
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Secure and Efficient Decentralized Federated
Learning with Data Representation Protection
Zhen Qin, Shuiguang Deng, Senior Member, IEEE, Xueqiang Yan, Schahram Dustdar, Fellow, IEEE

and Albert Y. Zomaya, Fellow, IEEE

Abstract—Federated learning (FL) is a promising technical support to the vision of ubiquitous artificial intelligence in the sixth
generation (6G) wireless communication network. However, traditional FL heavily relies on a trusted centralized server. Besides, FL is
vulnerable to poisoning attacks, and the global aggregation of model updates makes the private training data under the risk of being
reconstructed. What’s more, FL suffers from efficiency problem due to heavy communication cost. Although decentralized FL
eliminates the problem of the central dependence of traditional FL, it makes other problems more serious. In this paper, we propose
BlockDFL, an efficient fully peer-to-peer (P2P) framework for decentralized FL. It integrates gradient compression and our designed
voting mechanism with blockchain to efficiently coordinate multiple peer participants without mutual trust to carry out decentralized FL,
while preventing data from being reconstructed according to transmitted model updates. Extensive experiments conducted on two
real-world datasets exhibit that BlockDFL obtains competitive accuracy compared to centralized FL and can defend against poisoning
attacks while achieving efficiency and scalability. Especially when the proportion of malicious participants is as high as 40 percent,
BlockDFL can still preserve the accuracy of FL, which outperforms existing fully decentralized FL frameworks.

Index Terms—Decentralized Federated Learning, Security, Efficiency, Privacy, Blockchain.

F

1 INTRODUCTION

THE sixth generation (6G) wireless communication is
under exploration to succeed the fifth generation (5G)

[1]. It is widely believed that 6G will be built on the new
vision of ubiquitous artificial intelligence (AI) [2]. One of
the key challenges to realize ubiquitous AI lies on how to
conduct distributed machine learning on a large number of
highly distributed end devices. Federated learning (FL) [3] is
an emerging distributed solution towards AI that breaks the
data island and thus becomes one of the potential technical
solutions for ubiquitous AI [4].

6G is envisioned as a distributed and decentralized net-
work to simplify network management and provide better
efficiency than the centralized networks which suffer from
high delays due to long-distance transmission and uncer-
tainty to service quality due to workload. Unfortunately,
traditional FL heavily relies on a trusted centralized server.
In addition, FL also faces the problems of 1) vulnerability
to poisoning attacks which decrease the accuracy (security
problem), 2) relatively insufficient privacy protection be-
cause the private training data can be reconstructed from
intermediate updates by model inversion attack [5], [6], [7]
and 3) efficiency problem caused by heavy communication
cost for transmitting model updates, which is more severe in
a decentralized system. Thus, there is an urgent need for a
decentralized solution with high efficiency that protects the

• Z. Qin and S. Deng are with the College of Computer Science and
Technology, Zhejiang University, Hangzhou, China.
E-mail: {zhenqin,dengsg}@zju.edu.cn

• X. Yan is with Wireless Technology Lab, Huawei Technologies, Shanghai,
China. E-mail: yanxueqiang1@huawei.com

• S. Dustdar is with Distributed Systems Group, TUWien, Vienna, Austria.
E-mail: dustdar@dsg.tuwien.ac.at

• A. Y. Zomaya is with School of Computer Science, The University of
Sydney, Sydney, Australia. E-mail: albert.zomaya@sydney.edu.au

FL system from being poisoned and the training data from
being reconstructed, prompting us to focus on designing a
new decentralized P2P FL framework.

Blockchain, a distributed ledger originated from de-
centralized currency systems, offers distributed trust that
enables the cooperation among participants without mutual
trust [8]. It also brings convenience to record stake for mone-
tary reward to motivate honest behaviors, since a decentral-
ized system helps to relieve the burden of maintaining cen-
tralized servers for mobile operators and service providers.
These characteristics make blockchain an promising basis
for designing a decentralized FL framework.

In recent years, there are several FL frameworks based
on blockchain, some of which integrate additional protec-
tion mechanisms for privacy and security to partially solve
the above problems of FL. For example, protect the privacy
by using differential privacy (DP) [9], [10], homomorphic
encryption [11], [12] and secure aggregation [10], [13], and
ensure the security by Krum [14] on local updates [9], [10],
[15], threshold-based testing [16] and auditing [11].

However, existing FL frameworks still have some lim-
itations on technical selection. For privacy protection, DP
provides provable protection for not only data representa-
tion, but also membership inference attacks. However, it
lowers the accuracy of models. Homomorphic encryption
and secure aggregation brings tremendous computation and
communication cost, lowering the efficiency of systems.
For security, existing applications of Krum mainly focus
on local updates, ignoring that global updates may also
being poisoned, threshold-based testing relies on manual
thresholds or baseline models that are not easily available
in real world, and auditing only provides traceability but
fails to defend poisoning. In addition, existing solutions
often neglect to optimize efficiency. Moreover, some exist-

ar
X

iv
:2

20
5.

10
56

8v
1 

 [
cs

.D
C

] 
 2

1 
M

ay
 2

02
2



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

ing blockchain-based FL frameworks that rely on mining
for consensus further deteriorates the efficiency [8], [15],
[17], since a large number of meaningless hash calculations
consume bring heavy computation burden. To the best of
our knowledge, there is no existing decentralized P2P FL
framework that simultaneously solves the privacy problem
in terms of training data, security problem in terms of
poisoning attacks and efficiency problem of FL.

To address these issues, we propose BlockDFL, a de-
centralized fully P2P framework for private and secure FL
that integrates several techniques with blockchain. For the
filtering of the poisoned updates, we first propose a two-
layer scoring mechanism, where local updates are filtered
according to the stake verified by median-based testing,
and global updates are verified by Krum. Then, we design
an efficient voting mechanism based on Practical Byzantine
Fault Tolerance (PBFT) [18] algorithm to uniquely select a
global update in each round. The two mechanisms work
jointly to defend the poisoning attack. BlockDFL reduces
the communication cost and protects the training data from
being reconstructed by gradient compression. BlockDFL is
experimentally demonstrated to maintain the accuracy of FL
with efficiency when there are up to 40% malicious partici-
pants. The main contributions of this paper are threefold:

• We propose BlockDFL, an efficient decentralized P2P
FL framework, which solves the security, efficiency
and data representation leakage problems of FL
by incorporating several techniques and leveraging
blockchain as the foundation. It achieves security,
high efficiency and scalability through rapid consen-
sus in a small group of randomly selected partici-
pants, where the gradient compression is introduced
to protect data representation privacy and further
lower the communication cost.

• In order to reach the consensus on the most suitable
global update in each round of FL, we propose
a PBFT-based voting mechanism for consensus on
the finally selected global update among verifiers,
which never forks. To take advantage of high-quality
model updates, we propose to measure local and
global updates by median-based testing and Krum,
respectively. The combination of the two mechanisms
can effectively prevent poisoning attacks and elect a
high-quality global update.

• We implement a prototype of BlockDFL and conduct
extensive experiments on two real-world datasets,
demonstrating that BlockDFL achieves excellent ef-
ficiency and scalability and can effectively resist poi-
soning attacks when there are up to 40% malicious
participants. We also experimentally demonstrate
that there exists an appropriate degree of sparsity
that protects the data privacy from representation
perspective and does not harm the effectiveness of
distance-based anti-poisoning algorithms while pre-
serving the accuracy of FL at the same time.

2 PRELIMINARIES

2.1 Data Representation Leakage
Although FL is designed to protect privacy by keeping
the local data on the devices, existing researches show

that the model updates shared by each participant in FL
still contains some important information of training data
such that the training data can be reconstructed by model
inversion attack [5], [6], [7], [19]. If the model updates of
honest participants are leaked, attacker can reconstruct the
private training datasets [10], [12]. Thus, FL needs further
privacy protection since there is no protection for model
updates in vanilla FL. In a decentralized FL system, the
leakage of model updates leads to a greater risk of training
data being reconstructed, since the model updates are often
transmitted among ordinary participants which are more
likely to be malicious or controlled by malicious users.

Such kind of risk can be defensed by gradient compres-
sion which only transmits the elements with large absolute
value in model updates. Attackers will not be able to re-
construct any data from sufficiently sparse updates [6], [7],
[20]. However, excessive compression of model updates will
result in a drop in accuracy. We experimentally demonstrate
that there exists an appropriate degree of sparsity that pro-
tects the privacy of data representation while preserving the
model accuracy. In BlockDFL, local updates are averagely
sparsed to over 90% and 85% respectively on two datasets to
ensure the privacy of data from representation perspective,
and such degree of sparsity can make model inversion
attacks represented by DLG attack [6] unable to obtain any
useful information from model updates. More details about
protecting data representation by gradient compression are
available in Appendix A.

2.2 Poisoning Attack

Since the global model in FL is obtained by averaging
several local updates shared by participants, FL is under the
risk of poisoning attacks. Malicious participants can conduct
poisoning attack by uploading poisoned model updates to
lower the accuracy of global model and negatively impact
the convergence of FL [21].

In this work, malicious participants will conduct the
label flipping attack as in [10], [21]. Specifically, attackers
can label the data within one class as another class, and train
the model to generate local updates based on the tampered
datasets, causing the global model unable to distinguish the
data of the two classes correctly.

In a centralized system, there are many existing ap-
proaches to defend poisoning attack [14], [21], [22]. How-
ever, in a fully decentralized system where there is no
mutual trust between participants, there is a problem that
which participant should be responsible for detecting poi-
soned model updates, and how can a participant trust the
judgments made by other participants.

BlockDFL solves this problem by introducing Krum into
our designed voting mechanism based on PBFT algorithm.
Intuitively, since Krum rejects model updates differ heavily
from the direction of the majority of the updates. The gra-
dient compression may bring negative impact on it. But we
experimentally find that when the gradient compression is
introduced, some of the indexes of the transmitted elements
with the largest absolute value in different updates may still
overlap, enabling to spatially distinguish the normal model
updates and the malicious ones. More details about this can
be found in Appendix B.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

all participants get their roles according to the hash of last block train model locally
with SGD

broadcast sparse
local update

sample local updates randomly 
according to stake 

vote and consensus 
on global updates

PBFT Committee

Blockchain

broadcast global update

score global updates
by Krum

2-1

3-1

3-4

4-2

aggregate selected
local updates

score and select 
local updates 

from the sampled ones

Private 
Data   

Private 
Data   

Private 
Data   

Private 
Data   

Verifier

Aggregator

Update Provider

2-3

3-3

4-1

3-2

create a block
with stake reward

2-2

sparse local update by 
gradient compression

1

4-3

Independent Step
Cooperative Step

Fig. 1: The detailed processes of BlockDFL in one round of communication, from À to Ã.

3 BLOCKDFL OVERVIEW

The goal of BlockDFL is to build up an efficient decentral-
ized P2P FL framework: 1) to make its accuracy approach
that of the centralized FL as much as possible, 2) to prevent
the accuracy of global model from being jeopardized by
poisoning attacks and 3) to prevent the private training
data from being leaked to peer participants, 4) to reduce
the communication cost of transmitting model updates.

BlockDFL fulfills all these requirements in a lightweight
manner. As illustrated in Fig. 1, there are four processes
in BlockDFL during one communication round: 1) Role
Selection, 2) Local Training 3) Aggregation and 4) Verification
and Consensus, some of which contain more than one steps.

BlockDFL is designed based on the following assump-
tions: 1) Participants in the same FL system use the same
model and initialization. They can obtain the public key for
verifying digital signatures of others and send information
through broadcasting. 2) Participants in BlockDFL hold the
stake indicating how much they have contributed to the
global model. The stake recorded on the blockchain can
be tied to monetary reward from mobile operators or AI
service providers, since a decentralized FL system relieves
them of the heavy burden of setting up and maintaining a
centralized server. Thus, we make the same assumption as
in [10], [23] that participants holding large amounts of the
stake tend to perform obligations honestly, because they can
benefit more from the monetary reward.

Participants in BlockDFL are granted three different
roles, i.e., Update Provider, Aggregator and Verifier. The up-
date provider is in charge of training model based on
its private training data and sharing its local update to
aggregators. They work independently. The aggregator is
responsible for collecting local updates and selecting a cer-
tain number of them to aggregate into a global update. They
work independently, too. The verifiers preside over electing
a suitable global update together and packaging it with the
digital signatures created by the verifiers’ private keys and
the identity of its aggregator and update providers into a
block newly added to the blockchain. They score global

update independently, and select one global update collab-
oratively. The independent steps and cooperative steps are
marked with different colors in Fig. 1. In BlockDFL, adding
a block means that all participants have conducted a round
of communication (equivalent to executing the FedAVG
algorithm [3] once in FL). If the block is not empty, all
participants will update their model according to the global
update contained in the newly added block.

At the start of each communication round, each partic-
ipant is randomly assigned with a role based on the hash
of last block as in [10] (process À). Then, update providers
train local models with stochastic gradient descent (SGD)
algorithm on their own training set and sparse the local
updates by gradient compression before broadcasting them
to aggregators (process Á). Each aggregator continues to
receive local updates until a certain number of local updates
are obtained, then starts the aggregation independently
(process Â). An aggregator first samples a certain number of
local updates from the received ones according to the stake
of corresponding providers. Then, it scores the sampled
local updates and selects some of them to aggregate a global
update which is then broadcasted to verifiers. When veri-
fiers receive enough global updates, the verification starts
(process Ã). Each verifier independently scores the global
updates and votes to them based on the scores, so as to
select one approved global update. Finally, the approved
global update with its relative information are wrapped in
a new block which is then broadcasted to all participants.

4 MULTIPLE PROCESSES OF BLOCKDFL
In this section, we will present the detailed steps of the four
processes in BlockDFL during one communication round.

4.1 Role Selection

At the start of role selection in BlockDFL, the hash value
of last block h−1 is mapped to a hash ring where each
participant is assigned a space proportional to its stake as
in [10]. The participant in whose portion h−1 lies is selected



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

as the first aggregator. Then, the hash value is repeatedly re-
hashed to select other aggregators. When a certain number
of aggregators are selected, it turns to select verifiers in the
same way. When all aggregators and verifiers are selected,
the rest participants become update providers. It ensures
that participants with more stakes are more likely to be
selected as important roles, i.e., aggregators and verifiers.
The set of verifiers, aggregators and update providers are
represented by V , A and U , respectively. The number of
verifiers |V| and the number of aggregators |A| are both
hyper-parameters set before FL starts. As illustrated in
Section 5.3, the efficiency of BlockDFL is mainly related to
the number of aggregators and verifiers, thus, |V| and |A|
are recommended to be much smaller than |U|.

In BlockDFL, roles are reassigned at the start of each
round to give each participant the opportunity to contribute
local update to FL system and defend bribery attack.

4.2 Local Training
In round t, update provider ui will perform local training
based on the model parameters of the previous roundwi(t−
1) on its private training data with SGD algorithm as:

w − η 1
b
∇L(x,w)→ w (1)

where x is a mini-batch with b samples sampled from the
training set X of ui, L is the loss function and η is the
learning rate (step 2-1 in Fig. 1). Let wi(t) be the model
parameters after several epochs of local training, the local
update di is obtained as:

di = wi(t)− wi(t− 1) (2)

To protect the representation of local data private and
reduce the communication cost, we sparse the local updates
as in gradient compression [24]. Let s be the sparse ratio, i.e.,
the percentage of zero elements in sparsed di, the update
provider only transmits the (1 − s)|di| elements of di with
the largest absolute value (step 2-2 in Fig. 1). To avoid the
loss of accuracy, the rest elements will be kept locally and
accumulated to the next local training of the participant. The
sparse local update will be digitally signed and broadcasted
to aggregators (step 2-3 in Fig. 1).

4.3 Aggregation
When an aggregator has collected enough local updates, the
aggregation starts. Let D denote the set of local updates
received by this aggregator and c be the number of local
updates which a global update must contain. There are two
sampling steps in aggregation. The first step is with the
stake filter, in order to discard most of the model updates
for relieving the computation cost of later testing. In this
step, the aggregator samples 3 × c local updates from D,
where the probability of each local update to be selected
is proportional to the stake of its update provider (step
3-1 in Fig. 1). The sampled local updates constitute a set
Ds. In order to make more honest participants have the
opportunity to share their local updates, the stake can be
log-scaled in this step.

The second step is based on the median-based test-
ing, which is designed for screening out high-quality, non-
poisoned local updates for aggregation. In this step, the

aggregator will evaluate the local updates inDs by updating
the local model based on them one by one and performing
inference on its test set (step 3-2 in Fig. 1). Then, we rank the
local updates in Ds in descending order according to their
accuracy of inference. Let DMs denote the local updates
before the median of sorted Ds, the local updates for aggre-
gation are randomly selected from DMs and constitute a
set Da (|Da| = c). The probability pi of each local update di
in ranked DMs to be selected is calculated as:

pi =
exp(q(di))∑

dj∈DMs exp(q(dj))
(3)

where q(di) is the evaluation accuracy of local update di.
Local updates in Da are aggregated to a global update G as:

G =
1

|Da|
∑
d∈Da

d (4)

(step 3-3 in Fig. 1). The aggregated global update G is then
digitally signed and broadcasted to verifiers to compete for
being packaged on the chain (step 3-4 in Fig. 1).

The stake filter ensures that most of the local updates
tested come from honest participants, in order to ensure
that the model updates before the median are un-poisoned.
Median-based testing determines whether a local update is
poisoned by comparing it with the others, instead of relying
on a manual threshold [25] or baseline validation model
which are hard to obtain in real-world application scenarios
to judge whether an update is malicious. Therefore, this
process is reliable and applicable.

4.4 Verification and Consensus
In order to uniquely elect one suitable global update in each
round, we simplify PBFT [18] algorithm for decentralized FL
and design a voting-based verification mechanism based on
the simplified PBFT, which has the following advantages: 1)
It has high efficiency since the verifiers are a small group of
randomly selected participants. 2) It can deal with malicious
participants and the disconnection problem, even for the
leader of PBFT. 3) It never forks.

The first selected verifier is the leader of verifiers to
initiate the verification of global updates one by one. The
order of verifying the global update can be decided by
the leader. There are three stages in the proposed voting
mechanism that each global update needs to go through,
i.e., pre-prepare, prepare and commit. Let G be the set of
candidate global updates in this communication round.
Assuming that Gi ∈ G is the first selected global update to
be verified. In the verification of Gi, the leader first sends
a pre-prepare message with the digital signature of Gi to
the other verifiers. When a verifier receives the pre-prepare
message, it broadcasts a prepare message with the digital
signature ofGi to all verifiers. When a verifier receives more
than 2

3 |V| prepare messages, it starts the commit stage. In
commit, the verifier scores each Gi by Krum algorithm [14],
where a lower score indicates a higher quality. Let f be the
percentage of malicious participants and Gci ⊆ G denote the
(1− f)|G| − 2 global updates closest to Gi, Krum scores Gi

by calculating the distance of Gi to global updates in Gci , as:

Krum(Gi,G) =
∑

Gj∈Gc
i

‖Gi −Gj‖2 (5)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Then, the verifier calculate the score of the other global
updates in G in the same way. Then the verifier sends a
signed commit message to the leader containing the vote to
Gi (step 4-1 in Fig. 1). Only the score of Gi surpasses that of
2/3 global updates will Gi be voted affirmatively, as:{

1 if
∑

Gj∈G\Gi
IKrum(Gi,G)<Krum(Gj ,G) ≥ 2

3 |G|
0 else

(6)

where 1 and 0 means the affirmative and negative vote,
respectively. I is a indicator function whose value is 1 when
the condition is met otherwise 0.

If the leader has received more than 2
3 |V| commit mes-

sages with the affirmative vote, the verification ends and Gi

becomes the approved global update of this communication
round (step 4-2 in Fig. 1). Then the leader builds a block
containing: 1) the elements of Gi, 2) the identity of the
aggregator and update providers of Gi and 3) the identity
of the verifiers which vote for support. The block will be
signed by the leader and broadcasted to all participants
(step 4-3 in Fig. 1). The participants listed in 2) and 3) will
be awarded with stake. However, if the number of commit
messages with the negative vote the leader received has
exceeded 1

3 |V|, the verification of Gi will be finished and
the leader will start the verification of another global update
Gj . Note that in the verification of the subsequent global
updates, the score of them obtained during the verification
of the first global update can be directly used. If all global
updates in G are verified but no one is approved, the leader
will broadcast an empty block to all participants. When a
participant receives a block, it will update the local model
if the block contains an approved global update. Then, the
next communication round starts.

We apply Krum in verification instead of aggregation
because it has the following advantages: 1) The results of
Krum are consistent on the same updates as the input,
which facilitates the consensus in the result of voting. 2)
The complexity of Krum is O(n2), where n is the number
of updates to be scored, which is larger in aggregation
than that in verification of BlockDFL. Intuitively, Krum will
be affected by the sparseness of model updates. However,
we observe that some of the indexes of the (1 − s)|di|
elements with the largest absolute value in different updates
may overlap, enabling to spatially distinguish the normal
updates and the malicious ones. More details about this are
available in Appendix B.

5 EXPERIMENTS

5.1 Experimental Setup

We implement BlockDFL with Python 3.8 and PyTorch
1.10 to evaluate its accuracy, poisoning-tolerance, efficiency
and scalability. The experiments demonstrate: 1) BlockDFL
has a comparative accuracy compared with vanilla FL and
can effectively resist poisoning attacks, 2) the reason that
BlockDFL can resist poisoning attacks and 3) BlockDFL
works efficiently and possesses a good scalability.

TABLE 1: Default Settings of Parameters in Experiments

Parameter Name Value

# of aggregators & verifiers 8 & 7
Initial stake Uniformly 10
Stake increment 5
c of global updates 5
# of epochs in local training 5

Sparsity in MNIST [90%, 92.5%, 95%, 97.5%]
changes every 50 rounds

Sparsity in CIFAR-10 [85%, 87.5%, 90%, 92.5%, 95%]
changes every 60 rounds

5.1.1 Dataset, Model and Platform
We select two widely-used real-world datasets, i.e., MNIST1

and CIFAR-102 to evaluate BlockDFL. For MNIST, we build
a convolutional neural network with 1,662,752 parameters
as in [3]. For CIFAR-10, we build the CIFARNET with
1,149,770 parameters3. In local training, these models are
trained by SGD with learning rate of 0.01, which decays after
each round with the coefficient of 0.99. The parameter set-
tings of the experiments are shown in Table 1 unless stated
otherwise. Note that as shown in Table 1, all participants
start with 10 stake, and if they are awarded with stake, the
quantified value of the stake obtained is 5. As shown, the
local updates are 93.75% sparse on average on MNIST and
90% on CIFAR-10.

We run 50 participants on a Windows10 platform with
an AMD Ryzen 7 5800 3.40GHz CPU, an NVIDIA RTX
3070 GPU and 48GB RAM. The training set and test set
are randomly and equally distributed to each participant.
The training sets are used by update providers for local
training and the test sets are used by aggregators to score
local updates.

5.1.2 Strategy of Malicious Participants
In the experiments, malicious update providers will poison
local updates by label-flipping attack as in [10], [21]. They
label all 1s as 7s in MNIST, and label all cats as dogs and all
deer as horses in CIFAR-10, then perform local training on
the poisoned training set.

To better evaluate the poisoning-tolerance of BlockDFL,
other roles are also granted the ability to conduct poisoning
attacks. For example, a malicious aggregator will sample 3c
local updates uniformly and randomly for evaluation and
aggregate c of them with the lowest accuracy. The c local
updates from the update providers with lowest stake are
not directly selected because such behavior can be easily
detected, exposing the malicious participants. A malicious
verifier will vote contrarily to an honest one, aiming at a
wrong consensus.

5.1.3 Baseline
We select the vanilla federated learning [3] as the baseline,
which relies on a trusted centralized server. The settings
of relevant parameter and models are exactly the same as
in BlockDFL. The model updates transmitted in vanilla FL

1. http://yann.lecun.com/exdb/mnist/
2. https://www.cs.toronto.edu/∼kriz/cifar.html
3. 64C3-64C3-MaxPool2-Drop0.1-128C3-128C3-AveragePool2-256C3-

256C3-AveragePool8-Drop0.5-256-10

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

(a) Average evaluation accuracy on MNIST (b) Average evaluation accuracy on CIFAR-10

Fig. 2: Average evaluation accuracy and standard deviation of the last 50 rounds of vanilla FL and BlockDFL on MNIST and
CIFAR-10 with different percentage of malicious participants.

are not compressed by sparsification in order to ensure the
performance of vanilla FL as much as possible.

Note that in the scenario without considering the data
heterogeneity, vanilla FL can achieve almost the state-of-
the-art accuracy as demonstrated in [26], so the goal of
BlockDFL is not to surpass vanilla FL in accuracy, but to
obtain accuracy as close as possible to vanilla FL in a fully
decentralized scenario, and can prevent the FL system being
jeopardized by malicious participants.

5.2 Performance and Poisoning Tolerance
We iterate BlockDFL and vanilla FL for 200 rounds of
communication on MNIST and 300 rounds on CIFAR-10
and subject both of the two approaches to poisoning attacks
with the proportions of malicious participants ranged in
[0%, 60%]. We run the two approaches for five times for each
proportion of malicious participants. The average evaluation
accuracy is calculated by averaging the inference accuracy
on the whole test set in the last 50 rounds of these runs.
Fig. 2 presents the average evaluation accuracy with the
corresponding standard deviation of the two approaches.
When there is no malicious participant exist, BlockDFL
achieves the average accuracy of 99.284% on MNIST while
vanilla FL is 99.279%, and BlockDFL achieves the average
accuracy of 87.659% on MNIST while vanilla FL is 87.946%.
Thus, we can conclude that when all participants are honest,
BlockDFL enables a group of peer participants without
mutual trust to perform decentralized FL, and can obtain
the equivalent performance on accuracy compared with the
vanilla FL, which is a centralized scheme.

It is observed that on both datasets, BlockDFL is able
to defend poisoning attacks when there are up to 40%
malicious participants. When facing malicious participants,
BlockDFL keeps relatively steady average accuracy while
vanilla FL is severely jeopardized. With the increase of mali-
cious participants, the gap between the average accuracy
of BlockDFL and vanilla FL is getting wider. Moreover,
BlockDFL converges much more stably when facing mali-
cious participants, showing very low standard deviation of
the last 50 rounds. However, we observe that on CIFAR-10, a
relatively complex dataset, the average evaluation accuracy
of BlockDFL slightly decreases with the increasing ratio

of malicious participants, although it is still significantly
better than that of vanilla FL. The same phenomenon also
appears in [21], because as the ratio of malicious participants
increases, they will hold more data, causing a decrease in the
amount of data contributed to the global model.

To demonstrate the accuracy of the two approaches after
each round of communication, we select 6 runs, each of
which corresponds to a different dataset and different ratio
of malicious participants, and plot the trends of evaluation
accuracy with the rounds go on in Fig. 3. As shown in Fig.
3(a) and (d), the convergence speed of BlockDFL is very
close to un-poisoned vanilla FL, indicating that BlockDFL
does not require additional communication rounds com-
pared to vanilla FL. And it can be observed that in Fig.
3(b), (c), (e) and (f), when there exists malicious participants,
BlockDFL will still gradually converge to a level close to the
un-poisoned FL, while the poisoned FL diverges seriously.

Generally, the PBFT-based approach can tolerant f ma-
licious participants when there are 3f + 1 participants in a
system. But we experimentally demonstrate that BlockDFL
can tolerant 40% malicious participants. The enhancement
origins from the accumulation of stake held by honest
participants. From the description in Section 4.4, we can
conclude that the voting mechanism described above can
only produce a non-empty block if the majority of verifiers
(more than 2/3) are honest or the majority of verifiers
are malicious. When a non-empty block is created, all the
verifiers voted positively will obtain stake. The situation
that over 2/3 verifiers are honest are more likely to occur
than the situation that over 2/3 verifiers are malicious when
the number of honest participants is larger than that of
malicious ones. Thus, the proportion of stake held by honest
participants will gradually increase as blocks continue to be
generated, making the situation that 2/3 verifiers are honest
more and more likely to occur. To demonstrate this process,
we present some statistics during running BlockDFL in Fig.
4 for a better comprehending. As shown in Fig. 4(a), when
there are less than 40% malicious participants, the propor-
tion of stake held by malicious participants decreases as the
rounds go on, meaning that malicious users are increasingly
unlikely to be elected as aggregators or verifiers, and thus
less likely for a successful poisoning attack to occur. More



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

(a) MNIST (b) CIFAR-10

(c) MNIST 30% Malicious (d) CIFAR-10 30% Malicious

(e) MNIST 40% Malicious (f) CIFAR-10 40% Malicious

Fig. 3: Evaluation accuracy trends of vanilla FL and BlockDFL on MNIST and CIFAR-10 datasets with the increasing of number
of communication rounds, where there are different proportions of malicious participants in the federated learning systems.

specifically, the fewer malicious users, the more stable the
proportion declines. When the ratio of malicious users is
30% and 40%, there is an upward trend in certain com-
munication rounds, indicating successful poisoning attacks
in these rounds. Fig. 4(b) shows the percentage of empty
blocks and successful attack with different percentage of
malicious participants. An empty block means that neither
honest nor malicious participants occupy more than 2/3
among verifiers, resulting in a fail consensus of voting. The
percentage of successful attack means that the percentage of
global updates containing at least one poisoned local update
in the last 50 communication rounds. Both of them raise
with the increase of malicious participants.

5.3 Time Consumption and Scalability

To show the efficiency and scalability of BlockDFL, we run
it on MNIST with variant numbers of participants ranged in
[20, 60] and record the time consumption of aggregation and
verification. Since scoring local update and scoring global
update are important steps of aggregation and verification,
respectively, we also record the time consumption of the
two steps. We fix the numbers of verifiers and aggregators
to 4, c of global updates to 3 and scale the number of
participants. Since the data on each participant is equally
divided from the original dataset, when the number of par-
ticipants changes, the number of samples in test set on each



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a) Changes in proportion of stake held by malicious partic-
ipants as the rounds go on.

(b) Percentage of empty blocks and successful attacks ver-
sus ratio of malicious participants.

Fig. 4: Statistics during running BlockDFL on MNIST dataset.

(a) Time versus # of participants (b) Time versus # of |V| and |A|

Fig. 5: Breakdown of time different processes of BlockDFL take with varying number of participants, aggregators and verifiers.

participant also changes, affecting the time taken for scoring
local updates in aggregation. To eliminate the impact, we fix
the number of test samples on each participant to 150 by
randomly sampling from the split test sets.

Fig. 5(a) presents the time spent by each process and
step with varying number of participants. We can find
that the time spent by aggregation mainly lies in scoring
local updates, and scoring global updates takes much less
time than verification, meaning the time of verification is
mainly spent by voting cooperatively. With the changes of
the number of participants, the time spent by each process
keeps steady, implying a good scalability of BlockDFL. The
aggregation and verification take less than 3 seconds totally,
while Biscotti [10], a similar framework, takes over 30 sec-
onds in the case that the number of model parameters is one-
tenth of BlockDFL. The communication cost of BlockDFL is
low since less than 10% of the elements in local updates are
transmitted on average. Thus, we conclude that BlockDFL
obtains excellent efficiency and scalability.

To clarify how the numbers of aggregators and verifiers
affect the efficiency of BlockDFL, we run BlockDFL with
different numbers of aggregators and verifiers. As shown in
Fig. 5(b), the time consumption of verification together with
scoring global update are mainly related to the number of
aggregators. When the number of aggregators growths, both

of them also increase, since the global updates that need
to be scored and the average number of votes required to
select the final global update also increase. But they are less
affected by the number of verifiers. As for aggregation, it
almost keeps steady with different numbers of aggregators
and verifiers, since the aggregators work independently.

6 RELATED WORK

In recent years, there are many researches about blockchain-
based FL. Existing works either rely on a global trust author-
ity or a trusted central server [9], [27], [28], or only solve part
of the problems of FL, i.e., addressing poisoning attacks but
ignoring the privacy protection [12], [15], [16] and protecting
the privacy but failing to prevent poisoning attacks [11],
[13]. We investigate some existed blockchain-based frame-
works for decentralized FL, and provide comparisons of
these decentralized frameworks and our BlockDFL in Table
2. Since BlockDFL is designed for decentralized P2P FL, we
only focus on the existed frameworks without the reliance
on a global trust authority or trusted servers (including
cloud center and edge servers), i.e., FL frameworks designed
for the fully decentralized P2P setting. These frameworks
are compared on five dimensions as listed below:



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 2: Multi-dimensional Comparisons of Existing Decentralized P2P Federated Learning Frameworks based on Blockchain

Approach Privacy Anti-poisoning Poisoning Tolerance Communication
Optimization

Consensus &
Fork-preventing

LearningChain [17] DP l-Nearest Aggregation 10% malicious #
PoW
#

BlockFL [8] DP # # #
PoW
#

BEMA [15] #
Krum + Multiparty
Multiclass Margin 20% malicious #

PoW
#

DeepChain [12] Homomorphic
Encryption

#
Auditing

0%
Only Traceability #

Algorand
X

Biscotti [10] DP + Secure
Aggregation Krum 30% malicious #

PoF
#

BlockDFL
(ours)

Gradient
Compression

Median-based Testing
and Krum 40% malicious Gradient

Compression
PBFT-based Voting

X

• Privacy: Does the framework provide additional pri-
vacy protection on the basis of federated learning? If
yes, then how to achieve it.

• Anti-poisoning: Whether the framework is able to
prevent the global model from being jeopardized by
poisoning attacks. If yes, then how to fulfill it.

• Poisoning Tolerance: How many malicious partici-
pants can the framework tolerate?

• Communication Optimization: Whether the frame-
work is able to reduce the communication cost of
decentralized FL. If yes, then how to achieve it.

• Consensus: Which consensus protocol is introduced
by the corresponding framework, and can the frame-
work prevent the forking problems of blockchain.

As we can see, different frameworks introduce different
algorithms or mechanisms to partially solve the problems
faced by FL, i.e., privacy, security and communication cost.
However, existing frameworks do not address these issues
uniformly. For example, existing frameworks may address
poisoning attacks but ignore the privacy protection or pro-
tect the privacy but fail to prevent poisoning attacks. Par-
ticularly, existing frameworks often neglect to optimize the
communication overhead of decentralized FL. Additionally,
there are also some areas that need to be optimized in
existing technical solutions. For anti-poisoning, l-nearest
aggregation is susceptible to outliers, where a malicious
participant can submit a model update that deviates very
much from others to destroy the effectiveness of l-nearest
aggregation. Auditing provides traceability of aggregation,
making the malicious behaviors traceable. However, it can
not prevent the system from being poisoned. In some sce-
narios with high safety requirements, such as autonomous
driving, it is not enough to provide traceability cause the
catastrophic events may have occurred. The complexity of
Krum is O(n2) where n is the number of model updates
to be evaluated. Thus, Krum may not be appropriate to
be directly introduced to score a large number of model
updates such as directly applied to verify local updates
[10] whose number is relatively large. In other words, it
should be applied to a verify a relatively small set of
model updates such as the candidate global updates. For
privacy preserving, DP is able to protect privacy with the

guarantees of mathematical proof from the perspective of
data reconstruction and membership inference. Unfortu-
nately, it imposes a significant accuracy loss for protecting
complicated models [29]. Homomorphic encryption brings
too much computation overhead, making it unsuitable for
models with relatively large numbers of parameters. And
the secure aggregation brings heavy overhead of compu-
tation and communication, which limits the efficiency and
scalability of FL frameworks based on it.

As for the ability of poisoning resistance, existing frame-
works can only defend against poisoning attacks when the
proportion of malicious participants is less than or equal to
30%, while BlockDFL can still effectively defend poisoning
attacks when 40% of the participants are malicious. Note
that LearningChain [17] is only evaluated on three situations
that 10%, 40% and 70% of the participants are malicious,
respectively. When 40% of the participants are malicious,
the accuracy of LearningChain is seriously jeopardized,
although it outperforms Krum. From these comparisons,
BlockDFL outperforms all the existing fully decentralized
FL frameworks in terms of poisoning resistance.

To the best of our knowledge, BlockDFL is the only
framework for decentralized P2P federated learning which
uniformly solves the security, efficiency and data represen-
tation leakage problems faced by FL. BlockDFL can still ef-
fectively defend the poisoning attacks when the proportion
of malicious participants is as high as 40 percent. BlockDFL
is very efficient because: 1) the verification of local updates
is very efficient since the integrated stake-based filtering
mechanism filters out most local updates that do not need
to be verified, 2) the PBFT-based voting mechanism for
global update election works very fast since the verifiers
are a small group of participants and 3) the communication
cost of transmitting model updates is lowered by gradient
compression, It is worth to note that the proposed voting
mechanism for the consensus on global updates does not
need to perform a lot of meaningless hash calculations like
proof-of-working (PoW) consensus and does not fork.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we propose BlockDFL, an efficient fully P2P
framework for decentralized FL. To efficiently reach the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 6: MSE of images reconstructed by DLG attack [6] with different ratio of sparsity s on CIFAR-10 and MNIST.

consensus on the appropriate global update in each round,
we propose a PBFT-based voting mechanism. And to take
advantage of high-quality model updates, we propose to
measure local and global updates by median-based test-
ing and Krum, respectively. The combination of the two
mechanisms helps to uniquely select a high-quality global
update in each round, while preventing the FL system from
being poisoned. To protect the privacy of data in the rep-
resentation respect, we introduce the gradient compression,
and experimentally demonstrate that gradient compression
can be integrated into our framework without affecting the
effectiveness of Krum and the accuracy of global model,
while protecting privacy and reducing communication over-
head. Experiments conducted on two widely-used real-
world datasets demonstrate that BlockDFL can defend the
poisoning attacks and achieve efficiency and scalability. Spe-
cially, when 40% of the participants are malicious, BlockDFL
can still defend poisoning attacks, which outperforms exist-
ing fully decentralized FL frameworks.

In the future, we will introduce more privacy protection
mechanisms for member inference attacks into BlockDFL.

APPENDIX A
GRADIENT COMPRESSION VERSUS DATA RECON-
STRUCTION

Gradient compression was proposed to reduce the commu-
nication cost among distributed nodes in the distributed
training of machine learning models. The gradient compres-
sion methods believe that the contribution of each element
in the gradient to the model accuracy is different. The
elements with smaller absolute values contribute little to the
model accuracy, but the elements with larger absolute val-
ues usually make more contribution to the model accuracy.
For this reason, in the distributed training of the machine
learning models, it can greatly reduce communication over-
head by only transmitting the elements with relatively large
absolute values. The model update in federated learning is
similar to the gradient in distributed machine learning, so
gradient compression can be applied to FL directly.

Although gradient compression is not proposed for
privacy protection, it can effectively prevent the training
data from being reconstructed by malicious attackers from
gradients [6], [7], [20]. Taking one of the famous model
inversion attacks, Deep Leakage from Gradients (DLG) [6],
as an example, gradient compression actually destroys the
optimization objectives of DLG attack. In other words,
gradient compression discards many details of the model
updates by sparsifying, making it hard for DLG attack to

obtain enough information for reconstructing the training
data from sparse gradients.

In [6], a series of experiments are conducted to evaluate
the performance of DLG attack under different degree of
gradient sparsity (ranged in [1%, 70%]), drawing a conclu-
sion that DLG can tolerant up to 20% sparsity of gradients.
When the sparsity of gradients exceeds this threshold, the
images reconstructed by the DLG attack are almost not
visually recognizable.

We also conduct detailed experiments to demonstrate
that gradient compression can effectively defend the data
reconstruction of DLG attack. As in [6], we conduct DLG
attack to LeNet on CIFAR-10 and MNIST with different
sparsity of model updates, respectively. For each image, we
iterate DLG model for 300 rounds and record the result
with the lowest Mean Square Error (MSE) between the
reconstructed image and the original one. Fig. 6 presents the
lowest MSE and the corresponding reconstructed images
obtained by DLG attack on MNIST and CIFAR-10 with
different sparsity, where the first row and next row show the
results on an image of CIFAR-10 and MNIST, respectively. It
is observed that as the sparsity gets higher, the visibility of
the reconstructed images by DLG attack gets worse. The
experimental results are consistent as reported in [6]: on
both of the two datasets, when the sparsity exceeds 20%,
the reconstructed images are hard to be visually recognized.

However, it cannot fully guarantee that the information
will not be leaked if the reconstructed images are only
visually unrecognizable. To better illustrate the effectiveness
of gradient compression to defense DLG attack, randomly
generated images are also introduced as the reference. As
shown, for CIFAR-10, when the sparsity exceeds 70%, the
MSE of reconstructed image is similar to the randomly gen-
erated one, and the corresponding threshold is about 90%
for MNIST. Thus, we conclude that gradient compression
can effectively defense the DLG attack with the ratio of
sparsity over 70% for CIFAR-10 and 90% for MNIST.

In the experiments of BlockDFL, the sparsity of model
updates is more than 85% for CIFAR-10 (averaged to 90%)
and more than 90% for MNIST (averaged to 93.75%) to
ensure the representation privacy of local training data.

APPENDIX B
DISTANCE BETWEEN SPARSED MODEL UPDATES

As introduced in Section 4.4, intuitively, the effectiveness
of Krum will be negatively affected by the sparseness of
model updates since it depends on the distance between
model updates calculated element-wisely. However, we ob-
serve that when the gradient compression is introduced,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

(a) Model updates without sparsification (b) Model updates with the sparsity of 90%

Fig. 7: 2-dimensional visualization of model updates on MNIST, where each point represents a model update.

some of the indexes of the transmitted elements with the
largest absolute value in different updates may still overlap,
enabling to spatially distinguish the normal model updates
and the malicious ones.

We randomly split the training set of MNIST into 50
subsets with the same number of data samples and poison
15 subsets of them by label-flipping attack as introduced in
Section 5.1, in order to simulate the situation that there are
30% malicious participants in a FL system. Then, we train
50 convolutional neural networks introduced in Section
5.1 with 1,662,752 parameters for five epochs, where each
network is trained on one of the subsets. Then, we obtain
50 model updates and visualize them by t-SNE [30] on a
scatter in Fig. 7(a), where a blue dot indicates a poisoned
update and a red dot indicates a normal update. We can
observe that the 50 original updates obviously form two
clusters that one cluster is composed of normal updates and
the other cluster is composed of poisoned updates.

We then sparse the 50 original model updates to 90%
sparsity and visualize the sparse ones by t-SNE in Fig.
7(b). As shown, the sparse updates can still form two
clusters with clear boundaries according to whether they
are poisoned. Therefore, we can conclude that Krum and
gradient compression can be simultaneously integrated in
a framework without affecting each other, which is also
supported by the experimental results in Section 5.2.

ACKNOWLEDGMENTS

This work was supported in part by the Key Research
Project of Zhejiang Province under Grant 2022C01145 and
in part by the National Science Foundation of China under
Grants U20A20173 and 62125206. The work of Schahram
Dustdar’s was supported in part by the Zhejiang University
Deqing Institute of Advanced technology and Industriliza-
tion (ZDATI).

REFERENCES

[1] G. Liu, N. Li, J. Deng, Y. Wang, J. Sun, and Y. Huang, “6G
mobile network architecture-solids: Driving forces, features, and
functional topology,” Engineering, 2021.

[2] V. Nguyen, P. Lin, B. Cheng, R. Hwang, and Y. Lin, “Security
and privacy for 6G: A survey on prospective technologies and
challenges,” IEEE Communications Surveys & Tutorials, vol. 23,
no. 4, pp. 2384–2428, 2021.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in the International Conference on Artificial
Intelligence and Statistics, vol. 54, 2017, pp. 1273–1282.

[4] Y. Xiao, G. Shi, and M. Krunz, “Towards ubiquitous AI in 6G with
federated learning,” CoRR, vol. abs/2004.13563, 2020.

[5] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,”
in Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

[6] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Ad-
vances in Neural Information Processing Systems, vol. 32, pp. 14 774–
14 784, 2019.

[7] J. Sun, A. Li, B. Wang, H. Yang, H. Li, and Y. Chen, “Soteria:
Provable defense against privacy leakage in federated learning
from representation perspective,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2021, pp. 9311–9319.

[8] H. Kim, J. Park, M. Bennis, and S. Kim, “Blockchained on-device
federated learning,” IEEE Communications Letters, vol. 24, no. 6, pp.
1279–1283, 2020.

[9] Y. Zhao, J. Zhao, L. Jiang, R. Tan, D. Niyato, Z. Li, L. Lyu, and
Y. Liu, “Privacy-preserving blockchain-based federated learning
for IoT devices,” IEEE Internet of Things Journal, vol. 8, no. 3, pp.
1817–1829, 2021.

[10] M. Shayan, C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Biscotti:
A blockchain system for private and secure federated learning,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 7,
pp. 1513–1525, 2021.

[11] S. Awan, F. Li, B. Luo, and M. Liu, “Poster: A reliable and ac-
countable privacy-preserving federated learning framework using
the blockchain,” in ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2561–2563.

[12] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo,
“Deepchain: Auditable and privacy-preserving deep learning with
blockchain-based incentive,” IEEE Transactions on Dependable and
Secure Computing, vol. 18, no. 5, pp. 2438–2455, 2021.

[13] Y. Liu, Z. Ai, S. Sun, S. Zhang, Z. Liu, and H. Yu, “Fedcoin: A
peer-to-peer payment system for federated learning,” in Federated
Learning - Privacy and Incentive, ser. Lecture Notes in Computer
Science, 2020, vol. 12500, pp. 125–138.

[14] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer,
“Machine learning with adversaries: Byzantine tolerant gradient
descent,” in Annual Conference on Neural Information Processing
Systems, 2017, pp. 119–129.

[15] Q. Wang, Y. Guo, X. Wang, T. Ji, L. Yu, and P. Li, “AI at the edge:
Blockchain-empowered secure multiparty learning with heteroge-
neous models,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
9600–9610, 2020.

[16] J. Zhang, Y. Wu, and R. Pan, “Incentive mechanism for horizontal
federated learning based on reputation and reverse auction,” in
the Web Conference, 2021, pp. 947–956.

[17] X. Chen, J. Ji, C. Luo, W. Liao, and P. Li, “When machine learning
meets blockchain: A decentralized, privacy-preserving and secure
design,” in IEEE International Conference on Big Data, 2018, pp.
1178–1187.

[18] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

USENIX Symposium on Operating Systems Design and Implementa-
tion, 1999, pp. 173–186.

[19] B. Zhao, K. R. Mopuri, and H. Bilen, “iDLG: Improved deep
leakage from gradients,” CoRR, vol. abs/2001.02610, 2020.

[20] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
in Proceedings of the Conference on Computer and Communications
Security, 2015, pp. 1310–1321.

[21] X. Liu, H. Li, G. Xu, Z. Chen, X. Huang, and R. Lu, “Privacy-
enhanced federated learning against poisoning adversaries,” IEEE
Transactions on Information Forensics and Security, vol. 16, pp. 4574–
4588, 2021.

[22] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in Interna-
tional Conference on Machine Learning. PMLR, 2018, pp. 5650–5659.

[23] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,”
in the Symposium on Operating Systems Principles, 2017, pp. 51–68.

[24] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient com-
pression: Reducing the communication bandwidth for distributed
training,” in International Conference on Learning Representations,
2018.

[25] J. Zhang, Y. Wu, and R. Pan, “Incentive mechanism for horizontal
federated learning based on reputation and reverse auction,” in
the Web Conference, 2021, pp. 947–956.

[26] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang,
“Personalized cross-silo federated learning on non-iid data,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 9, 2021, pp. 7865–7873.

[27] Y. Hu, W. Xia, J. Xiao, and C. Wu, “GFL: A decentralized fed-
erated learning framework based on blockchain,” CoRR, vol.
abs/2010.10996, 2020.

[28] A. Z. H. Yapp, H. S. N. Koh, Y. T. Lai, J. Kang, X. Li, J. S. Ng,
H. Jiang, W. Y. B. Lim, Z. Xiong, and D. Niyato, “Communication-
efficient and scalable decentralized federated edge learning,” in
Proceedings of the Joint Conference on Artificial Intelligence, 2021, pp.
5032–5035.

[29] Y. Wang, C. Wang, Z. Wang, S. Zhou, H. Liu, J. Bi, C. Ding, and
S. Rajasekaran, “Against membership inference attack: Pruning is
all you need,” in the Joint Conference on Artificial Intelligence, 2021,
pp. 3141–3147.

[30] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of machine learning research, vol. 9, no. 11, 2008.

Zhen Qin received the M.S. degree in 2021 from
School of Computer Engineering and Science,
Shanghai University, Shanghai, China. He is cur-
rently pursuing the Ph.D. degree with the Col-
lege of Computer Science and Technology, Zhe-
jiang University, Hangzhou, China. His research
interests include federated learning, distributed
system and machine learning. He has published
several papers on international conferences and
journals, including IEEE ICWS 2019, ICSOC
2020, IEEE TSC, etc.

Shuiguang Deng is currently a full professor
at the College of Computer Science and Tech-
nology in Zhejiang University, China, where he
received a BS and PhD degree both in Com-
puter Science in 2002 and 2007, respectively.
He previously worked at the MIT in 2014 and
Stanford University in 2015 as a visiting scholar.
His research interests include Edge Comput-
ing, Service Computing, Cloud Computing, and
Business Process Management. He serves for
the journal IEEE Trans. on Services Computing,

Knowledge and Information Systems, Computing, and IET CPS as an
Associate Editor. Up to now, he has published more than 100 papers in
journals and refereed conferences. In 2018, he was granted the Rising
Star Award by IEEE TCSVC. He is a fellow of IET and a senior member
of IEEE.

Xueqiang Yan is currently a Technology Expert
with Wireless Technology Lab, Huawei Tech-
nologies. He was a Member of Technical Staff
with Bell Labs from 2000 to 2004. From 2004 to
2016, he was the Director of Strategy Depart-
ment, Alcatel-Lucent Shanghai Bell. His current
research interests include future mobile network
architecture, edge AI, data analytics, Blockchain
and Internet of Things.

Schahram Dustdar is a Full Professor of Com-
puter Science (Informatics) with a focus on In-
ternet Technologies heading the Distributed Sys-
tems Group at the TU Wien. He is Chairman
of the Informatics Section of the Academia Eu-
ropaea (since December 9, 2016). He is ele-
vated to IEEE Fellow (since January 2016). From
2004-2010 he was Honorary Professor of In-
formation Systems at the Department of Com-
puting Science at the University of Groningen
(RuG), The Netherlands.

From December 2016 until January 2017 he was a Visiting Professor
at the University of Sevilla, Spain and from January until June 2017
he was a Visiting Professor at UC Berkeley, USA. He is a member
of the IEEE Conference Activities Committee (CAC) (since 2016), of
the Section Committee of Informatics of the Academia Europaea (since
2015), a member of the Academia Europaea: The Academy of Europe,
Informatics Section (since 2013). He is recipient of the ACM Distin-
guished Scientist award (2009) and the IBM Faculty Award (2012). He is
an Associate Editor of IEEE Transactions on Services Computing, ACM
Transactions on the Web, and ACM Transactions on Internet Technology
and on the editorial board of IEEE Internet Computing. He is the Editor-
in-Chief of Computing (an SCI-ranked journal of Springer).

Albert Y. Zomaya is the Peter Nicol Rus-
sell Chair Professor of Computer Science and
Director of the Centre for Distributed and
High-Performance Computing at the University
of Sydney. To date, he has published more
than 700 scientific papers and articles and is
(co-)author/editor of 30 books. A sought-after
speaker, he has delivered 250 keynote ad-
dresses, invited seminars, and media briefings.
He is currently the Editor in Chief of the ACM
Computing Surveys and served in the past as

Editor in Chief of the IEEE Transactions on Computers (2010-2014) and
the IEEE Transactions on Sustainable Computing (2016-2020).

Professor Zomaya is a decorated scholar with numerous accolades
including Fellowship of the IEEE, the American Association for the
Advancement of Science, and the Institution of Engineering and Tech-
nology. He is a Fellow of the Royal Society of New South Wales,
Foreign Member of Academia Europaea, and Member of the European
Academy of Sciences and Arts. Some of Professor Zomaya’s recent
awards include the New South Wales Premier’s Prize of Excellence in
Engineering and Information and Communications Technology (2019)
and the Research Innovation Award, IEEE Technical Committee on
Cloud Computing (2021). His research interests lie in parallel and dis-
tributed computing, networking, and complex systems.


	1 Introduction
	2 Preliminaries
	2.1 Data Representation Leakage
	2.2 Poisoning Attack

	3 BlockDFL Overview
	4 Multiple Processes of BlockDFL
	4.1 Role Selection
	4.2 Local Training
	4.3 Aggregation
	4.4 Verification and Consensus

	5 Experiments
	5.1 Experimental Setup
	5.1.1 Dataset, Model and Platform
	5.1.2 Strategy of Malicious Participants
	5.1.3 Baseline

	5.2 Performance and Poisoning Tolerance
	5.3 Time Consumption and Scalability

	6 Related Work
	7 Conclusions and Future Work
	Appendix A: Gradient Compression versus Data Reconstruction
	Appendix B: Distance between Sparsed Model Updates
	References
	Biographies
	Zhen Qin
	Shuiguang Deng
	Xueqiang Yan
	Schahram Dustdar
	Albert Y. Zomaya


