
Multi-Component Optimization and
Efficient Deployment of Neural-Networks
on Resource-Constrained IoT Hardware
BHARATH SUDHARSAN1, DINESHKUMAR SUNDARAM2, PANKESH PATEL3,
JOHN G. BRESLIN1, MUHAMMAD INTIZAR ALI4, SCHAHRAM DUSTDAR5,
ALBERT ZOMAYA6, AND RAJIV RANJAN7
1Confirm SFI Research Centre for Smart Manufacturing, Data Science Institute, NUI Galway, Ireland
(e-mail: {bharath.sudharsan, john.breslin}@insight-centre.org)
2AVM Solutions UK (email: dinesh.kumar@avmsolutionsuk.com)
3Artificial Intelligence Institute, University of South Carolina, Columbia, USA. (e-mail: ppankesh@mailbox.sc.edu)
4School of Electronic Engineering, Dublin City University, Ireland (e-mail: ali.intizar@dcu.ie)
5Distributed Systems Group, TU Wien, Austria. (e-mail: dustdar@dsg.tuwien.ac.at)
6Albert Zomaya is with the University of Sydney, Sydney, Australia (e-mail: albert.zomaya@sydney.edu.au)
7School of Computing, Newcastle University, Newcastle upon Tyne, UK (e-mail: raj.ranjan@ncl.ac.uk)

Corresponding author: Bharath Sudharsan (e-mail: bharath.sudharsan@insight-centre.org).

This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant
Number SFI/16/RC/3918 (Confirm) and also by a research grant from SFI under Grant Number SFI/12/RC/2289_P2 (Insight), with both
grants co-funded by the European Regional Development Fund.

ABSTRACT The majority of IoT devices like smartwatches, smart plugs, HVAC controllers, etc., are
powered by hardware with a constrained specification (low memory, clock speed and processor) which is
insufficient to accommodate and execute large, high-quality models. On such resource-constrained devices,
manufacturers still manage to provide attractive functionalities (to boost sales) by following the traditional
approach of programming IoT devices/products to collect and transmit data (image, audio, sensor readings,
etc.) to their cloud-based ML analytics platforms. For decades, this online approach has been facing issues
such as compromised data streams, non-real-time analytics due to latency, bandwidth constraints, costly
subscriptions, recent privacy issues raised by users and the GDPR guidelines, etc. In this paper, to enable
ultra-fast and accurate AI-based offline analytics on resource-constrained IoT devices, we present an end-to-
end multi-component model optimization sequence and open-source its implementation. Researchers and
developers can use our optimization sequence to optimize high memory, computation demanding models
in multiple aspects in order to produce small size, low latency, low-power consuming models that can
comfortably fit and execute on resource-constrained hardware. The experimental results show that our
optimization components can produce models that are; (i) 12.06 x times compressed; (ii) 0.13% to 0.27%
more accurate; (iii) Orders of magnitude faster unit inference at 0.06 ms. Our optimization sequence
is generic and can be applied to any state-of-the-art models trained for anomaly detection, predictive
maintenance, robotics, voice recognition, and machine vision.

INDEX TERMS Edge Intelligence, Neural Networks, Optimization, TinyML, IoT Hardware.

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) have been used as the
principal approach to solve a variety of significant

problems in machine translation, video analytics, voice local-
ization, handwriting recognition, etc. Commonly, to provide
edge-level AI-functionalities to customers, manufacturers
program their IoT devices/products to capture, compress and
transmit data (image, audio, sensor readings, etc.) over the
network to their central server/cloud where advanced analyt-
ics are performed [1]. Although such cloud-based approaches

reduce the maintenance cost by keeping the analytics models
in one central location, it may not be suitable for most
applications [2] because; First, there is a latency caused when
transmitting data to a central server for analysis and back
to the application. Second, the use of a server for contin-
uous data storage and analysis is expensive because these
applications generate high volumes of data. Furthermore,
the processing and storage of multiple data streams make
the subscription more costly. This design requires a huge
amount of reliable bandwidth, which may not always be

VOLUME 4, 2022 1

ar
X

iv
:2

20
4.

10
18

3v
1

 [
cs

.L
G

]
 2

0
A

pr
 2

02
2

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

FIGURE 1: Some of the popular examples of MCU-based hardware that are widely used to design IoT devices.

held for IoT devices [3]. Moreover, when employing such
an online approach, the hardware cost increases due to the
addition of a 4G/WiFi module for communication, which
also increases power consumption. Third, even if we assume
that we could address latency and bandwidth issues by em-
powering a sophisticated infrastructure, a large class of IoT
applications may not be suitable because of regulations and
security concerns of sharing data as there is an involvement of
biometric data of residents. For instance, GDPR restricts the
sharing of user’s private data across organizations. Finally,
IoT devices are not self-contained ubiquitous systems since
they depend on the internet and cloud services for inferences
and model updates [4].

To address the aforementioned concerns, there is a strong
need for an approach which enable offline analytics on IoT
hardware. Many ML frameworks such as TensorFlow Lite,
Caffe2, Apache MXNet, ONNX, etc., exist to deploy Neural
Network (NN) based models on IoT devices [5]. For in-
stance, Google’s TensorFlow (TF) Lite contains a set of tools
that help developers to optimize and run TF models (.tflite
model file) on IoT devices such as Raspberry Pi, Android
and iOS smartphones [6]. However, such frameworks are
not suitable for resource-constrained hardware like Micro
Controller Units (MCUs), small CPUs since executing these
software frameworks alone requires hundreds of MBs for
storage, file system support, high clock speeds, multiple
cores, parallel execution units, etc. The majority of IoT
devices such as fitness bands, smart plugs, HVAC controllers,
etc., are powered by MCUs and small CPUs that are highly
resource-constrained. For example, the Arduino Nano is an 8-
bit ATmega328 MCU with a 16 MHz clock, 2 kB of SRAM,
32 kB of ISP flash memory, and the NUCLEO-F303K8 is
a 32-bit ARM Cortex-M4 MCU with a 72 MHz clock and
64 kB of flash memory. Fig. 1, shows some of the popular
examples of hardware that are widely used to design IoT
devices, and billions of similar specification hardware-based
devices have already been deployed in the world.

A. MOTIVATION
In the following, we present the research challenges based on
our experimental experience and our recent empirical study.
They are the core motivation of our research.

Neural Networks vs Resource-constrained MCUs. Exe-
cuting NNs on MCUs-based resource-constrained IoT hard-
ware (shown in Fig. 1) is challenging, because Firstly, the
memory footprint (SRAM, FLASH, and EEPROM) is lim-
ited to a few MBs. No secondary memory is added during the
design phase of IoT hardware in order to conserve energy and
to maintain high instruction execution speeds. On the other
hand, NN models routinely contain millions of parameters
requiring higher MBs of storage. Secondly, the computation
core (commonly a single ARM Cortex-M CPU) runs only up
to a few hundred MHz resulting in low operations per second.
Next is the absence of native file system support, no support
for floating-point operations, and the inability to perform
parallel processing due to the absence of multiple compu-
tational units make the execution of NNs more challenging.
Finally, for a single inference, such models roughly invoke
109 arithmetic operations and memory accesses, leading to
substantial power consumption and heat dissipation, draining
the limited battery capacity while testing the device’s thermal
limits.

Existing Programming Frameworks. The compression lev-
els and speedups produced by generic optimization toolkits in
ML frameworks (e.g., PyTorch, Tensorflow) are not sufficient
since they are targeted for smartphones and better-resourced
IoT hardware such as Raspberry Pis, Jetson Nano. The early-
stage TF Lite for Microcontrollers [7] core runtime can fit
in 16 KB on an Arm Cortex M3 and run basic NNs on
MCUs without needing operating system support or dynamic
memory allocation. Here, still, in order to highly reduce the
NN size before deploying and executing on MCUs using TF
Micro, there is a need to optimize high memory, computation
demanding models in multiple aspects to produce small size,
low latency, low-power consuming models that can com-
fortably fit and execute on resource-constrained hardware

2 VOLUME 4, 2022

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

Approaches Description Strengths Weaknesses Tools & Technology

ML
on MCUs

Models are trained on data center GPUs,
then passed into a hardware and soft-
ware co-optimization pipeline to obtain
resource-friendly models that the edge
devices can execute to obtain predictions

• Reduced inference latency
• MCUs are low cost, small form

factor, and low power consuming
• Wide hardware choices
• Minimal risks of memory, app,

and hardware crashes

• Optimizers matching
challenges. Performance metrics
trade-offs

• Battery wear, heat & runtime
memory overflow issues

• Supports only Embedded C,
C++ and Micro Python

• Compression: Quantization, prun-
ing, weight clustering, tensor decompo-
sition, NAS

• Programming: Arduino IDE, At-
mel Studio, Keil MDK

• Conversion: m2cgen, sklearn-
porter, emlearn, TF Micro

AIoT
Hardware

Co-processors/accelerators, edge GPUs,
and AIoT boards available to execute
models using light version of ML frame-
works

• On-board FFT, FPU, KPU, APU
support for calculation speedups

• Support from well documented
and continuously updating ML frame-
works like TF Lite, FeatherCNN,
OpenNN, Edge-ML

• Resource management chal-
lenges

• Model optimization,
deep compression, and neural
architecture search efforts

• High-end: Intel Movidius NCS,
Google Coral TPU, NVIDIA Jetson
Nano, Intel NUC series, LattePanda,
BeagleBone boards

• Low-cost: Banana Pi, UDOO
BOLT, Rock Pi, Digi Connect core SBC
Series, Orange Pi, 96 boards

Cloud-based
SaaS

No ML expertise required to perform the
SaaS-based model re-training and infer-
ence tasks. Users simply need to share
image frames of objects or scenes re-
quired to be identified. Rest heavy lifting
is handled by the subscribed services

• Scalability, agility & rapid devel-
opment platform

• Anywhere & anytime infinite re-
source on demand

• Routine and safe data storage
• Wide variety of use-case and un-

structured data support

• High latency and subscrip-
tion cost

• Privacy concerns
• Limited customization and

Vendor lock-in
• Loss of control

• Popular: AWS Rekognition,
Google Vision AI, Microsoft Azure CV,
IBM Watson Visual Recognition

• Customizable: Google AI platform
& Cloud, AutoML, MakeML, IBM
Cloud Pak for Data

TABLE 1: Summary of the approaches and hardware used to develop AI-powered IoT devices/products.

presented in Fig. 1.

Performance Metrics Trade-offs. During on-board model
execution, an IoT application that interacts with the loaded
model may demand high performance on a particular metric
over others. For example, a real-time IoT device would re-
quire ultra-fast inference, while a low-memory device would
require the highest model size reduction. So, the challenge
is how to perform optimization that favors particular metrics
over others?

Optimization Compatibility. When a NN model (optimized
using a state-of-the-art method) exceeds the target IoT device
hardware’s memory capacity by a few bytes margin (a com-
mon scenario in practice), there is a need to choose and apply
an additional optimization method that is compatible with the
previously used optimizer. In such cases, the researchers or
developers need to spend days on unproductive work that
involves finding a compatible optimizer, then implement it
to check if the new compression and accuracy levels are
satisfactory. But models cannot be optimized further if they
fail to find a method that matches the previous optimizer.
So, they either have to tune the model network architecture
and re-train from scratch to produce a smaller model (waste
of GPU days and electricity) or upgrade the IoT device
hardware (loss of money). Hence, in order to speed up the
research and development phase (going from idea to product)
of AI-powered IoT devices, the researchers and developers
need a comprehensive guideline to optimize NN models
that can readily be deployed on resource-constrained MCUs-
based hardware.

Given the potential of building intelligent IoT applications
for offline analytics using NNs, there is a strong need for
a mechanism that can optimize models to achieve reduced
model size, faster inference, and lower power consumption.

B. OUR APPROACH
To address the aforementioned challenges and design goals,
we propose a multi-component model optimizer that enables

the execution of computational intensive NN models on
resource-constraint IoT hardware presented in Fig. 1. The
contributions of this paper are as follows:

Multi-component Optimizer Design and Implementation.
We propose multi-component model optimizer, a sequence
that researchers and developers can follow to optimize var-
ious NNs for making it executable on multiple resource-
constrained IoT hardware. The proposed design flow is based
on a combination of state-of-the-art optimizers. To the best
of our knowledge, we are the first to present a complete
design flow, with its implementation freely made available
on github1. We believe that the transparent design will greatly
aid the model optimization steps to be seamlessly integrated
into the AI-powered IoT product development life cycle at a
minimal cost.

Validation Study and Evaluation Results. We perform
experiments on Convolutional Neural Networks (CNNs) and
show the readers which presented components need to be
used together in order to optimize their CNN-based use-case
models for; (i) Smallest size (12.06 x times compression); (ii)
Best accuracy (0.13% to 0.27% improvements); (iii) Ultra-
fast unit inference at 0.06 ms (orders of magnitude faster than
original models). We also explain how to practically deploy
and execute models optimized using our multi-component
model optimizer on tiny IoT hardware.

Outline. The rest of the paper is structured as follows: Sec-
tion II presents the state of the art. In Section III, we present
our end-to-end multi-component ML model optimizer. Sec-
tion IV presents the evaluation results and analysis. Section V
concludes our current work and presents the future outlook.

II. STATE OF THE ART
Table 1 presents an overview of approaches and hardware
centered around the deployment of AI-powered IoT de-
vices/products. It is broadly divided into three categories:

1https://github.com/bharathsudharsan/CNN_on_MCU

VOLUME 4, 2022 3

https://github.com/bharathsudharsan/CNN_on_MCU

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

Machine Learning on Microcontrollers, which focuses on
deep optimization of ML models to enable its accommo-
dation and execution on resource-constrained MCUs (Sec-
tion II-A); Artificial Intelligence of Things (AIoT) hardware,
which presents AI accelerators, GPU-boards and embedded
systems that are the target to execute NN models (Sec-
tion II-B); Cloud-based, which leverage cloud-based soft-
ware as a service (Section II-C) for inference. In the follow-
ing, we describe each approach in detail.

A. MACHINE LEARNING ON MICROCONTROLLERS
The efforts belonging to this category focus on optimizing
ML models to enable their execution on MCUs shown in
Fig. 1. Here, the overall objective is to reduce the model size
and execution latency while aiming to maintain acceptable
levels of accuracy.

The MCU hardware platform has recently become an
attractive target to run models due to TensorFlow Micro and
MCU-targetted optimized kernels from CMSIS [3]. In this
domain of enabling intelligence on resource-constrained de-
vices, the authors in [8] have implemented a tree-based algo-
rithm, called Bonsai, for efficient prediction on IoT devices.
High accuracy predictions were obtained in milliseconds
even on slow MCUs and were able to fit in a kB of memory.
Similarly, ProtoNN, a k-Nearest Neighbor (KNN) inspired
algorithm with several orders of lower storage and prediction
complexity was proposed in [9] to address the problem of
real-time and accurate prediction on resource-scarce devices.
Both [8] and [9] are tailored prediction algorithms that can fit
in resource-scarce devices and show superior performance.
Such techniques are lightweight and show low execution
latency, making them well-suited for offline analytics. How-
ever, the design flow used by then cannot be applied for NNs.
In the remainder of this section, we present NN optimization
techniques.

In the domain of NN optimization, various techniques
are applied to enable the deployment of NNs on IoT de-
vices. For instance, Model design techniques emphasize
on designing models with a reduced number of parameters
without compromising accuracy, thereby enabling it to fit
and execute within the available IoT device memory [10].
Also, Model compression techniques such as quantization
[11] and pruning [10] can be used. Where quantization takes
out the expensive floating-point operations by reducing it
to a Q-bit fixed-point number, and pruning removes the
unnecessary connections between the model layers. Google’s
TensorFlow Hub offers pre-trained and optimized versions
of popular models such as Inception, Xception, MobileNets,
Tiny-YOLO, ResNet, EfficientNet, etc. that can identify hun-
dreds of classes of objects, including people and animals.
For example, in [12], the Mobilenet-SSD is used to enable
their camera-based Alexa smart speaker prototype to detect
and identify objects in the room (Alexa custom skill), and in
[13] a Deep Neural Network based biometric authentication
was used to address the cybersecurity risks by smart speaker
users. Such pre-optimized models can be readily loaded

only on better-resourced IoT devices like Raspberry Pis,
Coral boards, Jetson Nano, etc., not on resource-constrained
MCUs, small CPUs, which lack even the basic file-system
support.

B. ARTIFICIAL INTELLIGENCE OF THINGS (AIOT)
HARDWARE

While the model compression/shrinking techniques can help
NN models to run on IoT devices, it is still a challenge
to deploy dense NN models on MCUs and obtain real-
time inference results [4]. To address this challenge, the NN
workloads are offloaded from an IoT device to powerful edge
accelerators/co-processors [14]. In such a scenario, an IoT
device re-directs the data stream to accelerator hardware,
where it processes the data and sends back the corresponding
inference results. In today’s IoT hardware market, there is
a new category of IoT edge hardware emerging named Ar-
tificial Intelligence of Things (AIoT) devices, which can be
divided into two categories, as mentioned below:

AI Accelerators and Dedicated GPU Boards. The winning
model of the ImageNet challenge showed 11.8% improve-
ments in classification accuracy. i.e., from 84.7% in 2012
(winner AlexNet) to 96.5% in 2015 (winner ResNet-152).
Such exceptional accuracy improvement comes with high
computational complexity. For instance, 1.4GOPS (Giga Op-
erations Per Second) is required by AlexNet, while ResNet-
152 consumes 22.6GOPS for the same task of processing a
single 224×224 image. In our resource-constrained scenario,
such high demand for hardware resources is prohibitive.
Next is energy consumption. For instance, just for DRAM
accesses, running a 1-billion connection NN at 30Hz would
approximately require 30Hz × 1G× 640pJ = 19.2W, which
is again prohibitive in our case. For such challenges, custom
hardware accelerators [15, 16] (tailored design based on the
computation pattern of the use-case model) are available
specifically to offload the NN workload to achieve higher ef-
ficiency than GPUs. These designs reduce the memory access
expense, and second memory transfer and data movement are
optimized. Such accelerators treat the models as black boxes.

For generic design and development scenarios, to speed
up inference or on-device training during active learning sce-
narios, hardware manufacturers have developed low power
and cost GPU plugins to improve parallel processing perfor-
mance. For instance, Intel’s Movidius Neural Compute Stick
2 (NCS) and Google’s Coral Tensor Processing Unit (TPU)
USB accelerator are some of the co-processors that can be
plugged into the USB port of edge device like Raspberry
Pis, BeagleBones, etc. to accelerate machine vision tasks
such as, drone-based 3D mapping, contextual awareness,
crowd counting, checking compliance of the use of face
masks, etc. There are times when CPU-based devices with
co-processors/accelerators may not be enough for running
DL models. To address this issue, hardware manufacturers
offer GPU-based dedicated development boards, which tend
to have better ML framework compatibility and NN execu-

4 VOLUME 4, 2022

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

FIGURE 2: The architecture of our multi-component model optimizer: Sequence to follow for optimizing Neural Networks to
enable its execution on resource-constrained AIoT boards, small CPUs, MCUs based IoT devices.

tion performance. NVIDIA’s Jetson Nano and Google Coral
development board are popular examples.

In this paper, we significantly compress and simplify the
models before offloading it to the hardware accelerators, in
order to reduce workload redundancy, save memory band-
width and also computation cycles.
Resource-Constrained Embedded Systems. The devices
belonging to this category are embedded systems designed
using a variety of low hardware specification chipsets, which
are usually MCUs and small CPUs [2, 6]. The nRF52840
Adafruit Feather, STM32f103c8 Blue Pill, ATSAMD21G18
Adafruit METRO, etc., are the embedded boards that are
widely used during the design phase of IoT devices, and
billions of similar specification hardware-based devices have
already been deployed in the world (e.g., smart bulbs, smart
plugs, HVAC controllers). There is another set of better-
resourced IoT hardware named AIoT boards. The ESP32-
CAM, Sipeed MAIX Bit, M5 StickV AI Camera, Sipeed
Maix Amigo, OpenMV Cam H7 are popular AIoT boards
that are purpose-built to deliver high performance in a
small physical and power footprint, enabling users to deploy
high-accuracy AI at the edge. The traditional small CPUs
and MCUs based IoT hardware from the price category
of AIoT boards does not have a camera module and also
lack inbuilt hardware accelerators such as APU (Accelerated
Processing Unit), KPU (convolution operation accelerator),
FPU (Floating-point accelerator), and FFT (Fourier trans-
form accelerator). The competitive price range and its AI-
friendly hardware specification make it a suitable choice
to program and use as privacy-preserving offline analytics
performing edge device.

Fig. 1, shows a few popular MCU-based development
boards with their specifications. These open-source MCU
boards and the above described AIoT boards are ≈ 10 ×
cheaper, ≈ 3× smaller, and ≈ 12 x less power consuming
than the AI accelerators and dedicated edge GPU boards
mentioned in the previous section. This is because such
boards are powered by single-chip processors that are very
cheap (few $), tiny (≈ 1 cm2), and highly energy-efficient (≈
1 mW). In this paper, we present how to optimize NN models
in multiple aspects to obtain a small size, low latency and

power-consuming model that can readily be deployed on
resource-constrained embedded systems and AIoT boards.

C. CLOUD-BASED SOFTWARE AS A SERVICE (SAAS)
This approach leverages cloud-based services. Various cloud
vendors (Such as Amazon, Google, Microsoft) have devel-
oped ML-based analytics platforms. A typical approach is
where a device sends a data stream over the network to a
cloud-based platform, where all the processing takes place
and analytics results are sent back to the IoT device [17].

For example, our previous work [1, 18] presents an imple-
mentation design that uses AWS as a base technology. We
choose AWS Rekognition service, which lets developers de-
velop several NN-based computer vision capabilities on top
of scalable and reliable Amazon infrastructure. Rekognition
offers services, which can be divided into two categories:
First, the developer can leverage pre-trained algorithms (pre-
pared by Amazon) to identify objects, people, text, scenes,
and activities in videos, as well as detect any inappropriate
content. Second, Rekognition Custom labels enable the de-
velopers to build use case specific NN-based video analytics
capabilities to detect unique objects and scenes.

III. MULTI-COMPONENT OPTIMIZER DESIGN
Fig. 2, shows the proposed end-to-end multi-component
model optimizer. This optimizer takes a Neural Network
(NN) model as an input and produces a highly optimized
version of the input NN that can run on low resource, cost
and power IoT hardware such as MCUs (shown in Fig. 1). In
each of the following sections, we present different phases of
the proposed multi-component optimized design.

A. PRE-TRAINING MODEL OPTIMIZATION
This section presents pre-training techniques to optimize NN
models.

1) Pruning
Model pruning induces sparsity in a NN’s various connection
matrices to reduce the number of non-zero parameters. The
concept of pruning models enables trading off a small portion

VOLUME 4, 2022 5

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

FIGURE 3: Model graph optimization by arithmetic simplification: A few example known inputs-based arithmetic re-writes to
simplify the graph.

of a model’s quality for reduced model size, lesser inference
time, and improved thermal and energy efficiency.

The pruning technique we implemented as a part of our
multi-component optimizer is from [19]. This component
prunes the model’s network connections during the training
step, to reduce the size and working memory with only a
minimal impact on model accuracy. In this pruning method
we implemented, we initially increase the sparsity from an
initial value sinitial starting from 0 to a final sparsity value
sfinal, for k pruning steps. The training step starts at t0, with
a pruning frequency of δt.

st = sfinal + (sinitial − sfinal)
(
1− t− t0

nδt

)
for t ∈ t0...t0 + kδt

(1)

Binary weight masks are variables that take the same size
& shape of the model layer’s weights. Every layer that we
chose to prune should contain this mask since it is used to
determine which weights engage in the forward execution
of the graph. We update these masks, every δt steps during
the training, to gradually increase the sparsity of the net-
work. Once the model achieves the target sparsity sfinal,
we stop updating the masks. We use Eqn. (1) to remove
redundant connections, while gradually reducing the prune
count of weights in every iteration, since the number of
weights in the network keeps reducing. We recommend the
user’s to realize this method for achieving model sparsity.
The highlights of this method are; it is independent of the
model’s network property & its constituent layers, hence
users can apply it to a wide range of models (can be used by
models without structural properties, e.g. LSTMs). Not much
hyperparameter tuning is needed (users don’t have to select
slopes and weight-threshold), and it performs well across
various models.

2) Quantization-aware Training
This section briefly explains how to perform quantization-
aware training [20], of a model which is aimed to execute on
tiny hardware. Here, this technique first considers quantized
weights in full precision representation to simulate and inject

quantization error into training, thus enabling the weights to
be optimized against quantization errors. This quantization
error is modelled using fake quantization nodes, which simu-
lates the effect of quantization in both forward and backward
passes. These fake quantization operations are added to all
required locations in the model by rewriting the training
graph (by creating a fake quantized training graph).

Based on our evaluation results in Section IV, this method
significantly improves the latency-vs-accuracy trade off for
the majority of use-cases. In cases when performance does
not improve, then the user should directly train the model
and perform post-training quantization using any one method
we provided at Section III-B since it is broadly applicable
to all models and does not require training data during
quantization.

B. POST-TRAINING MODEL OPTIMIZATION
The latest versions of widely used edge-friendly NN models
need additional optimizations to fit and run comfortably
within MCUs-based devices. This section presents methods
that can be applied to pre-trained models (such as Inception,
Xception, Mobilenet, Tiny-YOLO, Resnet, etc.) as well as
custom-designed ones. The optimization methods that are
our post-training model optimization components quantize
the models by reducing the precision of its weights to save
memory and simplify calculations often without much im-
pact on accuracy. The optimization methods that are our post-
training model optimization components quantize the models
by reducing the precision of its weights to save memory
and simplify calculations often without much impacting the
accuracy of a model.
Weights only Quantization. This technique reduces the
weight’s precision in the network from float to 8-bits preci-
sion. Our evaluation results (presented in Section IV) shows
that the model size is significantly reduced. We adopted the
state-of-the approach [21] to quantize NN weight w to a Q-
bit fixed-point number quant(w), by using the quantization
function (Eqn. (2)).

quant(w) = clip[−1,1)(2
−(Q−1).round(w.2(Q−1)) (2)

6 VOLUME 4, 2022

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

FIGURE 4: Model graph optimization for spread/broadcast minimization: Re-ordering of operator and input nodes to reduce
the graph execution cost.

Here clip[−1,1)(x) = max(a,min(x, b)), and the corre-
sponding INT-Q representation of CNN’s weights is W =
quant(w).2(Q−1). The same Eqn. (2) is applied to any acti-
vation values as well. It converts the weights and activations
of a model to Int-8 data type since they are the most natural
type to fit in 32-bit MCU registers.
Weights and Activations Quantization. Similar to the
weight quantization method presented earlier, activations
alone can also be quantized to 8-bits with almost no accuracy
loss. We studied multiple existing techniques and found
out that Symmetric per-channel, Asymmetric per-layer, and
Asymmetric per-channel are well-suited techniques to quan-
tize both weights and activations [20].

We select per-channel quantization with asymmetric
ranges over other techniques since it provides close to
floating-point accuracy for a wide range of networks [20].
This method quantizes both the weights and activations to
INT-8 values. Hence, the convolution in NNs takes the fol-
lowing form

ψ(w, x) = 2−2(Q−1)
∑
iεD

WiXi
.
= 2−2(Q−1).φ(W,X) (3)

In Eqn (3), D is the number of input channels, ψ is NN’s
convolution operation, and φ(W,X) is an accumulator con-
taining high precision values, in our case, Int-32 for Int-
8 operands. We recommend this Int-8 quantization method
since it outperforms the Fine-Grained Quantization (FGQ)
method (2 bits for weight quantization) and Incremental
Network Quantization (INQ) method (5-bit weight floating-
point activation) by preserving accuracy while also providing
run-time improvements. Next, we quantize the original NN’s
Float32 weights and activations to Float16 values. Users can
use this Float16 quantization when they want to achieve
reasonable compression rates (we obtain approx. 6x com-
pression), without loss of precision (we experience only 0.01
% loss in accuracy). Also, Float16 models run on small CPUs
without modification.
Joint Pre and Post-training Model Optimization. If users
want to achieve more than 11x size reduction, let’s assume
when they aim to execute Inception v3 (23.9 MB after post-
training quantization) on a AIoT board, which only 16 MB

Flash memory, we recommend performing joint model size
optimization. Here, first, any of the pre-training optimization
methods from Section III-A has to be applied to the model,
followed by its Int-8 post-training quantization using the
technique we provided in Section III-B.

C. GRAPH OPTIMIZATION
The interior of trained models is a graph with defined data
flow patterns [22, 23]. This graph contains an arrangement of
nodes and edges, where the nodes represent the operations of
a model, and graph edges represent the flow of data between
the nodes. We target the graph level since it is backend
independent, interoperable, applicable to both offline and at
runtime execution of a NN model.

This section presents techniques (optimizers), which can
be leveraged to optimize graphs of NN to improve the com-
putational performance of NN while reducing peak SRAM
(memory) usage on MCUs, thus enabling the execution of
larger models on tiny memory footprints. In the following,
we present graph optimization in sequential steps.

1) Arithmetic Simplification
To improve the graph’s performance, we propose to simplify
its arithmetic by performing the tasks we mention below.
Re-write arithmetic based on known inputs. Arithmetic re-
writes rely on known inputs. As shown in Fig. 3, the known
constant vector is grouped with an unknown vector that might
be constant or non-constant. After performing such re-writes,
if the unknown vector turns out to be a constant, then graph
performance improves. In Eqns (4)–(6), we provide a few
more examples.

Sub(c0, Sub(x, c1)) re-written as Sub(x, c0 + c1) (4)

Conv2D(c0 ∗ x, c1) as Conv2D(x, c0 ∗ c1) (5)

Concat([x, c0, c1, y]) as
Concat([x,Concat([c0, c1]), y)

(6)

Trivial operations removal. We propose to identify and
remove transpose, reshape, reverse, and shuffle operations

VOLUME 4, 2022 7

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

FIGURE 5: Model graph structure optimization: A few example re-writes of the graph after removing the NoOps and Identity
nodes.

on 1D vectors/tensors. Followed by simplifying operations
such as squeeze (removes dimensions that have elements
with size one), pad (pads tensors), tile (generates tensor that
is input replicated by n times), and slice (extracts a slice of
from input) by replacing them with their respective identity
operations.
Flattening operations. As shown in the Eqn 7, we simplify
arithmetic by performing flattening operations.

w + x+ y + z as AddN(w, x, y, z) (7)

In this same step, we also perform aggregation simplification
of nodes, where we remove nodes that have only a single
input and no control dependency. As shown in the Eqn 8, in
this task we rewrite the aggregation operations that have more
than two identical inputs, in order to eliminate multiple sum
operations.

AddN(a, a, a, ..., a) as Mul(const(N), a) (8)

Hoisting. Bulky loops when executed many times results in a
significant consumption of resources. In order to simplify the
loops, in this task, we first propose to pull out loop-invariant
sub-graphs away from loops. For example, in the Eqn 9, we
pull out the variable a, which results in replacing three ∗
operations with one, but introduces three + operations which
is less costly than a ∗ operation. Hence, when this simplified
Eqn is run in a loop, conservation can be achieved in every
iteration.

AddN(a ∗ x, y ∗ a, a ∗ z) as a ∗AddN(x+ y + z)
(9)

In this same task, we next propose to hoist chained unary
operations that are nested inside operators. We show the Eqns
(10) - (11) as examples of this hosting task.

Exp(Sin(a)), for a in Split(b)
as Split(Exp(Sin(b), a)

(10)

Concat([Exp(Sin(a)), Exp(Sin(b)),

Exp(Sin(c))]) as Exp(Sin(Concat([a, b, c])))
(11)

Simplification by reducing node counts. Each node in

the graph of a NN model represents an operation such as
Conv2D, MatMul, Add, etc. Here we propose to perform
rewrites that simplify the graph by reducing the number of
nodes that in turn reduces the number of required operations.
For example, in Eqn 12, we simplify by reducing the three
numeric operators + nodes to one ∗ node, and two logical
operators ! and > nodes into one <= node.

a+ a+ a as 3 ∗ a. !(a > b) as a <= b (12)

In this same task, we leverage the multiplication and divi-
sion operator’s distributive and commutative properties in
order to take out common factors/denominators. To present
this concept, we take the Eqns of the graph patterns that
frequently occur when regularizing gradients during model
training. Here, in Eqn 13, we take out the common factor
from the aggregate nodes where all input nodes are Mul.
Similarly, in Eqn 14, we take out a common denominator.

AddN(Mul(a, x1),Mul(a, x2), . . . ,Mul(a, xn))

as Mul(a,AddN(x1, x2, . . . , xn))
(13)

AddN(Div(a, x!), Div(a, x2), . . . , Div(xn, a))

as Div(AddN(x1, x2, . . . , xn), a)
(14)

Spread minimization. Shapes of two arrays are compatible
only when each of their dimension pair is equal. Broadcasting
is the method to make arrays have compatible shapes so they
can be used during arithmetic operations. Here, we propose to
group similar data types to minimize broadcast. For example,
in below Eqn 15, we separate arrays from scalar values, then
group similar types of data. The resultant simplified Eqn 15
is less costly to execute since performing operations between
the same type of data is faster and simpler.

(a[x] + scalar0) + (b[x] + scalar1)

as (a[x] + b[x]) + (scalar0 + scalar1)
(15)

To achieve higher levels of computational cost reductions, we
provide advanced spread/broadcast minimization tasks that
rewrites a group of binary associative operators (Add or Mul)
and also reorder inputs as shown in Fig. 4. In this same task
we recommend users to bypass or remove redundant reshape

8 VOLUME 4, 2022

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

and broadcast nodes when the shape of the input matches the
target shape.

2) Graph Structure Optimization

We propose the below listed tasks that when realized will
optimize the graph for efficiency.

• Remove loop-invariant sub-graphs. i.e., remove the
loops that are true both before and after iterations.

• Remove dead branches/ends from the graphs. So, during
execution on MCUs, backtracking from the dead-end is
not required to progress in the graph.

• Find loop-trip counts (number of times a loop executes),
then remove loops with zero trip-counts, and remove
control flow nodes when the trip-count is one.

• Replace recurrent subgraphs with optimized ker-
nels/executable modules. For example, when a recurrent
subgraph containing Conv2D + FusedBatchNorm + Bi-
asAdd has to be executed, during runtime, we propose
to dynamically load and unload the kernel/executable
module (stored in EEPROM of MCUs) as a more ef-
ficient replacement for this subgraph.

• Use a transitive reduction algorithm on the entire graph
to remove redundant control edges. Then, shorten the
critical path of a model step by rearranging control
dependencies.

• This task when realized, reduces the graph’s size re-
sulting in processing speedups. Here, we identify and
remove nodes that are effectively NoOps (a placeholder
of control edges) and Identity nodes (outputs data with
the same content and shape of input). We perform this
removal only if the product of the number of inputs and
the number of outputs is less than or equal to the sum of
the number of inputs and the number of outputs. In Fig.
5, we show this briefed method.

• Even just removing nodes such as stop gradient nodes
(not useful during execution, since its scope ends after
building the graph) and Identity ops show speedups on
MCUs. When performing aggressive optimization, we
recommend not to remove any of the control depen-
dency nodes since that might end up creating many
additional edges. Also, do not alter the nodes connected
to functions as doing so might cause run time errors.
Next, although removing nodes driven by peripherals
or other devices is beneficial, yet from our experience,
we recommend not to remove them since they can save
us more on the sensor to device communication cost.
Similarly, we recommend not removing the reference
values receiving/saving nodes as doing so converts ref-
erences to non-references and will cause un-spottable
issues since, in the graph partitions, these non-reference
values will not be shared more than once. Hence such
nodes need to be preserved in order to store the once
shared non-references values.

The time consumed by the presented graph optimization
component to produce the optimized version of the original

model depends on complexity Tc
(
|O|2|O|

)
, where |O| is the

total operators count. Since the latest network architectures
contain hundreds of operators, our proposed component is
best suited to run on better-to-high resource devices such as
standard GPUs or at least laptop CPUs. But our component-
generated optimized models can be comfortably executed by
the inference software on any IoT hardware.

Joint Graph and Post-Training Model Optimization. In
the previous section, we presented our standalone model
graph optimization component that can be applied during the
model training phase and also suitable for any pre-trained
marketplace models. To perform joint model optimization,
the two-steps graph optimization component from Section
III-C needs to be applied to the original un-optimized CNN,
followed by using any of the post-training model optimizers
from Section III-B.

D. OPERATIONS OPTIMIZATION
When designing ML models aimed to execute as an applica-
tion on low-specification IoT hardware, only a limited subset
of operations can be used in order to keep the operational
cost low [23]. In this section, we explain the operations
optimization technique that is a part of our multi-component
model optimizer.

While designing this component, we viewed CNN oper-
ations as absolute arithmetics, aiming to execute it with-
out system-specific functionalities and dependencies on bare
metal resource-constrained AIoT boards, MCU chips, small
CPUs, all of which lack file systems and OS support. We
notice that more than 90% arithmetic operations are used by
convolutional (CONV) layers, so we already convert floating-
point operations into int-8 (fixed point) in Section III-B,
which resulted in model size reduction and improved infer-
ence performance. Next, taking inspiration from [24], we
decompose (depthwise separation) the 2-D CONVs, followed
by 1-D CONVs, aiming to reduce parameters and operations
count, enabling denser & deeper CNN architectures exe-
cutable on low-specification hardware. E.g. a 2D-separable
filter φsep has a unary rank, φsep = 1. This can be re-
written/replaced with two 1D filters, φAx1 & φ1xB . When
using this depth-separation concept on 3D filters, a regular
3D convolution uses C ∗ A ∗ B multiplications, whereas a
depth-separable 3D convolution only requires C + A + B
multiplications. In a few CNNs, we were not able to separate
the filters. So in such situations, we recommend the users to
forcefully separate the high/full-rank filters by penalizing it
during training [25]. We also recommend another alternative,
post-training separation approach where we approximate the
layer’s weights into smaller sets of n low-rank filters. If done
so, only n ∗ (C +A+B) multiplications will be required to
execute one 3D-convolution.

Joint Operations and Post-Training Optimization. Even if
the models such as MobileNet and SqueezeNet are manually
designed to execute within a tight memory budget, it would
exceed the AIoT board’s capacity by over 5 x times. Hence,

VOLUME 4, 2022 9

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

FIGURE 6: RCE-NN steps to deploy and execute optimized models on resource-constrained IoT hardware.

we propose to first optimize the operations of any model
using the technique from Section III-D, then apply any of the
post-training model optimizers we provide in Section III-B.

E. WORKLOAD OPTIMIZATION
The complexity and size of the model have an impact on
the workload. Larger and denser models lead to increased
processor workload and result in a higher duty cycle. In such
cases, when users execute models with multiple dense layers,
the hardware executing the models spend more time working
and less time idle resulting in elevated power consumption
and heat output. In the following, we present techniques
that can be used to reduce workloads. The methods we
recommend apply globally, i.e., not biased towards local
performance optimizations for a single operation, as in many
previous works.

Input data reduction. when the sampling rates of sensors
are high, a unit inference result cannot be produced by the
MCUs using the acquired data within a sampling interval.
In such scenarios, computationally inexpensive low pass fil-
ters [26] should be used to reduce the volume of data, which
improves the quality of the data (reduced noise), allows a
sufficient time interval to perform the inferencing, and also
reduces workload at the same time.

Hardware accelerators. To improve onboard NN work-
load execution efficiency, hardware accelerators (e.g., co-
processing units) can be used to offload the bulk of NN work-
loads (convolutional layers) to nearby accelerators. Nowa-
days, hardware-based NN accelerators are used to bring AI
capabilities to better-resourced edge devices like Raspberry
Pi, BeagleBoard, etc. which can already run light versions of
ML frameworks. In our scenario, to achieve a small form-
factor and to keep the hardware cost ultra-low, we chose
the more resource-constrained devices (Fig. 1), which are
not capable of utilizing off-the-shelf accelerators (required
software that is larger than the entire available memory) [14].

For successful offloads, we recommend storing the C code
of the optimized model to be executed in a shared mem-
ory location (EEPROM) that can be accessed via common
load/store ports. This accelerated convolution approach can
readily be mixed with convolution offload demands (during
inference) from other threads running in the same MCU core
or on co-MCUs/processors. This parallel offloading approach
leads to internal data reuse, hence improving inference per-
formance and the energy efficiency of the AIoT edge devices.
In cases where users are ending up with inefficient workload

transfers that void the mentioned benefits, we recommend
them to offload the processing to the inbuilt KPU, FFT units.
Number of threads. Limit the number of threads initialized
by NNs for computation.
Low-level optimization. Perform low-level optimization of
convolution operations using the method presented [27].
This method adds flexibility in searching for the best imple-
mentation of a specific convolution workload on a particular
architecture and allows us to optimize the whole computation
graph by choosing proper data layouts between operations to
eliminate unnecessary data layout transformation overheads.
Linear algebraic properties. Analyze the linear algebraic
properties [28] of a NN model and apply algorithms such as
Strassen Gaussian elimination, Winograd’s minimal filtering
[29] to reduce the computational workload, resulting in in-
creased available memory.

F. KERNELS OPTIMIZATION
The general C/C++ implemented reference kernels for MCUs
(presented in Fig. 1) need platform-specific hardware op-
timizations. For example, libraries such as NNPack [30],
which provides manually optimized NN operators on ARM
CPUs, cannot optimize kernels of models targeted to be
deployed on a wide range of tiny hardware.

In the following, we present library independent kernel op-
timization techniques that are generic across a wide range of
resource-constrained hardware for guaranteeing no runtime
performance bottlenecks.
• Remove excess modules and components inside the

project directory before building a project. This reduces
the size of the compiled kernel and also aids the MCUs
to boot faster.

• Group multiple operators together within a single ker-
nel. Performing this task will improve efficiency due to
better memory locality.

• Matrix multiplication is a computationally intensive
task, yet the main computation kernel that needs to be
used during convolution operations. In the context of
matrix multiplication on tiny hardware, we recommend
using the LIBXSMM [31] to improve the kernel perfor-
mance because it goes deep into the assembly code level
for improving small matrix multiplication tasks. Also,
we recommend implementing the matrix multiplication
kernel with 2x2 kernels in order to save on the total
number of load instructions while also enabling some
data re-usage.

10 VOLUME 4, 2022

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

FIGURE 7: Visualizing and comparing the size and inference time of a CNN with its pre-training, post-training, operations, and
graph optimized versions: The a. Original CNN is compared with its b. Quantization-aware trained version, c. Pruned version,
d. Int with float fallback quantized version, e. Float16 quantized version, f. Int only quantized version, g. Operations optimized
version, h. Graph optimized version.

VOLUME 4, 2022 11

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

TABLE 2: Comparing original models with its: a. Pre-training optimized model versions, and b. Post-training optimized model
versions.
Changes in CNN’s. i. Size. ii. Test Accuracy. iii. Unit inference time. iv. Model load & test set inference time.

Original
models

a. Q-aware
trained version

a. Pruned
version

b. Int with float fallback
quantized version

b. Float16
quantized version

b. Int only
quantized version

CNN1

i. 271.4 KB
ii. 89.19 %
iii. 326.69 ms
iv. 1419.27 ms

108.7 KB
88.32 %
30.36 ms

1072.16 ms

98.1 KB
91.12 %

175.90 ms
1072.16 ms

22.5 KB
89.17 %
0.34 ms

1264.46 ms

43.0 KB
89.19 %
0.26 ms

1075.24 ms

23.2 KB
89.16 %
0.37 ms
1667.54

CNN2

i. 271.4 KB
ii. 98.80 %
iii. 344.43 ms
iv. 1255.09 ms

282.8 KB
97.11 %
30.80 ms

1414.21 ms

98.1 KB
99.10 %

187.84 ms
1074.45 ms

22.5 KB
98.03 %
0.38 ms

1092.26 ms

43.0 KB
98.04 %
0.62 ms

1024.50 ms

23.2 KB
98.05 %
0.50 ms

1605.62 ms

• The computationally intense convolutions traverse their
operands many times during computation. Hence, man-
aging the layout of the data fed to NNs is critical for re-
ducing memory access overheads. We also recommend
applying algorithms to optimize convolution in a single
thread (thread optimization) to reduce memory access
overheads.

• The convolutions should be partitioned into disjoint
pieces to achieve parallelism. At the CPU level, off-
the-shelf multithreading solutions such as OpenMP [32]
(used by the Intel MKL-DNN kernel library) are used
to achieve parallelism via shared memory multiprocess-
ing. But for MCUs, such approaches are not suited.
For MCUs, self-customized thread pooling techniques
should be used to reduce overheads while launching
and suppressing threads, to reduce performance jitters
while adding threads. Using such a self-customized
thread pool provides full control of the IoT application
while maintaining performance across different MCU
platforms.

When users aim to perform an advanced level of optimiza-
tion, we recommend optimizing the matrix multiplications,
CONVs and pooling layers, and activation functions, as
explained in the rest of this section.
Optimized Matrix & Matrix Vector Multiplication Ker-
nels. If MCUs contain a large number of registers, we can
implement large kernels to obtain superior multiplication per-
formance. But in reality, for example, the latest Arm Cortex-
M (32-bit RISC processor cores) has only 16 architectural
registers, including Link & Program Counter registers. So,
we use only 2x2 kernels for reducing operands loading cost
into registers. In our CNN, the batch size of the fully-
connected layers is one, so we perform matrix-vector multi-
plication (we view vector as one column matrix) using a 2x1
kernel for speedups. Since storage is expensive in MCUs, we
quantized the weights (see Section III-B) to reduce its size.
In all the cases, since these quantized weights are stored and
re-used during onboard inference, we found that reordering
the matrix weights can reduce the pointer accesses. We
recommend users to inherit the weight interleaving method
from [3] to implement the weights reordering tasks.
CONVs and Pooling Optimization for Efficiency. Our

CNN converts the MNIST’s 28x28 image’s pixels into a
matrix, an essential step, but consumes memory to store
pixels and output matrix. So, depending on the size (2x2)
of previously explained matrix-multiplication kernels, the
optimized convolution kernel limits its extension/spreading
over the image pixels, thus resulting in reduced memory con-
sumption. Pooling (downsamples data in matrix generated
by CONVs) is one of the memory-bound operations linked
with CONVs. Currently, a nested for-loop approach is used to
iterate throughout the window, like in the Caffe framework.
But to improve efficiency, in limited memory footprint, we
recommend splitting the pooling operation into two parts
(for both average and max pooling), namely width and height
pooling, so the operations to find the maximum or average is
the same for both axes, resulting in reduced total operations.

ReLU Activation Function Optimization. ReLU, sigmoid,
and tanh are the commonly used activation functions to add
non-linearities in the network. In a regular high-resource
setting, we generally use the default ReLU layer from Tensor-
Flow. But when users are aiming to deploy and execute their
models on low-resource hardware like the AIoT boards, we
recommend replacing the default ReLU with its optimized
version from [3]. Their optimized Single instruction, multi-
ple data Within a Register (SWAR) based ReLU claims to
achieve a 4x speed-up for most cases.

G. DEPLOYMENT OF OPTIMIZED MODELS
In this section, using Fig. 6, we outline the necessary steps
from our recent Resource Constrained Edge - Neural Net-
works (RCE-NN) pipeline [33], to deploy and execute opti-
mized models on MCU-based devices, shown in Fig. 1.

1) Model to FlatBuffer Conversion
It converts models into FlatBuffer, using FlatBuffer’s cross-
platform serialization library or by also using the TF Lite
converter. After conversion, the resulting FlatBuffer format
file contains direct data structures of the trained NN. This
data structure contains information arrays with a graph con-
sisting of subgraphs, where each subgraph consists of a list of
tensors and operators. After this stage, since the flat buffers
of the NNs for IoT use-cases are memory-mapped, they can
be utilized directly from disk/flash without any loading or

12 VOLUME 4, 2022

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

TABLE 3: Post-training optimization of the pre-training optimized model versions: a. Comparing pruned models with its post-
training optimized versions. b. Comparing quantization-aware trained models with its post-training optimized versions.

Pruned
model

a. Pruned +
Int with float

fallback
quantized
version

a. Pruned +
Float16

quantized
version

a. Pruned +
Int only

quantized
version

Q-aware
trained model

b. Q-aware +
Int with float

fallback
quantized
version

b. Q-aware +
Float16

quantized
version

CNN1

i. 98.1 KB
ii. 91.12 %
iii. 175.90 ms
iv. 1072.16 ms

22.5 KB
88.81 %
0.34 ms

1722.6 ms

43.0 KB
88.87 %
0.25 ms

1063.4 ms

23.2 KB
88.81 %
0.33 ms

1738.23 ms

108.7 KB
88.32 %
30.36 ms

1072.16 ms

24.1 KB
88.26 %
0.36 ms

2246.4 ms

43.6 KB
88.29 %
0.28 ms

1555.74 ms

CNN2

i. 98.1 KB
ii. 99.10 %
iii. 187.84 ms
iv. 1074.45 ms

22.5 KB
97.85 %
0.25 ms

1095.82 ms

43.0 KB
97.84 %
0.35 %

1074.45 ms

23.2 KB
97.85 %
0.38 ms

1606.31 ms

282.8 KB
97.11 %
30.80 ms

1414.21 ms

24.1 KB
97.10 %
0.51 ms

2127.31 ms

43.6 KB
97.11 %
0.30 ms

1479.34 ms

parsing tasks, and with zero additional memory requirements
for accessing the data (the only memory required to access
data is that of the buffer).

2) Model Translation
Most MCUs in edge devices do not have native filesys-
tem support, hence we convert the quantized version of the
trained model into a C array, and compile it along with the
program for the IoT application which is to be executed on
the edge device. In our pipeline, to perform this conversion
we use a UNIX command, which generates the C source file
containing the quantized model as a char array.

3) Application Integration and Deployment
This method fuses the c-byte array of NNs with the main
program for an IoT use-case.Finally, the method from this
last step should be used to flash the binaries of a NN model
on the MCU-based hardware devices.

IV. EVALUATION
We selected to perform experiments on CNNs since it is a
popular subclass of NNs that is widely used to solve vari-
ous problems in domains such as image classification, pose
estimation, semantic segmentation, text detection, etc. For
experiments, we use the standard MNIST Fashion (produces
CNN1) and MNIST Digits (produces CNN2) datasets to
train a basic CNN whose architecture is shown in Fig. 7. a.
Both these datasets are imported via the tf.keras.dataset.name
function with its default train and test sets. After import-
ing, we apply all suitable optimizers before, during, and
after training CNNs and report the memory conservation,
accuracy, and inference speedups achieved after realizing
each optimizer component. During experiments, for statisti-
cal validation, the reported inference time corresponds to the
average of 5 runs.
Evaluating Pre-training Optimization Techniques. We
first apply the pruning technique (Section III-A) on CNNs
and present its evaluation results in Table 2. a and the changes
in inference time and size in Fig. 7. c. We also perform
quantization-aware training of CNNs and show the changes
in Fig. 7. b and its evaluation results in Table 2. a.

Evaluating Post-training Optimization Techniques. As
explained in Section III-B, we quantized the original CNN’s
Float32 weights and activations to Float16 values. Users can
use this Float16 quantization when they want to achieve
reasonable compression rates (we obtain approx. 6x com-
pression), without loss of precision (we experience only 0.01
% loss in accuracy). Also, Float16 models run on small CPUs
without modification. In Fig. 7. e, we show the Float16 quan-
tized model’s architecture, inference time, and size changes.
Next, we performed Int with float fallback quantization on
original CNNs and show its architecture and performance
in Fig. 7. d, next to other quantization results, that can be
compared with the original model in Fig. 7. a. We present
the evaluation results of all the thus produced post-training
quantized models in Table 2. b. We realized this method to
convert our CNN’s weights & activation to 8-bit integers and
show its architecture, inference time, and size changes in
Fig. 7. f. Here, the size reduced and inference time improved
since, after quantization, the inference is carried out using
integer-only arithmetic.

Next, as explained in the joint pre and post-training
model optimization part of Section III-B, we performed post-
training optimization of the pre-training optimized model and
present the evaluation results of resultant CNNs in Table 3.

Evaluating Graph Optimization Components. We imple-
mented and performed all applicable arithmetic simplifica-
tion rewrites and graph structure optimization tasks from
Section III-C, on CNNs and present their evaluation results
in Table 4. c. In Fig. 7. h, we show the graph optimized
model’s inference time and size changes. Next, as explained
in the joint graph and post-training model optimization part
of Section III-C, we performed post-training optimization of
the graph optimized CNNs and present the results in Table 4.
d.

Evaluating Operations Optimization Components. We
implemented and applied the explained technique from Sec-
tion III-D on CNNs and present their evaluation results in
Table 4. a. next to the results of the original CNNs. In Fig.
7. g, we show the operations optimized model’s architecture,
inference time, and size changes. Next, we also performed

VOLUME 4, 2022 13

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

TABLE 4: Comparing original models with its: a. Operations optimized version, b. Post-training optimized versions of the
operations optimized model, c. Graph optimized version, and d. Post-training optimized versions of the graph optimized model.

Original
models

a. Operations
(Ops)

Optimized
version

b. Ops Opt
+ Int with

float fallback
quantized
version

b. Ops Opt
+ Float16
quantized
version

b. Ops Opt
+ Int only
quantized
version

c. Graph
Optimized

version

d. Graph Opt
+ Int with

float fallback
quantized
version

d. Graph
Opt +

Float16
quantized
version

d. Graph
Opt +

Int only
quantized
version

CNN1

i. 271.4 KB
ii. 89.43 %
iii. 326.69 ms
iv. 1419.27 ms

273.7 KB
85.75 %
51.3 ms

1796.4 ms

22.7 KB
85.94 %
0.12 ms

763.7 ms

43.7 KB
85.78 %
0.06 ms

713.69 ms

23.8 KB
86.2 %
0.11 ms

1406.5 ms

98.2 KB
89.59 %
24.9 ms

1204.7 ms

22.5 KB
89.59 %
0.27 ms

1139.8 ms

43.0 KB
89.59 %
0.33 ms

1103.3 ms

23.2 KB
89.70 %

0.33
1763.4 ms

CNN2

i. 271.4 KB
ii. 97.94 %
iii. 344.43 ms
iv. 1255.09 ms

273.7 KB
96.47 %
52.9 ms

1880.7 ms

22.7 KB
96.46 %
0.07 ms

757.82 ms

43.7 KB
96.47 %
0.07 ms

683.9 ms

23.8 KB
96.42 %
0.12 ms

1421.5 ms

98.2 KB
98.03 %
28.3 ms

1194.0 ms

22.5 KB
98.05 %
0.28 ms

1210.9 ms

43.0 KB
98.03 %
0.34 ms

1079.5 ms

23.2 KB
98.07 %
0.29 ms

1724.2 ms

the joint operations and post-training model optimization
part from Section III-D and present the evaluation results for
CNNs in Table 4. b.

Evaluating Model Deployment. We take the joint graph
and post-training optimized CNNs (bothCNN1 andCNN2)
from Section III-B, then using model deployment tech-
niques (Section III-G) we load and execute them on the
ESP32 and nrf52840 boards shown in Fig. 1. We report that
the accuracy obtained by executing CNNs on both boards
is the same until its first decimal point: 89.5% for CNN1,
98.03% for CNN2 on both boards. From this, it is clear that
when the proposed model deployment technique is used to
deploy and execute the CNNs optimized using our multi-
component sequence, they perform the same, irrespective of
the target hardware.

A. RESULTS ANALYSIS

In this section, we perform analysis based on the experiment
results from Table 2 - 4.

Best Optimization Sequence for Smallest Model Size.
When users want the smallest possible trained model, we
recommend performing Joint graph and post-training model
optimization from Section III-C. Since, it is apparent from
Table 4. d, that this Graph optimized then integer with float
fallback quantized version of the original CNN has the small-
est model size of 22.5 KB (12.06 x times smaller than original
CNN). Although the Pruned then int with float fallback
quantized model version has the same size, the accuracy after
optimization drops by 2.31 % (see Table 3. a), whereas the
former sequence has no accuracy drop.

Best Optimization Sequence for Accuracy Preservation.
When the target hardware can accommodate a few extra KB,
naturally we would try to fit the top-performing model. In
such cases, we recommend to load and use the Graph opti-
mized then integer only quantized version since training then
optimizing using this sequence preserved accuracy for both
the datasets and in fact, for MNIST Fashion, the accuracy
increased by 0.27 %, and by 0.13 % for MNIST Digits (see
table 4. d).

Best Optimization Sequence for Fast Inference. For real-
time applications, we naturally tend to load and use the
fastest inference results producing models. In such cases, we
recommend the Joint operations and post-training optimiza-
tion from Section III-D, since the Operations optimized then
float16 quantized version (see Table 4. b) produces the fastest
unit inference results in 0.06 ms (orders of magnitude faster
than original CNN).

We show how to apply our optimizer components on pop-
ular pre-trained CNNs. We take the Mobilenet v2, Inception
v3, Resnet v2, which are 14 MB, 95 MB, 178 MB each, and
apply just the post-training model optimization component
from Section III-B. The resultant models are 3.5 MB, 23
MB, 44 MB, i.e., 4x, 4.13x, 4.04x times smaller than their
respective original modes. Depending on the user’s goal, we
let them explore other presented joint optimization sequences
that can make the above CNN-based models much smaller or
faster or show the top accuracy.

V. CONCLUSION
We presented our multi-component model optimizer, a se-
quence that researchers and developers can follow to op-
timize various CNNs for making it executable on multiple
resource-constrained IoT hardware like MCUs, small CPUs
and AIoT boards. Our optimization sequence can be applied
to the models from a growing number of use-cases such as
anomaly detection, predictive maintenance, robotics, voice
recognition, machine vision, etc., to enable their standalone
execution on the boundaries of the IoT architecture. By open-
sourcing the implementation of our optimizer components,
we believe the transparent design to open future avenues for
a broad-spectrum of applied research works and also inter-
connect the high-performance computing community (stud-
ies with algorithms that get merged with ML frameworks
like TensorFlow) with the TinyML community (studies that
design resource-friendly models for embedded systems).

In future work, we plan to evaluate the optimization ef-
ficiency of workload and kernel optimization components.
We also plan to apply our optimization sequence on ad-
vanced models like Tiny-YOLO (9 convolutional layers),
SqueezeNet (5MB just for parameters), etc. Such models

14 VOLUME 4, 2022

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

with more layers and parameters benefit the most from our
multi-component optimization sequence, so can outperform
the state-of-the-art methods that aim to reduce the model
size and improve inference speed. We also plan to execute
models optimized using our sequence on IoT hardware and
benchmark the real-life memory conservation and inference
speedups.

REFERENCES
[1] T. Pathak, V. Patel, S. Kanani, S. Arya, P. Patel, and M. I. Ali, “A dis-

tributed framework to orchestrate video analytics across edge and cloud:
A use case of smart doorbell,” in 10th International Conference on the
Internet of Things (IoT ’20), 2020.

[2] K. Bregar and M. Mohorčič, “Improving indoor localization using convo-
lutional neural networks on computationally restricted devices,” in IEEE
Access, 2018.

[3] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv Preprint, 2018.

[4] J. Vreča, K. J. Sturm, E. Gungl, F. Merchant, P. Bientinesi, R. Leupers,
and Z. Brezočnik, “Accelerating deep learning inference in constrained
embedded devices using hardware loops and a dot product unit,” in IEEE
Access, 2020.

[5] M. Murshed, C. Murphy, G. Ananthanarayanan, and F. Hussain, “Machine
learning at the network edge: A survey,” in arXiv, 2019.

[6] B. Sudharsan, P. Patel, J. G. Breslin, and M. I. Ali, “Enabling machine
learning on the edge using sram conserving efficient neural networks
execution approach,” in European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD), 2021.

[7] “Tensorflow lite,” https://www.tensorflow.org/lite/microcontrollers, 2020.
[8] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine learning

in 2 KB RAM for the internet of things,” in Proceedings of the 34th
International Conference on Machine Learning, 2018.

[9] C. Gupta, A. S. Suggala, and P. Jain, “Protonn: Compressed and accurate
knn for resource-scarce devices,” in Proceedings of the 34th International
Conference on Machine Learning, 2017.

[10] J. Chen and X. Ran, “Deep learning with edge computing: A review,” in
Proceedings of the IEEE, 2019.

[11] A. A. Chowdhury, M. A. Hossen, M. A. Azam, and M. H. Rahman,
“Deepqgho: Quantized greedy hyperparameter optimization in deep neural
networks for on-the-fly learning,” in IEEE Access, 2022.

[12] B. Sudharsan, S. P. Kumar, and R. Dhakshinamurthy, “Ai vision: Smart
speaker design and implementation with object detection custom skill and
advanced voice interaction capability,” in 11th International Conference on
Advanced Computing (ICoAC), 2019.

[13] B. Sudharsan, P. Corcoran, and M. I. Ali, “Smart speaker design and im-
plementation with biometric authentication and advanced voice interaction
capability,” in 27th Artificial Intelligence and Cognitive Science, 2019.

[14] L. Sekanina, “Neural architecture search and hardware accelerator co-
search: A survey,” in IEEE Access, 2021.

[15] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. Le-
Cun, “Neuflow: A runtime reconfigurable dataflow processor for vision,”
in CVPR WORKSHOPS, 2011.

[16] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An fpga-based
processor for convolutional networks,” in International Conference on
Field Programmable Logic and Applications, 2009.

[17] X. Zeng, S. Garg, M. Barika, S. Bista, D. Puthal, A. Y. Zomaya, and
R. Ranjan, “Detection of sla violation for big data analytics applications in
cloud,” in IEEE Transactions on Computers, 2021.

[18] B. Joshi, T. Pathak, V. Patel, S. Kanani, P. Patel, and M. I. Ali, “A cloud-
based smart doorbell using low-cost cots devices,” in 10th International
Conference on the Internet of Things, 2020.

[19] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy of
pruning for model compression,” in arXiv, 2017.

[20] R. Krishnamoorthi, “Quantizing deep convolutional networks for efficient
inference: A whitepaper,” arXiv, 2018.

[21] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer quan-
tization for deep learning inference: Principles and empirical evaluation.”
arXiv, 2020.

[22] N. A. Asif, Y. Sarker, R. K. Chakrabortty, M. J. Ryan, M. H. Ahamed,
D. K. Saha, F. R. Badal, S. K. Das, M. F. Ali, S. I. Moyeen et al.,
“Graph neural network: A comprehensive review on non-euclidean space,”
in IEEE Access, 2021.

[23] T. Chen, T. Moreau et al., “Tvm: An automated end-to-end optimizing
compiler for deep learning,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), 2018.

[24] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” arXiv, 2016.

[25] A. Sironi, B. Tekin, R. Rigamonti, V. Lepetit, and P. Fua, “Learning
separable filters,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2015.

[26] M. Dawit and F. Frisk, “Edge machine learning for energy efficiency of
resource constrained iot devices,” in The Fifth SPWID, 2019.

[27] Y. Liu, Y. Wang, V. Sharma, and Y. Wang, “Optimizing CNN model
inference on cpus,” in USENIX Annual Technical Conference, 2019.

[28] J. Cong and B. Xiao, “Minimizing computation in convolutional neural
networks,” in International conference on artificial neural networks, 2014.

[29] V. Strassen, “Gaussian elimination is not optimal,” in numerical mathe-
matics, 1969.

[30] M. Dukhan, “Nnpack,” https://github.com/Maratyszcza/NNPACK.
[31] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst, in Proceedings of the

International Conference for High Performance Computing, Networking,
Storage and Analysis, 2016.

[32] “Openmp,” https://www.openmp.org/, 2020.
[33] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Rce-nn: A five-stage pipeline to

execute neural networks (cnns) on resource-constrained iot edge devices,”
in International Conference on the Internet of Things, 2020.

VOLUME 4, 2022 15

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

BHARATH SUDHARSAN is a Senior AI ML
Software Engineer at the Crowd Intelligence
Team, General Motors, Ireland. He did his Ph.D.
at the Data Science Institute, NUI Galway, with
funding from CONFIRM SFI Research Centre
for Smart Manufacturing. During Ph.D., he con-
tributed to science by publishing 15+ first-author
full papers in top-tier venues such as IEEE Inter-
net Computing, IEEE IoT Journal, ECML PKDD,
ACM IoT, IEEE SCC, IEEE UIC, IEEE BigData,

and also provided 10+ demos. He obtained MEngg from NUI Galway in
Electronics and Computer Engineering.
Homepage: https://bharathsudharsan.github.io/profile/

PANKESH PATEL Before joining Artificial In-
telligence Institute, University of South Carolina,
Dr. Pankesh Patel was Technology Consultant at
Jupyter. He was hired at Jupyter, to develop AI
and Cloud-based Intelligent Doorbell products for
the Australian market. Before joining these po-
sitions, he was a Senior Research Scientist at
Fraunhofer USA and a Research Scientist in In-
dustrial Software System (ISS) group at ABB Cor-
porate Research-India. Both at Fraunhofer USA

and ABB, he focused on the implementation of Industry 4.0 techniques
and methodologies in commercial environments. His academic background
and research work focus on building software development tools to easily
develop applications in the cross-section of the Internet of Things/Industry
4.0, Artificial Intelligence, Edge, and Cloud Computing.

He is a winner of the prestigious Marie-Curie fellowship at SFI Confirm
Centre for Smart Manufacturing, Data Science Institute, NUIG Galway,
Ireland. In the past 7 years, he has published 40+ publications research
articles in prestigious conferences and delivered several talks as a keynote
and invited speaker. He finished his Ph.D. in Computer Science (with a Très
Honorable award) from the University of Paris VI (UPMC), France. His
Ph.D. was funded by the French National Institute for Research in Computer
Science and Control (INRIA) Paris, France.

JOHN BRESLIN is a Professor (Personal Chair)
in Electronic Engineering at NUI Galway, where
he is Director of the TechInnovate/AgInnovate
programmes. John has taught electronic engi-
neering, computer science, innovation, and en-
trepreneurship topics during the past two decades.
Associated with three SFI Research Centres, he
is a Co-Principal Investigator at Confirm (Smart
Manufacturing) and Insight (Data Analytics), and
a Funded Investigator at VistaMilk (AgTech). He

has written 200+ peer-reviewed academic publications (h-index of 42, 7400
citations, best paper awards from IoT, DL4KGS, SEMANTiCS, ICEGOV,
ESWC, PELS), and co-authored the books "Old Ireland in Colour", "The
Social Semantic Web" and "Social Semantic Web Mining". He co-created
the SIOC framework (Wikipedia article), implemented in hundreds of appli-
cations (by Yahoo, Boeing, Vodafone, etc.) on at least 65,000 websites with
35 million data instances.
Homepage: http://www.johnbreslin.com/

16 VOLUME 4, 2022

https://bharathsudharsan.github.io/profile/
http://www.johnbreslin.com/

B. Sudharsan et al.: Multi-Component Neural-Network Optimization

MUHAMMAD INTIZAR ALI is an Assistant Pro-
fessor in the School of Electronic Engineering,
Dublin City University. He received the PhD
(Hons) degree from the Vienna University of Tech-
nology, Austria, in 2011. His research interests
include semantic Web, data analytics, Internet of
Things (IoT), linked data, federated query pro-
cessing, stream query processing, and optimal
query processing over large scale distributed data
sources. He is actively involved in various EU

funded and industry-funded projects aimed at providing IoT enabled adap-
tive intelligence for smart applications. He serves as a PC Member of various
journals, international conferences, and workshops.
Homepage: http://www.intizarali.org/

SCHAHRAM DUSTDAR is Full Professor of
Computer Science heading the Research Divi-
sion of Distributed Systems at the TU Wien,
Austria. He holds several honorary positions:
Francqui Chair Professor at University of Na-
mur, Belgium (2021-2022), University of Cali-
fornia (USC) Los Angeles; Monash University
in Melbourne, Shanghai University, Macquarie
University in Sydney, University Pompeu Fabra,
Barcelona, Spain. From Dec 2016 until Jan 2017

he was a Visiting Professor at the University of Sevilla, Spain and from
January until June 2017 he was a Visiting Professor at UC Berkeley, USA.

He is founding co-Editor-in-Chief of ACM Transactions on Internet of
Things (ACM TIoT) as well as Editor-in-Chief of Computing (Springer). He
is an Associate Editor of IEEE Transactions on Services Computing, IEEE
Transactions on Cloud Computing, ACM Computing Surveys, ACM Trans-
actions on the Web, and ACM Transactions on Internet Technology, as well
as on the editorial board of IEEE Internet Computing and IEEE Computer.
Dustdar is recipient of multiple awards: TCI Distinguished Service Award
(2021), IEEE TCSVC Outstanding Leadership Award (2018), IEEE TCSC
Award for Excellence in Scalable Computing (2019), ACM Distinguished
Scientist (2009), ACM Distinguished Speaker (2021), IBM Faculty Award
(2012). He is an elected member of the Academia Europaea: The Academy
of Europe, where he is chairman of the Informatics Section, as well as
an IEEE Fellow (2016), an Asia-Pacific Artificial Intelligence Association
(AAIA) President (2021) and Fellow (2021) and a Member of the Academy
of the United Nations Sciences and Technology Organization (2021).
Homepage: https://dsg.tuwien.ac.at/team/sd/

ALBERT Y. ZOMAYA Albert Y. Zomaya is cur-
rently the Chair Professor of High Performance
Computing & Networking in the School of Com-
puter Science, University of Sydney. He is also the
Director of the Centre for Distributed and High
Performance Computing which was established in
late 2009. Professor Zomaya published more than
550 scientific papers and articles and is author, co-
author or editor of more than 20 books. He served
as the Editor in Chief of the IEEE Transactions on

Computers (2011-2014). Currently, Professor Zomaya serves as a Founding
Editor in Chief of the IEEE Transactions on Sustainable Computing, Found-
ing Co-Editor in Chief of the IET Cyber-Physical Systems, and Associate
Editor-in-Chief (Special Issues), Journal of Parallel and Distributed Com-
puting. He also serves as associate editor for 22 leading journals, such as, the
ACM Computing Surveys, ACM Transactions on Internet Technology, and
IEEE Transactions on Cloud Computing. Professor Zomaya is the Founding
Editor of several book series, such as, the Wiley Book Series on Parallel and
Distributed Computing, Springer Scalable Computing and Communications,
and the IET Book Series on Big Data.

Professor Zomaya has delivered more than 180 keynote addresses, invited
seminars, and media briefings and has been actively involved, in a variety of
capacities, in the organization of more than 700 conferences.

RAJIV RANJAN is an Australian-British com-
puter scientist, of Indian origin, known for his re-
search in Distributed Systems (Cloud Computing,
Big Data, and the Internet of Things). He is Uni-
versity Chair Professor for the Internet of Things
research in the School of Computing of Newcastle
University, United Kingdom. He is the director of
Networked and Ubiquitous Systems Engineering
(NUSE) Group, jointly with Dr. Graham Morgan,
in the School of Computing. He is also the Aca-

demic Director of School of Computing and the Research Director of New-
castle Urban Observatory. He is an internationally established scientist in the
area of Distributed Systems (having published over 250 scientific papers out
of which about 50 papers in the IEEE/ACM Transactions Journals). He is a
fellow of Academia Europaea. He has secured more than $32 Million+ AUD
(£16 Million+ GBP, with collaborators) in the form of competitive research
grants from both public and private agencies.

Prof. Ranjan is thankful to the research community for recognising his
research through citations and using the open-source tools that he help
develop along with collaborators. He is ranked by Microsoft Academic
as one of the Top Authors in Cloud Computing (2010-2020), Big Data
(1997-2021), Quality of Service (2000-2019), Resource Management (2000-
2019), and Services Computing (1999-2018). According to recent (2020)
bibliometric study by the Stanford University (https://bit.ly/3ndOXlN), he
is one of the highly cited authors in distributed computing field. Other
bibliometric evidences (Guide2Research and UCLA) also reveal immense
support and acceptance from his peers.
Homepage: https://rajivranjan.net/

VOLUME 4, 2022 17

http://www.intizarali.org/
https://dsg.tuwien.ac.at/team/sd/
https://rajivranjan.net/

	I Introduction
	I-A Motivation
	I-B Our Approach

	II State of the Art
	II-A Machine Learning on Microcontrollers
	II-B Artificial Intelligence of Things (AIoT) Hardware
	II-C Cloud-based Software as a Service (SaaS)

	III Multi-component Optimizer Design
	III-A Pre-training Model Optimization
	III-A1 Pruning
	III-A2 Quantization-aware Training

	III-B Post-training Model Optimization
	III-C Graph Optimization
	III-C1 Arithmetic Simplification
	III-C2 Graph Structure Optimization

	III-D Operations Optimization
	III-E Workload Optimization
	III-F Kernels Optimization
	III-G Deployment of Optimized Models
	III-G1 Model to FlatBuffer Conversion
	III-G2 Model Translation
	III-G3 Application Integration and Deployment

	IV Evaluation
	IV-A Results Analysis

	V Conclusion
	REFERENCES
	Bharath Sudharsan
	Pankesh Patel
	JOHN BRESLIN
	MUHAMMAD INTIZAR ALI
	Schahram Dustdar
	Albert Y. Zomaya
	Rajiv Ranjan

