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Abstract—Quantum processing units (QPUs) are currently ex-
clusively available from cloud vendors. However, with recent ad-
vancements, hosting QPUs is soon possible everywhere. Existing
work has yet to draw from research in edge computing to explore
systems exploiting mobile QPUs, or how hybrid applications can
benefit from distributed heterogeneous resources. Hence, this
work presents an architecture for Quantum Computing in the
edge-cloud continuum. We discuss the necessity, challenges, and
solution approaches for extending existing work on classical edge
computing to integrate QPUs. We describe how warm-starting
allows defining workflows that exploit the hierarchical resources
spread across the continuum. Then, we introduce a distributed
inference engine with hybrid classical-quantum neural networks
(QNNs) to aid system designers in accommodating applications
with complex requirements that incur the highest degree of
heterogeneity. We propose solutions focusing on classical layer
partitioning and quantum circuit cutting to demonstrate the
potential of utilizing classical and quantum computation across
the continuum. To evaluate the importance and feasibility of our
vision, we provide a proof of concept that exemplifies how extend-
ing a classical partition method to integrate quantum circuits can
improve the solution quality. Specifically, we implement a split
neural network with optional hybrid QNN predictors. Our results
show that extending classical methods with QNNs is viable and
promising for future work.

Index Terms—Quantum Computing, Edge Computing, Com-
pute Continuum, Split Computing, Circuit Cutting, Task Parti-
tioning, DNN Partitioning, Classical-Quantum Hybrid Machine
Learning, Quantum Neural Networks, Warm-Starting

I. INTRODUCTION

Noisy intermediate-scale quantum (NISQ) computers are
error-prone, contain only a limited number of qubits, and
impose restrictions on the depth of successfully executable
circuits [31]. Yet, algorithms tailored towards NISQ devices
started to demonstrate the viability of quantum computers
in various fields, ranging from molecule simulation [27]
to machine learning [11] and optimization problems [14].
Evidently, to advance research and development into prac-
tical applications of quantum algorithms, increasing the ac-
cessibility of quantum computers by introducing adequate
abstractions is effective. Nevertheless, providing researchers
and practitioners access to QPUs is challenging. Owing to
the limited availability, complexity, and cost of Quantum
Processing Units (QPUs), quantum computation for the masses
may currently only be viable through cloud services that can
hide the low-level machinery behind a convenient interface.
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Fig. 1. A Distributed Classical-Quantum Hybrid Platform

However, while cloud providers can decrease the complexity
and cost, we cannot exclusively rely on the efforts of hardware
manufacturers to increase the accessibility of resources by
simplifying the production and installation of QPUs. Instead,
it is essential to draw from our experiences in classical
computing on the ramifications of predominantly relying on
centralized cloud platforms. Besides the privacy-related risks
of entrusting third-party providers with sensitive data, the
cloud computing paradigm bears numerous downsides, such
as vendor lock-in and data centers posing a single point of
failure vulnerable to outages. Additionally, a narrow cloud-
centric view is inefficient since it leaves valuable resources
close to the client (e.g., Edge, Fog) idle by indiscriminately
offloading tasks to a remote server.

The edge-cloud continuum addresses the limitations of
cloud computing by aggregating resources in a hierarchical
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distributed network ranging from constrained edge devices
to cloud data centers. Unfortunately, after decades of relying
on centralized architectures, the transition is slow, with semi-
or fully decentralized platforms still needing to emerge [45].
Therefore, to avoid repeating the mistakes of classical com-
puting, it is crucial to aid researchers in implementing quan-
tum applications on distributed platforms before centralized
approaches solidify.

Notably, deploying edge applications on mobile quantum
devices is on the horizon with the recent advancements of
diamond-based QPUs [25] that allow quantum computation
at room temperature [37]. Hence, it is sensible to assume
that quantum computers may soon become widely avail-
able for individuals and organizations. Analogous to how
mobile Artificial Intelligence (AI) accelerators gave rise to
performance-critical intelligent applications at the edge relying
on Computer Vision (CV) or Natural Language Processing
(NLP), the emergence of mobile QPUs will pave the way for
a new class of intelligent applications that, for example, benefit
from efficiently solving complex optimization tasks. Still, even
with centralized approaches, the complexity of developing
hybrid applications significantly obstructs advancements in
quantum research. Practitioners must consider classical and
hybrid components, choose the appropriate hardware, and
manually manage the orchestration. To this end, this work

TABLE I
SUMMARY OF THE STATUS QUO AND OUR VISION

Category Current Situation Vision

Accessability Restrictive, centralized,
consolidates resources Optionally centralized or decentralized

Complexity Requires selection of components (e.g.,quantum
computers), multiple vendors and frameworks

Heterogeneous components abstracted
behind homogenous interfaces

Applications Restricted to cloud, high network latency Unrestriced, devices co-operation

Service Guarantees Requires assessment end-to-end
performance of manually stitched applications

SLOs, for single hybrid application.
Automates orchestration resource allocation

Workflow Must integrate individual classical and
quantum service providers manually

Freely composable workflow of
quantum and classical components

Resource Locality Cloud only Edge-Cloud Continuum

aims to encourage quantum computation research at the edge.
We describe key challenges and possible solution approaches
for distributed hybrid classical-quantum architectures. Specifi-
cally, the focus is on task partitioning to illustrate the potential
of drawing from an edge-cloud continuum and to explain the
intricate interplay of numerous classical and quantum compo-
nents the system designs stitch together into one cohesive unit.
Ultimately, our vision is for a distributed hybrid platform that
can automate the end-to-end process of orchestrating hybrid
applications to emerge. Then, as conceptualized by Figure 1
and summarized by Table I, practitioners can dedicate their
time solely to implementing the core logic of their applications
and algorithms.

To concretize and increase the intuition of the abstract
concepts of our work, we use a running example of im-
plementing a distributed hybrid platform for Mobile Aug-
mented Reality (MAR). Our choice is sensible, considering
how conceiving methods to accommodate the demanding and
complex requirements of MAR applications with edge com-
puting generalize well to arbitrary applications and is an active

area of research [61]. Moreover, a platform hosting MAR
applications must reliably serve numerous intelligent tasks that
can benefit from QPUs. For example, a navigation system for
cyclists to safely navigate urban areas by preventing them from
crashing into approaching vehicles requires object detection
and tracking models from a distributed camera network [54].

We summarize our contributions as
• Highlighting the opportunities of incorporating QPUs into

the edge-cloud continuum and how the distinct properties
of QPUs introduce novel challenges.

• Introduce the architecture for a distributed hybrid plat-
form with a variable composition of heterogeneous quan-
tum and classical nodes.

• Demonstrating the feasibility of extending partitioning
methods for classical Deep Neural Networks (DNN) with
quantum embeddings by implementing, evaluating, and
open-sourcing a proof of concept (PoC) of a splittable
hybrid classical-quantum neural network1.

Section II establishes the preliminary background and re-
lated work. Section III argues how future work on Quantum
Edge Computing (QEC) can benefit from existing work on
Classical Edge Computing (CEC) by drawing parallels to AI
accelerators and their role in Edge Intelligence. The rest of this
work is structured to progressively introduce the components
of our envisioned platform from a top-down perspective.
Section IV presents the core high-level serverless abstraction
model for client programmers. Section V extends the model
to provide first-class support for warm starting. Section VI
focuses on lower-level system challenges for a distributed
hybrid inference engine. Section VII describes and evaluates
our PoC for a hybrid classical-quantum D(Q)NN for split
inference. Section VIII concludes our work.

II. BACKGROUND & RELATED WORK

Cloud-centric platforms have paved the way to make cost-
efficient and large-scale applications accessible to the public.
However, the emerging edge-cloud continuum accentuates the
drawbacks of centralized architectures. Promising application
paradigms, such as Edge Intelligence [17], heavily rely on
the edge-cloud continuum and require autonomous manage-
ment over the large and heterogeneous system. We argue
that quantum computers can improve the quality of existing
applications and pave the way for novel ones. The success of
these applications is tied to available platforms that need to
support developers in designing, writing, testing, deploying,
and managing them. This section introduces concepts fun-
damental to our architectural vision and summarizes related
work.

A. Orchestration

The services of centralized platforms that provide access
to quantum computers can be combined with classical appli-
cations (i.e., Amazon offers event-based processing for their
quantum service). Hence, practitioners and researchers must

1https://github.com/rezafuru/QuantenSplit
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build hybrid applications by combining separate quantum and
classical components. Worse, they are burdened with selecting
different QPU technologies, devices, and compilers [23], [52].

1) Orchestration of Quantum Applications: Although quan-
tum applications consist of classical and quantum components,
they follow the same framework as classical computing in
dividing orchestration into two distinct procedures [66]. First,
workflow technologies manage control flows. Second, pro-
visioning technologies handle the deployment of application
components. Hence, we can reduce infrastructure complexity
by extending existing systems to support quantum applica-
tions. Wild et al. present Tosca4Q, which extends Tosca
to support workloads relying on quantum computers [69].
Weder et al. introduce Quantum Application Archives (QAAs),
allowing orchestration methods to treat quantum applications
as self-containing entities [66]. Later, Leymann et al. propose
extending QAAs through a marketplace, with an architecture
for a collaborative software platform to consider the develop-
ment process [32].

2) Quantum Platforms: Several cloud offerings provide
access to quantum computing as a service. However, it is still
challenging to integrate managed quantum services cohesively
into classical applications.

Garcia-Alonso et al. [23] present their proof-of-concept
implementation of a Quantum API Gateway recommending a
quantum computer target to run a given quantum application
for Amazon Braket. Additionally, Beisel et al. [6] propose
Quokka, a microservice-based framework to model and deploy
quantum workflows. The authors propose a set of microser-
vices that model the typical quantum workflow based on
Variational Quantum Algorithms (VQAs) [12]. This workflow
comprises circuit generation, execution, error mitigation, ob-
jective evaluation, and parameter optimization. The approach
fully decouples each part of pre-processing, executing, and
post-processing, allowing a flexible workflow definition. Fur-
ther, Salm et al. [56] present a concept that automatically
handles the analysis of quantum algorithms and the selection
of quantum computers. Grossi et al. [28] build a prototypical
platform inspired by Serverless Computing through which
quantum developers can deploy their applications. They em-
ploy a scheduler that focuses on queue management and result
retrieval. Leymann et al. [32] propose an architecture for a
collaborative software platform for quantum applications that
encompasses the development process and deployment aspect
through a marketplace for quantum applications.

The systems so far have shown how platforms can enhance
collaboration, improve the development of applications, and
simplify deployment aspects (e.g., dynamically selecting a
quantum computer). However, they only considered cloud
systems and focused on software development. We see that
complementary to our work as advances in these fields can
enrich development aspects of our envisioned hybrid applica-
tion platform. For example, an adoption of Tosca4Q [69] to
model serverless applications [70] can make our envisioned
serverless-based platform more accessible. Still, it requires a
platform to manage hybrid applications across the edge-cloud

continuum to make quantum applications accessible.

B. Serverless Edge Computing

A key problem of edge-cloud applications, such as edge
intelligence, is the autonomous orchestration of edge-cloud
applications [17]. Manual management is infeasible in these
large-scale and geo-distributed infrastructures, so a platform
that can autonomously manage application deployments is
required.

Serverless Edge Computing is the natural extension of
Serverless Computing that abstracts the underlying infras-
tructure and transparently deploys applications packaged as
functions across the system [3], [45]. We argue autonomous
management and simplified application development and de-
ployment can be enablers of the emerging quantum computing
paradigm. Nguyen et al. [47] present a holistic serverless
platform that supports classic, quantum, and hybrid applica-
tions. Conversely, we envision a platform that spans the edge-
cloud continuum and manages application deployments across
heterogeneous infrastructures. The increased complexity stems
from the composed applications and the sophisticated and fine-
grained monitoring, as Section IV will discuss.

C. Task Partitioning

Task partitioning in classical edge computing and quantum
computing are distinct research areas that address orthogonal
problems. Nevertheless, they share a common idea in dividing
a task into subtasks executable by isolated compute nodes.

Although we can draw from existing quantum computing
partitioning methods to aid schedulers in their placement
strategies, we must consider the unique properties of QPUs
before we can generalize them to classical methods.

Partitioning in classical edge computing concerns distribut-
ing load for resource efficiency [34]. In quantum comput-
ing, splitting tasks between classical and quantum nodes is
necessary for near-term applications to cope with the lim-
itations of NISQ devices [31], and most common hybrid
classical-quantum splitting patterns assign fixed roles to com-
ponents [67]. Additionally, patterns for quantum computation
are typically conceived to execute a particular class of al-
gorithms and do not consider applications where a quantum
algorithm is just one of several subtasks.

In contrast, as the limitations of quantum computation will
gradually diminish, a platform should be able to accommodate
new emerging patterns. For example, IBM’s 433-qubit QPU
announced in 2022 will soon be superseded by an 1’121-
qubit system [18]. Further, for near- and long-term QPUs,
the platform should dynamically adjust the workload between
quantum and classical nodes according to target SLOs, internal
(e.g., load), and external conditions (e.g., bandwidth).

1) Variational Quantum Algorithms: Variational Quantum
Algorithm (VQA) is a generic framework for optimizing the
parameters of a quantum circuit on a classical computer [12].
Depending on the target task, we can derive more spe-
cific algorithms, such as Variational Quantum Eigensolver
for approximating the lowest eigenvalue of a matrix [62]
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or Quantum Approximate Optimization Algorithms (QAOAs)
to approximate the solution of a combinatorial optimization
problem [59]. Another notable instance of VQAs is Quantum
Neural Networks (QNNs) which aim to improve the repre-
sentation of classical neural networks with embeddings in
the Hilbert space. Note, in literature, the distinction between
VQAs, Quantum Machine Learning (QML), and QNNs is
blurry; thus, for clarity, we refer to QNNs as models that are
built and trained for typical ML tasks (e.g., Feature Extraction,
Regression, or Classification).

2) Warm-Starting: The term warm-starting is ambiguous
due to its widespread usage in classical and quantum com-
puting. For example, it may refer to techniques that reduce
resource usage in machine learning and optimization [2]. Con-
trastingly, in classical serverless computing, warm-starting typ-
ically relates to methods for preparing execution environments,
such as reusing running containers [38]. This work considers
warm-starting a general strategy for partially computing or
preparing a quantum algorithm’s output on auxiliary devices.
Notably, warm-starting methods are not limited to classical-
to-quantum and may be quantum-to-quantum or quantum-to-
classical.

Hybrid classical-quantum systems can benefit from various
warm-starting methods that utilize previously obtained solu-
tions, approximations, or trained models [64]. For example,
following the assumption that optimal variational parameters
for similar problem instances solved with VQAs are in prox-
imity, parameters can be transferred between instances as
an initial point to warm-start from and improve upon [22].
Moreover, approximations that are cheaply generated by effi-
cient classical algorithms can be utilized to initialize quantum
circuits with a quantum state biased towards potential solutions
rather than starting from a neutral initial state [19]. On the
other hand, QNNs can benefit from pre-trained models through
transfer learning, i.e., adapting a classical or hybrid model
trained for a general task and training it further to tackle
a similar or more precise subtask [39]. Evidently, as these
warm-starting methods comprise a source algorithm from
which information is drawn and a target algorithm that is
enhanced with it, warm-starts may indicate potential ways of
distributing both classical and quantum computational efforts
in the continuum.

3) Depth and Widthwise D(Q)NN Partitioning: Depthwise
refers to splitting a large DNN between vertical layers, i.e., it
results in sequentially dependent partitions and does not in-
crease parallelization. In classical computing, depthwise parti-
tioning methods commonly aim to facilitate resource efficiency
by allowing multiple devices to process a request across the
continuum [20]. In quantum computing, depthwise partitioning
may refer to stacking QNN circuits to mitigate cascading gate
errors and accumulating noise during training [9].

Conversely, widthwise partitioning facilitates parallelization
by horizontally splitting a layer or circuit. Quantum circuit cut-
ting concerns addresses some limitations of NISQ devices by
partitioning larger circuits into several smaller subcircuits [4].
Classical widthwise DNN partitioning is less common since

AI accelerators parallelize the execution of layers. Still, in
highly constrained environments without access to server-
grade hardware, methods such as parallelizing filter compu-
tation of convolutional layers across devices are sensible [71].

We identify classical depthwise and quantum widthwise
partitioning as viable methods for an essential component of
our envisioned platform and will detail them in Section VI.

III. QUANTUM COMPUTING AND EDGE INTELLIGENCE

We argue that research on Quantum Edge Computing (QEC)
should directly extend Classical Edge Computing (CEC) rather
than foster isolated communities. In particular, we find that
future work on QEC can learn valuable lessons from existing
work on Edge Intelligence (EI). Intelligent tasks commonly
refer to solving problems that a program with classical control
structures cannot compute tractably or with sufficient pre-
cision. EI leverages advancements in specialized hardware
for constrained devices (e.g., AI accelerators) to push the
computation of such tasks with modern AI methods (e.g.,
DNNs). Similarly, QEC can leverage the advancements in
(mobile) QPUs to compute numerous tasks tractably (e.g.,
optimization problems) and with higher precision.

To identify where we can utilize prior experiences, this
section draws parallels between the rise of energy-efficient AI
accelerators and the challenges of integrating QPUs. Note that,
despite the existence of a broader definition for “AI”, literature
in edge computing typically uses AI as synonymous with
classical Machine and Deep Learning. To avoid ambiguity, we
will adhere to the same convention. Moreover, for brevity, we
refer to AI accelerators covering a broad class of chips suitable
for mobile devices that can efficiently execute vendor-specific
compiled computational graphs of DNNs as Tensor Processing
Units (TPUs) [33].

A. Parallels between Mobile QPUs and TPUs

QPUs can efficiently solve some problems intractable for
classical computers (e.g., integer factorization and discrete
logarithms [60]). Notably, QPUs can utilize entanglement and
superposition, two properties unique to quantum computing.
Conversely, although adding a TPU is formally incomparable
to the speed-ups and precision QPUs can provide, in practice,
TPUs provide substantial speed-ups for complex tasks DNNs
excel at.

For brevity, we will refer to DNNs specifically designed for
resource-constrained devices (e.g., IoT devices) or DNNs com-
pressed with quantization, pruning, or knowledge distillation
methods [16], [26] as “Lightweight”. Analogously, we refer to
circuits designed to run on more constrained QPUs than the
state-of-the-art as “shallow” or “narrow”. The reference point
is relative and aligns with the assumption that integrated chips
in resource-constrained devices have lower capacity chips than
contemporary server-grade hardware. Similarly to how TPUs
are accelerators for lightweight DNNs [13] to solve CV and
NLP problems, mobile QPUs (MQPUs) will allow constrained
devices running shallow quantum circuits to solve optimization
problems.
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Conclusively, viewing QPUs as an accelerator for an orthog-
onal set of intelligent tasks, i.e., tasks impractical for classical
handcrafted programs, is reasonable. Nevertheless, QPUs and
TPUs can complement each other for non-orthogonal tasks in
the near term. For example, the primary motivation of QNNs
interestingly differs from the typical advantages of quantum
computation. Since the training and inference of DNNs are
highly parallelizable, modern classical hardware already effi-
ciently accommodates them. Instead, QNNs can exploit prop-
erties of the Hilbert Space to find better representations [1].
Moreover, it has been shown that utilizing entanglement in
training data can reduce the limits on learnability imposed
by the (classical) no-free-lunch theorem [58]. Nevertheless,
especially for high-dimensional data (e.g., Images), it is chal-
lenging to build and train QNNs since methods must map the
high-dimensional representation to a low number of qubits.
Therefore, currently, hybrid classical-quantum QNNs show
more promising results. Unlike pure QNNs and other VQAs,
hybrid QNNs consist of parameterized classical and quantum
components, and first apply classical layers to find a suitable
representation before encoding the features to a quantum state
and passing them to a quantum circuit [36], [39].

B. Quantum for and on the Edge

In their seminal work, Deng et al. [17] proposed distinguish-
ing Edge Intelligence between AI for Edge and AI on Edge.
Analogous to their work, we suggest that future research in
QEC should be categorized in Quantum on and for Edge.

1) Quantum on Edge (QoE): addresses the challenges of
building systems for distributed applications that rely on
QPUs. Research in this category can focus on integrating exist-
ing quantum systems into the continuum, such that classical
resources across a hierarchical network can aid in reducing
wait times and load on QPUs. Alternatively, the focus may be
on generalizable approaches for extending existing classical
systems to increase the solution quality with QPUs. Section V
and Section VI introduce ideational methods for both subcat-
egories to facilitate this direction.

2) Quantum for Edge (QfE): focuses on solving opti-
mization problems in edge computing. Unlike QoE, it is
not fcomplementarity to the classical AI counterpart. Rather,
quantum researchers should aim to outperform AI methods.
Existing classical methods could be utilized to warm-start
quantum optimization. Moreover, they can serve as valuable
benchmarks, marking a threshold quantum algorithms must
cross before they are viable in practice. It is worth noting that
quantum algorithms have been shown to outperform classical
optimization methods for specific problem instances, which
can be identified with a high probability prior to running the
algorithm [43].

IV. AN ARCHITECTURE FOR A DISTRIBUTED HYBRID
COMPUTE PLATFORM

This section introduces the envisioned architecture illus-
trated in Figure 2. We first provide a high-level model of an
edge-cloud continuum and relate it to our running example

of a MAR platform that aims to implement our architecture.
Then, we describe the individual components and how clients
interact with them so that the remaining sections can reference
the architecture. We do not claim that the components we in-
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Fig. 2. Our envisioned Architecture

troduce in our architecture are sufficient for a hybrid platform.
Rather, we believe it forms a foundation for future work as a
starting point for a new research directive to advance quantum
and edge computing.

A. Resource and Scenario Formulation

Our conceptual MAR platform distinguishes between sys-
tem designers, client programmers, and clients. The system
designers seek methods to build a platform that allows client
programmers to deploy applications or experiments. Client
programmers write and deploy MAR applications and have
varying requirements. Clients are devices that access applica-
tions by issuing requests. Our objective is an architecture that
maximizes the rate of advancements in quantum applications
and algorithms by unconditionally minimizing the complexity
for client programmers at the expense of system designers and
platform providers.
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1) Service Level Objectives and Agreements: With SLOs,
clients can specify quantifiable metrics according to their
application’s requirements that a platform should uphold.
Typically providers bundle SLOs together as Service Level
Agreements (SLAs). Nevertheless, we do not require a dis-
tinction between SLOs and SLAs since the latter is simply
a constructible contract of the former. Guaranteeing SLOs
is difficult even in purely classical serverless (edge-)cloud
systems [44], [53], [57]. The following proposes solutions for
conceptualizing an architectural platform vision with the addi-
tional consideration of integrating QPUs. Section III stressed
the importance of extending existing methods to accommodate
QPUs instead of conceiving novel methods unaware of recent
advancements in CEC. Therefore, we draw from ongoing
research in classical computing from a systems perspective,
intending to extend existing state-of-the-art classical methods
instead of competing with them. For the remainder of this
work, we refer to a component or service as SLO-aware if it
has access to the SLO registry and implements a corresponding
decision mechanism.

2) Resource Assumptions on the Edge-Cloud Continuum:
Resources are spread across three domains: edge, fog, and
cloud. There is no universally agreed-upon definition for
the edge and fog domain. Hence, we remain as general as
possible without compromising the practicability of our archi-
tecture. Defining the fog domain as clustered computational
nodes significantly nearer to client devices than the closest
cloud data center is sufficient for our purposes. The edge
domain comprises the clients and nearby SLO-aware load
balancers [8]. Table II summarizes each domain’s properties
and the available resources to which our MAR platform has
access. In particular, for QPUs, we refer to the properties
of current or expected near-term devices. While once QPUs
become mature enough, they may be as accessible as classical
hardware, system designers will need to address the near-
term limitations of QPUs. We distinguish between mobile-

TABLE II
SUMMARY OF RESOURCES ACROSS DOMAINS

Domain Dominating Cost Type Grade Capacity Notable Limitation

Edge Energy - Client
may not warm start

CPU Mobile Low Heterogeneity
TPU Mobile Very Low Lightweight DNNs

Fog
Load - Requests may
have to be routed to
the cloud.

QPU Mobile Low Circuit Width/Depth
CPU Server High Outages
GPU Server High Outages

Cloud
Communication -
Remote data centers
incur high latency

QPU Server Medium Availability
CPU Server Unlimited Interference
GPU Server Unlimited Interference

and server-grade hardware. The former can only execute a
subset of the latter. Capacity refers to the size of a model
and how many instances we can spawn on demand. Unlimited
means we can host as many instances of the largest off-
the-shelf models as necessary. High implies some trade-off
between the size and the number of instances of a model
where it is possible to exhaust the available capacity when
the number of concurrent client requests exceeds a certain
threshold. Medium and Low suggest additional limitations to
the hardware, e.g., how the circuit depth and the number of

qubits on NISQ devices limit the size of a QNN. In our
running example, the platform providers aim to place QPUs
near several major cities. Therefore, they purchased numerous
mobile-grade QPUs (e.g., the announced diamond-based QPUs
of Quantum Brilliance [37] or SaxonQ [25]) that they expect
to have sufficient capacity for most models. Since they cannot
feasibly host server-grade QPUs (e.g., IBM’s planned 1’121-
qubit system [18]) in every supported location, the requests
that require larger circuits are either forwarded to a remote
cloud data center or processed with partitioning methods we
will elaborate on in Section VI. Lastly, we label the capacity
of edge TPUs as “very low“ since they can typically only
host one lightweight DNN in memory. Contrastingly, in the
fog and cloud domain, we can host multiple instances of the
same DNN on virtualized GPUs. A notable limitation for
a resource may not be exclusive to a single domain but is
a concern system designers should be particularly conscious
about in that domain. Heterogeneity refers to the numerous
chip architectures with varying constraints. Lightweight DNNs
and Circuit Width/Depth refers to the limitation of TPUs and
MQPUs to execute larger models. Interference refers to the
performance degradation from serving virtualized resources to
multiple clients [46].

B. Architecture Planes and Components

The architecture differentiates between four planes accord-
ing to their function and intended interaction with other com-
ponents, clients, or client programmers. Each plane exposes
private or public APIs. Private APIs are only accessible by
internal components, whereas public APIs are accessible by
external entities, i.e., clients and client programmers.

1) Execution Plane: Application instances run on the exe-
cution plane. It consists of Public APIs, Hardware Hosts, and
Worker Clusters. The public APIs allow clients to interact with
the application via access points.

The hardware hosts are subdivided according to the sup-
ported application types, i.e., into classical and quantum nodes.
The quantum hosts are further subdivided according to their
grade, i.e., QPUs are server-grade and MQPUs mobile-grade.
The classical hosts additionally subdivide to consider AI
workload. Each node is registered by the device registry that
associates data describing their capacity (e.g., memory size,
VRAM, qubits) and stores it into the metadata storage. The
metadata storage is a highly-available key-value storage (e.g.,
ETCD used in Kubernetes) accessible by other components.
Especially for the continuum, where nodes can arbitrarily join
and leave the system, the metadata must be highly available
and not remain stale to measure the system’s overall capacity
accurately.

The Worker Clusters consists of at least one hardware
host and represents the application environments that may
rely on one or multiple hardware nodes. Since quantum
and classical environments are separate, it is necessary to
distinguish between classical and quantum worker clusters.
Naturally, quantum applications will require classical workers
for auxiliary tasks (e.g., pre-processing, measurement). Once
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a worker completes a task, a classical worker is responsible
for forwarding the result. The result is forwarded to another
worker cluster for distributed applications that partition the
task on multiple devices. The result is forwarded to the
client for monolithic applications or the last partition of a
distributed application. Instrumentation tools send telemetry
data to the monitoring system by accessing private APIs of
the Provenance Plane.

2) Provenance Plane: The Provenance Plane encapsulates
a highly available distributed Provenance database through
which real-time monitoring data is stored and shared. It
consists of a Quantum Provenance and a Classical Provenance
system, offering private APIs to access and store telemetry
data. It is crucial to conceive methods that consider the
intrinsic properties of QPUs, to create reliable and predictable
systems for quantum workloads. Notably, error rates vary
depending on a QPU’s current state, i.e., exclusively collecting
classically relevant data (e.g., load) for quantum and hybrid ap-
plications is insufficient for SLOs with solution quality targets.
Classical monitoring for a platform deploys instrumentation
tools (Execution Plane) alongside the application to collect
telemetry data on workload trends and resource usage of func-
tion instances (e.g., load, CPUs, GPUs, I/O). Orthogonally, a
quantum provenance system gathers information on the state
of QPUs to analyze errors, such as properties of Quantum
Circuits, QPUs, Compilation, and Execution, as proposed by
Weder et al. [65]. A platform can utilize provenance data
for error mitigation and to aid schedulers with upholding
SLOs by assessing the currently expected solution quality.
Platforms that support hybrid applications should integrate
quantum provenance with classical instrumentation to form
one cohesive monitoring system for simplified access to vari-
ous heterogeneous devices.

The objective of a monitoring system is to collect the
minimal data necessary for informing schedulers to uphold
SLOs. Conceiving hybrid systems is non-trivial, as finding a
balance is already challenging for classical edge-cloud and
hybrid systems monitoring [24], [53]. A system that trivializes
monitoring by aggressively collecting data may ease the task
of a scheduler but can cause resource congestion across the
edge-cloud continuum [24]. Conversely, collecting insufficient
telemetry data will significantly reduce the system’s scalability
as it cannot appropriately route requests or scale resources up
and down. We argue that a granularity mechanism capable of
adjusting the frequency of quantum and classical monitoring
data according to the current workload’s characteristics is one
of the principal challenges that future work must address
before a hybrid platform can emerge. Nevertheless, monitoring
itself is simply a precondition. The following describes how
our architecture supports resource efficiency and elasticity
based on available monitoring data.

3) Elasticity Plane: The Elasticity plane is the central
organ of the system that decides how to allocate resources
and route requests according to client SLOs, metadata, and
monitoring data. The Control clusters are subdivided between
Quantum and Classical Control Clusters. The former man-

ages quantum application instances (e.g., scale-out quantum
coordinators), while the latter manages classical application
instances (e.g., horizontal scaling of applications). Each con-
trol cluster manages a set of worker clusters (see Execution
Plane) that are dynamically scaled up or down according to
the application instances the cluster can control. Monitoring
Agents are responsible for the worker clusters and relay data to
the control cluster’s monitoring broker. A Monitoring Broker
disseminates the data across the components. A Classical
Autoscaler and Classical Scheduler maintain a local and global
view of the control cluster’s state. Classical autoscaler and
schedulers exist in Quantum Control Clusters, since Quantum
Coordinator Applications (See Control Plane) are classic.
The Quantum Coordinator Manager supervises the Classical
Autoscaler and Scheduler to scale and place the Quantum
Coordinator Application (see Control Plane) instances.

The Local View contains fine-grained information about the
Worker Clusters (e.g., CPU usage per second). In contrast, the
Global View contains coarse-grained information (e.g., average
CPU usage over an hour) about neighboring control clusters.
The coarse-grained data consists of fine-grained local data
collected by a Global View Aggregator that periodically pub-
lishes a summary, i.e., the global view consists of exchanged
summaries of local views.

The control cluster’s messaging topology and broker par-
tially address the granularity control of monitoring data and
permit an elastic control mechanism that can scale the entire
system by adequately allocating its limited resources. The
implementation of the autoscaler and scheduler is interchange-
able, and system designers may experiment with various
methods. The Quantum Cluster Autoscaler is inspired by the
work of Tamiru et al. and Gandhi et al. and is an SLO-aware
cluster autoscaler capable of adding and removing Quantum
Hosts from worker clusters to process the incoming workload.

Classical Routing is inspired by the work by Raith et al.
[53] and consists of a Load Balancer and a Load Balancer
(LB) Watcher. The Load Balancer is a high-throughput and
low-overhead component that re-directs incoming requests
to application instances or other clusters (e.g., because no
application instance is running). The Load Balancer Watcher
is SLO-aware and periodically refreshes the load balancer’s
state to update the decision mechanism.

The Quantum Routing component differentiates itself from
Classical Routing, as it considers additional challenges to
improve the resource efficiency of quantum hosts. Quantum
Computing Selection is particularly valuable for the edge-
cloud continuum as it introduces further heterogeneity. The
selection method is another freely interchangeable component.
For example, system designers may opt to use the method
proposed by Quetschlich et al. [52] and replace it once
they find a more suitable alternative. Multi-programming in
quantum computing has a comparable role to virtualization in
classical computing, i.e., it allows sharing of the resources of
quantum computers among multiple circuits [15]. However,
unlike in classical computing, where we can readily select
existing mature virtualization methods, multi-programming
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is more involved and should be considered together during
encoding [48] and influences quantum computer selection.

4) Control Plane: The Control plane exposes an API to
client programmers to deploy and manage their applications.
The public API should allow client programmers to define
hybrid applications as workflows without separately deploy-
ing classical and quantum parts. The platform analyzes the
workflow during the registry and partitions it into classical and
quantum applications. The Application Registry encapsulates
several registries responsible for storing application services,
SLO targets, and parameterized models. The Model Registry
is similar to a model zoo (e.g., torch image models [68]).
However, here the models may either be classical neural
networks or quantum circuits. In addition, profilers associate
static metadata to each model (e.g., number of parameters,
circuit depth, layer types). Profiler metadata supplements the
schedulers and autoscalers with valuable information to predict
resource usage more accurately (e.g., a Swin-Tiny will incur
higher usage than a Swin-Base [35]). Our architecture sup-
ports warm-starting as a first-class citizen, which Section V
will elaborate on. Service Discovery enables Quantum and
Classical Routing to locate running application instances.

Classical Applications consist of the application code and
a runtime that executes the code upon creating an application
instance. The architecture does not require any assumptions
about the runtime, i.e., the runtime can range from containers
to WebAssembly modules. Application may optionally provi-
sion arbitrary Application Databases (e.g., relational, object-
based).

The Quantum Application is more complex as it requires
the interplay between quantum and classical resources. The
Quantum Coordinator contains the Quantum Application, im-
plemented by the client programmers. The Quantum Applica-
tion is written in a particular programming language and an
SDK for quantum computing. The Quantum Coordinator coor-
dinates the execution of a quantum application (i.e., quantum
circuit). Quantum Applications requires routing capabilities to
connect the classical part of the quantum application, that pre-
and post-processes input and output, with the quantum part, the
QPU that executes the quantum circuit. Moreover, Quantum
Coordinator requires Quantum Routing capabilities to select a
suitable Quantum Host or to perform Multi-Programming to
increase QPU utilization efficiency.

V. WARM-STARTING AT THE EDGE

Warm-starting aligns with the objectives of a distributed
hybrid platform, i.e., it facilitates drawing from resources
across the continuum. Ideally, applications can pre-process
input before passing it to a remote server. Warm-starting meth-
ods in the context of quantum computing are categorizable into
Classical-To-Quantum (C2Q), Quantum-To-Quantum (Q2Q),
or Quantum-To-Classical (Q2C) [64]. Each category has an in-
put and an output format. For example, C2Q expects classical
input, and the output format should suit a quantum algorithm.

Nevertheless, we argue that system designers must subdi-
vide the categories further to include neural input and output

formats, such as Neural-To-Quantum (N2Q) or Classic-To-
Neural (C2N), for two reasons. First, neural methods rely on
AI accelerators that may not be present or have alleviated
energy consumption, i.e., it is indispensable for a scheduler to
know hardware properties to hit SLO targets. Second, although
the output of a classical DNN is classical, the network weights
may be tuned to extracted features tailored for a particular
class of algorithms.

A. Current and Future Role of Warm-Starting

Currently, a common motivation for warm-starting is to
reduce the dependency on QPU time due to cost and limited
availability [64]. However, we stress that the importance
of warm starting lies in improving the solution quality by
combining classical and quantum algorithms. Moreover, once
QPUs mature to a point where we can entirely forgo classical
computation, the research focus can shift to Q2Q warm-
starting, where smaller client devices can partially onload
quantum algorithms for resource efficiency. For example,
warm-starting can be a means to embed performance guaran-
tees of classical algorithms into quantum algorithms and can
reduce the amount of training data required for (Q)ML.

A downside of warm-starting is that it increases the applica-
tions’ complexity as it introduces more parts that must be man-
aged, i.e., it is crucial to introduce a convenient interface that
supports warm-starting as a first-class citizen further to shift
complexity from client programmers to platform providers.
Notably, warm-starting is chainable. Hence, we can naturally
integrate warm-starting methods in the edge-cloud continuum
if a platform exposes an interface that resembles the hierar-
chical properties regarding device capacities in the network.

The following describes the requirements and proposed
solution approaches for an aware hierarchical warm-starting
programming model. Hierarchical refers to how the warm-
starting methods are composable in a pipeline that resembles
their resource usage requirements. The proposed interface does
not rely on any assumption regarding the availability and
limitations of QPUs, i.e., it treats each method in the pipeline
as exchangeable building blocks. The current progress of avail-
able QPUs is reflected in the client programmers by informing
them about the feasibility of their planned warm-starting
pipeline. For example, the platform could disable support for
Q2Q warm-starting at the network’s edge until MQPUs find
widespread adoption in end devices, such as smartphones.

B. Hierarchical Warm-Starting

In our running example, the MAR platform aims to improve
resource efficiency with hierarchical warm-starting. The load
heavily fluctuates for city-scale applications according to date
and time. By chaining warm-starting hierarchically, idle com-
putational resources of edge and fog nodes can be utilized,
e.g., to reduce offloading to the cloud.

Warm-starting is a broad term encompassing numerous
classes of methods [64]. The challenge is to conceive an
interface flexible enough to remain convenient without expos-
ing low-level details, such as manually selecting devices and
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fallback mechanisms, to the clients. An interface would be
maximally flexible if it forces client programmers to define
every single step of the execution, where to deploy which
part at which node, and to manually configure the quantum
executions (e.g., device, compiler) for every method in the
pipeline. An interface that does not restrict the configura-
tion space is especially undesirable when considering the
heterogeneity of the continuum. Specifically, it would not be
sufficient to provide a single configuration for a method, and
there is no guarantee for the availability of a particular device
configuration at the edge or fog. Conversely, constraining
client programmers exclusively to a list of pre-implemented
solutions is counterproductive as it hinders innovation, i.e.,
they should at least be able to (optionally) provide their warm-
starting method.

To summarize, the responsibility of a platform is to build
the infrastructure and provide adequate abstractions to access
the resources. A dedicated interface for warm-starting should
allow clients to define composable workflows to process a
warm-starting pipeline, i.e., client programmers can register
pre-processing steps for warm-starts through the control plane
from our architecture in Figure 2 that may run on CPUs, TPUs,
or QPUs deployed at the client device or fog nodes.

Consider Figure 3 for the following example. Three clients
execute the same application using the public API of the
control plane. The client programmers defined a warm-starting
pipeline for their applications. Hence, the pipeline and its
methods are placed in the warm-starting registry, and the
system decides where to position the models in the continuum
based on the profiler metadata. However, the clients request
varying target qualities; hence, the platform applies different
intensities of warm-starting before sending the task to a
quantum cloud vendor. Intensity refers to the expected solution
quality of a quantum algorithm with an input processed by a
warm-starting method. In Figure 3, client C1 cannot achieve
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Fig. 3. High-level Sequence of Hierarchical Warm-Starting

any pre-processing in the edge due to energy constraints
(indicated by a low battery symbol) and therefore forwards
the input in its original classical representation. Since C1
registered at least one pre-processing step at the fog, the load

balancer routes the request to a fog node, applying the step
that maps to a C2Q warm-start. Conversely, if C1 had the
resources to pre-process its input for a target neural network,
the fog node would have taken over processing its output
further to warm-start the quantum task, resulting in a chain of
C2N and N2Q warm-start. Client C2 can perform resource-
conscious pre-processing for a C2N warm-start. Still, since
it does not achieve the required target quality, the request is
routed to a fog node with available QPUs to apply further
pre-processing for an N2Q warm-start. Client C3’s request is
directly routed to the cloud by the load balancer, since C3 had
enough onboard resources for pre-processing the task to the
target quality without relying on fog nodes.

VI. A DISTRIBUTED INFERENCE ENGINE FOR HYBRID
CLASSICAL-QUANTUM NEURAL NETWORKS

While the last two sections introduced high-level concepts
of the architecture, this section focuses on lower-level system
designs for platform designers and how client-programmers
may implement a distributed hybrid application. We extend
our running example and discuss how the MAR platform may
support an inference engine with hybrid classical-quantum
neural networks.

(D)QNNs are uniquely qualified as a representative ap-
plication beyond DNN inference to cover how a distributed
platform can adapt as the limitations of QPUs are gradually
lifted for three reasons. First, a hybrid QNN is composable
of parameterized classical and quantum nodes. Contrastingly,
other VQAs typically operate non-parameterized classical
components exclusively for pre-/post-processing and to opti-
mize the parameters. For a hybrid QNN, there are additional
components with no statically predefined role assignments,
i.e., we can represent how systems adapt as they progressively
replace classical with quantum nodes proportional to availabil-
ity and advancements in QPUs. Second, we can split a neural
network horizontally by layer or cut individual layers vertically
and view each partition as an isolated computational graph.
Then, a simple inference request (e.g., image classification)
can emulate the behavior of a complex task with numerous
classical and quantum subtasks that a system must coordinate
to compute a single solution. Third, DNN partitioning and
collaborative inference are well-established research areas in
CEC that consider the heterogeneity of classical hardware
and the resource asymmetry between edge, fog, and cloud
nodes [41]. Hence, we can directly extend existing work
to determine whether QPUs may improve the quality of
classical methods and are not restricted to orthogonal problems
infeasible for classical computers.

A. System Challenges

We consider the domain properties summarized in Table II
to describe the challenges system designers may face when
implementing our architecture.

Unlike regular business logic, intelligent tasks (e.g., image
classification, object detection) rely on specialized hardware,
i.e., regardless of whether we include QPUs, the platform
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must treat inference requests as a workload with distinct
characteristics.

1) Volatility: The scheduler must dynamically adapt to two
sources of volatility. First, outages in the fog domain are
frequent. Moreover, unlike in the cloud, classical fog resources
cannot seamlessly scale horizontally, i.e., requests may have
to be routed to the cloud. Second, fog and cloud QPUs may
be scarce, and depending on their current state, they may not
hit the target solution quality SLO.

2) Device Heterogeneity: While the challenges of hetero-
geneity of classical components are only tangentially related to
the integration of QPUs, minimal consideration regarding the
numerous accelerators is necessary. Compilers map classical
DNN to computational graphs, and vendors have varying
support for operations limiting the available layer types and
activation functions [33].

3) Task Chaining and Bandwidth Consumption: To fully
draw from the resources on the continuum, we require methods
that onload some computation on client-side accelerators.
However, mobile devices can typically only host a single net-
work in memory, and swapping out DNN weights from storage
incurs significant overhead. Hence, latency-sensitive applica-
tions sending subsequent inference requests for different tasks
must offload, leaving valuable resources idle. Additionally,
when numerous clients compete for limited bandwidth by
streaming high-dimensional image data, the limited bandwidth
will inevitably lead to erratic response delays.

4) Optional Quantum Embeddings: Although the avail-
ability of QPUs is steadily increasing, clients cannot expect
the same graceful scaling of classical resources in the cloud
currently, i.e., depending on the load, it may not be possible to
hit latency SLOs with quantum layers. Therefore, the inference
engine should be flexible enough to skip computing quantum
embeddings for near- and intermediate-term devices.

5) Utilizing Mobile Quantum Devices: Diamond quantum
accelerators are expected to be mature enough soon for
commercial use [25], [37]. However, regardless of how MQ-
PUs improve, analogous to classical hardware, we assume
that server-grade hardware will consistently outperform their
mobile counterparts. The challenge is to conceive methods
that can leverage the advantages of MQPUs, ideally without
sacrificing solution quality.

B. Solution Approach

The simple solution for accommodating multiple tasks and
configurable solution qualities considers a separate DNN for
each variation. This is difficult to maintain and inflexible, forc-
ing client programmers to implement and re-deploy entire ar-
chitectures for each task. Worse, it does not address challenge
3), i.e., applications relying on multiple tasks cannot draw
from client resources without a significant latency penalty.
Instead, we describe how partitioning methods lead to com-
posable architectures that naturally define small deployable
applications.

1) Classical Split Computing: Depthwise split computing
addresses challenges 2)-4) and groups layers into partitions.

Each partition is a feature extractor, and sequentially applying
them is a particular form of hierarchical warm-starting we
introduced in Section V. Platforms can include pre-trained
DNNs in the warm-starting registry of the Control Plane
from. Additionally, client programmers may register modules
according to their requirements. For example, edge devices can
optionally perform preliminary feature compression, and fog
nodes can apply a small- or medium-sized feature extractor
according to solution quality and latency targets.

To address challenge 2), we require an encoder suitable
for constrained end devices (e.g., Smartphones) composed of
operations widely supported by the various vendors of AI ac-
celerators. To address challenge 3), the encoder should perform
initial feature extraction and find a minimal representation for
a sufficient statistic on several downstream tasks to reduce
bandwidth consumption. Then, the server can select an inter-
changeable DNN for additional feature extraction according
to the configured latency and accuracy SLO. Lastly, a QNN
layer should embed the features to potentially improve the
representation before passing it to the classifier. However, to
address challenge 4), i.e., to cope with the limited availability
of QPUs, the QNN should be optional.

2) Quantum Circuit Cutting: Quantum circuit cutting ad-
dresses challenge 5). The idea is to cut large circuits that
require many qubits widthwise into smaller subcircuits requir-
ing fewer qubits [4] by strategically cutting circuit wires [10],
[49] and gates [4], [42]. Figure 4 illustrates an example in
which one wire and two gates are cut. Wire cutting separates
circuit wires through multiple measurements with different
observables Oi and subsequent initializations of the qubit
to state |ψi〉, while gate cutting substitutes two-qubit gates
with varying combinations of single-qubit gates. The stacked
subcircuits in Figure 4 indicate the generation of multiple
variations for each subcircuit.

The widthwise partitioning enables each subcircuit instance
to be executed individually on smaller quantum devices, which
may be more readily available. Following the execution of
these subcircuits, a classical post-processing procedure is
applied to recombine the results obtained from the individual
subcircuits, ultimately reconstructing the output of the original
circuit as a linear combination of the subcircuit results.

This approach facilitates the distribution of quantum cir-
cuit computations across multiple QPUs without necessitating
quantum communication. As a result, quantum circuit cutting
offers the opportunity to harness the power of several smaller
MQPUs at the edge, enabling the computation of larger
quantum circuits. Moreover, it promotes the more flexible
placement of quantum circuits across resources of the compute
continuum. Additionally, once MQPUs are wildly available,
we can leverage them to parallelize the execution of subcir-
cuits. This parallelization can alleviate the overhead associated
with each cut, significantly improving computational efficiency
and scalability.

3) Inference Flow: To provide intuition on how our pro-
posed approaches can serve client requests with varying re-
quirements, consider the flow of inference requests in Figure 5.
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Gate Cut

Wire Cut

Fig. 4. Circuit Cutting Basics

For simplicity, we restrict the example to image classification.
However, the image classification tasks may be different. For
example, one client classifies artwork in a museum to retrieve a
description using a virtual tour guide. Simultaneously, another
client is interested in retrieving descriptions of the local
fauna. Clients with AI accelerators apply neural compression
methods for preliminary feature extraction. Solid black lines
represent the flow of a request within a domain. The dashed red
lines represent inter-domain data transfers. The dashed gray
lines represent the telemetry and provenance data collected
adjacent to inference requests by a runtime spanning all
domains. The runtime is detailed by the Elasticity Plane of
our architecture in Figure 2 and collects telemetry data to
periodically update the SLO-aware load balancer to perform
informed decisions based on the state of each participating
node and client configurations. Dashed black lines represent
an alternative path, i.e., one request flows only to one of the
choices.

An edge load balancer routes the request to the load balancer
of a fog cluster. Depending on load and client requirements,
the request is routed to a Fog GPU node or the cloud.
After feature extraction, a load balancer decides whether
the classical embedding should be passed to a QNN before
classification. The QNN may be executed on a Quantum Fog
Node or sent to a remote cloud provider (e.g., due to privacy or
availability). However, based on our assumption, the MQPUs
are more constrained than the server-grade QPUs from cloud
providers. Hence, circuit cutting methods can aid MQPUs in
achieving a target solution quality. A request ends after the
classification label is sent as a response to the client.

Section VII will detail the DNN architecture and demon-
strate the viability of our proposed approach. Addressing
challenges 1), 5), and introducing runtime components (e.g.,
SLO-aware schedulers, deployment mechanisms) are other
promising research directives but out of scope for this work.
Still, the following describes how a platform may realistically
prepare and deploy the neural network components.

4) Application Preparation and Deployment: The individ-
ual operations of a DNN form a computational graph. More-
over, partitioning methods naturally demarcate a monolithic
DNN into connectable vertices. The vertices represent coarse-
grained classical layers or QNN circuits, and one or multiple
consecutive vertices form one depthwise partitioned deploy-
ment unit (e.g., a container). Alternatively, we can further par-
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tition a vertice to create one widthwise partitioned deployment
unit (e.g., with circuit cutting). Notably, depthwise methods
define isolated compute nodes, which we can transparently
combine with widthwise methods, i.e., from an outside view,
an adequate abstraction can present a cut circuit as a single
coarse-grained layer.

The client programmers may provide hints to the platform
via annotations, but the application should be deployable as
a single (monolithic) workflow. It is the responsibility of the
Control Plane of our architecture to create the deployment
units before spawning Quantum and Classical Application
instances. From the point of view of the client programmers,
they have deployed a single application. However, the runtime
system should be aware that the application is split into
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multiple parts. Figure 6 illustrates an example with a com-
putational graph of coarse-grained layers. A coarse-grained
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layer consists (recursively) of finer-grained layers. The nodes
are enumerated to indicate the processing sequence, and a
subindex indicates a branching path. A node with the same
index and subindex implies the same partition deployed on
different nodes. Partitions 1-2 are grouped depthwise and
will be deployed as one unit on edge devices. Partition 3.2
is deployed on cloud and fog nodes, while Partition 3.1 is
a different model deployed exclusively on cloud nodes. For
example, Partitions 3.1 and 3.2 could be Feature Extractor L
and M from Figure 5. An SLO-aware load balancer routes the
output of Partition 2 to a variation of Partition 3. Lastly, the
output of Partition 3 is passed on to one of the instances of
Partition 4. Partition 4 is deployed on fog and cloud nodes.
However, it is a QNN circuit that a cloud QPU can execute
but must be partitioned widthwise (i.e., cut into subcircuits as
described in Section VI-B) for the constrained MQPUs at the
fog nodes.

VII. SPLIT INFERENCE WITH CLASSICAL-QUANTUM
HYBRID PREDICTORS

Arguably, demonstrating that we can extend classical DNN
partitioning methods to classical-quantum DQNN is a neces-
sary precondition for a distributed hybrid inference engine.
Hence, to show the viability of our visions, this section
addresses challenges 2)-4) from Section VI (and partially 1)
with a partitionable neural network architecture where the
runtime of the Elasticity Plane can freely decide using a hybrid
or a classical predictor.

To encourage follow-up work, we open-source a repository
that provides a convenient framework to add configurable
experiments with new circuit or model implementations.

A. Problem Formulation

As advocated for in Section III, we extend a method orig-
inally conceived for CEC to QEC instead of disregarding ex-
isting work. Specifically, we introduce QuantenSplit, a simple
modification of the split inference method FrankenSplit [21]
with depthwise DNN partitioning, to support quantum embed-
dings with QNNs for image classification.

We choose FrankenSplit since it is not limited to a single
head-tail pair, so client devices do not have to swap out
head weights whenever two subsequent requests require a
different head network. Moreover, FrankenSplit focuses the
local resources on bandwidth reduction with a variational
feature compression model, i.e., an extension to support QNNs
addresses challenges 3) and 4) from Section VI-A. The method
draws from the Information Bottleneck (IB) [63] principle
to achieve considerably higher compression rates than hand-
crafted codecs without sacrificing predictive strengths.

We omit the formal, conceptual details and instead refer
to the original work [21]. Here, it is sufficient to consider
FrankenSplit as a framework to train a variational autoencoder
that is particularly selective about the signals it discards
during compression. Notably, attaching different (split) neural
networks for multiple downstream tasks to the autoencoder
is possible. In other words, it permits a platform to deploy
a universal encoder to all participant clients agnostic towards
their particular inference requests.

To determine whether FrankenSplit is generalizable to hy-
brid classical-quantum QNN predictors, we answer the fol-
lowing question: Do the highly compressed features of the
classical universal encoder generalize to downstream tasks
with QNNs?. With this, we aim to show the usefulness of our
envisioned platform from Section IV and to provide evidence
for the viability of our distributed inference engine discussed
in Section VI.

B. Methodology

To answer the above question, we must show that we can
attach hybrid and classical predictors to a single autoencoder-
backbone pair. We consider four datasets resulting in eight
predictors, i.e., for each dataset, we attach one hybrid and one
classical classification model to the base network.

1) Compression and Feature Extraction: Figure 7 illus-
trates the architecture of the modular neural network. The
backbone is a pre-trained split classical neural network that
further extracts features. It is possible to attach several back-
bones of varying sizes (or architectures) such that the network
is deployable, as depicted in Figure 5. Nevertheless, we only
require attaching multiple (hybrid) classification models to a
single pre-trained backbone for our purposes. The encoder
only relies on widely-supported operations to deal with device
heterogeneity in the edge domain. The number in the bracket
denotes the stage depth. The decoder blocks smooths out
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the quantized features and transforms features to suit the
backbone. The split Swin-Tiny backbone is described in [35],
except the first two stages are discarded. The difference from
the original work is that we attach hybrid classification models
in addition to the classical ones.

2) Classification Models: A classical classifier is a simple
two-layer Multi-Layer Perceptron (MLP). Figure 8 illustrates
the Ansatz of the QNN with four qubits and layers. A Hybrid
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Fig. 8. Hybrid QNN with Four Qubits and Layers

QNN model takes as input the n-dimensional real-valued
feature vector Zn and classically projects it to a vector with
dimensions equal to the number of qubits. Then, it passes the
features as input to the Ansatz. Regardless of circuit depth,
it first applies a Hadamard H Gate and a parameterized Z-
rotation RZ to embed features in the quantum node. Next,
it applies a repeating sequence of trainable variational layers.
A layer consists of pairwise (shifted) C-NOT gates followed
by alternating parameterized Y - or Z-rotations, i.e., a layer
with Y -rotation is followed by a layer with Z-rotations. The
number of layers is a hyperparameter given by the depth of the
circuit. Lastly, it passes the measurements to a fully connected
layer to output the class scores. The skip connection is inspired
by classical Residual Neural Networks [29]. Adding the skip
connection is configurable as a hyperparameter.

C. Training and Implementation

We first separately train the autoencoder on the 1.28 Ima-
geNet [55] training samples according to the baseline objective
function of FrankenSplit. Then, we freeze the parameters and
train each attached classification model sequentially using the
cross entropy loss function. We use Adam optimization [30]
for the autoencoder and all classification models. Applying
widthwise partitioning methods, such as circuit cutting, is
out of the scope of this work. A detailed description of the
training parameters can be seen in the configuration files of
the accompanying repository.

We did not perform exhaustive hyperparamter tuning or
experiments regarding optimizers. We implement our models
using PyTorch [51] and CompressAI [5]. The backbones and
pre-trained weights are from PyTorch Image Models [68].
For numerical simulations of the quantum circuits, we use
PennyLane [7]. To ensure reproducibility and facilitate follow-
up work, we extend torchdistill [40].

D. Evaluation

Our experiments are conducted on small-scale simulations
with considerably fewer classes than the original work. There-
fore, to draw meaningful insights from our results, the dimen-
sions of the classical models are set equal to the number of
qubits of their hybrid counterparts., i.e., the MLP first projects
the high-dimensional backbone features to a low-dimensional
classical embedding. For example, in an experiment with
four qubits, we compare a hybrid predictor with a classical
baseline predictor where the first layer of the MLP projects
the backbone features to a four-dimensional representation.
To emulate the scenario of Section VI with clients requesting

TABLE III
TRAINING AND TEST SUBSETS OF ILSVRC

Task Classes Training Samples Test Samples

Nutriment 10 13’000 500
Felidae 13 16’900 650

Buildings 14 18’200 700
Vessels 23 29’900 1150

inference from diverse environments, we create four the-
matically unrelated datasets from the 1000 labels from the
ILSVRC classification task. Table III summarizes each dataset
representing a different location requiring separate predictors.
The accompanying repository contains a script and instructions
to recreate the datasets.

We run experiments with 4, 6, 8, and 10 qubits with a
classical predictor as the baseline. The depth of the circuit
is fixed at 8. We performed additional experiments with
varying depth sizes and found that increasing the depth yields
diminishing accuracy improvement. Table IV summarizes our
results. The Plots in Figure 9 and Figure 10 show how a hybrid
model without and with the skip connection compares to their
classical counterpart for each dataset. Relative to the classical
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TABLE IV
TOP-1 (ERR)OR OF (C)LASSIC, (H)YBRID, HYBRID WITH (RES)IDUALS

Qubits Top-1 Err. C. (%) Top-1 Err. H. (%) Top-1 Err. H. Res. (%)

Nutriment

4 13.00 37.13 12.11
6 11.73 25.20 10.40
8 11.30 16.90 10.07
10 10.69 14.80 9.58

Felidae

4 19.82 31.57 19.05
6 17.60 29.07 16.77
8 16.77 18.77 15.85
10 16.56 18.31 15.31

Buildings

4 9.29 31.57 8.57
6 7.26 14.86 6.86
8 6.14 10.57 5.71
10 5.74 9.00 5.27

Vessels

4 32.43 62.00 30.69
6 27.82 48.52 26.00
8 25.48 31.56 24.96
10 24.26 25.87 23.91
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baselines, Hybrid QNNs without skip connections gradually
approach comparable, albeit still worse, Top-1 error as we
increase the number of qubits. For 2 and 4 qubits, the Top-1
error is roughly 20-30% worse while the difference narrows
to 2-5%. Interestingly, Hybrid QNNs with skip connections
consistently outperform the classical baselines across all num-
bers of qubits. Although the motivation of skip connections in

4 6 8 10
Qubits

10

11

12

13

To
p-

1 
Er

ro
r

nutriment

hybrid (residual)
classical

4 6 8 10
Qubits

16

17

18

19

20

To
p-

1 
Er

ro
r

felidae

hybrid (residual)
classical

4 6 8 10
Qubits

6

7

8

9

To
p-

1 
Er

ro
r

buildings

hybrid (residual)
classical

4 6 8 10
Qubits

24

26

28

30

32

To
p-

1 
Er

ro
r

vessels

hybrid (residual)
classical

Fig. 10. Hybrid QNN with Skip Connection

classical residual networks is to mitigate accuracy saturation
for very deep neural networks, they essentially learn a residual

function. Considering the autoencoder-backbone pair already
heavily processes the input data, we hypothesized that a
QNN could find more suitable representations for the classical
features for some instances. In contrast, a QNN could decrease
the performance for samples already sufficiently processed
for classification. The QNN narrowing the performance gap
with increasing qubits is consistent with our assumptions. The
model without a skip connection cannot find a representation
as good as the initial input for a low number of qubits.
Conversely, the QNN with a skip connection can learn the
residual function and sees a performance gain for the samples,
where a quantum embedding is useful.

A skip connection was the first intuitive attempt to provide
empirical evidence, and the initial results seem promising.
Nevertheless, we remind the reader that QuantenSplit only
serves as a PoC to determine whether our vision is viable.
The evaluation strategy is not extensive enough, and thus, our
results should not be considered conclusive. Moreover, even
with the skip connection, the hybrid model only marginally
outperforms the classical model across all tasks simulations
with a noise free device. We did not experiment with optimiza-
tion algorithms more appropriate for QNNs and did not spend
considerable effort conceiving a suitable circuit design. Fur-
ther, the backbone is classical, i.e., the extracted features may
be biased favorably towards classical predictors. Future work
can significantly improve our results by experimenting with
more sophisticated approaches for mapping low-dimensional
qubits to a high-dimensional feature space [50]. Additionally,
once training large QNN extractors is feasible, it would be
interesting to determine whether we can train the classical
compression model to find more suitable representations for
quantum embeddings.

VIII. CONCLUSION

This work presented our vision of integrating quantum
computing into the edge-cloud continuum. We summarized
existing literature in quantum and classical computing relevant
to our work and subsequently described the importance of
extending existing Classical Systems for the edge. Then,
we introduced an architecture for a hybrid classical-quantum
platform and identified the critical challenges of integrating
QPUs. We focused on facilitating research efforts in quan-
tum applications with warm-starting and AI inference for
distributed intelligent tasks. Lastly, we extended a classical
split inference method to support Hybrid QNNs optionally.
Our results provide empirical evidence for the viability of
our vision and suggest that our ideas are interesting research
directives.
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