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Abstract

Computing is a critical driving force in the development of human civilization. In recent

years, we have witnessed the emergence of intelligent computing, a new computing paradigm that

is reshaping traditional computing and promoting digital revolution in the era of big data, ar-

tificial intelligence and internet-of-things with new computing theories, architectures, methods,

systems, and applications. Intelligent computing has greatly broadened the scope of computing,

extending it from traditional computing on data to increasingly diverse computing paradigms

such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-

computer fusion intelligence. Intelligence and computing have undergone paths of different

evolution and development for a long time but have become increasingly intertwined in recent

years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such

cross-fertilization has prompted the emergence and rapid advancement of intelligent computing.
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Intelligent computing is still in its infancy and an abundance of innovations in the theories, sys-

tems, and applications of intelligent computing are expected to occur soon. We present the first

comprehensive survey of literature on intelligent computing, covering its theory fundamentals,

the technological fusion of intelligence and computing, important applications, challenges, and

future perspectives. We believe that this survey is highly timely and will provide a comprehen-

sive reference and cast valuable insights into intelligent computing for academic and industrial

researchers and practitioners.

Keywords: Data intelligence, Autonomous Intelligence, large computing systems, computing

architectures and paradigms, computing for science

1 Introduction

Human society is ushering into an intelligent society from an information society, in which computing

has become a key element in formulating and promoting the development of society. In the new era of

digital civilization with the internet of all things, traditional computing on data is far from being able

to meet the growing endeavor for a higher level of intelligence by humans. The growing interest in

intelligent computing, coupled with the development of computing science, the intelligent perception

of the physical world, and the understanding of the cognitive mechanism of human consciousness, has

collectively elevated the intelligence level of computing and accelerated the discovery and creation

of knowledge.

Recent years have witnessed the rapid development of computing and information technology,

from which artificial intelligence (AI) has been established as the frontier of human exploration of

machine intelligence thanks to the unprecedented popularity and success of deep learning. Based

on this, a series of breakthrough research results have been produced, including the convolutional

neural network (CNN) proposed by Yann LeCun and contributions by Yoshua Bengio in the area

of causal inference in deep learning [1, 2]. Geoffrey Hinton, one of the pioneers of AI, proposed

the deep belief network model and the backward propagation optimization algorithm in 2006 [3].

Jürgen Schmidhuber, another significant AI researcher, proposed the most widely-used recurrent

neural network (RNN), long short-term memory (LSTM) [4]. It has been successfully applied in

many fields to process entire sequences of data, such as speech, video, and time-series data. In

March 2016, AlphaGo, an AI Go program launched by DeepMind, battled with Lee Sedol, the

world’s top human Go master, and has attracted unprecedented worldwide attention. This epoch-

making man-machine battle ended with a crushing victory of AI and has become a catalyst to push

the wave of AI to a whole new level.

Another significant promoter of AI is the emergence of large pre-training models that have

started to be widely used in natural language and image processing to deal with a wide variety of

applications with the assistance of transfer learning. For example, GPT-3 has demonstrated that a

big model, with a high level of structural complexity and a huge number of parameters, can improve

the performance of deep learning. Inspired by GPT-3, a host of large-scale deep learning models

have emerged [5–7].

Computational capacity is one of the important elements underpinning intelligent computing.
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Given the astronomical data sources, heterogeneous hardware configurations, and changing comput-

ing requirements in our information society, intelligent computing mainly meets the computational

capacity requirements of intelligent tasks through vertical and horizontal architectures. Vertical ar-

chitectures, which feature homogeneous computing infrastructure, mainly boost the computational

capacity by applying intelligent methods to improve resource utilization efficiency. In comparison,

horizontal architecture coordinates and schedules heterogeneous and wide-area computing resources

to maximize the effectiveness of collaborative computing. For example, in April 2020, in response

to the computing demands of COVID-19 research around the world, Folding@home achieved 2.5

Exaflops in computation by combining 400,000 computing volunteers in three weeks, more than any

supercomputer in the world [8]. It is a success of horizontal computing collaboration to achieve such

a huge computational capacity.

Despite the great success that has been achieved in intelligence and computing, we are still facing

some major challenges in two respective areas, as follows:

Challenges in intelligence. AI using deep learning currently faces major challenges in inter-

pretability, generality, evolvability, and autonomy. Most of the current AI technologies only work

weakly compared to human intelligence and only work well in specific areas or tasks. Achieving strong

and universal AI still has a long way to go. Finally, there are also major theoretical and technical

challenges to upgrading from data-based intelligence to a more diverse form of intelligence, including

perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-machine fusion

intelligence, to name a few.

Challenges in computing. The wave of digitalization brings an unprecedented growth of

applications, connections, terminals, and users, as well as the amount of data generated, all requiring

enormous computational capacity. For example, the computing power required for AI is doubling

every 100 days and is projected to increase by more than a million times over the next five years.

With the slowing down of Moore’s Law, it becomes challenging to keep up with such a rapid increase

in computational capacity requirements. In addition, the giant tasks in intelligent society rely on an

efficient combination of various specific computing resources. Moreover, traditional hardware modes

cannot fit intelligent algorithms well, which restricts software development.

To date, there is no universally accepted definition of intelligent computing. Some researchers

regard intelligent computing as the combination of AI and computing technology [9–11]. It marks

three different milestones of intelligent computing systems according to the development of AI. This

perspective limits the definition of intelligent computing within the field of AI while ignoring the

inherent limitations of AI and the vital role of ternary interactions between humans, machines,

and things. Another school of thought views intelligent computing as computational intelligence.

This area imitates human or biological intelligence to realize optimal algorithms to solve specific

problems [12] and treats intelligent computing primarily as an algorithmic innovation. However, it

fails to consider the essential roles that the computing architecture and the internet-of-things (IoT)

play in intelligent computing.

We present a new definition of intelligent computing from the perspective of solving complex

scientific and societal problems considering the increasingly tight fusion of three fundamental spaces

of the world, i.e., human society space, physical space, and information space.

3



Definition 1 (Intelligent Computing.) Intelligent computing is the area that encompasses the new

computing theoretical methods, architecture systems, and technical capabilities in the era of digital

civilization that supports the interconnection of all the world. Intelligent computing targets com-

putational tasks with the minimum cost according to the specific actual needs, matching adequate

computational power, invoking the finest algorithm, and obtaining optimal results.

The new definition of intelligent computing is proposed in response to the fast-growing computing

needs of the triple integration of human society, the physical world, and information space. Intelligent

computing is human-oriented and pursues high computing capability, energy efficiency, intelligence,

and security. Its goal is to provide universal, efficient, secure, autonomous, reliable, and transparent

computing services to support large-scale and complex computational tasks. Figure 1 shows the

overall theoretical framework of intelligent computing, which embodies a wide variety of computing

paradigms in support of human-physics-information integration.

Figure 1: An overview of intelligent computing based on the fusion of human social space, physical
space, and information space.

First, intelligent computing is neither substitution nor a simple integration of the existing su-

percomputing, cloud computing, edge computing, and other computing technologies such as neu-

romorphic computing, optoelectronic computing, and quantum computing. Instead, it is a form of

computing that solves practical problems by optimizing existing computing methods and resources

systematically and holistically according to task requirements. In comparison, the major existing

computing disciplines, such as supercomputing, cloud computing, and edge computing, fall into

different domains. Supercomputing aims to achieve high computing power [13], cloud computing

emphasizes cross-platform/device convenience [14], and edge computing pursues quality of service

and transmission efficiency. Intelligent computing dynamically coordinates the data storage, commu-

nication, and computation among edge computing, cloud computing, and supercomputing domains.

It constructs various cross-domain intelligent computing systems to support end-to-end cloud col-

laboration, inter-cloud collaboration, and supercomputing interconnection. Intelligence computing

should make good use of existing computing technologies and, more importantly, promote the for-

mation of new intelligent computing theories, architectures, algorithms, and systems.

Second, intelligent computing is proposed to address problems in the future development of

4



human-physics-information space integration. With the development of information technology ap-

plications in the big data era, the boundaries between physical space, digital space, and human

society have become increasingly blurred. The human world has evolved into a new space character-

ized by the tight fusion of humans, machines, and things. Our social system, information systems,

and physical environment constitute a large dynamically-coupled system in which humans, machines,

and things are integrated and interact in a highly complex manner, which promotes the development

and innovations of new computing technologies and application scenarios in the future.

We present the first comprehensive survey in the literature on intelligent computing, covering its

theory fundamentals, the technological fusion of intelligence and computing, important applications,

challenges, and future perspectives. To the best of our knowledge, this is the first review article to

formally propose the definition of intelligent computing and its unified theoretical framework. We

hope this review will provide a comprehensive reference and cast valuable insights into intelligent

computing for academic and industrial researchers and practitioners.

Figure 2: Main structure of the paper.

The remainder of this paper is organized as follows. Section 2 introduces the fundamentals of

intelligent computing. Section 3 summarizes the computing methods empowered by various intel-

ligence aspects to boost computing performance. Section 4 describes the large computing systems,

emerging computing architectures, and modes to satisfy the urgent need for computing power from
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intelligent models. Section 5 exhibits several important applications of intelligent computing in both

the scientific and social domains. Section 6 presents perspectives to cast light on the future devel-

opment of intelligent computing. Finally, Section 7 concludes the paper. Figure 2 shows the main

structure of the paper.

2 Fundamentals of Intelligent Computing

Intelligent computing is the general term for new computing theoretical methods, architectural

systems, and technical capabilities in the era of digital civilization that support the interconnection

of all things. It explores innovations in many classical and cutting-edge research fields to solve

complex scientific and social problems. The basic elements of intelligent computing include human

intelligence, machine capabilities, and the physical world composed of all things. In this section, we

introduce the intelligent abilities and computational capacities expected of intelligent computing. We

also describe the features of intelligent computing and how to combine intelligence and computation

in the human-physics-information world.

2.1 Intelligent Abilities

In the theoretical framework, the human being is the core of intelligent computing and the source of

wisdom, representing the original and inherent intelligence called meta intelligence. Meta intelli-

gence includes advanced human abilities such as comprehension, expression, abstraction, inference,

creation, and reflection, which contain the knowledge accumulated by human beings [15–21].

All intelligent systems are designed and built by humans. Therefore, in the theoretical system of

intelligent computing, human wisdom is the source of intelligence, while computers are empowered by

human intelligence. We call the intelligence of computers generic intelligence. Generic intelligence

represents the ability of computers to solve complex problems with the wide extension, including

natural language processing [22], image recognition [23], speech recognition [24], target detection

and tracking [25], etc. The relationship between meta intelligence and generic intelligence is shown

in Figure 3 and is detailed in the following parts.

2.1.1 Meta Intelligence

Meta intelligence, also called natural intelligence, takes the carbon-based lives as the carrier and is

produced by individuals and groups of organisms after millions of years of evolution. It includes

biological embodied intelligence, brain intelligence (especially human brains), and swarm intelligence.

Among them, biological embodied intelligence is widely obtained by organisms. They can receive the

input of the environment to complete the specific tasks suitable for their physical form and perceive

the changes in the environment to make the most advantageous intelligent behavior. Moreover,

organisms may use tools and modify their environment to get a better chance of survival. The

highest level of intelligence in nature is possessed by human beings, who have a solid ability not only

to survive but also to feel and respond to the complex environment, for example, perceiving and
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Figure 3: Meta intelligence and generic intelligence.

identifying objects, expressing and acquiring knowledge, as well as complex reasoning and judgment.

The intelligence of individual human beings is a comprehensive ability. More precisely,

• They perform highly complex cognitive tasks.

• They can accomplish difficult learning, understand abstract concepts, do logical reasoning, and

extract meaningful patterns.

• They can maximize the use and the transformation of the natural environment and can con-

struct a cooperative of the order of millions of individuals.

• They have self-awareness.

Second, it is brain intelligence. The human brain is a complex and dynamic giant neural network

system composed of a huge number of neurons. Its mystery has not been completely revealed yet,

which leads to a vague understanding of intelligence. But in terms of the overall function, the

intelligent performance of the human brain is recognizable. Abilities such as learning, discovering,

and creating are clear manifestations of intelligence. Further analysis finds that the intelligence of the

human brain and its occurrence is visible at its psychological level, expressed by some psychological

activities and thinking processes [26]. Thus, intelligence can be defined and studied on a macroscopic

psychological level. We address the macro-psychological level of human intelligence performance as

brain intelligence. Different areas of our brain in charge of varying perceptions or thinking functions

cooperate as a unified whole.

Third, it is swarm intelligence. Swarm intelligence is a kind of high-level intelligence that low-level

intelligent insects or animals usually generate through aggregation, coordination, adaptation, and

other simple behaviors. Gerardo and Wang first proposed the definition of swarm intelligence [27].

The swarm intelligence optimization algorithm simulates the division and cooperation during the

migration of natural organisms, foraging, and evolution. It stimulates the points in search space as
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individuals in nature and the search and optimization process as individuals’ foraging or evolution

process. The search and optimization swarm intelligence algorithms with the feature of generation

and verification, which iteratively replace the less feasible solution with the better one, are inspired

by “survival of the fittest”.

2.1.2 Generic Intelligence

Generic intelligence, also called machine intelligence, takes silicon-based facilities as the carrier and

is produced by individuals and groups of computing devices. Biological intelligence can be trans-

planted to a computer on the following four levels: data intelligence, perceptual intelligence, cognitive

intelligence, and autonomous intelligence. Data intelligence includes the ability of a computer to

formalize, express, calculate, memorize and store data quickly. Perceptual intelligence refers to

acquiring information such as voice, images, and video through various sensors and I/O devices.

Cognitive intelligence is the ability to understand, think, reason, and explain. Autonomous intel-

ligence stands for the ability of a machine to obtain a self-driven ego and consciousness. The four

types of intelligence usually cooperate in conducting complex tasks.

Data intelligence emphasizes the realization of biological internal intelligent behavior through

computational methods, programming the law of nature [28]. It is mainly guided by the theory of

computing and relies on the basic storage and computing capabilities of the computer hardware to

realize the original intelligence of data [29]. Data intelligence uses the combination of five leading

complementary technologies: symbolic and numerical computation for basic mathematical functions,

fuzzy logic that enables computers to emulate human reasoning in linguistic terms; probabilistic

methods based on big data and statistical law; artificial neural network construction that learns

experiential data by models with a large number of parameters; evolutionary computation inspired

from nature for search and optimization. Integrating data intelligence into these relatively mature

branches forms various scientific methods.

Perceptual intelligence indicates machines with perceptual abilities like sight, hearing, and touch

to reach the external world. Signals from the physical world are mapped to the digital world via mi-

crophones, cameras, and other sensors, using speech and image recognition. Machines communicate

and interact similarly to humans via structured multi-modal real-world data [30, 31]. Perceptual

intelligence completes the collection of large-scale data and features extraction of images, videos,

audio, and other data types to complete structured processing. Computers present the data more

comfortably for the user-connected hardware and software. For example, automatic driving utilizes

light detection and ranging methods (lidars), other sensing devices, and AI algorithms for driving

information computation. Face payment is a device through the perception of face data for identity

confirmation.

Cognitive intelligence denotes machines with human-like logical thinking and cognition abilities,

especially to actively learn, think, understand, summarize, interpret, plan, and apply knowledge [32].

The development of cognitive intelligence is composed of three levels. The first level is learning and

understanding, such as text parsing, automatic marking, question understanding, etc. The second

level is analyzing and reasoning, such as logical connecting and connotation abstracting. The third
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level is thinking and creating.

Autonomous intelligence implies that the machine can act like a human being with a self-driven

ego, emotion, and consciousness. It frees machines from heavy data dependency and enables them

to learn the learning skills and renew their problem-solving abilities according to the change of

environment. The final target of autonomous intelligence realizes self-learning, purposeful reasoning,

and natural interaction with little or even any prior human programming.

2.2 Computational Capabilities

Intelligent computing is faced with the challenges of big scenes, big data, big problems, and ubiq-

uitous requirements. The algorithmic models are becoming increasingly complex and require super-

computing power to support increasingly large model training. At present, computing resources have

become a barrier to improving the level of computer intelligence research. With the development

of intelligent algorithms, institutions rich in computing resources may form a systematic technolog-

ical monopoly. The classical supercomputer is unsuitable for AI’s demand for computing power.

Although algorithm optimization can reduce the need for computing power to a certain extent, it

cannot fundamentally solve this problem. A complete optimization from multiple dimensions, such

as architecture, acceleration module, integration mode, and software stack, is needed.

Figure 4: Computational capacities of intelligence computing.
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2.2.1 Computing Units

The most intuitive and effective method of wide-area collaboration is strengthening basic computing

power through vertical lifting and horizontal expansion. At first, vertical improvement refers to the

unit performance of computing components utilizing technological iteration, material innovation,

and architectural design to increase the upper limit of the number of instructions a single chip can

process per unit of time. Under the traditional von Neumann architecture, the performance limit is

broken through technical means to meet the computational performance requirements for graphics

rendering and deep learning training tasks. These chips have enough power to support the advanced

deep learning algorithms and plug-and-play of the mainstream computers of today.

As Moore’s Law slows down, traditional von Neumann computing models will soon face a per-

formance ceiling. The end of Dennard’s scaling law will result in power consumption and heat

dissipation problems becoming obstacles to processor frequency growth. Traditional storage devices

cannot obtain high speed and high density simultaneously. The existing computing-centered von

Neumann architectures rely on a hierarchical storage structure composed of memory and storage to

maintain a balance between computing performance and storage capacity. The structure needs to

frequently deliver data between the processor and memory so that computing efficiency decreases

and bandwidth is limited, causing the “storage wall” problem. Under such circumstances, mem-

ory computing becomes an effective measure to break through the bottleneck of the von Neumann

system and improve overall computing efficiency.

To break through the limitations of traditional chip architecture, intelligent computing needs to

explore new chips through horizontal expansion. Given the challenges faced by traditional electronic

computing methods, the emergence of integrated photonics, which is built on multidisciplinary areas

such as materials science, photonics, and electronics, is exciting. Based on the principle of quantum

mechanics, quantum computing realizes quantum parallel computing by using quantum superposi-

tion, entanglement, and quantum coherence, which fundamentally changes the traditional computing

concept. Biocomputing is developed based on the inherent information processing mechanism of bi-

ological systems. In contrast with traditional computing systems, its structure is generally parallel

and distributed.

Since the diversified computing power of data centers has become a trend, generalizing and

specialized computing chips will develop in parallel. The traditional technology with CPUs and

other general computing chips as the core is quite challenging to meet the requirements of mass

data processing. The fusion of general technology and special technology has become a promising

approach.

2.2.2 Heterogeneous Integration of Systems

Heterogeneous integration includes hetero-structure integration and hetero-material integration.

Hetero-structure integration mainly refers to encapsulating chips manufactured by multiple process-

ing nodes into one package to enhance functionality and performance. It can encapsulate components

manufactured by different processes, functions, and manufacturers. The progress of semiconductor

technology has reached the physical limit, and the circuit has become more complex. The tradi-
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tional way, which improves the computational capacity by increasing the CPU clock frequency and

the core number, has met the heat dissipation and energy consumption bottleneck. Heterogeneous

integration can solve the problem. Through hetero-structure integration, different computing units

adopt a hybrid computing architecture. Each computing unit performs its adequate task, effectively

improving computing performance. Hetero-structure integration can be divided into the chip level

and system level. Chip-level hetero-structure integration is a method to integrate different chips to

improve the overall chip efficiency. Currently, the main-stream hetero-structure integration tech-

nologies mainly include 2D/3D packaging, Chiplet, etc. System-level hetero-structure integration

provides various computing types in the form of single-machine multi-processor and multi-machine,

including single-machine multi-computing, single-machine hybrid computing, homogeneous hetero-

geneous multi-machine, and heterogeneous multi-machine.

Hetero-material integration refers to the integration of semiconductor components of different ma-

terials for small size, good economy, high flexibility, and better system performance. It is considered

an innovative exploration to use biological components for information processing and computation

through the integration of silicon and carbon. As a basic unit of biological structure and function, a

single cell is an independent and orderly system that can give feedback and self-regulate in response

to external stimuli and environmental changes. Its operating mechanism has undergone long-term

evolution and thus can meet its metabolic needs. As a natural storage carrier of genetic information,

DNA in cells has high storage capacity and density characteristics. Over hundreds of millions of

years of evolution, biological cells have also optimized their biochemical processes to minimize the

energy consumption of metabolic processes. Biological components show the potential for storage

capacity, computational parallelism, and ultra-low computing power consumption. The effective

integration of carbon-based and conventional silicon-based chips is expected to reach new heights in

computing power, storage density, and energy efficiency.

2.2.3 Wide-Area Collaboration of Resources

The data in the human-machine-thing integration scenario of wide-area collaboration has the charac-

teristics of wide geographical distribution, complete scene coverage, and enormous collective value.

The real-time acquisition, perception, processing, and intelligent data analysis from the time di-

mension require the support of distributed parallel computing power available anywhere. Thus,

wide-area collaboration is highly needed. Wide-area collaborative computing connects computing

resources such as high-performance computing (HPC), cloud computing, fog computing, and edge

computing cost-effectively. It achieves automated horizontal expansion of supply-side resources.

Demand-side diversified tasks require a new computing infrastructure across management domains

and on-demand collaboration in a low-cost, efficient, and highly trusted way. Led by intelligent com-

puting scenarios that support the interconnection of all things, wide-area collaborative computing

supports vertical and horizontal convergence of resources in an autonomous and peer-to-peer man-

ner. Significant challenges of intelligent matching, scheduling, and collaborating resources and tasks

across domains exist in building a new infrastructure of secure and reliable intelligent computing.

Improving the computational capacity of wide-area collaboration mainly focuses on two scien-
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tific issues: the mechanism of the wide-area collaboration model and the realization of the wide-area

collaboration system. The wide-area collaboration model primarily emphasizes resource abstrac-

tion, decoupling, and encapsulation and building a software-defined programmable entity abstrac-

tion method to shield the heterogeneity of device, computing, and data resources. It constructs a

software-defined programmable collaboration model, rules, and processes based on interconnectivity

and interoperability to support forming interaction orders of computing, data, and devices across

independent stakeholders. The wide-area collaboration system mainly focuses on the task decompo-

sition and scheduling of diversified jobs on the demand side; cross-domain fusion and management

of computing and data resources; data privacy protection, identity trust, and security protection

in an open environment; multi-dimensional intelligent operation and maintenance monitoring crack

the invisibility of resource distribution, use, and business execution.

2.3 Features of Intelligent Computing

In this subsection, we first introduce the major characteristics of intelligent computing development

and then reveal the innovation paths to obtain these critical characteristics.

2.3.1 Objective-Oriented Intelligent Computing

As depicted in Figure 5, intelligent computing has the following characteristics: self-learning and

evolvability in theoretical techniques, high computing capability and high energy efficiency in ar-

chitecture, security and reliability in systematic methods, automation and precision in operational

mechanisms, and collaboration and ubiquity in serviceability.

Self-learning and evolvability. Inspired by brain neuroscience, intelligent computing devel-

ops several novel techniques, such as neuromorphic computing and biological computing, to achieve

breakthroughs in the principles and models of von Neumann’s computer structure. Self-learning

refers to obtaining experience by mining rules and knowledge from massive data and optimizing

the calculation paths with usable results. At the same time, evolvability represents a heuristic

self-optimization ability that simulates the evolutionary process of organisms in nature, where the

machines learn from the environment and subsequently make self-adjustments to adapt to the envi-

ronment.

High computing capability and high energy efficiency. Aiming to exceed the traditional

von Neumann’s architecture, intelligent computing evolves to new computing architectures concern-

ing processing-in-memory, heterogeneous integration, and wide-area collaboration. High computing

power refers to the computing capability that meets the needs of an intelligent society and serves as

infrastructures like water and electricity. Moreover, high energy efficiency aims to maximize com-

puting efficiency and reduce energy consumption as much as possible to ensure efficient processing

of big data with large-scale characteristics, complex structure, and sparse value.

Security and reliability. Intelligent computing supports cross-domain trust and security pro-

tection for large-scale ubiquitous interconnected computing systems. It establishes independent and

controllable trusted security technology and support systems, realizing data fusion, sharing, and

opening. High trust refers to the trust of identity, data, computing process, and computing envi-
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Figure 5: Features of intelligent computing.
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ronment through trusted hardware, operating system, software, network, and private computing.

Particularly, high security means network security, storage security, content security, and circulation

security of computing systems that can be guaranteed by integrating various privacy protection

technologies.

Automation and precision. Intelligent computing is task-oriented; it matches computing

resources and realizes automatic demand calculation and precise system reconstruction. The sys-

tem architecture is constantly adjusted to the task execution. Directed coupling reconstruction is

performed at the software and hardware levels. Automation of the computing process includes auto-

matic resource management and scheduling, automatic service creation and provision, and automatic

management of the task life cycle, which is the key to evaluating the friendliness, availability, and

service of intelligent computing. The precision of computing results anchors computing services;

besides, it solves difficulties, including fast processing of computing tasks and timely matching of

computing resources.

Collaboration and ubiquity. Intelligent computing integrates existing technologies to pro-

mote the penetration and integration of the physical, information, and social space using the various

perception ability of heterogeneous elements, complementary computational resources, and the col-

laboration and competition of computational node functions. Cooperation between humans and

machines improves intelligence levels in intelligent tasks, and ubiquity enables computing to be con-

ducted everywhere by combining intelligent computing theoretical methods, architectural systems,

and technical approaches.

2.3.2 Fusion of Intelligence and Computation

Intelligent computing includes two essential aspects: intelligence and computation, which comple-

ment each other. Intelligence facilitates the development of computing technologies, while compu-

tation is the foundation of intelligence. The paradigm of high-level intelligence technologies that

improve the performance and efficiency of computing systems is “computing by intelligence”. The

paradigm of efficient and powerful computational technologies that support the development of com-

puter intelligence is “computing for intelligence”. The two basic paradigms are innovated from five

aspects to improve computing power, energy efficiency, data usage, knowledge expression, and algo-

rithm capabilities and achieve ubiquitous, transparent, reliable, real-time, and automatic services.

The paradigm of computing by intelligence. The computing power demand of complex

models has exceeded that of general computers by one or two orders of magnitude. Moreover, there

is a considerable gap between the underlying computing mechanism of traditional computers and

the computing mode of intelligent models, resulting in low computing efficiency. The paradigm of

computing by intelligence includes new models, support, paradigms, mechanisms, and synergy that

utilize intelligent approaches to improve computing capability and efficiency.

Currently, intelligent systems can only handle specific tasks in a closed environment since they

lack common sense, intuition, and imagination. Research on neuromorphic computing, graph com-

puting, biological computing, and other new computing models is conducted to analyze the human

brain, biological, and knowledge computing mechanisms. These new models can effectively improve
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cognitive understanding and reasoning learning abilities, adaptability, and the generalization effect

for intelligent algorithms.

Due to the limitations of computing system architecture and lack of end-to-end computational

capacity, the computing and response speed of the current computing system needs further im-

provement. Intelligent computing can improve the real-time performance of the computing system

by utilizing new computing support technologies, e.g., processing-in-memory, edge computing, and

online learning. Moreover, new technologies, such as the fusion of perception and computation and

processing localization, have also become promising research hotspots.

The deep integration of the triple-space leads to the diversities of computing tasks, so the com-

puting scenarios and data are more unstructured, and the solutions of the tasks are more complex

and challenging. Thus, the new computing paradigm enables the analysis and modeling of unstruc-

tured scenes and the adaptive processing of unstructured data. It achieves transparency computing

through an automatic and intelligent process that concludes tasks understanding, decomposition,

solving, and resource allocation.

Intelligent computing explores new computing mechanisms, such as hardware and software refac-

toring and cooperative evolution, to deal with different types of tasks. During the execution of intel-

ligent processes, the new mechanism configures the hardware through the organization of computing

resources with different granularity and functions. The new mechanism will form an automatic

computing system with autonomous learning and evolutionary iteration applying intelligent tech-

nologies, including elasticity design of software and hardware, flexible cooperation of algorithms and

models, and adaptive allocation of data and resources.

New synergy computing architectures, such as human-computer interaction, swarm intelligence,

and human-in-loop, combine human perception and cognitive ability with the operation and stor-

age ability of a computer. And such new architectures are effective in improving the sensing and

reasoning ability of computers. Machines can have ultra-high computing speed and accuracy and

also efficiently obtain information from the physical environment through various sensors. However,

they cannot independently analyze the information and execute complex tasks. Notably, humans

can study the physical environment at a higher level, recognize the laws of the physical world, and

transfer knowledge to machines in human-computer interactions.

The paradigm of computing for intelligence. The heterogeneity and complexity of hard-

ware architecture hinder computing capability integration and service quality improvement. The

computing for intelligence paradigm designs new frameworks, methods, integration, architectures,

and systems to improve the intelligence level and provide ubiquitous, transparent, automatic, real-

time, and security of computing services.

Given the diversity of intelligent devices, the discretization of computing resources, and the

complexity of network connections, it becomes more difficult to integrate hardware and effectively

improve intellectual computing power. The innovation of the computing framework adopts a non-

von Neumann structure, which contains memory processing, heterogeneous integration, and wide-

area collaboration. Additionally, the dedicated hardware building blocks are designed. To meet the

demand for high computing power, the computing structure of the chip and system senses, schedules,

and computing resources management are optimized.

15



A new way to improve limited energy efficiency is to apply new computing methods, such as

biocomputing and neuromorphic computing, to study low-power characteristics of living matter.

With a power consumption of only 20W, the learning procedure of the human brain is much more

effective than any AI. By learning the computing methods of biological and human brains and

designing new computing hardware and software, intelligent computing may dramatically increase

computing efficiency and decrease the energy consumption of the computing process.

Intelligent computing promotes effective coordination and develops integration of human-machine-

thing by improving machine intelligence, sensing ability, and response to emergencies. Through

the comprehensive connection of humans, machines, and things, intelligent computing creates a

deeply integrated computing mode. The symbiotic integration, cooperation, and complementation

of human-machine-thing provide more comprehensive, thoughtful, and accurate intelligent services

for human beings.

The traditional cluster-centered computing architecture cannot provide timely services for the

edge terminal nodes and users. New distributed computing architectures such as end-to-end cloud

and wide-area collaboration are adopted to effectively integrate supercomputing, cloud computing,

edge computing, and terminal computing resources. The problem of centralizing computing is solved

through intelligent task decomposition to achieve efficient and ubiquitous computing services.

In a human-physical-information integrated computing environment, more malicious attack sur-

faces could be exploited, making the system more vulnerable. Meanwhile, the massive multi-

heterogeneous information also brings data security and privacy problems. A new secure and trusted

intelligent computing system is established to tackle these problems by constructing endogenous se-

cure methods and trusted computing mechanisms. It ensures the security and trust of the computing

process, identity, data, and results.

3 Computing by Intelligence

In this section, we describe the four intelligent abilities of computers and the mode of integrated

intelligence. For each intelligence, we present significant progress in typical research areas.

3.1 Data Intelligence

Improving the universality of computing is critical for intelligent computing. Problems in real-

world scenarios, such as analog, graph, etc., need various computations. Another critical point of

intelligent computing is how to improve the intellectual level of computing. Empirically, we all need

to learn from intelligent creatures in nature with no exception for computation, such as the three

classical intelligence methods: artificial neural network, fuzzy system, and evolutionary computing.

The theory of intelligent computing includes but is not limited to the above types of computing to

achieve a high level of ubiquity and intelligence.
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3.1.1 Analog Computing

The simulated calculation model can have a wide range of complexity, in which the slide rule and

nomogram are the simplest types. In contrast, the naval gun control calculation and large-scale

hybrid digital/analog calculation are more complex [33, 34]. Process control and protection relay

system use analog calculations to control and protect. The simulated calculation is of various types

according to different calculation methods and application fields [35–39].

Compared with common digital computing, analog computing has both advantages and dis-

advantages. It achieves real-time operation in both computation and analysis, which can operate

multiple values at the same time. It has a simple hardware design with no sensor requirement to con-

vert input/output to digital electronic form and less bandwidth consumption. Nevertheless, analog

computing has poor transportability. An analog computer can only solve a preset type of problem.

Since the calculation is affected by environmental factors, it is usually challenging to obtain the

exact solutions.

3.1.2 Graph Computing

Mathematically, graph theory is the study of the graph, which is the mathematical structure used to

model pairwise relationships between objects. The graph is essential to mathematical theories such

as algebra, geometry, group theory, and topology. Graph processing uses graphs as data models to

express and solve problems, and it can completely depict the relationship between things. Graph

computing architecture also shows excellent application value in mathematical and related fields

such as dynamic systems and complexity computing. In recent years, graph processing has focused

on the field of large-scale graph data and aimed to achieve data storage, management, and efficient

computing of large-scale graphs.

Traditional graph processing is based on graph theory. It investigates various questions, includ-

ing search, mining, statistics, analysis, transformation, and other issues based on the fundamental

properties of the graph structure. These questions often take the query, traversal, sorting, and set

operation of nodes or edges as basic operators to calculate the exact or optimal approximate solution

of the target result.

With the increase of graph data scale, the mainstream research direction combines graph process-

ing with big data-related technologies, such as distributed computing, parallel computing, stream

computing, incremental computing, etc. Some node-centric parallel graph processing engines based

on batch message processing have been designed to specifically handle parallel graph processing

tasks, such as Pregel [40], Giraph [41], Graphx [42], GraphScope [43], and DepGraph [44]. In addi-

tion to the data volume expansion, some studies expanded the graph data model. Attributes, labels,

probability, hierarchy, and other characteristics are introduced to address more complex applica-

tion requirements and modeling challenges. With the development of database technology, graph

databases have risen strongly with their comprehensive application scenarios and flexible model ex-

pression. They have become one of the four core members of the emerging NoSQL data family. The

expansion of the graph model is reflected in tasks such as storing and managing graph data. On the

other hand, the connotation expansion of the model brings an increment in algorithm complexity for
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Figure 6: Technology architecture of graph computing.
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the algorithm evolution of various graph processing. Furthermore, it makes the results of computing

problems more suitable for application in natural scenes.

In recent years, with the development of deep learning technology, graph data has been used as the

input of the neural network models, and various types of graph neural network models and calculation

methods have been derived. Graph neural networks, such as graph convolutional networks [45],

recurrent neural networks [46], graph attention networks [47], graph residual networks [48], evolve

from the technical framework of deep learning. They transplant from structural data to semi-

structural data retaining the characteristics of the structure and function of the model. At the

same time, the core mathematical model is improved for the graph data structure to achieve good

computational results in classification, prediction, anomaly detection, and other issues.

3.1.3 Artificial Neural Network

Since the 1980s, engineering techniques have been used to simulate the structure and function of the

human brain’s nervous system to construct artificial neural networks. The artificial neural network

imitates the connection of brain neurons through many nonlinear processors. It simulates the signal

transmission behavior between synapses with the input and output between computing nodes. W.

S. McCulloch of psychology and W. Pitts of mathematical logic developed the neural network and

mathematical model known as the MP model [49] in 1943. They suggested using the MP model

as the basis for rigorous mathematical description and network structure for neurons. Artificial

neural network research was founded on their discovery that a single neuron could carry out logical

operations. The BP algorithm was created by Rumelhart, Hinton, and Williams in 1986 [50]. The

back propagation of loss and the forward propagation of signals make up the BP algorithm. Because

the multi-layer feed-forward network is often trained by the back propagation algorithm, multi-layer

feed-forward networks are often referred to as BP networks.

Figure 7: Structure of a typical neuron and structure of an artificial neuron.

After decades of development, nearly 40 artificial neural network models have been proposed,

including back propagation networks, perceptron, self-organizing maps, Hopfield networks, Boltz-

mann machines, etc. In recent years, many classical models, such as CNNs [51], RNNs [52], and

LSTMs [53], have been widely used in various classification and prediction tasks in the fields of im-

age, voice, text, graph, and so on. The training of artificial neural network models depends heavily

on the amount of data. With the explosion of data volume and the deepening of model complexity,
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people began to separate the training and application of the model. Models are pre-trained based on

large offline datasets, saved, and then applied to the problems using the transfer learning technique

for quick solutions. BERT, proposed by Google AI Research Institute, and GPT-3, developed by

OpenAI, are the two most well-known pre-trained models [54, 55]. They have achieved great success

in natural language processing [56].

Artificial neural networks are key building blocks for deep learning (DL) systems, including

deep reinforcement learning (DRL) systems. DRL systems use multi-layer neural networks to solve

Markov decision problems (MDPs) [57]. Both single-agent and multi-agent DRL models are in-

creasingly being used to solve a variety of computing problems (e.g., decision/control and prediction

problems) intelligently, which would otherwise be infeasible to solve in a real-time manner.

3.1.4 Fuzzy Systems

Lotfi Zadeh initially introduced the notion of fuzzy logic in 1965 [58]. The fuzzy system is a technique

of computing based on fuzzy logic of “degrees of truth” rather than the typical “true or false” (1

or 0) Boolean logic on which the contemporary computer is built. The absolute values of 0 and 1

do not provide a good analogy for natural language, nor do they adequately describe most other

activities in life or the cosmos. Fuzzy logic might be regarded as the way thinking really operates,

with binary or Boolean logic being a subset.

The word “system” refers to a group of interdependent parts interacting and having a clear

structure [59]. Systems can be identified as a complex whole from the external environment. In-

puts and outputs are the channels through which a system interacts with its surroundings. Fuzzy

systems are information processing architectures built using fuzzy approaches when it is either im-

practical or difficult to use conventional set theory and binary logic [60]. Their primary feature is

the representation of symbolic information as fuzzy conditional (if-then) rules.

The four functional building blocks, i.e., the fuzzifier, fuzzy inference engine, knowledge base, and

defuzzifier, make up the conventional structure of a fuzzy system [60]. A fuzzy system may take both

crisp data and linguistic values as inputs. If you are working with crisp data, you should focus on

the fuzzification stage rather than the inference phase, when the corresponding fuzzy set is assigned

to the non-fuzzy input. The appropriate approximation reasoning approach is used to translate the

input values into the language values of the output variable. Fuzzy conditional rules are used to

reflect the expert’s knowledge. When the fuzzy system requires numerical output information, the

defuzzification methods are utilized to match the appropriate data set to the resulting fuzzy set.

Fuzzy systems have practical applications when there is a lack of comprehensive mathematical

description or when it is very costly or difficult to use a precise (non-fuzzy) model. A fuzzy system

is a great tool to process incomplete data, for example, for signal and image processing [61, 62],

system identification [63, 64], decision support [65, 66], and control processes [67, 68].

3.1.5 Evolutionary Computation

Evolutionary computation is a unique type of computing that takes its cues from the course of natural

evolution. It is not unexpected that some computer scientists have looked to natural evolution
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for inspiration since the numerous organisms that make up our planet have all been specifically

designed to thrive in their niches, which demonstrates the force of evolution in nature. A key

point in evolutionary computing is to compare this potent natural development with a specific

problem-solving approach called trial-and-error (also known as generate-and-test). The value of

potential solutions, or how effectively they address the issue, influences the likelihood that they

will be retained and utilized as building blocks for developing other potential solutions. Later,

descriptions of pertinent sections of genetics and evolutionary theory are provided.

In the 1940s, long before the invention of computers, there were already ideas of using Dar-

winian principles to automate problem-solving [69]. It was in 1948 that Turing coined the phrase

“genetic or evolutionary search”, and by 1962, Bremermann had conducted computer tests on “op-

timization by evolution and recombination”. Throughout the ’60s, three different implementations

of the core idea emerged. Holland named his approach genetic algorithms [70], while Fogel, Owens,

and Walsh presented evolutionary programming in the USA [71, 72]. Rechenberg and Schwefel in

Germany created evolution strategies for optimization at the same time [73]. These fields evolved

independently for roughly 15 years. Since the early 1990s, they have been considered as different

technology dialects later known as evolutionary computing [74]. Early in the 1990s, a fourth stream,

i.e., genetic programming, was promoted by Koza [75] following the main notions. According to

the current terminology, evolutionary computing (or evolutionary computation) refers to the entire

field, the algorithms involved are known as evolutionary algorithms, and evolutionary programming,

evolution strategies, genetic algorithms, and genetic programming are considered as subfields falling

under the umbrella of the corresponding algorithm variants.

3.2 Perceptual Intelligence

An intelligent system first starts intelligent perception before it starts to work. Thus perceptual

intelligence plays a vital role in all intelligent systems. Perceptual intelligence focuses on multi-

modal perception, data fusion, smart signal extraction, and processing. Typical examples include

smart city management, automatic diving system, smart defense system, and autonomous robots. A

most consistent enthusiasm for perceptual intelligence is human-like five-sense capabilities, including

vision, hearing, smelling, tasting, and tactile. In addition, intelligent sensing covers temperature,

pressure, humidity, height, speed, gravity, etc., whenever a significant effort in computing or data

training is required to advance its performance.
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Figure 8: A wide variety of sensor types used in the industry that need the connection to the IoT [76].

Significant advances have emerged in machine vision during the last several decades, empha-

sizing the creation of devices that can see and understand their surroundings independently. The

observation of industrial processes is no longer a challenge in manufacturing contexts due to the

constrained range of states and clearly defined circumstances [77]. However, the situation becomes

a significant challenge from industrial processes to free surroundings perception in the real world.

Because there are an unlimited number of situations and unexpected events that may occur at any

time, it is still a challenge to handle these scenarios by a fully autonomous robot. On the contrary,

even a toddler can effortlessly observe the world. Our brains possess the most effective circuits

and processing systems, which allow us to process sensory data from millions of sensory receptors.

Machine intelligence would undoubtedly undergo a revolution if these circuits and processes could

be understood and implemented technically. Applications include safety and security monitoring in

public and private structures as well as in the observation of the behavior and health of elderly or

physically or psychologically impaired individuals in nursing homes and hospitals [78]. Additionally,

it may enable seniors to remain in their homes for longer [79]. A model like this would also be highly

helpful for autonomous robots that must traverse their surroundings and control things in them, as

well as interactive environments that make users more comfortable by sensing their demands [80].
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With the complete use of pattern recognition and deep learning technologies, machines have

grown more perceptually intelligent than humans in recent years, making significant advances in

voice, visual, and touch recognition. Because of their increasing importance and many possible

applications, smart sensors have received a lot of attention. Ordinary sensors have become smart

because of the integration of computers and IoT in manufacturing, allowing them to do intricate

computations with the data gathered [81]. Smart sensors have expanded in capability, size, and flex-

ibility, transforming cumbersome machinery into high-tech intelligence. Smart sensors have evolved

into objects with detection and self-awareness capabilities because they are fitted with signal con-

ditioning, embedded algorithms, and digital interfaces [82]. These sensors are designed as IoT

components that transform live data into digital data that can be sent to a gateway [83]. Process

control and quality evaluation are only two of the many functions provided by these devices. Smart

sensor data may also be used to minimize manufacturing costs via process optimization and predic-

tive maintenance thanks to cloud-based analysis tools and AI. From supply management to global

resource coordination, sensor data may be used in several ways once transmitted online. Smart sen-

sors come in various shapes and size to meet the needs of diverse applications, as shown in Figure 8,

and new and better models are always being developed. One of the most prevalent sensor types is a

light sensor that measures the light intensity and color temperature. From large portfolio firms like

TE Connectivity to more specialist vendors like Aceinna, there is a sensor type for almost any sort

of process or environmental situation.

Smart sensors can also foresee, monitor, and immediately respond to remedy situations. The

primary tasks of intelligent sensors include raw data collection, sensitivity, filtering adjustments,

motion detection, analysis, and communication [84]. For instance, one use of smart sensors is

wireless sensor networks, whose nodes are coupled with one or more additional sensors and sensor

hubs to create some communication technology. Additionally, data from several sensors may be used

to draw inferences about a problem already present; for example, temperature and pressure sensor

data might be used to predict the beginning of a mechanical breakdown.

3.3 Cognitive Intelligence

Cognitive intelligence refers to machines having the capacity to logically understand and cognize

like humans, especially the ability to think, comprehend, summarize, and actively apply knowledge.

It describes the abilities and skills to process complex facts and situations in the real environment,

like interpretation and planning. Data recognition is the core function of perceptual intelligence,

which requires large-scale data collecting and feature extraction of images, videos, sounds, and

other types of data to complete structured processing. In contrast, cognitive intelligence requires

understanding the relationship between data elements, analyzing the logic within the structured

data, and responding based on the distilled knowledge. Cognitive intelligent computing primarily

studies the topics of natural language processing, causal inference, and knowledge reasoning of

machines. Through heuristic research on the neurobiological process and cognitive mechanism of

the human brain, a machine can improve its cognition level to assist, understand, make decisions,

gain insight, and discover.
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3.3.1 Natural Language Processing

Natural language processing converts human language into machine language so that machines can

understand and calculate. This research field has a very lengthy task link, from upstream information

extraction, data cleaning, data retrieval, and pre-training [54, 55], to downstream text classification,

question-answering system, and automatic abstract, etc. Natural language processing concentrate

on two major tasks: natural language understanding (NLU) and natural language generation (NLG).

NLU understands the meaning of a text to the extent that the word and structure must be grasped.

The specific steps include lexical analysis, syntactic analysis, and semantic analysis.

Lexical analysis plays a key role in the word segmentation module of Chinese natural language

processing [85]. The critical components of lexical analysis contain word segmentation, part-of-

speech tagging, named entity recognition, and word sense disambiguation. Part-of-speech and se-

mantic tagging are the primary functions of lexical analysis. Word disambiguation mainly addresses

the issue of word meaning across various contexts because a word may have numerous meanings

depending on contexts, and it is necessary to choose the most appropriate word meaning for the

task context at hand. The primary goal of named entity recognition is to locate and annotate words

with specific meanings in the context, such as names of people or places. The foundations of lexical

analysis are constituted by rules, statistics, and machine learning [86].

Determining the relationships between each component of a sentence (or its syntactic structure)

is the primary goal of syntactic analysis. Chomsky’s hierarchy of grammar is currently the prevalent

context-free syntax model. It obtains the syntactic tree of a sentence through a complete set of

analyses.

Research on NLU mostly focuses on semantic analysis. It covers every stage of natural language

understanding. Semantic analysis refers to three primary tasks in several levels of granularity: sense

disambiguating at the word level, semantic role labeling at the sentence level, and coreference digest-

ing at the discourse level. As auxiliary means of semantic analysis, pragmatic analysis and affective

analysis have also been extensively studied. The pragmatic analysis mainly studies the relationship

between text and environment, including speaker, receiver, and context. Sentiment analysis can

obtain user preferences, emotions, and the potential tendency of speech. Earlier studies contributed

by establishing an emotional dictionary [87, 88]. In recent years, methods based on machine learning

and deep learning have begun to analyze the emotional features of texts by constructing learning

models [89, 90].

NLG generates new text information from raw text, data, and images. The main applications are

machine translation [91], question and answer system [92], automatic abstract [93], and cross-modal

text generation [94]. The classic approach of NLG comes in three stages. First, identifying what

goals should be established and deciding what should be included in the text. Secondly, planning for

how to achieve the goal by evaluating the scenario and available communicative resources, such as

text structuring, sentence aggregation, lexicalization, and referring expression generation. Finally,

generating text following the plan. In recent years, end-to-end approaches have attracted more

attention with the advances in neural networks and increased complexity and specificity of tasks [95].

End-to-end methods construct models from input to output directly, iteratively enhance models
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based on the feedback of training task data and form a procedure of a full closed-loop calculation [96].

3.3.2 Causal Inference

Current machine learning relies heavily on associative models leading to the poor interpretability of

AI. It is difficult for machines to distinguish true or false causal associations in data. The key to

solving this problem is to use causal inference instead of inference by association so that machines

can use appropriate causal structures to model the inference world. Pearl uses three hierarchical

structures to categorize causal inference [97]. The first layer is the association, which involves data-

defined statistical correlations. The second level is intervention, which involves what is visible and

what will result from additional intervention or action. The third layer is counterfactual, which

is the reflection and retroactivity of past events. It answers the question, “what would have been

different if we had acted differently in the past”? The counterfactual layer is the most powerful level.

If a model can answer counterfactual questions, it can also answer questions about intervention and

observation.

Hume offered a literal exposition and initially suggested discussing causality using a counterfac-

tual framework [98]. Lewis gave a symbolic expression of the counterfactual framework based on

Hume’s research by combining the semantics of possible worlds with counter facts to characterize

causal dependence [99]. Verma et al. learned from actual data to predict counterfactual results [100].

Besserve et al. proposed a non-statistical framework. They revealed the modularization structure

of the network by counterfactual reasoning, which consists of the entangled internal variables [101].

Kaushik et al. designed a human-in-loop system for the counterfactual operation of documents.

They suggested eliminating misleading associations using feedback in the loop [102].

The potential outcomes framework is one of the most important theoretical models in causal in-

ference. The model was proposed by Rubin, a well-known statistician from Harvard University [103],

and is also called the Rubin causal model. The core of the potential outcomes model is to compare

the effects on the same subject with or without intervention. Whether a result appears or not for a

target mainly depends on the assignment mechanism. The fact that we can only see one outcome

does not mean the other does not exist. Therefore, it is more reasonable to describe events regarding

potential outcomes. Except for the potential outcome models, the structural causal model is one

of the most widely used models in causal inference. The structural causal model can describe the

causality of multiple variables. Pearl developed a formal expression method of causality based on

external intervention and created a way to explore the causality and data generation mechanism

from data [97]. Causal Network mines causal patterns from a large text corpus by gathering causal

terms to determine causality [104]. Data-driven approaches, such as concept network, which manu-

ally collects information to encode causal events as common sense, derive causality from text [105,

106]. Causal reasoning and natural language processing can be combined to extract causal rela-

tionships between terms or phrases from large textual corpora, capturing and comprehending the

causal relationships between events and actions. Luo et al. used a data-driven approach to solve

the problem of commonsense causal reasoning between short texts. They proposed a framework

to automatically collect causal relationships from an extensive network corpus, which can correctly
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model the strength of causal relationships between items [104]. Dasgupta et al. trained a recursive

network with model-free reinforcement learning to overcome cause and effect problems [107]. Recent

advances in causal representation learning retrieve the real-world model without prior knowledge of

manual partitioning [108].

3.3.3 Knowledge Reasoning

Knowledge reasoning has always been a crucial component of cognitive intelligence. Traditional

reasoning, which includes deductive and inductive reasoning, is derived from classical mathematical

theory. Deductive reasoning starts from general premises and leads to specific statements or individ-

ual conclusions [109]. Inductive reasoning is from the individual to the general. It derives generality

principles and rules from concrete examples [110].

Figure 9: Overview of knowledge reasoning.

Knowledge reasoning builds the knowledge base using the graph data model or topology to in-

tegrate data, as shown in Figure 9. It stores the semantic entities with free form (objects, events,

situations, or abstract concepts) and their relation description. The research contains seven as-

pects: knowledge acquisition, representation, storage, modeling, integration, understanding, and

management.

As an effective way to express knowledge, a knowledge graph connects entities through rich se-

26



mantic relations and constructs a systematic and semi-structured knowledge base. Knowledge graphs

have been widely used in vertical application fields such as medical care, e-commerce, finance, pub-

lic security, transportation, and intelligent question-answering. Typical knowledge graphs include

YAGO [111], DBpedia [112], Freebase [113], Wikidata [114], etc. These knowledge graphs extract,

organize and manage knowledge from many data resources and then store and represent knowledge

as triples. They help understand the semantics of search and provide accurate search answers.

Knowledge reasoning based on knowledge graphs mainly focuses on relations, that is, inferring

unknown facts or relations based on existing ones in the graph or identifying and correcting errors

in existing entities, relations, and graph structures based on prior knowledge and experience. It

includes reasoning based on rules, distributed representation, graphs, and neural networks.

Reasoning based on logical rules mainly uses first-order predicate logic, description logic, and

probability logic to deduce new entity relations. Typical methods include ProPPR [115], Tensor-

Log [116], SRL [117], among others.

Graph-structure-based reasoning represented by path ranking algorithm [118] combines semi-

structured topological features of knowledge graphs with statistical criteria. This kind of method

considers the path relation between entities, introduces statistical rules into the algorithm, and

produces a strong inference effect.

Neural-network-based reasoning uses deep learning models to infer knowledge. Neural tensor

network (NTN) [119] constructs word vector average representation of entities. R-GCN [120] cap-

tures the information of adjacent entities by convolution networks. IRN uses RNN as the control

unit to simulate the process of multi-step reasoning and introduces an attention mechanism. Deep-

Path [121] initially introduces the reinforcement learning framework into the knowledge reasoning

model.

Reasoning based on distributed representation learning learns fact tuples in the knowledge graph

by representation model and obtains low dimensional vector representation of the knowledge graph.

The inferential prediction is then converted into a simple vector operation based on the representation

model. Its core is to map the knowledge graph to continuous vector space and deduce implicitly

through calculating the distributed representation of each element. Most representation learning

approaches, including TransE [122] and RESCAL [123], build various learning models based on

different spatial assumptions and use a single-step relationship, or a single triad, as their input and

learning objective.

3.4 Autonomous Intelligence

Two critical ingredients drive machines from passive output to active creation: a strongly gener-

alized model and continuous interaction with the external environment. The development path of

autonomous intelligence starts from learning a single task to learning by drawing inferences from one

example, gradually reaches active learning by dynamically interacting with the environment, and

finally ends at the advanced intelligent goal of self-evolution. This subsection focuses on developing

technical fields such as transfer learning, meta-learning, and autonomous learning to look at feasible

paths for generating autonomous intelligence.
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3.4.1 Transfer Learning

The basic idea of transfer learning is to use the strategy of the solved problem to solve the new

problem, that is, transfer the existing experience to the past. Currently, most neural network

methods are used to train the model as a branch of machine learning. The parameters of the trained

model are usually used as a set of initial values to reduce the complexity of model training. Transfer

learning focuses on training the base model in the sample space by optimizing a single overall task

as a transfer source. The appropriate model is directly transferred to the target domain, and then

the target model is fine-tuned using a small number of labeled samples. The original intention of

transfer learning is to save the time of manually labeling so that the model can transfer from the

existing labeled data (source domain data) to the unlabeled data (target domain data). It can make

the most use of the obtained data and reduce the sample size requirements for machine learning.

In transfer learning, data are divided into the source and target data. The source data refers

to other data not directly related to the unsolved task, usually with a large data set. The target

data is directly related to the task, which is of a small amount. Transfer learning aims to establish

a mapping relationship from the source domain to the target domain with some additional data or

existing models. It applies the general knowledge to new tasks to fully use the source data to help

the model improve on the target data. Transfer learning can also combine with other models, such

as federated learning and reinforcement learning [124, 125].

Transfer learning can be classified into four categories according to the learning style. Instance-

based transfer learning selects instances from the source domain to help train the target domain [126].

Different weights are assigned to the instances. The more similar the instances are, the higher the

weights are. Instances with higher weights have higher priority. Feature-based transfer learning

maps the target and source domains into the same space, minimizing the distance between the

distributions of the two domains [127]. The symmetric-space methods transform the source and

the target domain feature space into a common subspace. The asymmetric-space methods directly

convert the source domain feature space to the target domain feature space (or, on the contrary) to

achieve the alignment of the two domains. This method can solve the problem of inconsistent data

distribution between the source and target domain to solve the data-lacking problem completely.

Model-based transfer learning reuses the model trained on the source domain and adjusts the model

parameters via fine-tuning or fixed feature extractor [128]. Relationship-based transfer learning

explores the relationship of similar scenes and uses the correlation implicit in the relationship between

the source and the target domain [129].

3.4.2 Meta-Learning

Meta-learning aims to help machine learning to learn [130, 131] so that the machine can quickly

learn various complex new tasks in the real environment. Traditional machine learning methods

manually adjust the parameters in advance and directly train the deep model under specific tasks.

While meta-learning will make the machine learn all the parameter variables that need to be set

and defined by humans in advance, including how to pre-process data, choose network structure, set

hyperparameters, define a loss function, and so on [132]. The experience gained from the learning
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history gives the machine meta-knowledge. As a result, it can quickly handle new tasks with only a

few data samples. Meta-learning is mainly used in few-shot learning, zero-shot learning, unsupervised

learning, and other fields with very little available data. Meta-learning is proposed to solve the

traditional neural network models’ problems of insufficient generalization performance in few-sample

cases and poor adaptability to new tasks. The idea of meta-learning makes the machine-learning

process more autonomous by reducing the model-design cost for various similar tasks.

Since the goal of meta-learning is to obtain the ability to learn new tasks by the meta-knowledge

from training data quickly, meta-learning considers the entire task set as training examples. Meta-

learning gets the initial network parameters with strong generalization on the training and the

validation data set. It performs a few gradient descent operations on the test data to learn new

tasks. Then, it tests the effect of the model after learning. Meta-learning obtains a good initial value

of the model through preliminary training and then updates the weight of the specific task with a

small amount of training data based on the initial value to achieve good results. Meta-learning can

also be regarded as finding a set of high-sensitivity parameters. Based on the parameters, only a

few iterations are needed to achieve desirable results on a new task.

The most influential meta-learning model to date is Model-Agnostic Meta-Learning (MAML) [133].

MAML is not a deep learning model but more like a training technique. It targets training a set of

fine-tuned parameters for a group of tasks rather than a model for a specific task. Thus, the inputs

to feed in MAML are tasks, not data. MAML uses a set of adaptive weights, which can be adapted

well to new tasks after a few gradient descents. Then, finding this weight is the training objective.

MAML iteratively trains a batch of tasks. In each iteration, it first trains each task in the batch,

then returns to the original status, makes a comprehensive judgment on the loss of these tasks, and

then selects a direction suitable for all tasks in the batch.

3.4.3 Autonomous Learning

Meta-learning can handle the general solution model of a specific type of task by learning from

similar task sets and can transfer learning between tasks. However, this learning ability can only

transfer between homogeneous tasks, where even the support and query set sizes of tasks are strictly

aligned. Autonomous learning aims to transform from passive data acceptance and training to active

learning and improve learning efficiency, which is the direction considered by Turing Award winner

Yann LeCun [134]. In addition to higher-level transfer learning capabilities, models of the external

open world are incorporated into the design of autonomous intelligent architectures.

Humans and other animals have always been able to learn a great deal of background knowledge

about how everything works in an unsupervised manner through observation and a small amount

of interaction. This knowledge is what we call common sense, which is the basis of the model

of the world. LeCun designed a learning framework that allows machines to learn a “model of

the world” in a self-supervised manner (i.e., without labeled data). He used that model to make

predictions, reason, and act. In this model, he extracts valuable ideas from various disciplines and

combines those ideas to propose an autonomous intelligence framework consisting of six modules

(configuration module, perception module, world model module, cost module, action module, and
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short-term memory module). Each module can easily calculate objective functions, estimate the

corresponding gradient, and propagate the gradient information to the upstream modules.

Most of the modules in this cognitive framework of autonomous intelligence have an analogy to

the animal brain. The perception module corresponds to the cortex processing visual, auditory, and

other sensory pathways. The world model corresponds to some partial high-level processing units

of the prefrontal cortex. The intrinsic cost module corresponds to the amygdala. The trainable

critic cost module, however, corresponds to the part of the prefrontal cortex responsible for reward

prediction. The short-term memory module can correspond to the hippocampus. At the same

time, the configurator corresponds to the central control and attention regulation mechanism in

the prefrontal cortex. The actor module corresponds to the premotor cortex. Through this highly

brain-like design, not only does the transfer of learning ability across tasks look promising, but it also

introduces common sense and emotion into the framework in a modular way, allowing the machine

to take a big step towards the “conscious” reasoning and planning.

3.5 Man-machine Integrated Intelligence

Despite significant progress in the four levels of intelligence, more is needed to get critical insights

from extremely complicated scenarios only by calculation/statistical models. In these scenarios, hu-

mans should continue to play an indispensable role in problem-solving and decision-making, explore

the elements involved in human cognitive processing, and combine them with machine intelligence.

The following will focus on human-computer interaction, human-machine integration, and brain-

computer interface.

3.5.1 Human–Computer Interaction

Computers have appeared in various forms in daily life and industrial operations. Various meth-

ods and products have been designed to improve the usability of computers. The development of

human-computer interaction technology further releases the potential of computers and improves

users’ work efficiency. Human-computer interaction has gone through the early stages of humans

adapting to computers via manual work, command language, graphical user interface (GUI), net-

work user interface, and so on. GUI is simple and easy to learn by reducing typing operations.

Ordinary users who need help understanding the computer can also skillfully use it. It realizes the

actual standardization and brings unprecedented development to the information industry due to

the expansion of the user population.

With the universal development of the network and the development of wireless communication

technology, the human-computer interaction field is facing enormous challenges and opportunities.

The users require a more convenient interaction pattern in the multimedia terminal. At the same

time, the operation interface has innovations in aesthetics and forms. It has reached the multi-modal

and imprecise interaction stage and is constantly developing in the direction of human-centered nat-

ural interaction. In this stage, human-computer interaction uses multiple communication channels.

Modality covers a variety of communication methods for users to express intentions, perform actions,

or perceive feedback information. Computer user interfaces that take this approach are called multi-

30



modal user interfaces (MMI). MMI uses a variety of human sensory channels and action channels

(such as speech, handwriting, posture, sight, expression, touch, smell, taste, and other inputs) to

interact with the computer environment in a parallel and imprecise manner. It frees people from

the shackles of traditional interaction methods and enables people to enter a period of natural and

harmonious human-computer interaction [135, 136].

3.5.2 Human-Machine Integration

The theory of human-machine fusion intelligence focuses on a new form of intelligence produced

through interaction between humans, machines, and environments. It is a brand-new generation of

intelligent scientific systems that combine physical and biological characteristics. Human-machine

fusion intelligence, which effectively mixes objective data collected by hardware sensors and subjec-

tive information perceived by human senses, integrates the profound cognitive way of people and

the superior computing power of computers [137, 138]. It utilizes human prior domain knowledge

as important learning clues to construct new understanding approaches and enhances computer-

based decision-making. With the new methodology, computers can manage complex problems in

professional fields that neither humans nor machines are capable to handle alone.

Human-machine integration, with humans and machines directing the integrated learning pro-

cess until consensus, is conducted interactively and collaboratively rather than statically. It requires

intuitive communication between the two components via an interactive platform. Machine intel-

ligence can be interpreted and sent directly to humans. Experts can easily submit feedback in a

natural form. Furthermore, the fusion should automatically adapt to a dynamic environment so

that integrated intelligence can continuously evolve with updates in human knowledge. Thus, self-

evolving integrated intelligence is critical for handling dynamic scenarios so that the tasks and data

can change rapidly [139].

To effectively bring the computer into the real-time thinking process, humans and machines must

be more closely coupled. It is not easy to achieve high real-time performance in integrated com-

puters traditionally. An advanced mode to combine human and machine abilities is human-machine

symbiosis. A human-machine symbiosis system should better understand the human intention in

terms of better interaction and cooperation [140]. The hardware, such as sensors, bracelets, wearable

devices, and other computers, is formalized in invisibility like air. For example, wearable devices

can be attached to clothes and shoes to realize human-machine symbiosis [140]. In software, the

development of meta-universe technology will provide people with a fully immersive experience of

human-machine symbiosis [141, 142]. Computer technology will continue to serve us in the future,

and interactive interfaces and tasks will become more natural and intelligent. The cloud-side-end

distributed interaction and collaboration system will be built with virtual and real integration. It

will obtain human functions in the loop of information perception, modeling, simulation, deduction,

prediction, decision-making, presentation, interaction, and control. It will provide the continuous

learning ability of human-machine collaboration. It will provide platform support capabilities for

significant applications such as remote exploration and operation in uncharted environments, collab-

orative command and operation of complex systems, human-machine co-driving environment, and
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research and governance of social problems integrating virtual and reality.

3.5.3 Brain-Computer Interface

Brain-computer interface (BCI) is an interactive system established by analyzing the electroen-

cephalogram (EEG) signals of humans (or animals). It breaks through the limitation of traditional

neural reflex arc structure and enables the brain nerve signal to communicate directly with the

computer by wire or wireless to control and communicate directly with external electronic applica-

tion equipment. According to the signal acquisition method, BCI is divided into three categories:

non-invasive, semi-invasive, and invasive. Non-invasive BCIs utilize signal sources, including surface

EEG, magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), functional

near-infrared spectroscopy (fNIRS), etc. Semi-invasive BCIs use electrocorticography (ECoG). Inva-

sive BCIs utilize intracortical EEG. Due to the simple acquisition of equipment, convenient operation,

safety, and easy clinical use, EEG technology is greatly valued. The apparent advantage of EEG

signals is that they can achieve high temporal resolution at the millisecond level, which is suitable

for real-time monitoring and online transmission [143].

The single-modal brain-computer interface faces some challenges, including poor robustness of

long-term operation, classification accuracy affected by the number of commands, human-machine

adaptability, and system stability to be improved. For example, the number of tasks that a single-

modality BCI system can achieve is limited, which restricts the completion of complex tasks by

external output devices. With the increase in the number of function instructions, the classification

accuracy decreases, the system stability is limited, and it is difficult to obtain good results in practi-

cal applications. Given the above problems of single modality brain-computer interface, the hybrid

brain-computer interface (HBCI) concept has been proposed in recent years. HBCI is also known as

a multi-modal brain-computer interface (MBCI). It refers to a system combining a unimodal brain-

computer interface with another system (BCI system or non-BCI system) [144, 145]. HBCI can

satisfy the demand for multi-instruction and real-time in the multi-degree-of-freedom control system

to break through the problem of limited instruction and low accuracy of multiple classification and

recognition in single-mode BCIs. It extends motion commands quantity, increases the applicability

and output characteristics of human-computer interaction, and perfects the human-computer inter-

action system function. It has a broad application prospect in aerial teleoperation and equipment

control [146, 147].

The HBCI system has two essential features: information fusion and control strategy. Information

fusion includes data level fusion, feature level fusion, and decision level fusion according to the level

of information representation. Data level fusion directly fuses the signal data obtained by different

sensors. Feature level fusion combines the feature vector extracted from the data obtained by each

sensor. Decision level fusion outputs the decision results of the overall system according to voting or

weight calculation of classified decisions, which are processed by each sensor separately. According to

the control strategies, HBCI system processes input signals by adopting the simultaneous mode [148,

149] or sequential mode [150, 151].

A collaborative BCI (CBCI), which can be applied to group collaboration to improve system
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performance by increasing the user dimension, is proposed [152]. The advantages of CBCI are not

only to effectively integrate group EEG features, improve decoding accuracy and robustness. It

can also improve the decision-making confidence of human-computer hybrid intelligence in cutting-

edge tasks. The CBCI usually has precise application scenarios. By designing efficient group brain

information fusion algorithms, it can achieve more accurate and faster target control than single brain

information [153]. The application value of CBCI is to enhance the information processing ability

of multi-user brain-computer collaboration systems for specific tasks. It includes strengthening the

decision-making ability of the system based on human visual information and the control ability of

the system based on human kinesthesia information [154, 155].

The structure of CBCI is divided into two types: centralized and distributed. A centralized CBCI

structure is to perform multi-person EEG joint feature extraction for one or more features [156].

The design idea of distributed CBCI structure is group decision-making. The group performs the

same task at the same time. Different decision weights are assigned to each user according to their

task performance to avoid individual EEG differences. The setting of weights is the critical issue of

decision fusion [157]. Through the design of joint tasks, the exploration of brain activation character-

istics, and the analysis of the causal relationship between multi-person cooperation, the traditional

interaction research between a single person and environment/task is gradually transformed into

group interaction research between multiple people and environment/task. It is a sign that BCI

technology breaks through the limitations of engineering application. The group-brain collaborative

joint operation in CBCI is more in line with the future human-computer interaction socialization

and will be unprecedentedly developed and widely used.

4 Computing for Intelligence

AI discoveries are coming out of the woodwork on a regular basis, owing largely to ever-increasing

computing power [158]. Compared to the groundbreaking 2012 model that initially popularized deep

learning, the biggest model revealed in 2020 required six million times as much computing power.

After highlighting this tendency and attempting to quantify its pace of rising in 2018, OpenAI

researchers have concluded that this rapid rising cannot be maintained forever. Indeed, the looming

slowdown may already be underway.

Historically, the rapid pace of change in AI has been fueled by new ideas or revolutionary theories.

Often, the newest state-of-the-art models rely only on bigger neural networks and more powerful

processing systems than those previously used in efforts to achieve the same goal. A study to track

the growth of the biggest models based on computing power was made by OpenAI researchers in

2018 [159]. Using the amount of computing necessary to train some of the most prominent AI models

during the history of AI research, they discovered two trends with the rapid growth of computing

resources.

Their study shows that the amount of computing power required to develop a breakthrough

model has grown at about the same pace as Moore’s law, the long-standing observation that the

computational capacity of a single microchip has tended to double every two years, before 2012.

Though deep learning techniques have been the driving force behind most of the AI developments
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over the previous decade, AlexNet, an image recognition system, attracted new interest in them

in 2012 when it was released. The introduction of AlexNet spurred a dramatic increase in the

computational needs of top models, which doubled every 3.4 months between 2012 and 2018, as seen

in Figure 10.

Research into picture categorization provided the first evidence that growing computational

power consistently improved performance in the earliest years of deep learning. However, when image

recognition algorithms started to outperform humans at certain tasks by increasing the computing

resources [160], attention switched to other areas. Reinforcement learning techniques were used in

huge AI models to play games like Atari or Go in the middle of the 2010s [161]. Later, a new

architecture called the transformer emerged, refocusing emphasis on language tasks [55]. OpenAI’s

GPT-3 [162], a text generator, has become one of the most popular AI models in recent years.

Figure 10: Growth in computing power demands over the past decade substantially outpaces macro
trends [163].

Despite advances in algorithms and architectures that allowed for more learning to be accom-

plished with fewer computations, the processing needs remained high even after these advancements.

AlexNet through GPT-3 requires the same 3.4-month doubling period in computing requirements.

Computing power is therefore becoming a bottleneck for intelligent computing. At the same time,

the energy efficiency of the AI/ML platforms will become increasingly important to reduce the cost

of computation [164].

Distributed machine learning (DML) approaches are being developed to make the computations
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scalable by reducing the computational load on a single server [165]. One category of DML, which

is referred to as federated learning (FL), is particularly promising for distributed learning while

preserving data privacy at the servers [166]. It also avoids the overhead of transmitting a large

volume of data from the distributed locations to a central server. After all, different DML paradigms

will be vital in future intelligent computing systems.

4.1 Large Computing Systems

When Moore’s law loses efficacy, super large computing power primarily depends on parallelly stack-

ing up massive computing, memory, and storage resources. For example, the term “high-performance

computing” is used to describe the practice of rapidly networking a large number of computers into

a single “cluster” to do intensive computations. Thanks to cloud computing, organizations now have

the option to increase the capacity of their high-performance computing programs.

4.1.1 High-Performance Computing

High-performance computing (HPC) allows users to handle massive volumes of data faster than

a traditional computer, allowing for greater insight and competitive advantage. Over the next

decade, scientists will see a 10-100 times increase in sensitivity and resolution from their instruments,

necessitating a comparable scale-up in data storage and processing capacity. The data derived by

these upgraded instruments will push Moore’s law to its limits, posing a threat to conventional

operating models predicated primarily on HPC in data centers [167, 168].

Conventional HPC architectures were developed for simulation-based methods like computational

fluid dynamics. On the contrary, applications were developed to use the underlying technology

accessible to programmers. Modern HPC systems include a wide variety of hardware components

(e.g., processing, memory, communication, and storage). A measure of this heterogeneity can be seen

in the diverse characteristics of applications integrated with techniques such as machine learning.

The convergence of HPC and AI has led to the development of novel approaches to old issues and

the formulation of new applications.

The AI platform, which increases the effectiveness of scientific discoveries through AI, provides an

integrated workspace for development and computing. Researchers can avoid laborious environment

settings and computer resource management thanks to the AI platform [169]. Although researchers

would want to submit AI workloads to HPC clusters directly, doing so is impractical due to the need

for extensive administration and scheduling procedures. To encapsulate heterogeneous infrastructure

and create a consistent setting for researchers, HPC-based AI platforms are becoming more popular.

In the future, researchers will increasingly use interdisciplinary approaches that use a variety of

resources (including data, HPC, and the physical world) to address a wide range of problems [170–

172].

Recently, a growing number of technology firms have looked at platforms that use comparable

AI technologies. Numerous AI platforms have been established for various study disciplines because

of the development of architecture and the constant expansion of processing power [173].
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• IDrug [174] by Tencent offers a drug development platform that integrates the strengths of

the latest algorithms, databases as well as hardware. The operating time for computer-aided

drug search iteration is significantly reduced by utilizing powerful computing resources (e.g.,

NVIDIA GPU). IDrug facilitates creating and aggregating fresh data while integrating several

current databases. IDrug offers services related to preclinical drug development, covering

protein structure prediction, visualization, synthesis routing, and molecular design.

• EasyDL [175] features a thresholdless deep learning platform from Baidu Brain that utilizes

P4 and P40 GPUs from NVIDIA’s Tesla series for the majority of machine learning work-

loads. For fundamental tasks, the PaddlePaddle framework and the AI workflow engine are

combined [176]. Typically, business researchers with training in AI development should use

the EasyDL.

• Amazon AI [177] (AWS) leverages Amazon Web Services via the cloud. The major character-

istics of Amazon AI are flexibility, configurable, and simplicity of installation. AWS supplies

a full range of resources, including a variety of popular Python tools and libraries, besides

security features.

• VenusAI [173] is a supercomputer-based method that extends the virtualization and container-

ization of primary hardware. VenusAI provides a technology mechanism for aggregating and

allocating diverse resources. VenusAI also has a uniform interface for resources at the layer of

application services.

The abovementioned platforms range from commercial cloud deployments to industry-specific

platforms requiring complex integration with scientific investigations. This necessitates the creation

of an AI platform with powerful processing capabilities for scientific research.

4.1.2 Edge, Fog, and Cloud Computing

Cloud computing has existed as a well-established paradigm since 2006 [178]. It allows application

deployment and scalability by abstracting underlying computation, storage, and network infrastruc-

ture. In a cloud data center, numerous homogeneous, highly-capable computers are linked together

by a highly-reliable, redundant network [179].

The IoT era has been shaped by the widespread addition of computing capability thanks to

recent advancements in processors, memory, and communications technology [180]. Smartwatches,

smart city power grids, and smart building devices that monitor physiological data are all examples

of this emerging field. In light of advances in mobile computing and the widespread desire for these

devices to function together, a circumstance has emerged in which many different types of devices

are all involved in providing the same service or program (e.g., a health monitoring app). These new

computational needs are typified by the requirement of a local computation paradigm, which is not

met adequately by cloud computing owing to its aforementioned features [181].

Fog Computing is a kind of distributed cloud computing in which resources such as data, com-

puting, storage, and applications are located not in a centralized data center but rather in other

nodes across the cloud and its underlying data sources. It’s a method for controlling many dispersed
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networks, some of which may be virtualized, all of which provide data processing and transmission

facilities between sensors and cloud storage facilities [182].

Edge computing enables remote devices to process data locally, at the network’s “edge” on their

own, or with the help of a nearby server. Moreover, only the most crucial data is transported to the

central data center for processing, drastically reducing latency [183]. In an edge computing scenario,

terminal devices may communicate with a nearby base station to offload processing-intensive jobs.

After completing a job, the edge server sends the results to the terminal device. While the end

result of this job handling is comparable with those of cloud computing, edge servers rather than

centralized cloud servers are responsible for delivering the required services to terminal devices. By

moving distributed services closer to the physical locations of events, edge computing can potentially

significantly decrease service latency for end-user devices.

Figure 11 illustrates the representation of cloud, fog, and edge computing. In certain cases, the

terms “edge” and “fog” are used synonymously [184]. Contrary to popular belief, fog computing

does not only rely on edge computing. Conversely, fog computing might be used via edge computing.

In addition, the cloud is included in the fog when it is not in the edge. Accordingly, the fog must

exist at a position intermediate somewhere between the edge devices and the cloud. It acts as an

intermediary between the network and the edge devices, supporting local computing for analysis.
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Figure 11: Representation of cloud, fog, and edge computing [185].

In most cases, edge servers can’t compete with the power and flexibility of cloud servers when it

comes to computation. As the number of endpoints continues to rise, the demand for edge servers

might become too much to handle. And since edge computing is a distributed computing paradigm,

an edge server can only utilize the information locally to the node where it is located instead of

the entire data set. According to these results, edge computing is not optimal for global decision-

making. However, due to its centralized nature, cloud computing has the potential to provide not

just substantial computing capabilities but also a service for international decision-making. Based

on these findings, researchers have proposed the concept of edge-cloud computing, which brings

together the advantages of both edge and cloud computing [183]. However, note that in an edge

computing system, multiple servers can cooperate with each other securely (e.g., by utilizing a

Blockchain platform) to serve the terminal devices and thereby improve the utilization of the edge

servers [186, 187]. However, the coordination among the servers will involve some overhead.

There are several advantages to using a hierarchical and collaborative edge-fog-cloud architecture,

such as the ability to spread intelligence and computing to find an optimum solution within the

bounds of the given restrictions (such as the tradeoff between delay and energy) [188]. Obtaining a

sustainable integration of edge, fog, and cloud computing necessitates overcoming several problems
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with design, implementation, deployment, and assessment because of the hierarchical, cross-layer,

and dispersed structure of this paradigm.

4.2 Emerging Computing Architectures

The goals of architectural innovation to boost digital computing include more efficient energy man-

agement, reduced power consumption, cheaper total chip cost, and quicker detection and correction

of errors. AI accelerators may drastically cut down on training and execution time when it comes

to certain AI operations that can’t be performed on a CPU. In-memory computing is an extremely

favorable choice because it facilitates memory cells to conduct primitive logic operations so they

can compute without the necessity to interact with processors, which is a major contributor to the

widening speed gap between memory and processor.

4.2.1 Accelerators

In the near term, architectural specialization using a variety of accelerators will be the best way

to keep computing power growing. Because a transistor prototype built in the laboratory typically

takes around ten years to be integrated into a general manufacturing process. However, no viable

alternatives have been exhibited so far. Consequently, it is almost a decade past the deadline to find

a practical post-CMOS solution to this issue. Architectural specialization is the only viable option

for hardware in the next decade without a viable alternative. Hardware specialization was hard to

keep up with in an evolving universal computing environment. As a result of long lead times and

expensive development, specialization was not an appropriate solution. While the slowing of Moore’s

law, as argued by Thompson and Spanuth [189], renders architecture specialization a practical and

affordable substitute for full universal computing, it will have far-reaching consequences for algorithm

design and programming environments [190].
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Figure 12: Peak performance vs. power scatter plot of publicly announced AI accelerators and
processors [191].

As shown in Figure 12. Peak power (x-axis) and peak giga-operations per second (y-axis) are

shown on a logarithmic scale. Take heed of the caption on the right, which explains the numerous

characteristics used to categorize computation accuracy, form factors, and inference/training. The

geometry used to indicate the precision of the calculation may take many different forms, including

analog, int1, int32, fp16, and fp64. It’s easier to see what volume of computing power is being

crammed into a computing element when the form factor is represented with different colors. This

study only includes setups with a single motherboard and one physical memory slot. Finally, solid

geometric figures represent the performance of accelerators built for both training and inference,

whereas hollow geometric objects represent the performance of inference-only accelerators.

Some of the newest and finest chips from companies like Alibaba and Groq, as well as recent of-

ferings from NVIDIA and Intel, have peak power consumption far beyond 100W and were developed

with inference in mind. The trend over the last several years has changed with this. Both acceler-

ators are designed for driverless cars and data centers, indicating that the power budget for these

technologies has increased to more than 100W. Previously, other numerical precisions were the norm

for integrated devices, autonomous vehicles, and data centers; however, int8 has since supplanted

them. Several accelerators support not just int8 for inference but also fp16 and/or bf16. Finally,

the ellipse representing data center systems reveals rising rivalry for high-end training nodes. Nodes

from NVIDIA and Cerebras are among the most performing, and there are also notable contributions

from Graphcore and Groq. Though Google TPUs and SambaNova are also competitors, they have

only reported multi-node benchmark results rather than the peak capability of their systems on a

single node.

Accelerators are, therefore, the most effective tools to ensure constant performance gains expected
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by all scientific computing users; however, Accelerators should be driven by a clearly defined use

case. As a result, there is a special need for the fields of study to emphasize certain features of

data science for purposes of analysis and simulation. Some of the biggest names in the IT sector

have been discussing how next-gen HPC systems are becoming much more diverse. As a result of

these long-term improvements in hardware design, it won’t be easy to maintain the efficacy and

performance increase of HPC systems in the future.

4.2.2 In-Memory Computing

It’s clear that the way computers are used is rapidly evolving. According to von Neumann’s model

of computation, a computer retrieves the data and code it needs to carry out its instructions from

a central repository called memory. Nevertheless, the performance gap between the memory and

processor is widening despite improvements in memory devices. Breakthroughs like deep learning

and IoT have a particularly severe case of this issue. Since handling such massive datasets exceeds

the capabilities of the von Neumann architecture, such applications provide significant difficulty.

When memory cells are given the ability to execute elementary logic operations, computing-in-

memory (CIM) becomes a viable option since it can compute independently of a central processor

unit [192–195]. Several alternative computer architectures based on CIM that break from the von

Neumann paradigm have been suggested. Such designs often use cutting-edge technology and a

thoughtful mix of tried-and-true and novel techniques to boost computing performance. Improving

the performance of such systems demands considerable synthesis, which provides significant obstacles

to application translation. Similarly crucial is the issue of verifying such CIM frameworks.

An appropriate CIM design for the requirements of future computing demands requires a care-

ful balancing of technological and architectural options. One such modern tech that has already

impacted the computer industry is the memristor. Scientists are investigating implementations of

memristors for many reasons, including their low-temperature manufacturing technique, non-volatile

resistive switching, and compatibility with CMOS. Because of its status as a relatively new tech-

nology, memristors have several limitations, such as geographical and temporal variations in device

performance and an absence of reliable simulations.

Static random access memory (SRAM) [196, 197] or nonvolatile memory [198, 199] may both

be used to implement CIM, namely SRAM-CIM or nvCIM [200]. Static random access memory

(SRAM) may be used to construct CIM. SRAM-CIM or non-volatile memory (nvCIM). nvCIM

allows storing weight data even while the system is inactive, so it is unnecessary to retrieve data

from a processor upon powering it up. Because of its low durability and high write energy, nvCIM

can only be used on systems with adequate memory to retain all data required for the specific

application. In contrast, SRAM-CIM is well suited for low to medium-capacity systems. It can be

configured to function with various neural networks thanks to its quicker write rates, cheaper write

energy, and significantly better (nearly infinite) endurance. The latest logic technologies may also

be used with SRAM-CIM, reducing latency and improving power efficiency.
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Figure 13: Three conceptual approaches to computing: (a) conventional digital computing, (b)
near-memory-array computing (NMAC), and (c) in-memory-array computing (IMAC) [200].

According to [200], in terms of computational structure. Memory macro and digital processing

elements are set up as two distinct blocks in the traditional von Neumann design [201–203]. On

the other hand, CIM macros do both information exchange and computation throughout the single

memory window. As shown in Figure 13, CIM is classified into either near-memory array computing

(NMAC) and in-memory array computing (IMAC).

• NMAC: Data is stored using the NMAC structure’s memory cells like those of a conventional

memory device [204–206]. The memory macro is outfitted with an individual interface to

connect a simulant or electronic circuit with the memory cells. NMAC circuits are used to

compute the digital or analog MAC using the output weights and inputs from outside the

circuit. Digital MAC procedures store NMAC’s outputs in output registers.

• IMAC: Various input techniques are used to input data and execute analog computations

using the memory cell array [207–209]. Each SRAM cell multiplies a binary weight and an

input once during MAC computation. The results of analog computation on the bitlines are

subsequently converted into digital outputs. For example, consider the binary fully connected

network-using MAC computing approach in [208]. All the IMC data for a particular column

are added together to get the accessible bitline’s analog voltage because of the MAC operation.

Then, an ADC circuit transforms this voltage of the accessible bitline into a digital output.

4.3 Emerging Computing Modes

The presence of complexity is frequently to blame for the failure of traditional computers. If a su-

percomputer gets stumped, it is likely because a particularly difficult task was presented to the large

classical machine. Moreover, the ubiquitous use of today’s highly complex AI models (e.g., DNNs) in

edge devices remains elusive. It is attributed to the deficiencies that there is a power and bandwidth

crunch for premium GPUs and accelerators operating these models, which results in long processing

times and cumbersome architecture designs [210]. In light of these facts, researchers are spurred to

create novel computing modes, such as neuromorphic and photonic computing, biocomputing, and

mind-bogglingly disruptive quantum computing.
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4.3.1 Quantum Computing

Since entering the big data era, demand for data processing speed is increasing. At the same

time, the computational power of classical computers is gradually reaching its limit. Quantum

computing, however, can surmount this limitation since it has the quantum advantage brought on

by entanglement or other non-classical correlations, achieving exponential speed in many complex

computational problems. This advantage of quantum computing could bring a huge potential to deal

with extensive information in a short time and become a promising candidate for next-generation

computing technology.

In the early 1990s, Elizabeth Behrman started combining quantum physics with AI. Most scien-

tists thought the two disciplines were just like oil and water and could not be combined. But now,

when chemists and biologists begin to learn quantum mechanics, the combination of computer sci-

ence and quantum mechanics seems very natural. Additionally, the evolution of computers is greatly

influenced by quantum information technology. Compared with the classical bits 0 and 1 considered

by computer science, quantum physics began to consider whether such classical bits could be re-

placed by quantum bits for operation. Due to its superposition state, this qubit may stand for either

0 or 1, depending on the context. Superposition exists in many quantum systems, including the two

orthogonal polarization directions of photons, the spin directions of electrons in a magnetic field, and

the two spin directions of nuclear spin, all of which have applications in quantum computing. The

superposition of quantum systems gives quantum computing the advantage of parallel computing,

which improves its speed significantly. The quantum computer can improve the computing power

exponentially compared with the classical computer [211, 212]. Besides, if we study AI from the

perspective of quantum computing, we may not need a very advanced general-purpose quantum

computer. Most of the time, a specific-function quantum processor can satisfy an AI algorithm and

exhibits the quantum advantages [213–218], and this can be achieved very soon.
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Figure 14: Diagram showing the relationship between complexity classes and a flowchart for identi-
fying and evaluating possible quantum advantages [214]. a) it is illustrated how adding more data
may increase the complexity in several ways. It is believed that quantum computing can efficiently
solve issues that conventional ML algorithms with data cannot. Because classical algorithms that
are able to learn from data belong to a complexity class that can handle issues that go beyond
classical computation. b) the flow chart is the developed methodology for analyzing the feasibility
of a quantum prediction advantage. Quantum and classical procedures with associated kernels, as
well as N samples of data from a QNN with potentially unlimited depth using encoding and function
circuits Uenc and UQNN , are supplied as input. The importance of the data for a potential prediction
advantage is emphasized by presenting the tests as functions of N. Before even thinking about the
function to learn, a geometric quantity called gCQ may be evaluated to determine the likelihood of a
positive quantum or classical prediction separation. If the test is successful, we demonstrate how to
build an adversarial function that reaches this limit effectively; otherwise, the traditional technique
is guaranteed to provide the same level of performance regardless of the data function. After the
model complexity sC and sQ have been determined, a label/function-specific test may be conducted
to evaluate the actual service provided. The red dashed lines show whether the quantum kernel
(QK) approach can determine whether a simple classical function may represent any given encoding
of data.

In recent years, AI and quantum computing have continued to heat up and gradually become

two major research hotspots. Quantum artificial intelligence is an interdisciplinary frontier subject

combining these two hot topics. At present, people believe that if one of the data or algorithms is

quantum, it can be summarized into the category of quantum artificial intelligence. Two significant

concerns exist in this emerging discipline. One is using advanced classical machine learning algo-

rithms to analyze or optimize quantum systems and solve problems related to quantum mechanics.

The other one is establishing a quantum learning algorithm based on quantum hardware and using

the parallelism of quantum computing to improve the speed of the machine learning algorithm. Fi-

nally, there is another situation: the algorithm is quantum, and the data is quantum, but there is

no substantive progress in this field.

Quantum artificial intelligence has broad application prospects [219]. For example, quantum
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artificial intelligence has been applied in the synthesis of drugs [220] and the treatment of various

chemical reactions [221]. Despite the rapid development of quantum artificial intelligence, it is still

in its initial stage. Many applications are still limited by the number of quantum bits and the bit

error rate caused by environmental noise in the specific function quantum computer. Therefore,

now we study quantum artificial intelligence from the quantum perspective. We all consider how

to build a scalable system and ensure that quantum bits receive the least noise in the calculation

process. We believe that quantum artificial intelligence will bring the fifth wave to the world after

several years or even decades of development.

For now, we must deal with a lot of data every day. There is an association between these data.

Graph algorithms can get much helpful or hidden information from the relationship between these

data. Graph computing, the core technology of next-generation AI, has been widely used in many

fields such as medical treatment, education, military, finance, and so on. However, when the scale

of the graph is large, the computing resource requirements will greatly increase. For example, the

problem of finding the largest fully connected subgraph is an NP-hard problem. Now, we think

about whether we can use quantum computing to improve the speed of graph computing. Gaussian

Boson sampling has been proven with quantum superiority many times, and at the same time, we

find that the graph can be encoded into a Gaussian Boson sampling machine [222, 223]. Namely,

we can use the sampling results to quickly find the maximum number of fully connected subgraphs

(cliques) [220].

4.3.2 Neuromorphic Computing

Carver Mead first uttered the term neuromorphic in the 1980s [224, 225], at which time it mainly

involved hybrid analog-digital forms of brain-inspired computing. Nevertheless, a considerably wider

spectrum of hardware is now considered to fall under the umbrella of neuromorphic computing be-

cause of the growth of the field and the appearance of significant funding for brain-inspired computer

systems.

Non-von Neumann computers are those that resemble neurons and synapses. Their construction

and operation are inspired by neurons and synapses in the brain. Alternatively, a neuromorphic

computer has neurons and synapses that control processing and memory. In contrast to von Neu-

mann computers, neuromorphic computers construct their programs utilizing parameters and the

neural network’s topology instead of predefined instructions. One subclass of neuromorphic ap-

proaches relies on generating and manipulating “spikes” in analog neural networks. The frequency

that spikes appear, their magnitude, and their shape can be employed to store numerical data in

neuromorphic computers, whereas von Neumann computers encode information as binary values.

The conversion of binary values into spikes and vice versa is still a subject of study in neuromorphic

computing [226].
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Figure 15: Structures of conventional computing systems and brain-inspired computing sys-
tems [227]. The figure illustrates that based on the three-tiered structure of conventional computing
systems (right), a brain-inspired computing system (left) consisting of software (on the top), a com-
piler (in the center), and hardware (at the bottom) were proposed. Applications and Turing-complete
programming languages (like JAVA and Python) make up the software layer of the architecture of a
conventional computer system. Intermediate software representations, such as the abstract syntax
tree, are transformed into hardware representations, such as instructions, throughout the compila-
tion process. The instructions are executed by CPUs or GPUs that adhere to the von Neumann
architecture at a hardware level. ALU, CPU, ROM, RAM, and I/O are all von Neumann architecture
components. Turing completeness guarantees the exact equality of all stacks. The neuromorphic ap-
plications and frameworks for their development constitute the software layer of a computer system
inspired by the human brain (such as Nengo and PyTorch). The POG represents software at this
stage, and the EPG represents hardware at this stage (CFG, control-flow graph). The POG is pre-
sented before the compilation tools are used to convert it to the EPG. To abstract the neuromorphic
hardware, a hardware layer called ANA was proposed, which consists of scheduling units (SUs), pro-
cessor units (PUs), memory, and an inter-connection network (TrueNorth, SpiNNaker, Tianjic, and
Loihi). Neuromorphic completeness, on the other hand, offers not only exact equivalence but also
approximation equivalence to account for the approximation feature of brain-inspired computing.

The two designs operate differently from one another because of their differing traits [228].

• High parallelism: Since all neurons and synapses have the ability to function concurrently, neu-

romorphic computers are by their very nature parallel. In contrast to von Neumann systems,

neurons and synapses carry out comparatively straightforward calculations.

• Co-located processing and memory: In neuromorphic hardware, processing and memory are

not separated. In many cases, synapses and neurons carry out processing and storing val-
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ues, although neurons are often regarded as processing units and synapses as memory units.

Incorporating processors and memory units can alleviate the von Neumann limitation regard-

ing processor or memory division, resulting in slower maximum performance. Furthermore,

co-location reduces the time data is accessed from main memory, a practice common in con-

ventional computing that consumes a substantial volume of energy compared to computing.

• Intrinsic scalability: Since adding more neuromorphic chips entails adding more neurons and

synapses, neuromorphic computers are naturally scalable. One may think of a combination

of many physical neuromorphic chips as a huge neuromorphic system to operate ever larger

networks. Numerous massive neuromorphic hardware systems have been effectively put into

use, such as SpiNNaker [229, 230] and Loihi [231].

• Event-driven computation. Neuromorphic computers are able to perform extremely efficient

computations due to event-driven computation [232, 233]. During the execution of the network,

neurons, and synapses only carry out computations when spikes are present, and spikes are

relatively sparse.

• Stochasticity: Neuromorphic computers can incorporate stochasticity.

Neuromorphic computers are extensively described and cited in publications as motivations for

adoption [234, 235]. Neuromorphic computers are ideally suited for computation because of their

energy efficiency: they typically run with a fraction of the power of traditional computers. They

consume very little power because they are event-driven and highly parallelized, meaning that only a

fraction of the system works simultaneously. Energy efficiency is a sufficient motivation to explore the

implementation of neuromorphic computers, given the increasing energy consumption of computing

and the emergence of energy-constrained programs (i.e., edge computing). In addition, neuromorphic

computers are ideally suited to modern AI and ML applications, as they inherently perform neural

network-like operations. Additionally, neuromorphic computers have the potential to handle multiple

kinds of computations [236].

4.3.3 Photonic Computing

Architecture specialization is bringing more data center demands like accelerator technologies for

machine learning workloads, and rack disaggregation approaches are also putting pressure on cur-

rent interconnect technologies. Even though the newest high-throughput processor chips feature

multiple CPU/GPU cores that can perform extremely difficult computations, they lack the off-chip

bandwidth needed to make the most of their resources. Taking on this challenge requires overcom-

ing packaging limitations, which are directly related to the limited bandwidth density of current

electrical packages [190].
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Figure 16: Deep neural networks, including conventional and electronic-photonic [237]. a) A typical
block architecture for a deep neural network comprises an input layer, multiple hidden layers, as
well as an output layer that produces outputs for classification or regression. b) In this network
design, a conventional N-input neuron is employed. Its output is formed by processing the linear
weighted sum of its inputs via a nonlinear activation function. c) In accordance with the PDNN
chip architecture, separated from one another by overlap, the input picture is split into four smaller
images on a five by a 6-pixel array. Pixels that constitute portions of images are sent to the primary
layer of neurons. The connections between the second and third tiers and the layers below them are
obvious. Two outcomes are conceivable for the network. d) The architecture of a real-world N -input
photonic neuron, in which optical PIN attenuators are used to change the weights of N optical input
signals, and the summed output of parallel PDs is then used to perform photodetection. A TIA
is used to amplify and voltage-convert the photocurrent isum. Adjusting the supply light makes it
possible to produce the optical output of neurons.

Optical neural networks (ONNs) offer many benefits over electrical neural networks, including

ultra-high bandwidth, fast calculation speed, and high parallelism, all of which are realized by using

photonic hardware acceleration to calculate complicated matrix-vector multiplication [210, 238, 239].

To keep up with the ever-increasing complexity of data processing techniques and the volume of

datasets, we need deeply integrated and scalable ONN systems with compact sizes and decreased

energy usage. Light’s superposition and coherence features allow ONN neurons to be naturally

coupled by interference [240] or diffraction [241] in diverse contexts, while a wide range of nonlinear

optical effects [242] may be used to implement the activation function of the neurons physically.

Because of these tools, other types of neural network topologies, such as fully connected [240, 241,

243], convolutional [244–246], and recurrent [247, 248], may now be realized optically. With today’s

state-of-the-art optical technologies, ONNs can perform ten trillion operations per second [244],

48



(a) The cell as a “physical” computer. (b) Cells could provide more than logic circuits.

Figure 17: Biocomputing might offer performance superior to that of traditional computers [254].
a) inputs and outputs and the processing of inputs by an algorithm are technically defined in
a computing model. Although there are various physical implementations of the same theoretical
computing model, the essence of computation is consistent regardless of the specific implementation.
Electrical data also makes up the inputs and outputs for electronic implementations. Still, cells
can also detect and transmit a wide range of physical, chemical, and biological data flow. Data
may be encoded into inputs using a variety of techniques. Examples of temperature encoding
systems. b) More complex computation models than combinatorial logic have been established in
computer science. The Turing machine and finite-state machines are examples of this. These models
outperform combinatorial logic because they enable the processing of a wider range of inputs into
a wider range of outputs in a wider range of ways. Living systems’ cells can process information
because a variety of computing mechanisms have evolved throughout time. A simple model that
serves as the basis for creating combinatorial logic circuits in cells represents the fundamental tenets
of molecular biology. However, the model does not take into account essential biological systems
like metabolism or processes like evolution that may pave the way for the development of more
sophisticated, as-yet-unknown models.

which is comparable to electrical counterparts, with energy consumption that may be on par with

or even less than one photon per operation [249], which is orders of magnitude lower than digital

computation [250]. Silicon photonic integrated circuits (PICs) are becoming an attractive option for

building the massive and compact processing units needed in optical-artificial-intelligence computers

because of their small size, high integration density, and low power consumption [245, 251–253].

4.3.4 Biocomputing

Biological computing is a new computing model developed using the inherent information-processing

mechanism of biological systems. In short, it is used to solve computational problems with biological

methods. Biological computing mainly focuses on devices and systems. Devices, also known as

molecular devices, are the basic units for information detection, processing, transmission, and storage

at the molecular level; a system refers to the design of a new computing system utterly different

from the traditional computing architecture. Generally, the system is a distributed system.
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Biological computers mainly include protein computers, RNA computers, and DNA computers.

The protein computer takes the law of protein motion as the basic prototype of computer operation.

The researchers of Syracuse have used protein as the computer’s core device and the laser to read the

information. The storage capacity is 300 times larger than the electronic computer, opening the era

of protein computers. RNA and DNA computers use the specific hybridization between nucleic acid

molecules as the basic model. Because RNA is inferior to DNA in differentiating molecular structure

and experimental operation, few people have paid attention to RNA computing. DNA computer

takes biological enzymes as the basic material and biochemical reactions as the process of processing

information, trying to improve the efficiency of computer processing information in the way humans

process information. Adleman first proposed a DNA computer in 1994. After numerous studies and

practices, although it is still in its infancy, the powerful storage capacity and parallelism shown by

DNA give DNA computers a huge potential.

Biological computing has unique advantages compared to traditional computing, which can be

summarized as the strong parallel and distributed computing ability and low power consumption.

Parallel computing and distributed computing are the modes designed by traditional computers to

solve large-scale and complex computing problems. But biological computing naturally has incom-

parable advantages over parallel and distributed computing. Second, the biochemical connection

process in biological computing requires molecular energy and does not require additional external

energy, and the overall energy consumption is very low. For example, the energy of 1 joule can

complete more than 1000 calculations for DNA, while the traditional silicon-based computer can

only complete more than 100 calculations. There is an order of magnitude difference.

Within the scope of current technical capabilities, biological computing inevitably has deficien-

cies. Limited by the existing biological technology, most current biological computers are designed on

paper, and there are no suitable conditions for relevant experimental verification, let alone construc-

tion. For example, in the DNA computer, how to reuse DNA or protein to meet the requirements

of continuous consumption of DNA in the calculation process; the existing DNA computers are all

dedicated to a specific field. It is also complex in making standard and universal computer com-

ponents; DNA involves biological privacy information. Protecting citizens’ DNA information from

being infringed on and used by criminals is a significant social problem.

5 Applications of Intelligent Computing

5.1 Intelligent Computing for Science

Discovering innovative ideas with the same old methods isn’t going to stagnate if we’re going to

keep up with the ever-increasing problems of our rapidly evolving environment. However, the pace

of scientific discovery will be tremendously boosted like never before by the confluence of computer

revolutions now underway.
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5.1.1 Computational Materials Science

Computational materials (CM) have become a powerful means of studying materials’ properties and

designing new materials for several decades. Their applications, however, suffer from many chal-

lenges due to the complexity of materials and material behaviors, including lacking force fields and

potentials for many atoms, ions, and atomic and ionic interactions, different thermodynamic phases

in molecular dynamics (MD) simulations, and the huge search space for the optimization of material

components and process parameters. AI integration into CM is shown to be a revolution to the tra-

ditional CM as a new research paradigm [255]. Intelligent CM is one major component of materials

informatics [256] and is becoming increasingly popular. The number of relevant publications has

reached 50 thousand on the Web of Science. About 70 percent were published in the past five years.

The integration of AI and CM is exhibiting great success in multiple lengths and time scales

and multiple physical field coupling calculations. The most famous electronic and atomic scale

calculation method is first-principle calculations by applying the Density Functional Theory (DFT).

The key issue in DFT calculations is the huge demands on computational powers due to the multiple

particles and nonlinear interactions in the Schrödinger equation for electronic structures. The Deep

Neural Network might be an efficient way to accelerate the calculation process of the electronic

Schrödinger equation [257, 258]. The approximations of exchange-correlation (XC) energy in DFT

limit the accuracy of the Kahn-Sham DFT calculations. Kernel ridge regression and deep neural

networks can create more accurate XC approximations [259, 260]. ML-based XC approximations

can even be applied in systems with strong correlations. By substituting time-consuming electronic

structure calculations with empirical potentials, MD can simulate much larger systems with defects

in different temperatures. ML can provide a systematic method to derive force fields or potentials

from first-principle calculations. The ML-based force fields are called ML potentials. ML potentials

consist of two parts: Data and ML potential model. During data collection, prior knowledge of the

studied system plays a central role in the design of candidate structures which should be calculated

using first-principle calculations. The design of descriptors for local structures is the heart of the

ML potential model [261]. Several efficient ML potential packages have been published including

Amp [262], MLIP [263], MLatom [264], and DeepMD [265]. Xu et al. investigated Li-Si alloys using

molecular dynamics based on a model that was built from DeepMD [266]. Various crystalline and

amorphous Li-Si systems were analyzed for their structural and dynamic features. Their prediction

was 20 times faster than ab initio molecular dynamics simulations with similar accuracy. This

method can also be applied to insulating materials like liquid water. Grace et al. introduced a

model for insulating materials and applied it on liquid water [267]. It shows that the Raman spectra

associated with classical 2-nanosecond trajectories under a fixed temperature could be computed, and

the resolution of low-frequency Raman spectra was enhanced. Li et al. applied DeepMD on the solid-

state electrolyte Na3OBr [268]. The Na+ diffusion coefficients at finite temperature were obtained,

suggesting the influence of temperature on the migration barrier. Their work also demonstrates

the promising future of DeepMD in the study of transport properties of solid-state electrolytes.

Recently, He et al. studied the structure phase transitions of SrTiO3 using DeepMD [269]. The

temperature-driven phase transition characters under different in-plane strains were studied via the
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model build using DeepMD.

Figure 18: High-level comparison of paradigms for materials/molecular sciences [270]. The conven-
tional paradigm is described on the left and illustrated using organic redox flow batteries in the
middle. On the right is a model of a closed-loop system. Inverse engineering, intelligent software,
AI/machine learning, embedded systems, and robotics are all necessary components of a closed-loop
system.

Phase field simulations can illustrate the microstructure evolution over time at the continuum

thermodynamic and kinetical levels. But they require huge computational powers. LSTM networks,

as a famous algorithm of gated RNN, were successfully applied to train a model to predict results of

a long time evolution from data collected from calculations over a very short time period [271]. In

finite element calculations of materials, the key issue is constructing a constitutive model for specific

materials in a given service environment. Many ML models are able to construct a constitutive

model from data, for example, Gaussian processing [272], Artificial Neural Networks [273–278] and

symbolic regressions [279, 280].

Another application of ML in computational materials is to train an ML surrogate model, es-

pecially a simple analytic surrogate formula, which is used to substitute the original true physical

model [281, 282]. Data are collected from several calculations of the physical model with different

input parameters and applied in ML-model training. Usually, the ML surrogate model can be eval-

uated far faster than the original physical model, while both models have nearly the same accuracy.

The several orders acceleration on computational speed allows for a global search in the design and

optimization space. Typical ML algorithms that can be applied to train a multi-fidelity surrogate

model include Kriging/Gaussian process [283], LSTM Networks [271, 284], Physics-informed Neural
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Networks [285], and CNNs [286].

For cases without available physical models, a surrogate model can be trained directly from ex-

perimental data to substitute a yet-unknown physical model. The situation is the most common

in materials society, and the model is usually called the material microstructure-macroproperty re-

lationship. Features or descriptors in machine learning of materials include electronic and atomic

parameters, chemical composition, microstructural parameters, thermodynamic and kinetic parame-

ters, processing conditions, service environment conditions, all material characterization conditions,

optical and electron microscopy images, etc. The output of machine learning models can be either

target properties or potential energy surfaces [265]. Depending on the studied problems, some pa-

rameters are features in some problems and become responses in other problems. Target properties

include stability [287], formability, bandgap [288], Curie temperature, dielectric properties, flexo-

electricity [289] and so on. Stability plays an imperative role in predicting new materials and the

formation energy, which can be obtained from the first principles calculations. Li et al. [290] de-

veloped a transfer learning method to predict formation energy. After screening 21,316 perovskites,

they found 764 stable perovskites with a tolerance factor of less than 4.8. Ninety-eight of them

have already been proven stable by DFT calculation. Recently, Park et al. studied the stability of

hybrid organic/inorganic compounds using a series of machine learning models and proved that the

combination of advanced electronic structure theory and machine learning promotes designing new

materials [291]. The bandgap is an important parameter in designing novel photovoltaic devices.

The solar cell requires a bandgap that meets the wavelength of visible light. In 2018, Takahashi et al.

predicted perovskite bandgap to search candidates for solar cells using machine learning [287]. They

predicted 9,238 perovskite materials to have the desired bandgap, and 11 of them were undiscovered.

5.1.2 Computing for Astronomy

Astronomy has gathered vast amounts of data in history as one of the most ancient observational

sciences. Thanks to the breakthroughs in telescopic technologies that generate digital outputs,

there has recently been a tremendous data explosion. The field of astronomy and astrophysics is

characterized by a wealth of data and a variety of ground-based telescopes with big apertures, for

example, the upcoming large synoptic survey telescope and the space-based telescopes [292]. Data

collection is now more efficient and largely automated using high-resolution cameras and associated

tools. The system will collect roughly 15TB of data daily [293]. With respect to effective decision-

making, it is imperative to have more effective data analysis. Hence, intelligent computing techniques

are needed to interpret and evaluate that dataset.

Morphological classification of galaxies. After years of waiting and anticipation, the first

images captured by the James Webb space telescope were finally released on July 12, 2022. A

machine learning model called Morpheus creates morphological classifications of astronomical sources

at the pixel level. Morpheus is trained on UC Santa Cruz’s Lux supercomputer, which consists of 28

GPU nodes with two NVIDIA V100 Tensor Core GPUs each. Machine learning models rapidly evolve

into incredibly effective tools in cosmology and astrophysics. For example, CNNs and generational

adversarial networks (GANs) have been successfully applied to facilitate the classification of galactic
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morphologies based on star formation and morphological properties [294–297]. It has been proven

that these ML algorithms can achieve over 90% accuracy and perform equally well or even superior

to conventional methods with much fewer time budgets.

Radio frequency interference detection. Newer studies have shown that U-Net [298] and its

variants provide a strong architectural foundation for semantic segmentation, which is a crucial

component of deep learning-based radio frequency interference (RFI) detection. U-Net was initially

implemented for RFI detection in radio astronomy [299]. A combination of computer-generated data

and observed data captured by a signal antenna at Bleien Observatory was used to train and test the

network [300]. After evaluating a U-Net variant in terms of detecting RFI using synthetic and real

data collected at the HERA observatory [301], for improved generalization to other representations,

the authors split off the scale and the time period into separate elements in the model. Combining

the scale and the time period depictions of the intricate visibility yielded only marginal benefits,

as is demonstrated in [302, 303]. Transfer learning has consistently been found to be effective in

situations where labeled data are absent. For instance, R-Net can be trained on simulated data and

employ a tiny part of expert-labeled data. Its domain may be adapted from simulated to real-world

data [303]. GANs have been demonstrated to be useful for RFI detection in [304]. A very novel

way to use GANs was proposed in [305]. The authors suggested a source-separation strategy to

differentiate astronomical signals from RFI based on employing two independent generators.

5.1.3 Computing for Pharmaceutical Research

AI has been affected by all drug design phases [306–308]. Drug design benefits from AI as it helps

scientists establish 3D structures of proteins, the chemistry between medications and proteins, and

the efficacy of drugs. In pharmacology, AI is used to create targeted compounds and multitarget

medications. AI can also design synthetic routes, predict reaction yields, and understand the me-

chanics behind chemical synthesis. AI has made it simpler to repurpose current medications to treat

new therapeutic objectives. AI is vital for identifying adverse reactions, bioactivity, and other drug

screening outcomes.
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Figure 19: Different DL-based DTI prediction algorithms take different input characteristics into
account [309]. Therefore, they may be divided into three categories: a) ligand-based approach, b)
structure-based approach, and c) relationship-based approach.

Recent AI tools and platforms for drug design are as follows [310].

• AlphaFold, the groundbreaking computational model, estimates the 3D structure of proteins

exclusively using their amino acid sequence generated by DeepMind and EMBL-EBI [311].

According to the latest CASP14 analysis, AlphaFold provides the most precise estimation

of 3D protein structures [311]. In addition to considering different constraints (evolutionary,

physical, and geometric) related to protein structures, AlphaFold implements a neural network

architecture based on protein data banks.

• SwissDrugDesign [312], a product of the Swiss Institute of Bioinformatics, is one of the most

widely used AI platforms for drug design.

• Synthia by Merck, an upgraded version of Chematica, suggests potential synthesis routes based

on compound information. The AI application can provide multiple synthetic routes for the

target molecule by adjusting the search options. Chematica was developed by Klucznik et al.

to generate synthetic procedures for eight commonly occurring compounds and subsequently

conduct experiments on them. Each of the compounds has shown a significant increase in

productivity and cost reduction compared to conventional techniques [313].

• Ligand Express from Cyclica identifies potential targets associated with certain macromolecules.

Instead of screening large collections of macromolecules to locate the suitable ligand to bind

to certain proteins, an advanced platform built on the cloud screens the human proteome to

discover the optimal matching protein and proteins [314].

• AstraZeneca’s AI platform REINVENT is used to design macromolecules from scratch. It
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can produce macromolecules that comply with a broad range of preferences entered by the

user [315].

There are several different AI platforms and tools for drug research and discovery on the web,

and new ones are continually emerging. The current study does not have the space to describe them

all in-depth, but other excellent evaluations [306–308, 316–318] analyze and compare them.

The detection of active compounds through huge chemical libraries is one of the initial stages in

the drug development process [319]. High-throughput screening (HTS) now rules this phase [320].

Large chemical libraries are screened via HTS using assays relevant to the study. Instead of calcu-

lating behaviors in silico, it offers the benefit of testing them empirically. HTS is not constantly

necessary yet. Large libraries are expensive to experimentally screen because they only contain a

tiny portion of the chemical space. Additionally, not all assays can be carried out on a large enough

scale; generally, negotiation must be made between the amount and quality of experimental data

acquired for each test to get the best possible results. Virtual screening (VS) is an alternate method

that may be used in addition to or instead of HTS [321, 322]. By screening chemicals in silico rather

than in vitro, which is more affordable and is not constrained by a physical library, VS aims to

overcome the drawbacks of HTS. VS usually enriches actives, raises hit rates, and lowers the cost

of subsequent tests [323]. This is particularly true when a distinct design hypothesis, like a verified

target, is present. Nevertheless, VS is imprecise and prone to producing inaccurate predictions,

much like several other in silico techniques. Once this occurs, inactive molecules may be classified

as false positives, wasting time and important resources on further research. Therefore, increasing

VS’s enrichment rates is still necessary.

Stephen Oliver and Ross King from the University of Manchester created two robots, Adam and

Eve, which are the icing on the automation and present use of AI in drug creation [310]. Adam was

built to do microbiological experiments, analyze the data on its own, propose hypotheses, and create

experiments to examine the hypotheses until a correct theory was established [324]. The robot Eve

is more sophisticated; it experimentally screens hundreds of compounds each day, identifies certain

hits, constructs a specific cell line to test the hits, and then modifies the structures of the hits to

produce lead compounds [325].

In the pharmaceutical industry, there is a general trend toward the use of advanced manu-

facturing technologies, with a strong emphasis on connected and efficient processes like continuous

manufacturing, new technologies suited for personalized and on-demand medicine (like 3D printing),

and an ongoing effort to find solutions for problematic compounds in the pipeline [326]. The COVID

epidemic made us reevaluate ways to quicken the processes of medication and vaccine research and

development. Digitalization, difficult substances, and a quick pace bring a tendency for modeling,

predictive methods, and digital cooperation in the pharmaceutical sector. Additional and unique

difficulties, such as protein stabilization and purification, are brought on by the growing number of

biomolecules in the pipeline.
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5.1.4 Computer-Aided Breeding

Food security is now a world concern, partly because of the fast population expansion, which is antic-

ipated to reach nine billion people by 2050 [327]. Approaches such as tissue culture mutagenesis and

transformation have been used to improve crops. Functional genomics improves our understanding

of the plant genome and opens new opportunities for tinkering with it. Promising methods, like

nanotechnology, RNA interference, and next-generation sequencing, have been developed to boost

agricultural output in response to future needs [328].

Crop breeding has lately seen a growth in the use of AI technologies, which support the creation

of services, the identification of models, and decision-making processes in agri-food applications and

supply chain stages. The main objective of AI in agriculture is to anticipate outcomes with accuracy

and improve yield while minimizing resource use [329]. Therefore, AI tools provide algorithms that

may evaluate performance, anticipate unforeseen issues or occurrences, and discover trends, such as

water consumption and irrigation process management via the installation of intelligent irrigation

systems, to handle agricultural concerns [330].

AI facilitates the whole agricultural value chain, from planting to harvesting to selling [331].

Therefore, AI advancements have aided the efficiency of agro-based firms by enhancing crop manage-

ment. Weather forecasting, improving automated equipment for accurate pest or disease detection,

and analyzing sick crops to boost the ability to produce healthy crops are common areas where AI

is being used. It has paved the way for several tech firms to create AI algorithms that help the

agricultural sector to deal with issues that include pest and weed infestations and yield decreases

due to global warming [332].

Figure 20: Combination of Big Data and next-generation AI in plant breeding [333].

To maximize yields and profitability while reducing crop damage, farmers should employ tech-

nology to predict the weather. AI empowers farmers to gain greater knowledge and understanding
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by analyzing the data they collect and then acting by putting processes in place that help them

make informed choices [334]. Additionally, using either farm flora patterns or pictures taken with

a camera recognition tool, AI techniques can monitor soil management and health by recognizing

plant pests and diseases, as well as nutrient deficits and potential soil defects [331]. By lowering the

use of pesticides, AI technology offers a huge functional advantage in environmental preservation.

Farmers might, for instance, spray herbicides just where weeds are present using AI approaches,

including robotics, ML, and computer vision, controlling weeds more effectively and precisely. This

would lessen the chemical spray needed to cover the whole field.

The four central clusters of the agricultural supply chain (preproduction, production, processing,

and distribution) are becoming more and more relevant for ML algorithms [335]. ML technologies

are used during the preproduction phase to anticipate soil characteristics, crop output, and irrigation

needs. In the succeeding stage, ML might be used to detect illnesses and predict the weather. To

achieve high and secure product quality, production planning is forecasted using ML algorithms in

the third cluster of the processing phase. Finally, the distribution cluster may benefit from ML

algorithms, especially in terms of storage, customer analysis, and transportation [331].

5.2 Intelligent Computing for Economy and Governance

Intelligent computing accelerates transformational change, resulting in the shift of economic and

social order. Markets for goods and labor are changing drastically due to technological advancements.

The newest developments in AI and associated advancements are pushing the boundaries of the

digital revolution in new directions.

5.2.1 Digital Economy

There are several potential routes for advancement in AI systems. In general, AI should be at

the heart of every data-driven strategy in the digital economy, including Industry 4.0. Predictive

maintenance, for instance, may benefit greatly from AI [336, 337]. Predictive maintenance deals with

maintenance involving general or production machinery and aids in lowering operating expenses or

downtime using sensor data from either production or operating lines.

It is possible to develop and apply AI-based prediction models to improve maintenance schedules.

Furthermore, IoT and CPS applications should benefit from AI since these technologies were created

for data collection rather than analysis. Finally, AI may contribute to the future development of

robotics and automation for use in industrial, manufacturing, and service applications. For such

unique AI techniques, deep reinforcement learning is now showing promising results [338, 339]. A

more basic thing to notice is that general data analysis concepts must also be adjusted for the

use of AI. Cross-industry standard procedure for data mining [340] is a rudimentary standard that

emphasizes feedback between successive analytical processes. This has recently been expanded to

consider industry-specific demands and domain-specific expertise [341].

Three main issues are commonly brought up regarding the use of AI in business and the economy.

The first is job losses because of the adoption of automated analytic systems [342]; the second is the

difficulty in understanding generic AI approaches; the third is the widening wealth disparity between
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rich and developing nations [343]. Interestingly, the first two arguments are virtually identical to

digital medicine and health systems. AI governance, which must be designed appropriately, addresses

the latter problem.

5.2.2 Urban Governance

According to recent research, urban governance is to develop novel strategies and methods to make

cities smarter [344]. Smart cities include smart urban governance, Which aims to utilize cutting-

edge IT to sync data, procedures, authorities, and physical structures that will benefit locals. [345].

Meijer and Bolvar [346] established four exemplary conceptions of smart urban governance based on

a thorough examination of the literature: smart decision-making, governance of a smart city, smart

administration, and smart urban cooperation.

Also, numerous promising new avenues of research into the urban brain have been presented [347–

349]. Big data has made it common practice to combine data from various sources and different

points of view to provide a complete picture of urban residents. Large-city population development

has brought the additional challenge of managing more complicated road networks. Because of this,

traffic management also necessitates analysis, forecasting, and smart action [350]. For instance,

cities have been developing integrated traffic management systems for the optimization of traffic

flow in real-time, such as City Brain in Hangzhou, China. These technologies take advantage of

copious urban monitoring data captured by a variety of sensors. In addition, the difficulty of

simulating the urban brain system increases with the complexity of traffic networks. Important

considerations include [351] (1) speeding up computations on enormous synchronized heterogeneous

network configurations through parallel heterogeneous computing; (2) visually simulating an urban

setting and building algorithms for flexible perception with strong environmental robustness. In

terms of crisis management, it will be crucial for future cities to be able to conduct searches rapidly.

As a result, it is crucial to search for and recognize individuals in monitoring data by conducting

simulated analyses of their characteristics and activities. Urban planning and analyzing public

resources are also fascinating fields. The urban brain can accumulate facts according to the rules

of urbanization throughout time. It is possible to optimize the design of public facilities and the

distribution of government funds via examining such information.
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Figure 21: Components of digital society [352].

Recent research has called for a greater emphasis on the “urban” component of “smart gover-

nance”. Instead of placing excessive weight on technologically created neutral information, urban

issues, relevant expertise is understood as socially formed via interaction with people [353]. For in-

stance, information that is the product of collaborative efforts between the government, the business

sector, and civil society is often poorly organized or, at most, semi-structured. It is required when

attempting to solve strategic and unconventional problems. When addressing issues that affect a

whole community, we must have access to technological tools that promote dialogue, debate, and

the development of agreement [348]. Democratic institutions, social conditions, ethnic and politi-

cal values, and the physical world are all examples of contextual elements that may foster or stifle

the growth of creative and smart governance. It argues that context should be considered when

considering alternatives to the existing “smart” government [346].

6 Perspectives

The technical detail of intelligent computing and its main challenges from theoretical and experimen-

tal perspectives have been reviewed in the previous sections. In this section, the main challenges

and future development of the intelligent computing industry are exposited from the view of an

emerging industrial ecology.
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6.1 Theoretical Revolution in Machine Intelligence

Compared with conventional computing theory, intelligent computing is the application and de-

velopment of linguistically and biologically motivated computational paradigms [354]. It means

that machines can mimic the problem-solving and decision-making capabilities of the human mind

based on different scenarios. However, there are fundamental differences in the underlying logic of

silicon-based and carbon-based operations, and the mechanics of brain intelligence still need to be

further revealed. The next step in intelligent computing is to develop a radical theoretical overhaul

through an in-depth exploration of the essential elements of human-like intelligence and its interac-

tion mechanism at the macro level [355] and the computational theory underpinning the generation

of uncertainty at the micro level.

According to the theory of Multiple Intelligence by Howard Gardner, human intelligence can be

differentiated into specific modalities of intelligence [356]. Depending on the expression of different

machine intelligence, it can be disassembled into different combinations of basic abilities. For exam-

ple, logical-mathematical intelligence is the combination of learning ability, computing ability, and

memory ability. Since intelligent computing refers to the simulation and approximation of human in-

telligence in machines, a basic paradigm, which clarifies the definition and standardizes the definable

and computable properties of multivariate intelligence, helps better realize human-like intelligence.

It is necessary to design an axiomatic system of multivariate intelligence and prove that it has ba-

sic mathematical properties such as decidability and completeness. For multivariate computational

intelligence, precise decomposition and quantitative description are needed. Moreover, the calcu-

lability and comparability of multivariate intelligence also should be provided through quantified

mathematical expressions and measurement criteria of the atomic intelligence fusion. Scientists can

develop better human-like machine intelligence through the integration, collision, and interaction

between different theories [357–359].

Turing computation, based on the theory of computation, is functional. Classical computation

built on Turing computation produces deterministic results. However, the creativity of intelligence

is built on uncertainty. Receiving the same background knowledge, different people will have diverse

thinking on the same problem. Even in the face of the same problem, the same person makes

various choices and judgments at other times and circumstances. This uncertainty is why human

intelligence can continuously generate new data, knowledge, and tools. Randomness and fuzziness are

two primary forms of uncertainty in the subjective and objective world. At present, the exploration

of machine intelligence is built on the classical computing theory, trying to abstract the natural world

through artificial preset symbolic systems and algorithmic models, and realize the approximation

of randomness and fuzziness. The intelligence of the human brain grows out of the emergence of

chemical phenomena such as proteins, particle channels, chemical signals, and electrical signals.

To study evolvement from low-level perception to high-level logical reasoning, it is necessary to

understand how uncertain emergence occurs and how to reproduce the randomness and fuzziness

of the emergence. A neuromorphic network simulates the structure and function of neurons in the

brain, but it cannot simulate the process of intelligence generation. Quantum computing may be one

of the most promising directions. Quantum mechanics reveals the uncertainty of the fundamental
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particles that make up the world. This uncertainty may drive the emergence and development

of human consciousness and can also be the theoretical basis for constructing high-level machine

intelligence. Some research has been conducted to mimic the probabilistic behavior of quantum

mechanics in a classical computer [360]. To further develop intelligent computing, we need first

to build a computational theory that can support uncertainty to realize a perfect mapping from

theoretical computing space to physical space.

6.2 Knowledge-Driven Computation

To make the computer learn like humans, scientists have adopted two approaches: Symbolic AI,

brought up by expert systems, and Connectionism, designated by deep neural networks [361, 362].

These two approaches can be good solutions to intelligent computing problems to some extent. The

key to the problem still requires prior knowledge inputs such as a pre-defined physical symbol system,

neural network models, behavior rules, etc. Data-driven intelligence at the theoretical and method-

ological level relies mainly on mathematical models and large-scale data input to compute results.

In essence, the machine does not produce new knowledge; it only performs a series of numerical

calculations based on prior knowledge and, thus, the results. In other words, the machine is just

an “executor”, while the actual strategies and logic that enable the derivation and computation of

the knowledge are still specified by humans. However, data-fitting learning in small tasks with large

data gradually shows limitations. Due to the problem of weak generalization, poor interpretation,

difficulty in knowledge expression, lack of common sense, and catastrophic forgetting, the models

are far from human understanding. In most cases, humans are better at summarizing from a few

practices without learning from large-scale training data. According to their correlation [363], the

brain can transform vision into multiple knowledge. However, the current deep learning frameworks

can only simulate human intelligence on the surface [364].

Integrating knowledge from different domains with algorithmic models can lead to better problem-

solving, on which the prototype of the fifth paradigm of scientific research is based [365]. Therefore,

it is important to explore how humans learn and apply it to the study of AI. The knowledge-driven

machine intelligence can learn from human activities and mimic the decision-making capabilities of

the human mind, enabling machines to perceive, recognize, think, learn and collaborate like humans.

Exploring theories and key technologies for multi-knowledge-driven knowledge reasoning and contin-

uous learning to enable intelligent systems with human-like learning, perception, representation, and

decision-making capabilities can facilitate the evolution of intelligent computing from data-driven

to knowledge-driven [366]. Combining data-driven inductive abstraction with knowledge-driven de-

ductive reasoning and constrained optimization of physical theorems is a key challenge in improving

machine intelligence. To achieve the ability to summarize abstract concepts and reach higher levels

of intelligence, more flexible system architectures need to be developed to explore the way knowledge

is created, stored, and retrieved. At the theoretical level, the knowledge data model needs to be

improved, while the model’s ability to describe the real world needs to be enhanced. Human-like

thinking models are introduced to learn human environmental perception, emotional preference,

seeking advantages, and tendency to avoid harm and to construct a computational model of a self-
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learning system capable of perceiving the environment.

6.3 Architectural Innovation for Hardware and Software

Various innovations have been proposed in hardware architectures. But the adaptation between

hardware and software faces enormous challenges, such as accuracy loss, invoking difficulty, and

collaboration inefficiency. From the theoretical perspective, neuromorphic computing is an effective

technology system with apparent advantages in computing for intelligence [367, 368]. Neuromorphic

technology can reduce power consumption and improve real-time computational performance by

several magnitudes. In addition, neuromorphic technologies are low-cost and easy to implement in

many applications. However, the design of neuromorphic computing hardware (neuromorphic chips,

SNNs, memristors, etc.) places obstacles in constructing algorithms and models. Although the

traditional neural network model has achieved accurate results in modeling domain problems, when

transplanting the trained neural network model to SNNs, structural incompatibility can lead to a

loss of accuracy. The application of SNNs depends on the development of neurocomputing chips.

Due to their new design structure and computing mode, the SNNs cannot achieve the theoretical

results in traditional chips.

To narrow the gap between neuromorphic computing hardware and software, the co-design and

coordinated development of software and hardware are necessary for data management and analysis

in the new hardware environment. In the future, it is essential to break through the fixed input and

processing paradigm under von Neumann’s architecture for the computer and vigorously develop

interdisciplinary intelligent computing and bionics. Design at the algorithm level, break through the

existing architecture’s limitations and try more flexible and human-like data processing with lower

computational cost and hardware design. It is also important to develop new component design

schemes with high-performance and low energy consumption to improve the computing ability and

efficiency of both software and hardware to meet the rapid growth in demand and the application

of intelligent computing.

6.4 Solutions to Large-Scale Computing Systems

The theoretical-technical architecture of intelligent computing is a complex system with multiple

subsystems that interact with other disciplines. Various hardware in the system requires a more

complex system design, better optimization technologies, and many costs in system tuning. Lacking

complexity in the theory of high-dimension computing is the main challenge for a large-scale com-

puting system. In large-scale computing systems, the optimization problems can be simplified into

multiple small tasks to reduce the system’s complexity. However, no solid theoretical foundation

exists in that aspect. For the optimization problem, the main target is minimizing the objective

function. However, minimizing the objective function cannot capture those uncertainties when there

are multiple uncertainties. Uncertainty can lead to significant variation in the system and thus in-

crease the complexity, which is difficult to analyze. For example, in the problem of computational

social science, the main objects to be modeled are groups of people. The mechanism of macro phe-

nomena, such as ethnic group evolution and cultural transmission, can be explained by analyzing
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the interaction between humans and the environment. However, capturing all micro disturbances

when operating such a large-scale system is problematic. Meanwhile, it is challenging to disassemble

the social science computational process into multiple independent subsystems.

When finding solutions for large-scale applications, it is necessary to define the global parameters

from a macro perspective at the beginning of the task. A new interactive task guidance method

that introduces the role of humans in the task understanding process needs to be designed. Then, it

is necessary to break the complex computing problems into subproblems and organize the problem

sequence according to its logic. Finally, the results from multiple subproblems can be combined as

a complete solution. Generally, there are three difficulties in solving large-scale problems. Firstly,

new abstraction methods should be explored to build the micro-macro linkage causal analysis model

instead of adding more parameters and building more complex subsystems. For system modules

that are not directly connected, the implicit relationships between them can be revealed through

dimension transformations. The problem of a large-scale complex system often involves multiple

disciplines, which require prior knowledge and experimental experience from different fields to solve

the general mathematical principles of their sub-problems. Second, in large-scale systems, the sub-

system’s calculation mechanism is highly non-linear, which may cause competition in the computing

resource in different subsystems or even constrain each other. The multi-level subsystems make

it exponentially more difficult to study the non-linear effects. Studying the non-linearity of the

multi-level subsystems can effective reveal the internal mechanism of large-scale systems. The last

problem is the interpretability of the system. In general, the model complexity gradually grows

with accuracy, and higher complexity leads to an unexplainable model. Since the large-scale system

frequently exchanges information with the real world, the complex interaction between the subsys-

tems leads to the evolution of the system structure. It is necessary to establish a new theory from

a higher-order perspective to analyze its interpretability [227].

7 Conclusion

We are currently ushering in the fourth wave of human development and are in the critical transition

from the information society to the human-physics-information integration of the intelligent society.

In this transition, computing technologies are undergoing transformative, even disruptive, changes.

Intelligent computing is believed to be the future direction for computing, not only intelligence-

oriented computing but also intelligence-empowered computing. It will provide universal, efficient,

secure, autonomous, reliable, and transparent computing services to support large-scale and com-

plex computational tasks in today’s smart society. This paper presents a comprehensive review of

intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and

computing, important applications, challenges, and future directions. We hope this review provides

a good reference to researchers and practitioners and fosters future theoretical and technological

innovations in intelligent computing.

64



Acknowledgement

This work was partially supported by the Key Research Project (No. K2022PD1BB01, No. 2020NB2GA01,

No. U21A20488, No. 2022PI0AC01), the Exploratory Research project (No. 2022KG0AN01), and

the Center-initiated Research Project (No. 2022ME0AL02) of Zhejiang Lab, the National Key Re-

search and Development Program of China (No. 2022YFB4500300), the National Natural Science

Foundation of China under Grant (No. 62271452, No. 62172372), and the Natural Science Founda-

tion of Zhejiang Province, China (No. LZ21F030001).

References

[1] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and time series,”

The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10, 1995.

[2] Y. Bengio and X. Glorot, “Understanding the difficulty of training deep feedforward neural

networks,” in AISTATS, 2010, pp. 249–256.

[3] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,”

Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,

no. 8, pp. 1735–1780, 1997.

[5] K. Ethayarajh, “How contextual are contextualized word representations? comparing the

geometry of bert, elmo, and gpt-2 embeddings,” 2019, pp. 55–65.

[6] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, and Z.

Chen, “Gshard: Scaling giant models with conditional computation and automatic sharding,”

in ICLR, 2021.

[7] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On the dangers of stochas-

tic parrots: Can language models be too big?” In Proceedings of the ACM Conference on

Fairness, Accountability, and Transparency, 2021, pp. 610–623.

[8] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S. Pande, “Folding@home:

Lessons from eight years of volunteer distributed computing,” in IEEE International Sympo-

sium on Parallel & Distributed Processing, 2009, pp. 1–8.

[9] Y. Bengio, “Learning deep architectures for ai,” Machine Learning, vol. 2, no. 1, pp. 1–127,

2009.

[10] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61,

pp. 85–117, 2015.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–

444, 2015.

[12] D. Poole, A. Mackworth, and R. Goebel, Computational Intelligence. Oxford University Press,

1998.

65



[13] H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nature Photonics,

vol. 4, no. 5, pp. 261–263, 2010.

[14] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I. Stoica, et al., “A view of cloud computing,” Communications of the ACM,

vol. 53, no. 4, pp. 50–58, 2010.

[15] H. Taine, On intelligence. Holt & Williams, 1872, vol. 1.

[16] U. Neisser, “The concept of intelligence,” Intelligence, vol. 3, no. 3, pp. 217–227, 1979.

[17] H. E. Gardner, Frames of mind: The theory of multiple intelligences. Basic books, 2011.

[18] R. J. Sternberg, V. Glaveanu, S. Karami, J. C. Kaufman, S. N. Phillipson, and D. D. Preiss,

“Meta-intelligence: Understanding, control, and interactivity between creative, analytical,

practical, and wisdom-based approaches in problem solving,” Journal of Intelligence, vol. 9,

no. 2, p. 19, 2021.

[19] D. L. Barack and J. W. Krakauer, “Two views on the cognitive brain,” Nature Reviews

Neuroscience, vol. 22, no. 6, pp. 359–371, 2021.

[20] S. Dehaene, H. Lau, and S. Kouider, “What is consciousness, and could machines have it?”

Robotics, AI, and Humanity, pp. 43–56, 2021.

[21] A. D. Wilson and S. Golonka, “Embodied cognition is not what you think it is,” Frontiers in

Psychology, vol. 4, p. 58, 2013.

[22] K. R. Chowdhary, “Natural language processing,” in Fundamentals of Artificial Intelligence.

Springer India, 2020, pp. 603–649.

[23] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-

hghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Trans-

formers for image recognition at scale,” in ICLR, 2021.

[24] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech recognition using deep

neural networks: A systematic review,” IEEE Access, vol. 7, pp. 19 143–19 165, 2019.

[25] C. Robin and S. Lacroix, “Multi-robot target detection and tracking: Taxonomy and survey,”

Autonomous Robots, vol. 40, no. 4, pp. 729–760, 2016.

[26] J. T. Cacioppo and G. G. Berntson, “Social psychological contributions to the decade of the

brain: Doctrine of multilevel analysis.,” American Psychologist, vol. 47, no. 8, p. 1019, 1992.

[27] G. Beni and J. Wang, “Swarm intelligence in cellular robotic systems,” in Robots and biological

systems: towards a new bionics? Springer, 1993, pp. 703–712.

[28] N. Siddique and H. Adeli, “Computational intelligence: Synergies of fuzzy logic, neural net-

works intelligent systems and applications,” Proceedings of Spie the International Society for

Optical Engineering, vol. 6701, no. 4, pp. 477–486, 2013.

[29] A. M. Turing et al., “On computable numbers, with an application to the entscheidungsprob-

lem,” Journal of Mathematics, vol. 58, no. 345-363, p. 5, 1936.

66



[30] S. K. Scott, “From speech and talkers to the social world: The neural processing of human

spoken language,” Science, vol. 366, no. 6461, pp. 58–62, 2019.

[31] D. Karakaya, O. Ulucan, and M. Turkan, “Electronic nose and its applications: A survey,”

International Journal of Automation and Computing, no. 11, pp. 1–31, 2019.

[32] N. J. Emery, “Cognition, evolution, and behavior,” Animal Behaviour, vol. 80, no. 4, pp. 769–

770, 2010.
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