use NVIDIA Jetson boards to rep-
resent the capable but resource-constrained mobile client, and
the server hosts a powerful GPU. Table II summarizes the
hardware we use in our experiments.

TABLE II: Clients and Server Hardware Configuration

Device Arch CPU GPU
Server x86 16x Ryzen @ 3.4 GHz RTX 3090
Client (TX2) arm64x8 4x Cortex @ 2 GHz Vol. 48 TC
Client (NX) arm64x8 4x Cortex @ 2 GHz Pas. 256 CC

B. Training & Implementation Details

We optimize our compression models initially on the 1.28
million ImageNet [36] training samples for 15 epochs, ac-
cording to the strategies described in section III-C and sec-
tion III-D, with some slight practical modifications for stable
training. Importantly, FrankenSplit’s HD training method is
different from the baseline ES. The former exclusively uses
the MSE between the synthesis transform and the pruned
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backbone head, while the latter additionally includes the
MSE between the remaining tail stages, i.e., the ES training
method does not faithfully implement HD. We found including
the MSE between the deeper layers leads to unstable and
considerably prolonged training. However, the training hyper-
parameters are similar enough to the ES to ensure that rate-
distortion improvements are due to the methods introduced in
this work. Concretely, we use Adam optimization [18] with
a batch size of 16 and start with an initial learning rate of
1·10−3, then gradually lower it to 1×10−6 with an exponential
scheduler.

An essential hyperparameter is β which controls the rate
term during training, i.e., higher β trades lower bitrates with
higher distortion. We aim to minimize bitrate without sacri-
ficing predictive strength. Hence, we first seek the lowest β
resulting in lossless prediction. For the lossless configuration,
we ensure that it consistently results in lossless prediction and
train models five times.

For verification, implementations of FrankenSplit, including
experiment configurations, are publicly available1. We use
PyTorch [35] to implement our models, CompressAI [6]
for entropy estimation and entropy coding, and pre-trained
backbones from PyTorch Image Models [45]. All baseline
implementations and weights were either taken from Com-
pressAI or the accompanying repository of a baseline. To
compute the saliency maps, we use a modified XGradCAM
method from the library in [12] and include necessary patches
in our repository. Lastly, to ensure reproducibility, we use
torchdistill [28].

C. Rate-Distortion Performance

We measure the predictive loss by the drop in top-1 accuracy
using the ImageNet validation set for the standard classifi-
cation task with 1000 categories. Analogously, we measure
physical filesizes of the entropy-coded binaries to calculate
the average bpp. Figure 6 shows rate-distortion curves with
the Swin-B backbone. The architecture of FrankenSplit-FP and

Fig. 6: Rate-distortion curve for ImageNet

1https://github.com/rezafuru/FrankenSplit

FrankenSplit-SGFP are identical and based on Section III-E.
We train both models with the loss functions derived in
Section III-C. The difference is that FrankenSplit-SGFP is
saliency guided, i.e., FrankenSplit-FP represents the subop-
timal HD training method and is an ablation to our proposed
solution.

1) Effect of Saliency Guidance: Although FrankenSplit-FP
performs better than almost all other models, it is trained with
the suboptimal objective discussed in Section III-B. Empiri-
cally, this is demonstrated by FrankenSplit-SGFP outperform-
ing FrankenSplit-FP on the r-d curve. By simply guiding the
distortion loss with saliency maps, we achieve a 25% lower
bitrate at no additional cots.

2) Comparison to the Entropic Student: Even without
saliency guidance, FrankenSplit-FP consistently outperforms
the ES by a large margin. Specifically, FrankenSplit-FP and
FrankenSplitSG-FP achieve 32% and 63% lower bitrates for
the lossless configuration.

For a direct comparison to the ES, we ensured that our
bottleneck injection incurs comparable overhead. Moreover,
the ES has an advantage due to fine-tuning tail parameters
in an auxiliary training stage. Therefore, we attribute the per-
formance gain to the more sophisticated architectural design
decisions described in Section III-E.

3) Comparison to Image Codecs: For almost all lossy
codec baselines, Figure 6 illustrates that FrankenSplit-(SG)FP
has a significantly better r-d performance. Since we refrain
from using hyper networks for side information or a context
model, comparing FrankenSplit-FP to Ballé-FP, best demon-
strates the r-d gain of task-specific compression over general-
purpose image compression. Although the encoder of Franken-
Split has 25x fewer parameters, both codecs use an FP entropy
model with encoders consisting of convolutional layers. Yet,
the average file size of FrankenSplit-FP with a predictive loss
of around 5% is 7x less than the average file size of Ballé-FP
with comparable predictive loss.

FrankenSplit also beats modern general-purpose LIC with-
out including any of their complex or heavy-weight mecha-
nisms. The only baseline, FrankenSplit does not convincingly
outperform is Chen-BJHAP. Nevertheless, incurred overhead
is as vital for real-time inference, which we will evaluate
Section IV-D.

4) Naivety of Direct Optimization for SVBI: In Section
III-C we mentioned that direct optimization does not work
for SVBI as it does for DVBI, where the bottleneck is at the
penultimate layer. Interestingly, direct optimization performs
incomparably worse than HD, despite the latter’s inherent
suboptimality. Moreover, we identified the insufficient mutual
information I(Y, Ỹ ) as the cause.

Contrasting the r-d performance on the simple CIFAR-
10 [19] dataset summarized in the left with the r-d performance
on the ImageNet dataset on the right in Figure 7 provides
empirical evidence. Other than training direct optimization
methods for more epochs to account for slower convergence,
all models are identical and optimized with the setup described
in Section IV-B.
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Fig. 7: Contrasting the r-d performance

On the trivial task, SVBI-CE and SVBI-KD yield moderate
performance gain over JPEG. Contrarily, the same training
method entirely falters on the ImageNet dataset and does
not get close to lossless prediction even at high bitrates.
When the joint distribution PX,Y arises from a trivial dataset,
I(Y ; Ỹ ) has just enough information to propagate down for
the compression model to come close to a sufficient statistic
of Z respective Y . However, when PX,Y arises from a non-
trivial dataset, where the information content of I(Y ; Ỹ ) is
not enough to approximate a sufficient statistic, it performs
significantly worse than both handcrafted codecs.

5) Generalization to arbitrary backbones: In the previous,
we intentionally demonstrated the r-d performance of Franken-
Split with a Swin backbone since it implicitly backs up our
claim from Section III-E that the synthesis transform can map
the CNN encoder output to the input of a hierarchical vision
transformer. Nevertheless, we initially set out to plot the r-d
curves for all the models summarized in Table I but found that
the choice of backbone has a negligible impact on the rate-
distortion performance, i.e., with suitable hyperparameters,
we get comparable results with FrankenSplit. Additionally,
due to the relative distortion measure, different backbones
will not lead to significantly different r-d curves for the
baseline codecs. The insignificance of teacher choice for r-
d performance is consistent with all our claims and findings.
With the objective in (7), we learn the representation of a shal-
low layer, which generalizes well since such representations
typically have high mutual information with the original input.
Moreover, the difference between the smaller and larger model
variations from the same architectural family is primarily due
to the deepest stage or the embed size. Likewise, plotting re-
sults for intra-architecture module re-attachment is redundant,
as it will result in nearly identical r-d curves after finetuning
the decoder for a few epochs. What remains is to demonstrate
the necessity of our heuristic regarding inductive bias, i.e.,
why current bottleneck injection approaches do not generalize
beyond their intended target architectural family.

As detailed in Section III-E, the encoder architecture is the
same regardless of the backbone. In contrast, the decoder con-
sists of interchangeable restoration and transformation blocks.

Irrespective of the backbone, restoration blocks are residual
sub-pixel or transpose convolutions. Contrarily, the transfor-
mation block depends on the target backbone, i.e., we argued
that the r-d performance improves when the transformation
block induces the same bias as the target backbone. Specif-
ically, we have a synthesis transform blueprint for each of
the three architectural families (Swin, ResNet, and ConvNeXt)
that results in comparable rate-distortion performance from
Figure 6 for their intended variations. For example, for any
ConvNeXt backbone variation, we train the bottleneck with
the ConvNeXt synthesis blueprint analogous to how we used
the Swin transformer blueprint for the results from earlier.
Table III summarizes the r-d performance of using the Con-
vNeXt and ResNet blueprint on the Swin-B backbone. Once

TABLE III: Applying correct and false blueprints to a Swin
backbone

Blueprint-Backbone File Size (kB) Predictive Loss (%)

Swin-Swin
8.70 0.00
5.08 0.40
3.19 0.77

ConvNext-Swin
19.05 2.49
15.07 3.00
10.05 3.35

ResNet-Swin
22.54 0.82
18.19 0.99
8.27 1.34

we attempt to use the ResNet or ConvNeXt restoration blocks,
the rate-distortion performance for the Swin-B is significantly
worse. Most notably, the lossless configuration for Swin-Swin
has less than half the average file size of ConvNeXt-Swin with
2.49% predictive loss.

Intra-model re-attachment and inter-model re-attachment by
training a new encoder agnostic towards the decoder architec-
ture works as hypothesized. Still, our results found that inter-
module architecture incurs a considerable predictive loss if
we introduce a freshly initialized decoder attached to a pre-
trained encoder. However, in the following, we demonstrate
that, as long as the backbone is from the same family,
FrankenSplit generalizes to multiple tasks without re-training
any components.

6) Generalization to multiple Downstream Tasks: Dubois
et al. [10] generalize a bottleneck to multiple tasks by seek-
ing a maximal invariant through extensive augmentation and
contrastive SSL [34]. Here we argue that our SVBI naturally
generalizes despite its simpler training method involving no
augmentation or contrastive SSL for two reasons. First, the
head distillation method optimizes our encoder to learn high-
level representations, i.e., the mutual information between
the bottleneck output and the original input is still high.
Additionally, hierarchical vision models are primarily feature
extractors. Since the bottleneck learns to approximate the
variational density from a challenging distribution, it should be
possible to embed the same compression module on backbones
trained for other tasks. We provide empirical evidence for
this claim by finetuning a predictor prepared on ImageNet for
different classification tasks.
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For FrankenSplit, we applied none or only rudimentary
augmentation to evaluate how our method handles a type of
noise it did not encounter during training. Hence, we include
the Food-101 [7] dataset since it contains noise in high pixel
intensities. Additionally, we include CIFAR-100 [19]. Lastly,
to contrast more challenging tasks, we include Flower-102 [33]
datasets. Besides the relatively low number of samples per
class, the Flower-101 dataset has no inherent difficulty.

We freeze the entire compression model trained on the
ImageNet dataset and finetune the tails separately for five
epochs with no augmentation, a learning rate of 5 · 10−5

using Adam optimization. The teacher backbones achieve an
87.73%, 88.01%, and 89.00% top-1 accuracy, respectively.
Figure 8 summarizes the r-d performance for each task. Note
that the focus of this study is not transfer learning but to show
how the bottleneck retains information necessary to accommo-
date multiple predictors. Our method still demonstrates clear
r-d performance gains over the baselines. More importantly,
notice how FrankenSplit-SGFP outperforms FrankenSplit-FP
on the r-d curve for the Food-101 dataset, with a comparable
margin to the ImageNet dataset. Contrarily, on the Flower-
102 datasets, there is noticeably less performance difference
between them. Presumably, on trivial datasets, the subopti-
mality of HD is less significant. Considering how easier tasks
require less model capacity, the diminishing efficacy of our
saliency-guided training method is consistent with our claims
and derivations in Section III. The information of the shallow
layer may suffice, such that the residual connections skip
most of the deeper layers. Simply put, the less necessary the
activations of the deeper layers are, the better a minimal suffi-
cient statistic respective H approximates a minimal sufficient
statistic respective Y .

D. Prediction Latency and Overhead

We report computational overhead by latency in ms rather
than throughput due to measuring the individual components
in our distributed inference pipeline. Moreover, we omit the
baseline entropic student, as it does not generalize to all back-
bones we consider. Still, since we designed our autoencoder
to have a similar model size, the computational overhead is
comparable when FrankenSplit’s backbone has a ResNet-like
architecture. Additionally, we exclude entropy coding from
our measurement since not all baselines use the same entropy
coder, and their implementation is far from optimal concerning
execution time. Lastly, the results implicitly assume the Swin-
B backbone for the remainder of this section due to space
constraints. Inference times with other tails for FrankenSplit
can be derived fromTable IV. Analogously, the inference times
of applying LIC models for different unmodified backbones
can be derived using Table I. Notably, the relative overhead
decreases the larger the tail is, which is favorable since we
target inference from more accurate predictors.

1) Computational Overhead: We first disregard network
conditions to get an overview of the computational overhead
of applying compression models. Table V summarizes the
execution times of the prediction pipeline’s components. Enc.

TABLE IV: Execution times with various backbones

Backbone Overhead Prams
(%)

Inf. Server+NX
(m/s)

Inf. Server+TX2
(m/s)

Swin-T 2.51 7.83 9.75
Swin-S 1.41 11.99 13.91
Swin-B 1.00 16.12 18.04

ConvNeXt-T 3.46 6.83 8.75
ConvNeXt-S 1.97 8.50 10.41
ConvNeXt-B 0.90 9.70 11.62

ResNet-50 3.50 13.16 10.05
ResNet-101 2.01 8.13 15.08
ResNet-152 1.48 18.86 20.78

TABLE V: Inference pipeline components execution times

Model Prams
Enc./Dec.

Enc. NX/TX2
(ms)

Dec.
(ms)

Full NX/TX2
(ms)

FrankenSplit 0.14M/
2.06M

2.92/
4.87 2.00 16.34/

18.29

Ballé-FP 3.51M/
351M

27.27/
48.93 1.30 41.71/

63.37

Ballé-SHP 8.30M/
5.90M

28.16/
50.89 1.51 42.81/

65.54

Minnen-MSHP 14.04M/
11.65M

29.51/
52.39 1.52 44.17/

67.05

Minnen-JHAP 21.99M/
19.59M

4128.17/
4789.89 275.18 4416.7/

5078.2

Cheng-JHAP 16.35M/
22.27M

2167.34/
4153.95 277.26 2457.7/

4444.3

Lu-JHAP 5.28M/
4.37M

2090.88/
5011.56 352.85 2456.8/

5377.8

Chen-BJHAP 36.73M/
28.08M

3111.01/
5837.38 43.16 3167.3/

5893.6

NX/TX2 refers to the encoding time on the respective client
device. Analogously, dec. refers to the decoding time at
the server. Lastly, Full NX/TX2 is the total execution time
of encoding at the respective client plus decoding and the
prediction task at the server.

LIC models without a sequential context component are
noticeably faster but are still 9.3x-9.6x slower than Franken-
Split despite a considerably worse r-d performance. Compar-
ing Ballé-FP to Minnen-MSHP reveals that including side
information only incurs minimal overhead, even on the con-
strained client. Contrarily, Lu-JHAP has less than half the
parameters of Minnen-MSHP but is still slower by two or-
ders of magnitude. On the server, FrankenSplit’s is slightly
slower than the baselines without a context model due to the
attention mechanism of the decoder blueprint for the swin
backbone. However, unlike all other baselines, despite the
more extensive decoder network, the computational load is
near evenly distributed between the client and the server, i.e.,
FrankenSplit’s design heuristic successfully considers resource
asymmetry. The importance is emphasized by how the partially
parallelized context model of Chen-BHJAP leads to faster
decoding on the server. Nevertheless, it is slower than other
JHAP baselines due to the overhead of the increased encoder
size outweighing the performance gain of the blocked context
model on constrained hardware.

2) Competing against Offloading: In Section I, we argued
the importance of exploiting available resources for resource
efficiency. Although SC attempts resource efficiency with a
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Fig. 8: Rate-distortion curve for multiple downstream tasks

joint on- and offloading deployment strategy, current methods
are limited to niche applications. To overcome the niche
applicability, we proposed treating compression as the primary
objective and skipping the shallow layers on the server as
a side product. Notably, due to tasking the decoder with
restoring and transforming the compressed representation, the
reduced latency by pruning the head is offset by the decoding
time, i.e., unlike other work in SC, FrankenSplit does not
reduce the latency on the server. Indicatively, FrankenSplit
skips the head of the patch embed and the first two stages,
but the decoding time offsets latency reduction. Hence, latency
reduction exclusively depends on the reduced transfer size.

We evaluate transfer time on a broad range of standards
using the average compressed filesize from the ImageNet
validation as the transfer size. We set the encoding and
decoding time for the handcrafted codecs to 0 since we did
not include the execution time of entropy coding for learned
methods. The setting favors the baselines because both rely
on entropy coding and sequential CPU-bound transforms. Ta-
ble VI summarizes how our method compares to the baselines
in various standards, ranging from LoRa (0.05 Mbps) to 5G
(66.9 Mbps). Due to space constraints, we cannot include
comparisons to LIC models. Still, with Table V and the r-
d results from the previous subsection, it is straightforward to
infer that the LIC baselines have considerably higher latency
than FrankenSplit. Instead, a comparison to the lightweight
handcrafted codecs is more insightful.

Our method is virtually always preferable since the reduced
transfer size is up to 12.06x smaller than the handcrafted
codecs. Moreover, in highly constrained networks, such as
LoRa, FS-SGFP (-0.23%) is up to 17.4x faster. For stronger
connections, such as 4G LTE, it is still up to 3.3x faster.
Generally, the less constrained the bandwidth, the more favor-
able it is to offload. Yet, FrankenSplit is significantly better
than offloading up until 5G. The only caveat is that our
method assumes the client has an onboard AI accelerator.
However, since such chips already see widespread adoption
and are becoming increasingly energy efficient, the assumption
is sensible.

TABLE VI: Total Latency with various wireless standards

Standard/
Data Rate

(Mbps)
model Transfer

(ms)
Total [TX2]

(ms)
Total [NX]

(ms)

LoRa/
0.05

FS-SGFP (0.23) 769.98 787.87 785.92
FS-SGFP (LL) 1133.41 1151.3 1149.35

WebP 4675.95 4689.1 4689.1
PNG 13675.92 13689.07 13689.07

BLE/
0.27

FS-SGFP (0.23) 142.59 160.48 158.53
FS-SGFP (LL) 209.89 227.78 225.83

WebP 865.92 879.06 879.06
PNG 2532.58 2545.72 2545.72

4G/
12.0

FS-SGFP (0.23) 3.21 21.09 19.15
FS-SGFP (LL) 4.72 22.61 20.66

WebP 19.48 32.63 32.63
PNG 56.98 70.13 70.13

Wi-Fi/
54.0

FS-SGFP (0.23) 0.71 18.6 16.65
FS-SGFP (LL) 1.05 18.93 16.99

WebP 4.33 17.47 17.47
PNG 12.66 25.81 25.81

5G/
66.9

FS-SGFP (0.23) 0.58 18.46 16.51
WebP 3.49 16.64 16.64

FS-SGFP (LL) 0.85 18.73 16.78
PNG 10.22 23.36 23.36

V. CONCLUSION

In this work, we have carefully identified the unique chal-
lenges for critical applications relying on large DNNs, that
edge devices cannot accommodate. Then, we analyzed the
inadequacy of existing solutions for MEC, allowing us to
conceive a novel training method and a design heuristic for
lightweight autoencoders. We thoroughly evaluated our solu-
tion with various baselines and successfully demonstrated how
it overcomes current limitations. Our evaluation has also led to
two crucial insights. First, applying existing LIC methods to
feature compression directly is naive. Second, including side
information is less resource intensive than initially assumed.
Therefore, it is interesting to conceive novel methods for fea-
ture compression to include side information beyond applying
the hypernetworks from general-purpose LIC.
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[32] David Minnen, Johannes Ballé, and George Toderici. Joint autoregres-
sive and hierarchical priors for learned image compression, 2018.

[33] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classi-
fication over a large number of classes. In 2008 Sixth Indian Conference
on Computer Vision, Graphics & Image Processing, pages 722–729,
2008.

[34] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learn-
ing with contrastive predictive coding. arXiv preprint arXiv:1807.03748,
2018.

[35] Automatic Differentiation In Pytorch. Pytorch, 2018.
[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252,
2015.

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4510–4520, 2018.

[38] Marion Sbai, Muhamad Risqi U. Saputra, Niki Trigoni, and Andrew
Markham. Cut, distil and encode (cde): Split cloud-edge deep infer-
ence. In 2021 18th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON), pages 1–9, 2021.

[39] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual
explanations from deep networks via gradient-based localization. Inter-
national Journal of Computer Vision, 128(2):336–359, oct 2019.

[40] Claude E Shannon. Coding theorems for a discrete source with a fidelity
criterion. In IRE National Convention Record, 1959, volume 4, pages
142–163, 1959.

[41] Jiawei Shao and Jun Zhang. Bottlenet++: An end-to-end approach
for feature compression in device-edge co-inference systems. In 2020
IEEE International Conference on Communications Workshops (ICC
Workshops), pages 1–6, 2020.

[42] Saurabh Singh, Sami Abu-El-Haija, Nick Johnston, Johannes Ballé,
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