
1

Learning to Dispatch Multi-Server Jobs in
Bipartite Graphs with Unknown Service Rates

Hailiang Zhao, Shuiguang Deng, Senior Member, IEEE, Feiyi Chen, Jianwei Yin,
Schahram Dustdar, Fellow, IEEE , and Albert Y. Zomaya, Fellow, IEEE

Abstract—Multi-server jobs are imperative in modern cloud computing systems. A multi-server job has multiple components and
requests multiple servers for being served. How to allocate restricted computing devices to jobs is a topic of great concern, which leads
to the job scheduling and load balancing algorithms thriving. However, current job dispatching algorithms require the service rates to be
changeless and knowable, which is difficult to realize in production systems. Besides, for multi-server jobs, the dispatching decision for
each job component follows the All-or-Nothing property under service locality constraints and resource capacity limits, which is not well
supported by mainstream algorithms. In this paper, we propose a dispatching algorithm for multi-server jobs that learns the unknown
service rates and simultaneously maximizes the expected Accumulative Social Welfare (Asw). We formulate the Asw as the sum of
utilities of jobs and servers achieved over each time slot. The utility of a job is proportional to the valuation for being served, which is
mainly impacted by the fluctuating but unknown service rates. We maximize the Asw without knowing the exact valuations, but
approximate them with exploration-exploitation. From this, we bring in several evolving statistics and maximize the statistical Asw with
dynamic programming. The proposed algorithm is proved to have a polynomial complexity and a State-of-the-Art regret. We validate it
with extensive simulations and the results show that the proposed algorithm outperforms several benchmark policies with
improvements by up to 73%, 36%, and 28%, respectively.

Index Terms—Job dispatching, gang scheduling, regret bound, social welfare, bipartite graph.

F

1 INTRODUCTION

TOday’s computing clusters have plenty of multi-server
jobs, e.g., the distributed training of deep neural net-

works [1], [2] and large-scale graph computations [3], [4].
A notable feature of multi-server jobs is that they usually
have multiple associated components, and multiple compu-
tation devices are used during their serving time. From the
published Google cluster trace dataset [5], more than 90%
jobs request multiple CPU cores and nearly 20% jobs request
CPU cores no less than 1000.

How to dispatch jobs or service requests to servers with
service locality constraints and restricted resource capacities
for optimizing some target (e.g., QoS, overall system effi-
ciency, utility, revenue, etc.) has always been the focus of
attention. Service locality is common in modern cloud com-
puting systems, especially for Machine Learning as a Service
[6] and Serverless computing [7], [8]. With service locality, a
job may only be processed by a subset of servers where the
runtime and dependencies exist. Typical problems are job
scheduling and load balancing. Simplistically, job schedul-
ing studies when to dispatch each job to which server. A
majority of job scheduling algorithms have been proposed
by formulating combinatorial optimization problems with
scenario-oriented constraints [9], [10], [11], [12], [13], [14],
[15]. To solve the combinatorial programs, algorithms are
designed based on various theoretical approaches, includ-

• H. Zhao, S. Deng, F. Chen, and J. Yin are with the College of Computer
Science and Technology, Zhejiang University, Hangzhou 310058, China.
e-mail: {hliangzhao, dengsg, chenfeiyi, zjuyjw}@zju.edu.cn

• S. Dustdar is with the Distributed Systems Group, Technische Universität
Wien, 1040 Vienna, Austria. e-mail: dustdar@dsg.tuwien.ac.at

• A. Y. Zomaya is with the School of Computer Science, University of Syd-
ney, Sydney, NSW 2006, Australia. e-mail: albert.zomaya@sydney.edu.au

ing relaxed integer programming [10], online primal-dual
approaches [11], heuristics [12], [13], deep reinforcement
learning (DRL) [14], [15], etc. Correspondingly, load balanc-
ing studies how to dispatch the traffic of service requests
to the backend servers with the purpose of minimizing the
mean response time. Load balancing are usually combined
with queuing models and stability theories, which leads
to the job dispatching algorithms such as Join-the-Shortest-
Queue (JSQ) [16], Power-of-d-Choices (Pod) [17], and Join-
the-Fastest-of-the-Shortest-Queues (JFIQ) [18]. For exmaple,
JSQ polls the queue length of each server and dispatches
every newly arrived request to the shortest queue.

The fundamental decision-making in the above works
is job dispatching with service locality constraints and re-
stricted resource capacities. A prerequisite for executing the
above algorithms is that the service rates of servers are either
knowable or predictable. However, in production systems, a
server is always in multi-tasking and the actual service rates
experienced by jobs can be unknown, fluctuating over time,
and highly variable. As a result, the algorithms described
above may not be effective in production systems. More
than that, job dispatching of multi-server jobs is more dif-
ficult. The biggest challenge is that, for a multi-server job,
the dispatching of its components should follow the All-or-
Nothing property [19]. Let us take the distributed training
of a large-scale deep neural network as an example. All the
components of it, including a Parameter Server (PS) and sev-
eral workers1, should be allocated computation resources,
especially CPUs and GPUs, according to their requirements

1. For distributed model training, there are two mainstream averag-
ing architectures, Collecitve-All Reduce and PS-Worker.

ar
X

iv
:2

20
4.

04
37

1v
1 

 [
cs

.D
C

] 
 9

 A
pr

 2
02

2



2

simultaneously before being served. Otherwise, the training
could not start, and the resources allocated out could not be
retrieved back until the training is forcibly terminated. This
All-or-Nothing property is recognized as Gang scheduling
[20]. However, existing scheduling algorithms are mainly
designed for fine-grained short-lived jobs while leaving the
Gang property untouched.

To present a theoretically guaranteed dispatching algo-
rithm for multi-server jobs without knowing actual ser-
vice rates, in this paper, we propose the algorithm ESDP
(Efficient Sampling-based Dynamic Programming), which
learns the distribution of the unknown service rates and
simultaneously seeks to maximize the expected Accumu-
lative Social Welfare (EASW). The EASW is formulated as
the sum of the utilities of jobs and servers over each time
slot. The utility of a job is defined as the valuation for being
served minus the payment. From the game theoretical point
of views, valuation is the willingness-to-pay of the job sub-
mitters [21]. Our contribution is built on the intuition that,
for any kind of job, the valuation of being served is decided
mainly by the actual service rates of the chosen server(s). In
other words, the faster the job is served, the more the job
submitter is willing to pay. As the antithesis, the utility of
a server is the payment collected from all the jobs that it
serves minus the operating and maintaining cost. We use a
bipartite graph to model the service locality constraints. To
maximize the EASW, since we cannot obtain exact service
rates, we learn to dispatch multi-server jobs with sufficient
exploration-exploitation. Based on the exploited patterns, we
introduce several deterministic optimization problems with
the expectation approximated by statistics. Then, we solve
the deterministic optimization problems by dynamic pro-
gramming within polynomial time. Our main contributions
are summarized as follows.

• We formally formulate the dispatching problem for
multi-server jobs in a bipartite graph with unknown
service rates. The objective is to maximize the EASW
from a long-term vision.

• We propose an algorithm, named ESDP, to maximize
the EASW. We also prove that ESDP has a polynomial
complexity and a State-of-the-Art regret.

• We validate the performance of ESDP with extensive
simulations. Experimental results show that, in de-
fault settings, ESDP significantly outperforms several
baseline policies with improvements by up to 73%,
36%, and 28%, respectively.

The rest of this paper is organized as follows. We establish
the multi-server job dispatching model with bipartite graphs
and formulate the EASW maximization problem in Sec. 2.
We then present the design details of ESDP with theoretical
analysis in Sec. 3. Numerical results are presented in Sec. 4.
We discuss related works in Sec. 5 and close this paper in
Sec. 6.

2 SYSTEM MODEL

We consider a computing cluster of heterogeneous servers
serving several types of multi-server jobs. Jobs of different
types have different components and request different num-
ber of servers under service locality constraints.

2.1 Bipartite Graph Model under Service Localities
To model service locality and the Gang property simultane-
ously, we consider a bipartite graph (L,R, E) where L and
R are the set of left vertices and right vertices, respectively,
and E is the set of edges between the two sets of vertices. The
vertices in L are indexed by l and viewed as job types, while
the vertices in R are indexed by r and represent servers.
For a vertex l ∈ L, we use Rl ⊆ R to represent the set of
right vertices it connects with. Similarly, we use Lr ⊆ L to
represent the set of left vertices for r ∈ R. An edge (l, r) ∈ E
exists iff the following two conditions hold:

1) Service locality is satisfied;
2) The type-l job could be served solely by server r,

i.e., the total resource requirements of it could be
satisfied by r.

We designate each vertex l ∈ L as port and each edge (l, r)
as channel. The bipartite graph model is visualized in Fig. 1.

Fig. 1. The bipartite graph model for multi-server job dispatching.

2.2 Job Dispatching with Restricted Capacities
We consider a discrete time horizon. Time is slotted, and at
each time t ∈ T , {1, ..., T}, we assume that for each port,
at most one job arrives. Concretely, at the beginning of time
t, a job is yielded from port l with probability ρl(t), and with
probability 1− ρl(t), there is no job. At time t, we use

x(t) ,
[
x(l,r)(t)

]T
∀(l,r)∈E

∈ X ,
{

0, 1
}|E|

to represent the dispatching decision. The time slot length is
long enough to finish the most time-consuming job types. In
this paper, all the vectors are column vectors if not specified.
Note that if port l yields no job at t, denoted by 1l(t) = 0,
then x(l,r)(t) = 0 for all r ∈ Rl.

There are K types of computing devices in the consid-
ered cluster, e.g., CPUs, GPUs, NPUs, and FPGAs. For the
type-k device, where k ∈ K , {1, ..,K}, the quantity of it
that owned by the cluster is denoted by ck ∈ N+. For each
channel (l, r) ∈ E , we use a(l,r)

k ∈ N+ to denote the maximal
requirements on the type-k computing device when all the
components of the type-l job are dispatched to server r. In



3

other words, at least a(l,r)
k type-k computing devices are

available on r. Therefore, we have the capacity constraints:∑
(l,r)∈E

a
(l,r)
k x(l,r)(t) ≤ ck,∀k ∈ K, t ∈ T . (1)

For the type-l job, all its components should be successfully
dispatched2. Since a(l,r)

k is the maximal requirements on r ∈
R, all the components can be dispatched onto r directly and
be served concurrently (or partially parallel). Nevertheless, if
the components of a job could be dispatched onto multiple
servers and served in parallelism, the service rate could be
improved. The cost is that all the resources required by the
job will be locked and occupied during this time slot.

It is worth noting that the dispatching decision variable
in our model, i.e., x(l,r)(t), is made for each channel, not for
each job component. The reasons are as follows.

1) In practice, not all components of a job have to be
executed. Take Alibaba ACK Pro as an exmaple, for
configurating Gang scheduling jobs, it provides a
field min-available3 to represent the minimum
number of components to be executed. The value of
this field is decided by the job submitter and it is set
flexibly according to the job types.

2) The main contribution of our paper is maximizing
the EASW without knowing actual service rates. By
changing the decision variable from channel to job
component, the problem is much more complicated
in mathematical form, which will make our work
obscure. To illustrate this, let us re-define x(t) as

x(t) ,
[
xl(q,r)(t)

]
q∈Ql,r∈Rl,l∈L

,

where Ql stores the indices of components for the
type-l job. Then, we have the following new con-
straints:{ ∑

r∈Rl

∑
q∈Ql

xl(q,r)(t) ≥ ml(t) ∀l, t∑
l∈L

∑
q∈Ql

al(q,k)x
l
(q,r)(t) ≤ c(k,r) ∀k, r, t,

whereml(t) is the minimum number of components
to be executed, al(q,k) is the requirement of the type-
k resource for the q-th component of the type-l job,
and c(k,r) ∈ N+ is the number of the type-k comput-
ing devices available to server r. The same to (1), the
new constraint also has the form of Ax ≤ c. The
new problem can be solved by a similar approach
to the algorithms detailed in Sec. 3, but with much
higher complexity. This could significantly reduce
the readability of this paper.

2.3 Maximizing the EASW

The multi-server job dispatching is studied for maximizing
the EASW, i.e., the sum of utilities of job submitters and the
cluster providers. Our formulation is especially suitable for
serverless computing because serverless comes with a pay-
for-value billing model [8].

2. Actually, not all components of a job have to be executed. We will
discuss it further on.

3. https://www.alibabacloud.com/help/doc-detail/178169.htm

At each time t, we assume that each arrived job of type-l
has a stochastic quasi-linear utility Ul(t), defined as

Ul(t) ,
∑
r∈Rl

x(l,r)(t)Z(l,r)(t)− 1
{ ∑
r∈Rl

x(l,r)(t) ≥ 1

}
πl(t),

where Z(l,r)(t) is the valuation of the type-l job being served
through channel (l, r) and πl(t) is the payment. 1{p} is the
indicator function and it returns 1 if the predicate p is true,
otherwise 0. Z(l,r)(t) is a random variable with an unknown
mean υ(l,r). As previously mentioned, we cannot know the
exact value of v(l,r), but we try to approximate it with suf-
ficient exploration-exploitation. Our fundamental assumption
is that {Z(t)}t∈T follow some unknown distributions with
the mean of υ , [υ(l,r)]

T
∀(l,r)∈E . In addition, the valuation is

additive, i.e., if a job is served through multiple channels in
parallel, the final valuation is the sum of valuations obtained
from all channels.

On the other side, the utility of the cluster for serving
jobs is defined as

Uc(t) ,
∑
l∈L

1

{ ∑
r∈Rl

x(l,r)(t) ≥ 1

}
πl(t)

−
∑
k∈K

∑
(l,r)∈E

fk
(
a

(l,r)
k

)
x(l,r)(t),

where fk(a
(l,r)
k ) is the supply cost for provisioning a

(l,r)
k

units of the type-k device for the type-l job at time t through
the channel (l, r). In general, {fk}∀k∈K models the operat-
ing, maintaining, and energy cost for serving jobs. Different
from previous works [21], [22], [23], we make no assump-
tions on the convexity or differentiability of {fk}∀k∈K.

Our goal is to maximize the EASW, i.e., the expected sum
of utilities of jobs and the cluster’s in a long-term horizon.
The problem is formulated as follows.

P1 : max
∀t∈T :x(t)∈X

lim
T→∞

T∑
t=1

E
[
SW
(
x(t)

)]
s.t. (1),∑

r∈Rl

x(l,r)(t) = 0 if 1l(t) = 0,∀l ∈ L, t ∈ T , (2)

where SW
(
x(t)

)
is the social welfare at time t:

SW
(
x(t)

)
,
∑
l∈L

Ul(t) + Uc(t). (3)

With further transformation, we can get

SW
(
x(t)

)
=

∑
(l,r)∈E

x(l,r)(t)

[
Z(l,r)(t)−

∑
k∈K

fk
(
a

(l,r)
k

)]
. (4)

3 ALGORITHM DESIGN

In the following, we will detail the algorithm ESDP (Effi-
cient Sampling-based Dynamic Programming) that solves
P1 with polynomial complexity. ESDP is built on the ESCB
algorithm [24], [25] and a recent derivative AESCB [26],
for solving combinatorial semi-bandit problems. The overall
steps of this section are as follows. Firstly, we introduce
the regret minimization problem that corresponds to P1

and formulate several evolving statistics to approximate



4

the expected social welfare E
[
SW
(
x(t)

)]
. Based on these

statistics and a converge-to-zero sequence {δ(t)}t∈T , we
introduce a series of deterministic optimization problems.
Then, we solve these deterministic problems with dynamic
programming in polynomial time. Theoretical analysis for
algorithm complexity and the upper bound of the regret are
provided at the end.

3.1 Regret Minimizing with Evolving Statistics

P1 is an online stochastic optimization problem with random
variables Z(t) = [Z(l,r)(t)]

>
∀(l,r)∈E not determined until

the time t arrives. The EASW maximization problem P1 is
equivalent to the regret minimization problem listed below:

P2 : min
∀t∈T :x(t)∈X

lim
T→∞

RE(T ) ,
T∑
t=1

E
[
∆
(
x(t)

)]
s.t. (1), (2),

where the expected per-time slot gap E
[
∆
(
x(t)

)]
is

E
[
∆
(
x(t)

)]
, υ̃Tx∗(t)− E

[
SW
(
x(t)

)]
(5)

and
υ̃ ,

[
υ(l,r) −

∑
k∈K fk

(
a

(l,r)
k

)]T
∀(l,r)∈E ∈ [0, 1]|E|

x∗(t) , argmaxx(t)∈Ω(t)

{
υ̃Tx(t)

}
Ω(t) ,

{
x(t) ∈ X | (1) & (2) hold at time t

}
.

(6)

The regret is the gap between the optimal social welfare
achieved by an omniscient oracle who has the full knowl-
edge on υ and the social welfare achieved by the to-be-
proposed algorithm. A good algorithm should achieve a
smallest possible regret RE(T ) as T goes to infinity. For
simplification, we use Z̃(t) to denote the column vector
[Z(l,r)(t) −

∑
k∈K fk(a

(l,r)
k )]T∀(l,r)∈E . W.O.L.G, Z̃(t) is nor-

malized into [0, 1]|E|. The non-negative property is widely
accepted for utility functions [21], [23], [27], [28]. However,
different from the above literature, we make no assumptions
on the convexity or differentiability of {fk}∀k∈K.

Considering that P2 is still a stochastic optimization
problem, based on the idea introduced by ESCB algorithm
[24], ESDP introduces several statistics to approximate υ
based on explorated information. These statistics are used to
supersede the random variables in P2. Specifically, at each
time t, we define

n(l,r)(t) ,
t∑

t′=1

x(l,r)(t
′) (7)

as the accumulative quantity of channel (l, r) ∈ E been used
up to time t. Based on it, we define the following statistics:

υ̂(l,r)(t) ,

{ ∑t
t′=1

x(l,r)(t
′)Z̃(l,r)(t

′)

n(l,r)(t)
n(l,r)(t) > 0

0 otherwise
(8)

σ̂2
(l,r)(t) ,

{
g(t)

2n(l,r)(t)
n(l,r)(t) > 0

+∞ otherwise,
(9)

where

g(t) , ln t+ 4 ln(ln t+ 1) ·max
t′∈T

{
max

x∈Ω(t′)
‖x‖1

}
. (10)

υ̂(l,r)(t) is a non-biased estimation based on historical noisy
valuations for type-l job when served through channel (l, r).
σ̂2

(l,r)(t) is a metric proportional to the variance of the
estimate υ̂(l,r)(t), proposed by [24]. We place a hat on the
estimations to indicate that they are calculated and updated
online. Inspired by the ESCB and AESCB algorithms, at time
t, we introduce the following deterministic problem P3(t):

max
x(t)∈Ω(t)

S̃W(x(t)) , δ(t) + υ̂(t)Tx(t) +
√
σ̂2(t)Tx(t)

s.t. (1),
δ(t) > 0, lim

t→∞
δ(t) = 0, (11)

where {
υ̂(t) , [υ̂(l,r)(t)]

T
(l,r)∈E

σ̂2(t) , [σ̂2
(l,r)(t)]

T
(l,r)∈E

are the corresponding column vectors.
In P3(t), {δ(t)}t∈T could be any sequence converges to

zero. For instance, δ(t) ,
(

ln(ln t+ 1) + 1
)−1

. The objective
of P3(t) is an approximated statistical-based social welfare
for the multi-server job dispatching problem. From P2 to
P3(t), we remove the random variables Z(t) and transform
the stochastic problem into a deterministic problem while
keeping the solution space impervious. In most case, the
following inequality should hold:∣∣∣(υ̃ − υ̂(t)

)T
x(t)

∣∣∣ ≤√σ̂2(t)Tx(t). (12)

By Chebyshev’s Inequality, υ̂(t)Tx(t)±
√
σ̂2(t)Tx(t) covers

nearly 60% population. To achieve a larger coverage, we can
increase the numerical multiplier to the standard variance.
For our multi-server job dispatching problem, setting the
multiplier as 1 is enough to achieve the State-of-the-Art
minimum regret upper bound. The analysis will be detailed
in Sec. 3.3.

3.2 Polynomial-time Dynamic Programming

If the sequence {δ(t)}t∈T is removed from S̃W(x(t)) and
(11) is dropped, P3(t) is NP-hard [24], [25], i.e., it cannot be
solved in polynomial time. Therefore, to solve it efficiently,
inspired by the AESCB algorithm [26], ESDP resorts to solv-
ing several relaxed budgeted integer programming problems
by adding the converge-to-zero sequence {δ(t)}t∈T . Fur-
ther, at each time t, based on δ(t), we define the following
scale-up statistics for υ̂(l,r)(t) and σ̂2

(l,r)(t) respectively:

Υ̂(l,r)(t) ,
⌈
ξ(t)υ̂(l,r)(t)

⌉
(13)

Σ̂2
(l,r)(t) ,

⌈
ξ2(t)σ̂2

(l,r)(t)
⌉
, (14)

where

ξ(t) ,

⌈
maxt′∈T

{
maxx∈Ω(t′) ‖x‖1

}
δ(t)

⌉
(15)

is the scaling size at time t. By the AESCB framework
[26], at each time t, we introduce several budgeted integer



5

Algorithm 1: The ESDP Framework

Input: The bipartite graph (L,R, E), requirements
{a(l,r)
k }k∈K,(l,r)∈E , capacities {ck}k∈K, cost

functions {fk}k∈K, and the sequence
{δ(t)}t∈T

Output: Online solution to P1 (and P2) at time t ∈ T
1 while t = 1, ..., T do
2 Observe the job arrival status from each port

l ∈ L
3 Update Υ̂(t) and Σ̂

2
(t) with (13) and (14) based

on δ(t), respectively
4 /* Solve {P4(s, t)}s∈S(t) by Algorithm 2 */

5 for each s ∈ S(t) do
6 Solve P4(s, t) and return x∗P4

(s, t)
7 end for
8 x∗P4

(t)← x∗P4
(s?, t), where s? staisfies (17)

9 /* Satisfy constraint (2) of P1 */

10 for each l ∈ L do
11 if 1l(t) == 0 then
12 for each r ∈ Rl do
13 Set the (l, r)-th element of x∗P4

(t) as 0
14 end for
15 end if
16 end for
17 end while
18 return

{
x∗P4

(t)
}
t∈T and

{
SW
(
x∗P4

(t)
)}
t∈T

programming problems P4(s, t) for each s ∈ S(t) where
S(t) ,

{
0, 1, ..., ξ(t) ·maxt′∈T maxx∈Ω(t′) ‖x‖1

}
as follows:

P4(s, t) : max
x(t)∈X

Σ̂
2
(t)Tx(t)

s.t. (1), (11),

Υ̂(t)Tx(t) ≥ s. (16)

In P4(s, t), Σ̂
2
(t) and Υ̂(t) are the corresponding column

vectors for (13) and (14), respectively. Let us use x∗P4
(s, t)

to denote the optimal solution for P4(s, t). Then, the final
solution to max{P4(s, t)}s∈S(t) at time t, denoted by x∗P4

(t),
is set as some x∗P4

(s?, t) where s? ∈ S(t) staisfies

s? ∈ argmax
s∈S(t)

{
s+

√
Σ̂

2
(t)Tx∗P4

(s, t)

}
. (17)

The main procedure of ESDP is summarized in Algorithm 1.
The relations between P3(t) and {P4(s, t)}s∈S(t), and how
the solutions of {P4(s, t)}s∈S(t) affect the regret RE(T ) will
be detailed in Sec. 3.3.

Now, the problem is how to solve {P4(s, t)}s∈S(t) opti-
mally within polynomial time. ESDP solves it based on dy-
namic programming. Concretely, at each time t, correspond-
ing to each P4(s, t), we bring in the problem P5(s, t, c, i) as
follows.

P5(s, t, c, i) : max
x(t)∈X

Σ̂
2
(t)Tx(t)

s.t. (1), (11), (16),
ei∑

e=e1

xe(t) = 0, (18)

where c , [ck]Tk∈K is the capacity vector in (1), e , (l, r) ∈ E
and ei is the i-th edge (l, r) in E . The new constraint (18)
is used to set the first several dispatching decisions (until
i) to 0 forcibly. Obviously, P5(s, t, c, 0) is equal to P4(s, t)
because (18) is not functioning when i = 0. The optimal
solution of P5(s, t, c, i) can be obtained by recursing over
s, c, and i. To do this, let us use x∗(s, t, c, i) to denote
the optimal solution of P5(s, t, c, i), and use V ∗P5

(s, t, c, i)
to denote the corresponding objective. In the following, we
demonstrate the recursing details.

Case I: If x∗ei+1
(s, t, c, i) = 0, i.e., the (i + 1)-element of

x∗(s, t, c, i) is 0, then (18) is not violated for P5(s, t, c, i+1).
Thus, we have

x∗(s, t, c, i+ 1) = x∗(s, t, c, i) (19)

and

V ∗P5
(s, t, c, i+ 1) = V ∗P5

(s, t, c, i). (20)

The result means that x∗(s, t, c, i) is also the optimal solu-
tion to P5(s, t, c, i+ 1).

Case II: If x∗ei+1
(s, t, c, i) = 1, the optimal substructure

is much more complicated. For simplification, we define
matrix A by

A =
[
a

(l,r)
k

]K×|E|
.

Then we have

A
(
x∗(s, t, c, i)− ei+1

)
≤ c−A:,i+1, (21)

where ei+1 is the (i+ 1)-th standard unit basis. Besides,

Υ̂(t)T
(
x∗(s, t, c, i)− ei+1

)
≥ s− Υ̂ei+1(t) (22)

and

Σ̂
2
(t)T

(
x∗(s, t, c, i)−ei+1

)
= Σ̂

2
(t)Tx∗(s, t, c, i)−Σ̂2

ei+1
(t).

Combining the above formula with (21) and (22), we can get
the following evolving optimal substructure:

V ∗P5
(s, t, c, i) =V ∗P5

(
max

{
s− Υ̂ei+1

(t), 0
}
, t,

max{c−A:,i+1, 0}, i+ 1
)

+ Σ̂2
ei+1

(t).

(23)

Thus, for each possible s, c, and i, we can update the
solution to P5(s, t, c, i) by

x∗ei+1
(s, t, c, i) =

{
0 V ∗P5

(s, t, c, i) = V ∗P5
(s, t, c, i+ 1)

1 otherwise.

The recursion starts from condition s = 0, c = 0, and
i = |E|. Algorithm 2 summarizes the main procedure. It
is used to substitute Step 5 ∼ Step 7 of ESDP. Obviously,
Algorithm 2 is of O

(
|E| · |S(t)| ·

∏
k∈K ck

)
-complexity, i.e.,

{P4(s, t)}s∈S(t) are solved in polynomial time. In the fol-
lowing analysis, we will show the relations between P3(t)
and {P4(s, t)}s∈S(t), and how the solution obtained by
ESDP affects the social welfare regret RE(T ) defined in P2.



6

Algorithm 2: DP for solving {P4(s, t)}s∈S(t)

Input: S(t), resource requirements
{a(l,r)
k }k∈K,(l,r)∈E , and scale-up statistics

Υ̂(t) and Σ̂(t)
Output: Optimal solution to {P4(s, t)}s∈S(t)

1 ∀i ∈ {0, ..., |E|}, x∗(s, t, c, i)← 0 for s from 0 to
ξ(t) ·maxt′∈T

{
maxx∈Ω(t′) ‖x‖1

}
do

2 for c′ from 0 to c do
3 V ∗P5

(s, t, c′, |E|) is 0 if s == 0 else −∞
4 for i from |E| − 1 to 0 do
5 if c′ == 0 then
6 V ∗P5

(s, t, c′, i)← V ∗P5
(s, t, c′, i+ 1)

7 continue
8 end if

9 V ∗P5
(s, t, c′, i)← max

{
V ∗P5

(
max

{
s−

Υ̂ei+1
(t), 0

}
, t,max{c′ −A:,i+1, 0}, i+

1
)

+ Σ̂2
ei+1

(t), V ∗P5
(s, t, c′, i+ 1)

}
10 if V ∗P5

(s, t, c′, i) 6= V ∗P5
(s, t, c′, i+ 1) then

11 x∗(s, t, c′, i)←
x∗
(

max
{
s−Υ̂ei+1(t), 0

}
, t,max{c′−

A:,i+1, 0}, i+ 1
)

12 x∗ei+1
(s, t, c′, i)← 1 // Update

13 if Ax∗(s, t, c′, i) ≤ c′ is violated then
14 V ∗P5

(s, t, c′, i)← V ∗P5
(s, t, c′, i+ 1)

15 x∗(s, t, c′, i)← x∗(s, t, c′, i+ 1)
16 end if
17 end if
18 end for
19 end for
20 /* Assign the solution of i = 0 to P4(s, t) */

21 x∗P4
(s, t)← x∗(s, t, c, 0)

22 end for
23 return

{
x∗P4

(s, t)
}
s∈S(t)

3.3 Optimality and Regret Analysis

In this section, we will analyze the upper bound of RE(T )
for ESDP when T goes to infinity. The result is based on the
relations between the optimal solutions of several problems
we defined above. The problems and their optimal solutions
are summarized in Tab. 1 for quick reference. Our first result
is that ESDP achieves the optimal statistical-based social
welfare asymptotically with a certain probability.

Theorem 1. (Probabilistic Asymptotical Optimality) By execut-
ing ESDP algorithm for problem P3(t), limt→∞ S̃W

(
x∗P4

(t)
)

is
at least

max
x(t)∈Ω(t)

{
υ̂(t)Tx(t) +

√
σ̂2(t)Tx(t)

}
(24)

with probability at most exp

[
− 1

3

(
|L| −

∑
l∈L ρl(t)

)2
]
.

Proof. Note that S̃W(·) is the objective defined in P3(t) and
(24) is exactly the optimal objective of P3(t) without the

approximate parameter δ(t). Before our proof, we define the
set

Φ(t) , {x(t) ∈ X | (1) holds at time t}, (25)

Different from the set Ω(t), Φ(t) does not require constraint
(2) to hold. Thus we have Ω(t) ⊆ Φ(t). The following proof
holds for every t ∈ T .

TABLE 1
Probelms and Their Optimal Solutions.

Problems Optimal Solutions

P1 (defined over T ) {x∗(t)}t∈T
P2 (defined over T ) {x∗(t)}t∈T , because P1 ≡ P2

P4(s, t) x∗P4
(s, t), also x∗(s, t, c, 0)

max{P4(s, t)}s∈S(t) x∗P4
(t) (by Step 8 of ESDP)

P5(s, t, c, i) x∗(s, t, c, i) (by Algorithm 2)

By the definitions (8), (13), (14) and the fact Z̃ ∈ [0, 1]|E|,
we have

υ̂(t) ≤ Υ̂(t)

ξ(t)
≤ 1

ξ(t)
1 + υ̂(t). (26)

Thus,

max
x(t)∈Ω(t)

υ̂(t)Tx(t) +
√
σ̂2(t)Tx(t)

≤ 1

ξ(t)
max

x(t)∈Ω(t)
Υ̂(t)Tx(t) +

√
Σ̂

2
(t)Tx(t). (27)

Further, the RHS of (27) staisfies

max
x(t)∈Ω(t)

Υ̂(t)Tx(t) +

√
Σ̂

2
(t)Tx(t)

= max
s∈S(t)

max
Υ̂(t)(t)Tx(t)=s,x(t)∈Ω(t)

{
s+

√
Σ̂

2
(t)Tx(t)

}

≤ max
s∈S(t)

max
Υ̂(t)Tx(t)≥s,x∈Ω(t)

{
s+

√
Σ̂

2
(t)Tx(t)

}

≤ max
s∈S(t)

max
Υ̂(t)Tx(t)≥s,x∈Φ(t)

{
s+

√
Σ̂

2
(t)Tx(t)

}
. (28)

The RHS of (28) is exactly max{P4(s, t)}s∈S(t). The upper

bound of it should be s? +
√

Σ̂
2
(t)Tx∗P4

(t) if no channel is
shut down forcibly, i.e., Step 10 ∼ Step 16 are not executed
by ESDP. To quantify the probability that no channels are
forcibly shut down, we use the result of Chernoff Bounds.
The upper tail of Chernoff Bounds is stated as follows.

If X1, ..., Xn ∈ {0, 1} are mutually independent, then ∀x ≥
µ, where µ , E

[∑
iXi

]
, we have

Pr

[∑
i

Xi ≥ x
]
≤ ex−µ

(
µ

x

)x
.

Based on this conclusion, we can further derive that

Pr

[∑
i

Xi ≥ (1 + ε)µ

]
≤
(

eε

(1 + ε)1+ε

)µ
, (29)

where ε ≥ 0. With the Taylor-series expansion for ln(x+ 1)
at x = 0, we have

1

ln(1 + ε)
≤ 1

ε(1− 1
2ε)

=
1

ε
+

1

2− ε
≤ 1

ε
+

1

2
.



7

Applying the inequality to the RHS of (29), we can get

Pr

[∑
i

Xi ≥ (1 + ε)µ

]
≤ exp

(
− ε2µ

3

)
. (30)

Replacing Xi with 1l and (1 + ε)µ with |L|, (30) is trans-
formed into

Pr

[∑
l∈L

1l = |L|
]
≤ exp

[
− 1

3

(
|L| −

∑
l∈L

ρl(t)
)2
]
, (31)

which exactly quantifies the probability that every port
yields at least one job. In this case, no channel (l, r) ∈ E
is shut down forcibly. Thus, with this probability, the RHS
of (28) staisfies

max
s(t)∈S

max
Υ̂(t)Tx(t)≥s,x(t)∈Φ(t)

{
s+

√
Σ̂

2
(t)Tx(t)

}

= s? +

√
Σ̂

2
(t)Tx∗P4

(t) . s? staisfies (17) with prob. (31)

≤ Υ̂(t)Tx∗P4
(t) +

√
Σ̂

2
(t)Tx∗P4

(t) . (16)

≤
(
1 + ξ(t)υ̂(t)

)T

x∗P4
(t) +

√
Σ̂

2
(t)Tx∗P4

(t) . (26)

≤ ξ(t)
(
δ(t) + υ̂(t)Tx∗P4

(t) +
√
σ̂2(t)Tx∗P4

(t)

)
. (32)

Combining the result of (27), (28), and (32), the following
inequality holds for all the time t ∈ T :

max
x(t)∈Ω(t)

{
υ̂(t)Tx(t) +

√
σ̂2(t)Tx(t)

}
≤ S̃W

(
x∗P4

(t)
)
.

(33)

When t → ∞ and δ(t) → 0, the result is tightly bounded.

This theorem shows that ESDP can achieve approxi-
mately optimal statistical-based social welfare at each time
slot with a certain probability. This optimality is important
for minimizing the regret becasue it builds the upper bound
of the optiaml social welfare υ̃Tx∗(t) at each time t. The
probabilistic regret upper bound is given by the following
theorem.

Theorem 2. (Regret Upper Bound under Certain Conditions)
By executing the ESDP algorithm, as T → ∞, RE(T ) is upper
bounded by

O
(

lnT ·
|E| ·

(
lnx∗

)2
mint∈T ∆

(
x∗P4

(t)
)) (34)

with probability at most exp
(
− 1

3

(
|L|−

∑
l∈L ρl(t)

)2)
. In (34),

∆
(
x∗P4

(t)
)

is introduced by (5), and x∗ is defined as

x∗ , argmax
∀t∈T :x∗(t)

‖x∗(t)‖1. (35)

Proof. The result is immediate with Theorem 1 and Theo-
rem 4.4 of [26]. Due to space limits, the derivation details
are omitted.

4 NUMERICAL RESULTS

In this section, we firstly verify the performance of ESDP
against several handcrafted benchmarking policies on the
accumulative social welfare. Then, we analyze the impact of
several system and problematic parameters.

4.1 Experimental Setup

By default, the parameters are set as shown in Tab. 2. In
this table, ‖A‖2 and ‖A‖2 are the upper bound and lower
bound of {Aij}∀i,j , respectively. Similarly, ‖c‖2 and ‖c‖2
are the upper bound and lower bound of ‖c‖2, respectively.
We use these bounds to limit the generations of A and c.
The bounds are carefully set such that (1) is not violated.
Besides, ρ(l,r) is the probability that an edge exists between
l ∈ L and r ∈ R. ∀(l, r) ∈ E , the true valuations, v(l,r), is
generated by N

(
µ(l,r) ∈ [0.1, 1], σ(l,r) =

µ(l,r)

2

)
.

For simplification, maxt′∈T
{

maxx∈Ω(t′) ‖x‖1
}

is calcu-
lated as α|E|, where α ∈ [0, 1] is a coefficient by default to
be 0.5. We set δ(t) and g(t) as

(
ln(ln(t + 1) + 1) + 1

)−1

and ln(t + 1) + 4 ln
(

ln(t + 1) + 1
)
· α|E|, respectively in

default. Considering that those two sequences significantly
affect the effectiveness of ESDP, we comprehensively discuss
their variations in Sec. 4.3.

TABLE 2
Default parameter settings.

Param. Value Param. Value

|L| 8 |R| 40

‖A‖2 2 ‖A‖2 1

α 0.5 {ρl}l∈L 0.9

‖c‖2 2 ‖c‖2 1

K 3 T 2000

{fk}k∈K ∼ N (0.5, 0.1) {ρ(l,r)}(l,r)∈E 0.1

ESDP is compared with the following handcrafted base-
lines.

• The Highest Social Welfare First (HSWF): HSWF is dif-
ferent from ESDP in the following ways. At each time
t, Z(t) is estimated as the average of historical obser-
vations. With the estimate, HSWF ranks each port in
the descending order of

∑
r∈Rl

x(l,r)(t)
(
Z(l,r)(t) −∑

k∈K fk(a
(l,r)
k )

)
, and set the corresponding x(l,r)(t)

as 1 in turn until (1) can not be satisfied.
• The Lowest Cost First (LCF): Similar to HSWF, at each

time t, Z(t) is estimated as the average of historical
observations. Then, LCF ranks each job (non-empty
port) in the ascending order of cost

∑
k∈K fk(a

(l,r)
k ),

and set the corresponding x(l,r)(t) as 1 in turn until
(1) can not be satisfied.

• The Longest Waiting Time First (LWTF): LWTF is differ-
ent from ESDP in two ways. Firstly,Z(t) is estimated
as the average of historical observations. Secondly,
LWTF ranks each port in the descending order of the
waiting time of jobs yield from that port, and set the
corresponding x(l,r)(t) as 1 in turn until (1) can not
be satisfied.



8

Fig. 2. The Asw vs. time slots. Fig. 3. The ratio between the Asws. Fig. 4. The average Asw vs. time slots.

Note that we do not implement heuristics such as Ge-
netic Algorithm (GA) for comparison. The reason is that,
the EASW maximization problem is a stochastic optimiza-
tion problem and traditional heuristics need to be revised
carefully to match it. All of the three baselines use a similar
method to estimate the historical valuation of each channel.
With the estimate, the stochastic optimization problem is
transformed into a deterministic one. Essentially, heuristics
can be implemented by following a similar approach. How-
ever, a big problem that cannot be ignored is that heuris-
tics are time-consuming with a non-polynomial complexity.
Heuristics have to be called in every time slot, which could
be very slow when the iteration number is large.

4.2 Performance Verification
We firstly analyze the accumulative social welfare (ASW)
under different scale of time horizons. As Fig. 2 shows,
ESDP outperforms the baselines by up to 73%, 36%, and
28%, respectively within 2000 time slots. In the beginning,
HSWF performs better than EDSP, but as the time slots
increase, ESDP gradually outperforms HSWF, and the gap
between them keeps widening. EDSP is able to surpass
HSWF becasue that, unlike HSWF, which does not adjust
its strategy, EDSP constantly updates its strategy with the
explorated valuation distributions. Besides, we also demon-
strate the ratio between the ASW achieved by ESDP and the
baselines in Fig. 3. We can conclude that, the performance
of ESDP increases significantly when the time slots available
to explore increase. The reason lies in that more time slots
leads to more approximate estimate to {v(l,r)}(l,r)∈E .

In Fig. 4, we calculate the average ASW in this way: for
each time slot length T , the y-axis value is 1

T

∑T
t=1 SW(x(t)).

Different from the baselines, the average ASW welfare of
ESDP increases steep and later flattens, which verifies that
the ASW converges to an underlying upper bound (the Asw
achieved by the oracle). The computation overhead of ESDP
under different scales of the bipartite graph is shown in Fig.
5.

4.3 Sensitivity Analysis
In this section, we give a brief analysis on several important
parameters. The first problematic parameter we test is the
size of the solution space X , which is tuned by A and
c. The x-axis of Fig. 6 is ‖A−1x‖2. Without doubt, the
ASW increases with the growth of X for all the algorithms
becasue the can-be-processed jobs increase. Even so, ESDP

has the highest growth in the ASW because it can fully
exploit the estimated valuations.

The first algorithmic parameter we pay attention to is
the sequence {δt}t∈T , which is used to relax the NP-hard
problem P2 to a polynomial one. The three {δt}t∈T shown
in Fig. 7 are

(
ln(t + 1) + 1

)−1
,
(

ln(ln(t + 1) + 1)
)−1

, and(
ln((ln(ln(t + 1) + 1)) + 1) + 1

)−1
, respectively. Fig. 7

demonstrates that different settings of the sequence has little
effect on the performance of ESDP, but strong affect on the
computation overhead. Another algorithmic parameter we
are interested on is {g(t)}t∈T , which is used to estimate the
variance (9). The three {g(t)}t∈T demonstrated in Fig. 8 are
ln(t+ 1) + 4 ln(ln(t+ 1) + 1) ·α|E|, 4 ln(ln(t+ 1) + 1) ·α|E|,
and ln(t+ 1), respectively. We can find that the third setting
has an overwhelming advantage. The reason is that, the-
oretically, g(t) acts as a balancer between exploration and
exploitation. A smaller g(t) leads to a higher tendency to
exploitation.

Fig. 9 and Fig. 10 demonstrate the impact of job arrival
rate ρ and the density of the bipartite graph. From Fig. 9
we can find that, with the increase of ρ, the ASW achieved
by nearly all the algorithms also goes up. The result is
obvious because more jobs can be processed within service
capacities when ρ increases. Fig. 10 demonstrates the impact
of the service locality constraint. When the number of edges
increases in the bipartite graph, which means the service
locality constraint is relaxed, the solution space X becomes
larger. It significantly increases the difficulty of searching
the optimal solution for ESDP.

5 RELATED WORKS

Job dispatching in scheduling problems. Job scheduling is ex-
tensive studied from both theoretical [9], [10], [11], [12], [13],
[14], [15], [29] and system-level perspectives [30], [31], [32],
[33], [34], [35]. The theoretical works usually formulate the
job completion time (JCT) minimization problems as com-
binatorial, constrained optimizaiton problems and solves
them with various approaches, especially the approximate
algorithms. For Gang scheduling-based placement-sensitive
Bulk Synchronous Parallel (BSP) jobs, Han et al propose an
algorithm, named SPIN, with a rounding-based random-
ized approximation approch [10]. Their design is built on
the relaxation of the Gang scheduling constraints and the
JCT is minimized by linear programming algorithms. As
for system-level schedulers, Tetris [30] was proposed for
the multi-dimensional bin packing problem wherein task



9

Fig. 5. Computation overheads.

x

Fig. 6. ASW vs. X . Fig. 7. ASW vs. {δ(t)}t∈T .

Fig. 8. ASW vs. {g(t)}t∈T . Fig. 9. ASW vs. ρ. Fig. 10. ASW vs. |E|.

arrivals and machine availability change constantly. Tetris
improves the average JCT by preferentially serving jobs
that have less remaining workload. Further, Graphene [31]
and Decima [35] schedule jobs with Directed Acyclic Graph
(DAG) task dependency. Decima allocates Spark workers to
each stage of big-data analytic processing jobs with policy-
based reinforcement learning algorithms [35]. The stages of
a job formulates a DAG and the processing topology is
based on the dependencies between them. The stages of
a single job do not request Spark workers simultaneously.
Except the recent work SPIN [10], none of works support
Gang scheduling compulsorily.

Job dispatching in load balancing. Load balancing policies
are usually designed based on Continuous-Time Markov
Chains (CTMC) and Lyapunov Stability theories. They as-
sume that jobs arrive according to Poisson process and
service rates of computing instances are exponentially dis-
tributed [17], [18], [36], [37], [38]. As an example, the most
classic policy JSQ [16] dispatches each new arrvied job to the
shortest queue available. To simultaneously minimize the
average job queuing delay and reduce the communication &
memory cost in large-scale systems, Pod [17] was proposed
and works by dispatching each arrived job to randomly
selected d servers. The most recent policy is JFIQ (JFSQ) [18],
which dispatches each job to the fastest of idle (shortest)
server under service locality constraints. However, all the
above works require the service rates to be known. The
work that most similar to ours is [39]. This work proposes
a job dispatching policy that learns the unknown service
rates with the goal of minimizing the queuing delay of each
job. By constrast, our work studies the eAsw maximization
problem and supports Gang scheduling. In addition, the
techniques adopted are totally different.

6 CONCLUSION

In this paper, we study the multi-server job dispatching
problem with the purpose of maximizing the EASW. To
model the service localities and the Gang scheduling prop-
erty of multi-server jobs, we introduce the bipartite graph
model with restricted resource capacities. Considering that
the service rates of jobs when dispatched to different servers
are unknown, we alternatively learn the optimal job dis-
patching to maximize the statistical ASW based on sev-
eral well-designed statistics. These statistics are formulated
based on the information we have exploited. From this,
we propose an efficient algorithm ESDP with a dynamic
programming subroutine. ESDP solves several deterministic
ASW maximization problems approximately in polynomial
time and is proved to have a State-of-the-Art regret under
certain probability. The performance of ESDP is also verified
by extensive numerical results. Significantly, our model is
also suitable for accumulated queuing and latency mini-
mization. We leave this to our future work.

REFERENCES

[1] S.-X. Zou, C.-Y. Chen, J.-L. Wu, C.-N. Chou, C.-C. Tsao, K.-C. Tung,
T.-W. Lin, C.-L. Sung, and E. Y. Chang, “Distributed training large-
scale deep architectures,” in International Conference on Advanced
Data Mining and Applications. Springer, 2017, pp. 18–32.

[2] O. Gupta and R. Raskar, “Distributed learning of deep neural
network over multiple agents,” Journal of Network and Computer
Applications, vol. 116, pp. 1–8, 2018.

[3] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Effective techniques for
message reduction and load balancing in distributed graph com-
putation,” in Proceedings of the 24th International Conference on World
Wide Web, 2015, pp. 1307–1317.

[4] W. Xiao, J. Xue, Y. Miao, Z. Li, C. Chen, M. Wu, W. Li, and L. Zhou,
“Tux2: Distributed graph computation for machine learning,”
in 14th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17), 2017, pp. 669–682.



10

[5] M. Tirmazi, N. Deng, M.-E. Haque, Z.-G. Qin, S. Hand and A.
Barker, “Google cluster-usage traces v3,” https://github.com/
google/cluster-data, 2019.

[6] M. Ribeiro, K. Grolinger, and M. A. Capretz, “Mlaas: Machine
learning as a service,” in 2015 IEEE 14th International Conference
on Machine Learning and Applications (ICMLA). IEEE, 2015, pp.
896–902.

[7] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter,
Serverless Computing: Current Trends and Open Problems. Singapore:
Springer Singapore, 2017, pp. 1–20.

[8] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al.,
“Cloud programming simplified: A berkeley view on serverless
computing,” arXiv preprint arXiv:1902.03383, 2019.

[9] J. V. Gautam, H. B. Prajapati, V. K. Dabhi, and S. Chaudhary,
“A survey on job scheduling algorithms in big data processing,”
in 2015 IEEE International Conference on Electrical, Computer and
Communication Technologies (ICECCT). IEEE, 2015, pp. 1–11.

[10] Z. Han, H. Tan, S. H.-C. Jiang, X. Fu, W. Cao, and F. C. Lau,
“Scheduling placement-sensitive bsp jobs with inaccurate execu-
tion time estimation,” in IEEE INFOCOM 2020 - IEEE Conference
on Computer Communications. IEEE Press, 2020, p. 1053–1062.

[11] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in
distributed machine learning clusters,” in IEEE INFOCOM 2018
- IEEE Conference on Computer Communications, 2018, pp. 495–503.

[12] I. Attiya, M. Abd Elaziz, and S. Xiong, “Job scheduling in cloud
computing using a modified harris hawks optimization and sim-
ulated annealing algorithm,” Computational intelligence and neuro-
science, vol. 2020, 2020.

[13] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Evolving scheduling
heuristics via genetic programming with feature selection in dy-
namic flexible job-shop scheduling,” ieee transactions on cybernetics,
2020.

[14] S. Liang, Z. Yang, F. Jin, and Y. Chen, “Data centers job scheduling
with deep reinforcement learning,” in Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer, 2020, pp. 906–
917.

[15] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee,
and M. Zaharia, “Heterogeneity-aware cluster scheduling policies
for deep learning workloads,” in 14th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 20), 2020, pp.
481–498.

[16] R. R. Weber, “On the optimal assignment of customers to parallel
servers,” Journal of Applied Probability, pp. 406–413, 1978.

[17] D. Mukherjee, S. C. Borst, J. S. Van Leeuwaarden, and P. A.
Whiting, “Universality of power-of-d load balancing in many-
server systems,” Stochastic Systems, vol. 8, no. 4, pp. 265–292, 2018.

[18] W. Weng, X. Zhou, and R. Srikant, “Optimal load balancing in
bipartite graphs,” arXiv preprint arXiv:2008.08830, 2020.

[19] D. G. Feitelson and M. A. Jettee, “Improved utilization and re-
sponsiveness with gang scheduling,” in Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, 1997, pp. 238–261.

[20] H. D. Karatza, “Performance of gang scheduling strategies in a
parallel system,” Simulation Modelling Practice and Theory, vol. 17,
no. 2, pp. 430–441, 2009.

[21] X. Tan, B. Sun, A. Leon-Garcia, Y. Wu, and D. H. Tsang, “Mecha-
nism design for online resource allocation: A unified approach,”
Proc. ACM Meas. Anal. Comput. Syst., vol. 4, no. 2, Jun. 2020.

[22] H. Zhao, S. Deng, Z. Liu, Z. Xiang, J. Yin, S. Dustdar, and
A. Zomaya, “Dpos: Decentralized, privacy-preserving, and low-
complexity online slicing for multi-tenant networks,” IEEE Trans-
actions on Mobile Computing, pp. 1–1, 2021.

[23] H. Zhao, S. Deng, Z. Xiang, and J. Yin, “Online social
welfare maximization with spatio-temporal resource mesh for
serverless,” CoRR, vol. abs/2112.02456, 2021. [Online]. Available:
https://arxiv.org/abs/2112.02456

[24] R. Combes, M. S. Talebi, A. Proutiere, and M. Lelarge, “Combi-
natorial bandits revisited,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 2, ser.
NIPS’15, 2015, p. 2116–2124.

[25] R. Degenne and V. Perchet, “Combinatorial semi-bandit with
known covariance,” in Proceedings of the 30th International Confer-
ence on Neural Information Processing Systems, ser. NIPS’16, 2016, p.
2972–2980.

[26] T. Cuvelier, R. Combes, and E. Gourdin, “Statistically efficient,
polynomial-time algorithms for combinatorial semi-bandits,” Proc.
ACM Meas. Anal. Comput. Syst., vol. 5, no. 1, Feb. 2021.

[27] T. Roughgarden, “Algorithmic game theory,” Communications of
the ACM, vol. 53, no. 7, pp. 78–86, 2010.

[28] B. Sun, A. Zeynali, T. Li, M. Hajiesmaili, A. Wierman, and D. H.
Tsang, “Competitive algorithms for the online multiple knapsack
problem with application to electric vehicle charging,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 4, no. 3, Nov. 2020.

[29] S. Deng, H. Zhao, Z. Xiang, C. Zhang, R. Jiang, Y. Li, J. Yin,
S. Dustdar, and A. Y. Zomaya, “Dependent function embedding
for distributed serverless edge computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 10, pp. 2346–2357, 2022.

[30] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella, “Multi-resource packing for cluster schedulers,” in Pro-
ceedings of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM
’14. New York, NY, USA: Association for Computing Machinery,
2014, p. 455–466.

[31] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni,
“GRAPHENE: Packing and dependency-aware scheduling for
data-parallel clusters,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), Nov. 2016, pp. 81–97.

[32] K. Mahajan, M. Chowdhury, A. Akella, and S. Chawla, “Dynamic
query re-planning using QOOP,” in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), Oct. 2018,
pp. 253–267.

[33] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan,
“Altruistic scheduling in multi-resource clusters,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), Nov. 2016, pp. 65–80.

[34] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand,
M. Harchol-Balter, and J. Wilkes, “Borg: The next generation,” in
Proceedings of the Fifteenth European Conference on Computer Systems,
ser. EuroSys ’20, 2020.

[35] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proceedings of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM ’19, 2019, p. 270–288.

[36] E. Anton, U. Ayesta, M. Jonckheere, and I. M. Verloop, “Improving
the performance of heterogeneous data centers through redun-
dancy,” Proc. ACM Meas. Anal. Comput. Syst., vol. 4, no. 3, Nov.
2020.

[37] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg,
“Join-idle-queue: A novel load balancing algorithm for dynam-
ically scalable web services,” Perform. Eval., vol. 68, no. 11, p.
1056–1071, Nov. 2011.

[38] D. Rutten and D. Mukherjee, “Load balancing under strict com-
patibility constraints,” 2020.

[39] T. Choudhury, G. Joshi, W. Wang, and S. Shakkottai, “Job dispatch-
ing policies for queueing systems with unknown service rates,”
arXiv preprint arXiv:2106.04707, 2021.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation of China (NSFC) under Grants U20A20173 and
62125206. Schahram Dustdar’s work is supported by the
Zhejiang University Deqing Institute of Advanced technol-
ogy and Industrilization (ZDATI).

Hailiang Zhao received the B.S. degree in 2019
from the school of computer science and tech-
nology, Wuhan University of Technology, Wuhan,
China. He is currently pursuing the Ph.D. degree
with the College of Computer Science and Tech-
nology, Zhejiang University, Hangzhou, China.
His research interests include cloud & edge
computing, distributed systems and optimization
algorithms. He has published several papers
in flagship conferences and journals including
IEEE ICWS 2019, IEEE TPDS, IEEE TMC, etc.

He has been a recipient of the Best Student Paper Award of IEEE ICWS
2019. He is a reviewer for IEEE TSC and Internet of Things Journal.

https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://arxiv.org/abs/2112.02456


11

Shuiguang Deng is currently a full professor
at the College of Computer Science and Tech-
nology in Zhejiang University, China, where he
received a BS and PhD degree both in Com-
puter Science in 2002 and 2007, respectively. He
previously worked at the Massachusetts Institute
of Technology in 2014 and Stanford University
in 2015 as a visiting scholar. His research in-
terests include Edge Computing, Service Com-
puting, Cloud Computing, and Business Process
Management. He serves for the journal IEEE

Trans. on Services Computing, Knowledge and Information Systems,
Computing, and IET Cyber-Physical Systems: Theory & Applications as
an Associate Editor. Up to now, he has published more than 100 papers
in journals and refereed conferences. In 2018, he was granted the Rising
Star Award by IEEE TCSVC. He is a fellow of IET and a senior member
of IEEE.

Feiyi Chen received the B.S. degree in 2021
from the school of computer science and
engineering, Sun Yat-sen University (SYSU),
Guangzhou, China. She is currently pursuing
the master degree with the College of Com-
puter Science and Technology, Zhejiang Univer-
sity, Hangzhou, China. Her research interests
include cloud computing, edge computing, and
distributed systems.

Jianwei Yin received the Ph.D. degree in com-
puter science from Zhejiang University (ZJU) in
2001. He was a Visiting Scholar with the Georgia
Institute of Technology. He is currently a Full
Professor with the College of Computer Science,
ZJU. Up to now, he has published more than
100 papers in top international journals and con-
ferences. His current research interests include
service computing and business process man-
agement. He is an Associate Editor of the IEEE
Transactions on Services Computing.

Schahram Dustdar is a Full Professor of Com-
puter Science (Informatics) with a focus on In-
ternet Technologies heading the Distributed Sys-
tems Group at the TU Wien. He is founding co-
Editor-in-Chief of ACM Transactions on Internet
of Things (ACM TIoT) as well as Editor-in-Chief
of Computing (Springer). He is an Associate Edi-
tor of IEEE Transactions on Services Computing,
IEEE Transactions on Cloud Computing, ACM
Computing Surveys, ACM Transactions on the
Web, and ACM Transactions on Internet Tech-

nology, as well as on the editorial board of IEEE Internet Computing
and IEEE Computer. Dustdar is recipient of multiple awards: TCI Distin-
guished Service Award (2021), IEEE TCSVC Outstanding Leadership
Award (2018), IEEE TCSC Award for Excellence in Scalable Comput-
ing (2019), ACM Distinguished Scientist (2009), ACM Distinguished
Speaker (2021), IBM Faculty Award (2012). He is an elected member of
the Academia Europaea: The Academy of Europe, where he is chairman
of the Informatics Section, as well as an IEEE Fellow (2016), an Asia-
Pacific Artificial Intelligence Association (AAIA) President (2021) and
Fellow (2021). He is an EAI Fellow (2021) and an I2CICC Fellow (2021).
He is a Member of the 2022 IEEE Computer Society Fellow Evaluating
Committee (2022).

Albert Y. Zomaya is the Peter Nicol Russell
Chair Professor of Computer Science and Di-
rector of the Centre for Distributed and High-
Performance Computing at the University of
Sydney. To date, he has published > 600 scien-
tific papers and articles and is (co-)author/editor
of > 30 books. A sought-after speaker, he has
delivered > 250 keynote addresses, invited semi-
nars, and media briefings. His research interests
span several areas in parallel and distributed
computing and complex systems. He is currently

the Editor in Chief of the ACM Computing Surveys and served in the past
as Editor in Chief of the IEEE Transactions on Computers (2010-2014)
and the IEEE Transactions on Sustainable Computing (2016-2020).

Professor Zomaya is a decorated scholar with numerous accolades
including Fellowship of the IEEE, the American Association for the
Advancement of Science, and the Institution of Engineering and Tech-
nology (UK). Also, he is an Elected Fellow of the Royal Society of New
South Wales and an Elected Foreign Member of Academia Europaea.
He is the recipient of the 1997 Edgeworth David Medal from the Royal
Society of New South Wales for outstanding contributions to Australian
Science, the IEEE Technical Committee on Parallel Processing Out-
standing Service Award (2011), IEEE Technical Committee on Scalable
Computing Medal for Excellence in Scalable Computing (2011), IEEE
Computer Society Technical Achievement Award (2014), ACM MSWIM
Reginald A. Fessenden Award (2017), the New South Wales Premier’s
Prize of Excellence in Engineering and Information and Communica-
tions Technology (2019), and the Research Innovation Award, IEEE
Technical Committee on Cloud Computing (2021).


	1 Introduction
	2 System Model
	2.1 Bipartite Graph Model under Service Localities
	2.2 Job Dispatching with Restricted Capacities
	2.3 Maximizing the eAsw

	3 Algorithm Design
	3.1 Regret Minimizing with Evolving Statistics
	3.2 Polynomial-time Dynamic Programming
	3.3 Optimality and Regret Analysis

	4 Numerical Results
	4.1 Experimental Setup
	4.2 Performance Verification
	4.3 Sensitivity Analysis

	5 Related Works
	6 Conclusion
	References
	Biographies
	Hailiang Zhao
	Shuiguang Deng
	Feiyi Chen
	Jianwei Yin
	Schahram Dustdar
	Albert Y. Zomaya


