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Abstract—Decentralized Storage Networks (DSNs) can gather storage resources from mutually untrusted providers and form
worldwide decentralized file systems. Compared to traditional storage networks, DSNs are built on top of blockchains, which can
incentivize service providers and ensure strong security. However, existing DSNs face two major challenges. First, deduplication can
only be achieved at the directory-level. Missing file-level deduplication leads to unavoidable extra storage and bandwidth cost. Second,
current DSNs realize file indexing by storing extra metadata while blockchain ledgers are not fully exploited. To overcome these
problems, we propose FileDAG, a DSN built on DAG-based blockchain to support file-level deduplication in storing multi-versioned
files. When updating files, we adopt an increment generation method to calculate and store only the increments instead of the entire
updated files. Besides, we introduce a two-layer DAG-based blockchain ledger, by which FileDAG can provide flexible and
storage-saving file indexing by directly using the blockchain database without incurring extra storage overhead. We implement FileDAG
and evaluate its performance with extensive experiments. The results demonstrate that FileDAG outperforms the state-of-the-art
industrial DSNs considering storage cost and latency.

Index Terms—Decentralized storage networks, DAG-based blockchain, deduplication, file indexing
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1 INTRODUCTION

Blockchain technology is allowing for decentralized com-
puting by creating decentralized trust. This has led to
the development of various trustless applications, such as
decentralized learning [1], trusted IoT data collection [2],
and blockchain-based cloud services [3]. To improve the
performance and efficiency of decentralized computing, de-
centralized storage networks have been created to decrease
the amount of redundant storage needed for blockchain.
Decentralized Storage Networking is an emerging technol-
ogy that can aggregate free storage spaces offered by in-
dependent storage providers and self-coordinate to provide
data storage and retrieval services. Compared to traditional
storage networks [4], [5], a decentralized storage network
(DSN) is operated on a blockchain system, which works
as an incentive layer. Blockchain rewards miners who pro-
vide reliable storage to clients, and thus enables an open
manageable storage market. Besides, blockchain can act as
a state machine replication protocol to ensure the consis-
tency of file storage against Byzantine nodes. Leveraging
blockchain technologies, DSNs (e.g., Filecoin [6], Storj [7],
Sia [8], Swarm [9]) provide worldwide, robust and secure
storage services among mutually untrusted users. Filecoin,

• H. Guo, M. Xu, J. Zhang, D. Yu and X. Cheng are with the School of
Computer and Science and Technology, Shandong University. Email:
{ghc, zjh}@mail.sdu.edu.cn, {mhxu, dxyu, xzcheng}@sdu.edu.cn

• C. Liu was with the Department of Computer Science, The George
Washington University and now with Ernst & Young. E-mail:
liuchunchi@gwu.edu

• S. Dustdar is with the Research Division of Distributed Systems, TU
Wien. Email: dustdar@dsg.tuwien.ac.at

Corresponding author: Minghui Xu.

as the most popular DSN, was built on top of InterPlanetary
File System (IPFS) and adopts a novel proof-of-replication
method proving that data is correctly stored. As storage
infrastructures, DSNs have demonstrated their advantages
in applications such as Web 3.0 [10], data sharing [11],
and content delivery [12]. However, current DSN schemes
overlook the following two problems, which significantly
affect their performance.
[P1] Deduplication in multi-versioned files. Supporting
multi-versioned file storage is necessary in DSNs since files
are usually dynamically changed or edited and users need
to query different versions of a file from time to time.
However, files on current DSNs are not editable. Users have
to upload all versions of a file, resulting in high redundancy.
Even though some DSNs have made efforts in support-
ing directory-level deduplication, they cannot avoid fine-
grained file-level redundancy. For example, Filecoin realizes
directory-level deduplication using Merkle DAG [13], in
which objects including files, file chunks, and directories are
organized into a Merkle DAG based on their nested rela-
tionships, to remove duplicated objects among different di-
rectories; but redundencies among different file versions are
still unavoidable. Missing file-level deduplication causes the
waste of storage and bandwidth. Nevertheless, achieving
file-level deduplication is challenging. Due to encryption
and obfuscation applied on files, correlation among different
versions is implicit in current DSNs, making it very hard to
find duplicated contents and establish relationships among
multiple versions.
[P2] File indexing with blockchain. Traditional version
control systems commonly adopt a DAG-based version
graph [14] to describe the relationships of multiple versions
(also called derivative relationships) and help establish file
indexing. However, such a graph should be maintained
by a centralized server, e.g., Github [15]. In current DSNs,
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a centralized server is not available, and the blockchain
database simply stores file information in serialized trans-
actions regardless of the derivative relationships. There-
fore, it is unavoidable for each user to locally maintain an
isolated database for additional metadata (e.g., a version
graph) to ease its file manipulations such as create, version
query, modification, merge, and fork. Furthermore, such a
deficiency prevents a blockchain from serving many data-
intensive applications since it takes a large amount of stor-
age but cannot directly answer file queries in many cases,
making itself like a “burden”.

To address these problems, we propose FileDAG, a DSN
system built on top of a DAG-based blockchain. FileDAG
makes use of an increment-based storage mechanism to
realize file-level deduplication in storing multi-versioned
files. We apply increment generation algorithms to calcu-
late the increment, an edit script that can transform a file
from its previous version to its current version. Storing
increments achieves fine-grained deduplication at file-level
and saves storage space. Besides, we adopt a two-layer
DAG-based blockchain ledger, which organizes transactions
according to their derivative relationships. Facilitated with
this ledger, one can manipulate files without establishing
additional databases. Moreover, DAG-based ledgers can
provide higher concurrency compared to chain-based ones
[16], [17], making FileDAG being able to handle simulta-
neous queries. With these design considerations, FileDAG
achieves low storage cost, high system throughput, and
efficient file indexing.

To validate the performance of FileDAG, we build
a full-fledged FileDAG over Filecoin, by implement-
ing the increment mechanism and the two-layer ledger
mentioned above. Such an implementation ensures that
FileDAG not only inherits all the nice features of File-
coin but also extends Filecoin’s functionality to include
effective file-level deduplication and efficient file index-
ing. FileDAG is a practical system possessing industrial-
grade performance, as is Filecoin. To broaden the ap-
plication of and welcome examinations on FileDAG,
we open-source our designs at GitHub (the two layer
ledger: https://github.com/zhuaiballl/DAG-Rider; incre-
ment module: https://github.com/zhuaiballl/dyaic).
Contributions. Compared to the existing works, our unique
contributions can be summarized as follows:

1) To our best knowledge, FileDAG is the first DSN that
supports file-level deduplication for multi-versioned
files. We introduce an increment generation method to
calculate and store the increment between two neigh-
boring versions rather than storing the entire new
version. This significantly reduces the storage cost and
bandwidth usage caused by dynamical file changes.

2) To support file indexing, FileDAG adopts a two-layer
DAG-based blockchain ledger. The lower layer sup-
ports operations including create, update, merge and
fork while the upper layer ensures ledger consistency.
This design integrates version graphs with a DAG-
based ledger, thereby saving extra storage space for file
indexing.

3) Finally, we provide a practical full-fledged implemen-
tation of FileDAG and evaluate its performance with
extensive experiments. The results demonstrate that

FileDAG outperforms the state-of-the-art DSNs consid-
ering storage cost as well as the latency of put and get
operations.

Organization of the paper. The rest of this paper is or-
ganized as follows. Section 2 summarizes related works
and presents preliminary knowledge. Section 3 details our
FileDAG design and demonstrates how it works. Key prop-
erties and performance evaluation results of FileDAGE are
respectively reported in Section 4 and Section 5. Finally, we
summarize this paper in Section 6 and discuss our future
research.

2 RELATED WORK AND PRELIMINARIES

2.1 Related Work
2.1.1 Decentralized Storage Network
Filecoin [6], developed by Protocol Labs, is a DSN built on
top of IPFS [18]. It proposes Expected Consensus to adjust
the winning probability of a miner based on the quantity
and quality of its provided storage. Filecoin generates a
hash-based content identifier (CID) for each file object (a
file, a file chunk, or a directory), and allows users to reuse
existing file objects for avoiding duplicatively storing them.
Besides, CIDs form a Merkle DAG depicting the nested
relationship of the file objects. To realize block concurrency,
Filecoin introduces tipset, which allows multiple blocks
to be confirmed at the same block height. Storj [7] and
Swarm [9] were developed based on Ethereum [19]. They
make use of Proof-of-Stake consensus1 and a chain-based
ledger that doesn’t support concurrency of blocks. Storj
employs Object keys as globally unique identifiers of its file
objects while Swarm generates addresses as identifiers for
file chunks. These two DSN systems both achieve directory-
level deduplication. Sia [8] adopts PoW as its consensus
protocol. It builds a Merkle tree for each file and takes the
Merkle root hash as the identifier of the file, thus supporting
directory-level deduplication. The ledger structure of Sia is
a chain, thus it cannot process blocks concurrently. Besides,
Sia employs the Threefish [20] algorithm to encrypt files,
making it difficult to support version indexing.

2.1.2 File Indexing
File indexing is the process of mapping files with identifiers
that can be efficiently searched. Centralized storage systems
employ extra databases to record identifiers that are mapped
to the locations of the corresponding files [21]. Traditional
distributed storage networks typically use distributed hash
tables to realize file indexing [4], [22], [23]. Decentralized
storage networks, i.e., DSNs, use content addressing tech-
nology based on distributed hash tables for file indexing.
Nevertheless, current methods in DSNs are not sufficiently
effective as the complete derivative relationships are hardly
retained. For example, IPLD [18] is a data model adopted in
Filecoin to describe a file or a directory as an aggregate of
components linked together. With IPLD, each file is mapped
to a unique hash-based identifier, and the identifier of a
directory is a hash of the directory contents combined with
pointers to the files. By this way, IPLD links files and

1. Since September 15th, 2022, Ethereum has switched its consensus
protocol from Proof-of-Work to Proof-of-Stake
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directories together for file indexing. Adding, removing,
or changing a file under a directory result in a different
identifier of the directory, and the derivative relationship
between two versions of the directory can be inferred be-
cause the two identifiers carry the pointers to the files that
stay unchanged. But unfortunately IPLD fails to depict the
derivative relationships among different versions of a file.
Additionally, to achieve verifiability and immutability, files
in DSNs are always encrypted and then made public; thus
their metadata is unaccessible without a valid secret key,
making file indexing a challenging problem. Based on the
above analysis, one can see that the current file indexing
approaches are immature and inefficient.

File provenance requires to track the derivation history
of a file based on file indexing. Muniswamy-Reddy et
al. [24] designed a storage system that can automatically
collect and maintain provenance data. They claimed that
provenance data should be maintained separately to serve
different purposes. Provchain [25] embeds the provenance
data into blockchain transactions to improve efficiency and
avoid additional storage cost. This incentives us to make
blockchain undertake more responsibility in file indexing.

2.1.3 Summary

TABLE 1: Comparison of FileDAG with Existing DSNs

Consensus
Algorithm Ledger On-Chain

DR
Deduplication

Level

Filecoin [6] Expected
consensus

DAG
(tipset) 7 Directory

Storj [7] PoW Chain 7 Directory
Sia [8] PoW Chain 7 Directory
Swarm [9] PoW Chain 7 Directory
FileDAG DAG-Rider† DAG X File
DR Derivative Relationship
†Modified

A summary on the major adopted technologies and
properties of FileDAG and existing DSNs is reported in
Table 1. One can see that current DSNs (e.g. [6]–[9]) only
achieve directory-level deduplication, which means that
only files can be reused but the common contents shared
by different versions of a file are still stored redundantly.
Missing file-level deduplication leads to the waste of storage
and bandwidth. Additionally, Storj and Swarm built on
Ethereum adopt a chain-based ledger, which stores transac-
tions regardless of their derivative relationships. Sia doesn’t
consider storing derivative relationship between files either.
Filecoin packs multiple blocks in a tipset and still ignores
on-chain derivative relationships. Lacking a depiction on the
complete derivative relationships among files render these
systems fail to provide effective file indexing.

2.2 Preliminaries

In this subsection, we provide the preliminary knowledge
that are needed by our FileDAG design.
Decentralized storage network (DSN). DSNs aggregate
storage offered by multiple independent storage providers
and self-coordinate to provide reliable and secure global
data storage and retrieval services to clients without relying

on any trusted third party. Generally speaking, the work-
flow of a DSN consists of two phases: put and get. Users
put their files into the storage network and also get files
with valid access keys from the network. A DSN must guar-
antee data integrity, retrievability and fault tolerance. We
explain two techniques heavily used in FileDAG, namely
content identifier (CID) and Proof-of-Storage (PoS). CID, as
a fingerprint, is a hash-based unique identifier that maps to
a data chunk. In FileDAG, a client can generate CIDs for
each original file or increment. PoS helps miners prove that
they have stored files physically. In Filecoin, a miner has
to periodically generate proofs to demonstrate that files are
indeed locally stored on hardware, which mitigates Sybil
attacks.
DAG-based blockchain. A blockchain is a decentralized
tamper-proof append-only ledger. Nodes in a blockchain
network achieve consensus on the ledger using a consensus
algorithm. According to the ledger structure, blockchains
can be categorized as chain-based or DAG-based. For a
chain-based ledger, transactions are packed into blocks.
Each block is hash-chained to its previous block to ensure
consistency and persistence [26]. As there can only be one
block at a block height, chain-based blockchains have weak
concurrency. Bitcoin-NG [27] intends to improve concur-
rency by adding micro blocks alongside a main chain. How-
ever, this method does not fundamentally improve concur-
rency. Therefore, DAG-based blockchains emerge [16], [28],
[29]. In a DAG-based blockchain, each block (or transaction)
can point to multiple previous blocks and form a directed
acyclic graph (DAG). Filecoin makes use of tipset to increase
network throughput, where a tipset is a set of blocks, and
the blockchain in Filecoin is a chain of tipsets. Blocks in a
tipset can point at multiple blocks in the previous tipset.
As a result, blocks in Filecoin form a DAG. But tipset is
not flexible enough to support file indexing; therefore we
propose a two-layer DAG-based blockchain in FileDAG to
address this issue.

3 FILEDAG DESIGN

In this section, we begin with the design objectives and
overview of FileDAG and then describe its design details.

3.1 Design Objectives and Strawman

Design Objectives. We design FileDAG following three
objectives: (1) Consistency. Honest nodes should agree on
the same view of the blockchain ledger and the same set
of proofs of storage. Deals of storage should be irreversible.
(2) Deduplication. Files stored on a DSN can share com-
mon components, especially in a multi-version file system.
FileDAG should use efficient deduplication methods to save
storage space. (3) Fast put & get. The design of FileDAG
should consider both bandwidth usage and latency; any
mechanism that can help to save storage space should
not bring too much extra latency. The overall latency of
putting and getting a file in FileDAG should be low despite
spending time on the increment generation.
Strawman. Here we provide a strawman as shown in Fig. 1
to illustrate the whole picture of FileDAG. There are two
entities in FileDAG, client and miner. Clients pay tokens
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𝐓𝐱 𝒄𝒓𝒆𝒂𝒕𝒆

𝐓𝐱𝒖𝒑𝒅𝒂𝒕𝒆+Proof𝐓𝐱 𝒄𝒓𝒆𝒂𝒕𝒆+Proof

3.2 download

𝐓𝐱𝒖𝒑𝒅𝒂𝒕𝒆

clientminer miner

2.1 compare
- =

3.3 compare

- =

1.1 upload 2.2 upload

miner

clientminer miner

Fig. 1: A strawman design of FileDAG

to use storage, while miners earn tokens by providing
services. Miners pledge storage to the FileDAG network
to provide storage and retrieve services by helping clients
search information on a blockchain. All miners maintain the
blockchain ledger of FileDAG.

The workflow can be divided into two phases, put and
get. In the put phase, a client can either create an original
file or update an existing one on the FileDAG network.
An original file should be uploaded to a miner [Step 1.1].
The miner then generates a transaction TXcreate for the file
and broadcasts the transaction to the blockchain network
[Step 1.2]. To update a file, the client first compares the new
version to the previous version to get the increment [Step
2.1]; then the increment is sent to a miner who can issue the
corresponding TXupdate (or TXmerge, TXfork). Note that only
when transactions are confirmed on the blockchain can the
put phase succeed. In the get phase, a client first sends a
retrieval request [Step 3.1], then download the original file
and the increments from the file holders to obtain a specific
version [Step 3.2]; finally, the client assemble all fragments
to recover the file [Step 3.3].

In the following subsections, we detail the cores of
FileDAG, including the increment generation, the two-layer
DAG-based ledger, and the file recovery components. Note
that our elaboration on increment generation focuses on
the storage of multi-versioned files; but the idea is ap-
plicable to the more general case where a client specifies
the relationship between two files, which is common in
applications such as recreation of digital arts and quotes of
contents. Table 2 lists frequently used symbols to facilitate
our presentation.

3.2 Increment Generation
Increment mechanism has been widely adopted in cloud
computing to shorten backup windows and save stor-
age [30]. As we have discussed in our strawman design,
FileDAG updates files by uploading increments instead of
an entire new file. We propose an increment generation
method based on our insight that files on DSNs are not
simply static but changes over time. Such dynamicity can be
found everywhere especially when storing codebases, med-
ical records, mobile applications etc. Neighboring versions

TABLE 2: Summary of Symbols

Symbol Description

G DAG-based ledger of FileDAG
V the set of vertices in G
El the set of edges in the lower layer of G
Eu the set of edges in the upper layer of G
v version of a multi-versioned file
∆ increment
TX transaction
N network size
f the maximum number of Byzantine fault nodes to tolerate

CIDv Content ID of v
REV revision operation
ADD addition operation
vt the t-th version of a multi-versioned file
τt the type of operation that outputs vt
St size of vt
It size of the increment between vt and vt−1

E(·) expectation operator
C expected storage cost without increment-based storage
C′ expected storage cost of increment-based storage
n the number of versions

of a file usually share a large amount of duplicate contents.
Our increment generation method intends to identify such
contents, which later will be used for file recovery.

In concrete, FileDAG adopts patch algorithms to gener-
ate increments for multi-versioned files. To achieve a better
performance, we adaptively use two patch algorithms, i.e.,
Myers [31] and BSDiff [32], to process text files and non-text
files (binary files), respectively, rather than rely on one algo-
rithm. Assume we have two files, an old one A (of size |A|)
and a new one B (of size |B|). Both Git and diff commands
in Linux use Myers, which takesO(|A|+|B|+D2) expected-
time under a basic stochastic model [31], where D is the size
of the minimum edit script between them. The Myers algo-
rithm can quickly generate patches for text files, but cannot
efficiently handle binary files. When forcing Myers to treat
binary files as text files, the algorithm runs slowly and the
complexity of generating an increment becomes O(|A||B|).
To process non-text files, we choose BSDiff which runs in
O((|A|+ |B|) log |A|) time. Besides, BSDiff has been widely
used to generate patch files for mobile applications, which
proves its effectiveness. In our implementation, FileDAG
adaptively switches between Myers and BSDiff. It feeds the
files into an increment module (see Fig. 5), which selects
Myers for text files and BSDiff for non-text files to generate
increments. In addition, we employ a small trick in which if
|∆AB | > |B|, FileDAG takes B as a new original file instead
of storing the increment ∆AB .

To update a file, the client sends the increment to a miner
who responds with a CID. Then the miner generates a proof
for this increment following the Proof-of-Storage protocol.
In our implementation, we adopt the same PoS protocol as
Filecoin since FileDAG does not focus on improving this
process.

3.3 Two-Layer DAG-based Ledger
FileDAG uses a two-layer DAG-based ledger denoted as
G = (V,El, Eu). Both layers share the same set of vertices
V . El and Eu are respectively the sets of edges in the
lower layer and the upper layer. Each vertex in the ledger
represents a transaction (a file version). Edges in the lower
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layer are used to describe derivative relationships between
neighboring versions while the upper layer adds more
edges to ensure consistency.
Lower Layer El. Fig. 2 demonstrates an example lower
layer El, in which each vertex (i.e., a transaction) also
corresponds to a specific file version since it contains the
CID of an original file or an increment. Each edge represents
the derivative relationship between two vertices.

We allow four different types of transactions to de-
scribe operations launched by a client, including create,
update, merge and fork, where the latter three depict the
derivative relationships among different file versions. Cor-
respondingly, an edge in El represents an update, or a
merge, or a fork operation. A create transaction is used
to record a new original file. When a client creates a new
file, it transfers the file to a miner, then constructs a create
transaction TXcreate ← 〈CREATE,CIDv0〉 and broadcasts it
to blockchain, where CIDv0 is the identifier generated for
the file. To verify that a transaction is sent by a client, each
transaction should be correctly signed by the client’s secret
key. For convenience and clearance, we omit signatures
when describing transactions in the rest of this paper. When
a client intends to put an increment to FileDAG, it sends an
update transaction TXupdate ← 〈UPDATE, v,CID∆〉, where
v is the version that the update follows, and CID∆ is the
identifier of the increment.

A merge transaction TXmerge ← 〈MERGE, v, v′〉 com-
bines two version branches v and v′. A merge operation
does not require adding new information therefore it does
not generate increments. We only allow FileDAG to merge
two versions at a time because merging multiple versions
at once incurs a large complexity of addressing content
conflict; but FileDAG can merge multiple versions by calling
the merge operation multiple times. A fork transaction
TXfork ← 〈FORK, v, V ′〉 can fork a version v to get a set
of new versions denoted by V ′. Each new version contains
an empty increment but is assigned a new CID. With fork
operations, users can create and work on their own branches
without the need of making new copies.

r r+1 r+2 r+3 r+4 r+5

Miner 0

Miner 2

Miner 1

Miner 3

Round ...

...

...

...

...

Merge

Fork

M

Original file Increment Version mergeM

create

update

Version fork

Fig. 2: Lower layer El and the four types of transactions

Upper Layer Eu. The DAG ledger formed by El and V
has no consistency guarantee as it might be disconnected,
making a miner unaware of a newly added transaction if the
transaction is not linked to the ledger component stored by

the minor. For example in Fig. 2, Miner 0 does not know the
newly added transaction created by Miner 3 at round r + 3.
This implies that honest miners may have different views of
the ledger and fail to output the same result for a query, thus
breaking the ledger’s consistency property. To overcome
such a problem, we add extra edges as shown in Fig. 3 (the
dotted arrows) to form the upper layer edge set Eu. More
specifically, we modify the ledger construction algorithm in
DAG-Rider [33] to construct Eu. In DAG-Rider, each vertex
is associated with a round number (see Fig. 3). Each miner
broadcasts one transaction (creating one vertex) per round
and each vertex references at least 2f +1 vertices in the pre-
vious round, where f is the maximum number of Byzantine
nodes to tolerate. That is, to advance to round r+1, a miner
first needs to identify 2f+1 vertices constructed by different
miners at round r. Such a DAG construction is proved to
achieve Byzantine atomic broadcast [33], which possesses a
strong consistency guarantee. Note that one can adopt other
approaches to construct Eu, as long as the ledger formed
by all edges in El ∪ Eu realizes Byzantine atomic broadcast.
More details about the Byzantine atomic broadcast will be
discussed in Section 4.

The whole procedure of constructing our two-layer
DAG-based ledger can be summarized as follows. At any
round, an incoming transaction first points to those con-
firmed in the previous rounds, following the derivative
relations (update, merge, or fork) to contribute edges to El;
then we follow appropriate rules to select a number of other
confirmed transactions and link the incoming transaction to
them to construct edges for Eu. The DAG ledger formed by
El ∪ Eu has strong consistency guarantee (see Section 4).

r r+1 r+2 r+3 r+4 r+5

Miner 0

Miner 2

Miner 1

Miner 3

Round ...

...

...

...

...

M
𝑣! 𝑣"𝑣# 𝑣$

𝑣% 𝑣&

𝑣' 𝑣(

Original file Increment Version mergeM Version fork

Fig. 3: Upper layer Eu

3.4 File Recovery
Based on the lower layer of the DAG-based ledger, a miner
can easily gather file fragments needed to recover a file.
Considering that files are stored as increments for different
versions, we propose Algorithm 1 to retrieve versions and
recover the queried file. This algorithm consists of two
functions, namely Retrieve() and Recover().

First, the miner runs Retrieve(v) (line 2-11) to obtain
the versions of all fragments needed to recover the file of
version v. Retrieve(v) starts breadth first search (BFS) at ver-
sion v traversing the edges in El, and stops iteration when
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meets the version corresponding to a complete file. Using
BFS rather than DFS (depth first search) can ensure that all
the increments are marked in a reverse topological order
without a sort procedure whose time complexity might be
superlinear. All the traversed nodes are placed in the array
versions. When BFS stops, Retrieve(v) reverses the order of
the array versions and then returns it to the client (line 12).
After receiving versions, the client runs Recover(versions) to
download the original file and the increments in versions,
patch the increments to the original file following the order
in versions, and finally output the requested file (line 15-
20). The Patch algorithm takes either Myers or BSDiff, de-
pending on whether the file is a text or not, as explained in
section 3.2. These two algorithms both have time complexity
of O(|A|+D), where |A| is the size of the file being patched
and D is the size of the increment. Thus, the overall time
complexity of file recovery is linear to the total size of the
original file and the increments.

Algorithm 1: File Recovery

1 //Find vertices of a requested version on a ledger
2 Function Retrieve(v)
3 versions[]← an empty array
4 Q← an empty queue
5 Q.Push(v) //an empty queue to store versions
6 while Q is not empty do
7 temp← Q.Dequeue()
8 versions.Append(temp)
9 if temp.type 6= origin then

10 for each pre ∈ temp.previousVersions do
11 Q.Push(pre)

12 Reverse and then return versions
13 //Recover a file using file fragments
14 Function Recover(versions)
15 Download all file fragments as Data
16 v0 = versions[0]
17 file← Data[v0] //initialize file to an original one
18 for each v ∈ versions with v.type=increment do
19 Patch(file, Data[v])

20 return file

3.5 FileDAG Workflow
To end this section, we provide the workflow of FileDAG,
which consists of five major steps including Create, Update,
Retrieve, Download and Recover, as illustrated in Fig. 4.
Create. When creating an original file v0 in the FileDAG
network, a client first calculates CIDv0 as the fingerprint of
v0. The client then sends a message containing CIDv0 to a
miner that might later provide storage services. If the miner
is willing to store the file, it starts synchronizing v0 with
the client. After synchronization, the client signs and sends
a create transaction 〈CREATE,CIDv0〉 to the blockchain
ledger. Then the miner generates a proof-of-storage for v0

and settle down the received transaction.
Update. The main difference between creating and updating
a file is that updating a file needs to store an increment
rather than the entire complete file. Suppose we have a

Create

Retrieve

Update

Download
& Recover

CREATE, CID𝒗𝟎

use 𝑣" to generate CID#"

𝑣"

use 𝑣, 𝑣 $ to generate CID## ,∆, CID∆

UPDATE, CID∆ , CID𝒗 ,CID𝒗#

∆

RETRIEVE, CID𝒗#
CID𝒗 , CID∆ = RequireVertices CID𝒗#

CID𝒗 ,CID∆

DOWNLOAD, CID𝒗 , DOWNLOAD, CID∆
𝑣, ∆

use 𝑣, ∆ to recover 𝑣 $

UPDATE, CID∆ , CID𝒗 ,CID𝒗#

RETRIEVE, CID𝒗#
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Fig. 4: Protocol sequence diagram of FileDAG.

version v and a new version v′. The increment generation
method provides the client with an increment denoted by
∆. Then the client calculates the CID of ∆ and sends ∆ to a
storage miner who is responsible for generating a proof and
settling down the transaction. Recall that when updating a
file, a client can issue three types of transactions, namely
update, merge and fork.
Retrieve. Fetching a file with a specific version in FileDAG
consists of two steps: Retrieve and Recover. A client sends
a retrieve message containing CIDv to a miner that provides
retrieval services to get the list of CIDs to recover v. After
receiving a retrieve message, the miner first looks up in
its DAG ledger to locate CIDv and then calls function
Retrieve(CIDv) and forwards its output versions to the client.
In the example illustrated in Fig. 4, the CID list contains
CIDv and CID∆.
Download & Recover. After obtaining versions, the client
calls function Recover(versions) to downloads all related file
fragments based on versions. For each file fragment, the
client needs to send a download message along with the
CID to the miner who stores the data. After gathering all
the required components, the client patches the increments
to the original file to recover file v.

4 ANALYSIS

In this section, we analyze two properties of FileDAG:
consistency and efficiency (in terms of storage cost).

4.1 Consistency
Byzantine atomic broadcast [33] guarantees the following
properties:
• Agreement. If an honest node p commits vertex i in a

DAG, then every honest node p′ eventually commits i.
• Integrity. For each round r and node p, an honest node
p′ accepts at most one vertex proposed by p in round r.

• Validity. If an honest node p proposes a vertex i in
round r, then every honest node p′ eventually commits
i.

• Total order. If an honest node p commits vertex i before
committing vertex j, then no honest node commits
vertex j without first committing vertex i.

The construction of the two-layer DAG ledger (El ∪ Eu)
in FileDAG follows the algorithm of DAG-Rider; thus El ∪
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Eu can be reduced to DAG-Rider’s ledger. As DAG-Rider is
a byzantine atomic broadcast implementation which guar-
antees the above properties, the two-layer DAG ledger of
FileDAG possesses these properties as well.

Definition 4.1. (Consistency of multi-version DSN). For any
version v of a file, an honest node can be convinced by the PoS
proof that v is available in the FileDAG network only when v is
indeed available; and if an honest node claims that v is available,
then all other honest nodes claim the same.

Theorem 1. FileDAG meets consistency of multi-version DSN.

Proof. First, the set of PoS committed in the FileDAG ledger
is consistent. Based on the agreement and validity of byzan-
tine atomic broadcast [33], each PoS proposed by an honest
node is committed by all honest nodes, and every honest
nodes commit the same set of PoSes.

Second, the consistency of PoS verification, i.e., for any
version v of a file, if any honest node p accepts that v
is available by verifying the PoS proofs, then every other
honest node p′ accepts that v is available if p′ verifies the
corresponding proofs. FileDAG employs the PoS algorithm
of Filecoin. Assuming the soundness of the PoS algorithm,
i.e., a miner can output a valid PoS of a file if and only if it is
able to output a copy of the file, every honest node outputs
the same verification result for the same PoS. Provided
the consistency of PoS committed in the FileDAG ledger,
the array of CID versions output by function Retrieve(v) is
determined for determined v, and thus the consistency of
PoS verification is satisfied.

Last, FileDAG meets consistency of multi-version DSN.
Assume that the diff algorithms and the corresponding
patch algorithms are correct so that when comparing two
files (A and B), a diff algorithm always generates the same
increment, and patching the increment to A always yields
B. Combining the ledger consistency and the consistency of
PoS verification, one can see that the consistency of multi-
versioned files is proved.

4.2 Storage Cost
Next we analyze the storage cost of FileDAG. Let St denote
the size of the tth version of a multi-versioned file and It
denote the size of the increment that the tth version differs
from its previous version. After analyzing the growth of sev-
eral GitHub repositories, we found that for each repository,
typically there are two types of modifications for its growth,
namely revision and addition. A revision (REV) operation
on a repository does not significantly change the size of the
repository, and the size of increment between the updated
version and its previous version is much smaller than that of
the whole repository. An addition (ADD) operation usually
adds a large quantity of contents to a repository. For most
repositories under our analysis, the number of revision
operations is about ten or hundred times of that of the
addition operations. But the size of the increment brought
by an addition operation is ten or hundred times of the
increment brought by a revision operation. To analyze the
storage cost of FileDAG, we make a few assumptions on the
growth of a multi-versioned file.

Consider the initial version of a file as an empty file with
size zero, then the creation of a file can be regarded as an

addition operation. In other words, we have S0 = 0 and S1

is the length of the original file.
For each version vt, t > 1, the type τt of operation that

outputs vt can be regarded as a random variable (and the
sequence of operations observed by each node is consistent,
as proved in Theorem 1). Let

Prob(τt = ADD) = p,Prob(τt = REV) = 1− p

and

It =

{
rt τt = REV
at τt = ADD

(1)

For a specific multi-versioned file, one can assume that the
ratios 1−p

p < 1 and E(r)
E(a) > 1 are constants. Then we have

1− p
p
· E(r)

E(a)
= O(1)

Theorem 2. Let C and C ′ denote the expected storage cost of
storing a file having n versions without and with the increment
mechanism, then we have C ′ = O(n−1)C .

Proof.
E(In) = pE(a) + (1− p)E(r),

E(Sn) =
n∑

t=1

pE(a) = npE(a)

C =
n∑

t=1

E(St) =
n(n+ 1)

2
pE(a) = O(n)E(Sn).

C ′ =
n∑

t=1

E(It) = npE(a) + n(1− p)E(r).

Based on our assumption,

1− p
p
· E(r)

E(a)
= O(1)

then
C ′ = npE(a)(1 +O(1)) = O(1)E(Sn).

Therefor, the expected storage cost of FileDAG to keep all
versions of a multi-versioned file is nearly equal to the size
of the newest version of the file, while traditional solutions
cost O(n) times in expectation.

C ′ = O(n−1)C.

In section 5, we report our experimental results to further
support the above conclusion.

5 PERFORMANCE EVALUATION

To evaluate the performance of FileDAG, we carry out real
experiments. Specifically, we implement FileDAG based on
the description in Section 3, and perform the full processes
of put and get operations.
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Fig. 5: Block diagram of FileDAG

5.1 Implementation
As FileDAG shares many common properties with File-
coin, we implement it by making modifications on Filecoin.
This also provides a chance for us to objectively com-
pare FileDAG with Filecoin. Venus, which has a modular
design and was written in Golang, is one of the four
main implementations of Filecoin. We fork a branch from
Venus (version v1.1.3-rc1) to build FileDAG. A typical Venus
deployment consists of three components, namely Public
Service, Client, and Storage Provider (Storage Miner) [34].
Correspondingly, FileDAG has the same three components
and the modules included in each component are illustrated
in Fig. 5. Specifically, we build the Consensus and Increment
modules from scratch, and they are marked green in Fig. 5.
Additionally, we make adaptations on the Market modules
(Market Client and Market Server) and the Storage Manager
of Venus and reuse them in FileDAG – they are colored blue
in Fig. 5. The three modules marked gray, i.e., Node Authen-
tication, Messager, and Gateway, are directly inherited from
Venus. The Increment module is implemented with 1096
lines of code in Golang and is included in Client. It consists
of an Increment Generator and an Increment Accumulator,
which can be deployed separately, as a data consumer who
does not create or update files may not need the Increment
Generator while a data provider who does not download
files may not need the Increment Accumulator. We build a
brand-new Consensus module to replace the one in Venus
and develop our two-layer DAG ledger for FileDAG. The
upper layer of the ledger is realized by an independent
prototype of DAG-Rider with 424 lines of code in Golang.
Note that the lower layer is implemented when revising
the Market Client. We also modify the Market Server in
Storage Provider to attach version control information when
transferring files/increments, and add the Retrieve() func-
tion to the Storage Manager module to obtain the versions
of all fragments needed to recover the file of a particular
version. Modifications on Venus take 603 lines of code in
total. Other modules of Venus that are not mentioned in this
paper stay as they are so that we can objectively evaluate
the performance enhancement brought by our innovation.
All components of FileDAG implementation are written in
Golang, and we build and test FileDAG with go1.17.11.

5.2 Experiment Setup
We deploy FileDAG on 5 computers, with each having 2-
Core CPU, 4GB memory and 40GB NVMe SSD, and running
Ubuntu 22.04 LTS. The bandwidth of each computer is

1MB/s. We use the 5 computers to run: 1 Service node, 3
Storage Providers, and 1 Client.

Based on the design difference between FileDAG and
Filecoin, one can see that the performance changes brought
by FileDAG come from three aspects: 1) storage space saved
by the increment mechanism and the novel DAG ledger,
2) extra processing latency (in both uploading and down-
loading) brought by the increment mechanism, and 3) the
decreased transmission latency due to smaller sizes of the
payloads. We evaluate the storage cost and runtime of the
operations in the put and get phases when providing multi-
versioned file storage.

Files used in our evaluation consist of three types: text,
multimedia, and binary. There exist plenty of online text
files, e.g., code repositories, at GitHub. As shown in Table 3,
we clone 4 repositories from GitHub, namely IPLD, go-ipfs,
ccf-deadlines, and Git. We extract all the versions in each
repository, and store them in our implemented FileDAG
network. Each of these repositories has hundreds of versions
and their average sizes range from 1.8 MB to 50.9 MB.
Additionally, we use FileDAG to store a multi-versioned
presentation PPT (Microsoft PowerPoint) as an example of
multimedia file. Such files are common in practice as when
preparing academic reports or degree defenses, people usu-
ally make revisions on a PPT multiple times and keep his-
torical versions for possible rolling backs. In our evaluation,
the PPT file used is a research report maintained by one
of the authors. This file has 21 versions and the average
size is 8.7 MB. Finally, we take the APK (Android appli-
cation package) files of several popular apps as examples
of binary files. These apps include a game (Minecraft), an
instant messaging software (WeChat), and an entertainment
app (Netflix). We have downloaded these APK files from
Uptodown2, which provides downloads of APK files with
different versions. As of this writing, WeChat and Netflix
have 18 and 20 versions on Uptodown, while Minecraft
has 277 versions. The average sizes of them range from
14.4 MB to 228.4 MB. We test the APK files because the
BSDiff algorithm used in our Increment module has been
widely adopted to generate patch files for APK updates in
Android applications. For comparison purpose, we select
two market-tested DSNs, i.e., Filecoin and Sia mentioned in
Section 2, as the baselines for our evaluation. Particularly,
we include two implementations of Filecoin, namely Venus
and Lotus, for a more comprehensive comparison study.

5.3 Evaluation Results
A summary of the evaluation results averaged over 100 tri-
als on the eight datasets mentioned above are reported in Ta-
ble 3, in which the three sections show the evaluation results
in terms of storage, put (upload) runtime, and get (down-
load) runtime. Storage measures the storage cost of the
DSNs storing a multi-versioned file. The put/get runtime
measures the average time cost of the DSNs to complete
a put/get operation over one version of a multi-versioned
file. One can see that FileDAG saves up to 25% ∼ 99%
storage space compared to Filecoin. This is because FileDAG
stores increments instead of the complete versions of the
multi-versioned files. For the text and multimedia files,

2. https://en.uptodown.com
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TABLE 3: Comparison between FileDAG and other state-of-the-art DSNs

Text Multimedia APK (Binary)

IPLD go-ipfs ccf-
deadlines Git PPT Minecraft WeChat Netflix

# of versions 212 129 244 845 21 277 18 20
Average size (MB) 3.3 7.3 1.8 50.9 8.7 14.4 228.4 99.1
Storage (FileDAG) (MB) 7.1 16.3 2.9 104.8 11.8 1503.0 3052.3 356.8
Storage (Filecoin (Venus)) (MB) 712.8 985.3 483.4 43035.7 183.7 3994.4 4110.4 1981.7
Storage (Filecoin (Lotus)) (MB) 712.8 985.3 483.4 43035.7 183.7 3994.4 4110.4 1981.7
Storage (Sia) (MB) 642005.1 47889.1 11850.5 2592801.5 391.6 12839.2 78046.4 47644.7
Put runtime (FileDAG) (s) 5.1 5.3 5.0 5.4 7.7 22.2 760.5 92.1
Put runtime (Filecoin (Venus)) (s) 9.4 13.7 7.9 59.2 14.5 20.9 232.3 103.3
Put runtime (Filecoin (Lotus)) (s) 9.3 13.8 8.2 59.0 14.7 20.3 234.2 106.3
Put runtime (Sia) (s) 112.6 407.1 51.1 500.9 74.1 33.7 534.6 227.7
Get runtime (FileDAG) (s) 0.8 1.0 0.7 1.0 1.3 6.6 182.8 19.2
Get runtime (Filecoin (Venus)) (s) 4.2 8.3 2.6 53.5 9.9 15.7 232.7 103.2
Get runtime (Filecoin (Lotus)) (s) 4.0 8.4 2.7 53.9 9.6 15.5 230.9 104.1
Get runtime (Sia) (s) 8.3 24.1 5.0 106.6 20.1 43.8 671.2 313.2

the put/get runtimes of FileDAG are significantly shorter
than those incurred by other DSNs. However, limited by
the performance of the increment generating algorithms
processing binary files, the put runtime of FileDAG might
be longer than those incurred by other DSNs, especially for
WeChat, whose size is much bigger than those of the other
two binary files. But this doesn’t mean that FileDAG is not
suitable for binary files. One can see that the get runtime of
FileDAG is still significantly shorter than those of the other
two Filecoins. As in practice, a binary file, e.g., a software
installer, is usually downloaded multiple times (by different
team members, or from different computers) once being put
on the network, the longer time of an upload in FileDAG can
be easily amortized by the shorter time of many downloads.
Besides, as shown in Table 3, compared to FileDAG and
Filecoin, Sia has extremely high storage cost and latency;
thus it is ignored in the following studies.

To better demonstrate the superiority of FileDAG over
the baseline DSNs, we use Fig. 6 and Fig. 7 to respec-
tively depict the accumulated storage cost and the put/get
runtimes of the three types of files under our study. Due
to limited space, we report the results of only one multi-
versioned file in each category and select Git for text, PPT for
multimedia, and Minecraft for binary. Particularly, in Fig. 7,
as it is impossible to draw the bar graphs of all versions,
we choose 5 versions of each file, including the initial and
final ones, to illustrate the results. The experimental results
of other files exhibit very similar trends.

Storage Cost. We measure and compare the disk usages
of the DSN miners to demonstrate that FileDAG achieves
low storage costs. As one can see from Fig. 63, while a
multi-versioned file updates its versions, the storage size
increases for all DSNs, but the growth of FileDAG is much
slower compared to both implementations of Filecoin. More
specifically, one can see that the storage costs of Filecoin
exhibit roughly quadratic growth, while those of FileDAG
show approximately linear growth. This confirms our anal-
ysis in Section 4. One can also see that the more version
a file has, the more storage space FileDAG can save via

3. Because Venus and Lotus adopt the same deterministic packing
algorithm, these two DSNs take equal storage spaces; thus the curves
for their storage cost results overlap in Fig. 6.

the increment mechanism, and the size of the increment
generated is related to how much a version differs from its
previous version. This explains why the save of the storage
space of Minecraft by FileDAG is not as big as those of the
other two files, as versions of Minecraft are quite different.

Put Runtime. The runtimes of the put phase of FileDAG
and the baselines storing the above-mentioned three files
are reported in the top three subfigures of Fig. 7. In a typical
DSN, the put phase consists of three steps: processing, trans-
mission, and on-chain confirmation. During the processing
step, a DSN client packs a new file version (in Filecoin)
or the increment of the new version (in FileDAG) into
specific format of payloads. Transmission gets the payloads
transmitted from the client to the designated storage miner.
After transmitting the file (or increment) to the miner, the
client creates a transaction that contains the file CID and
the miner ID, then gets it confirmed on the blockchain to
complete the storage put operation. To better demonstrate
these three steps, we split each bar in Fig. 7 into three
sections with different textures.

As shown in Fig. 7a, Fig. 7b and Fig. 7c, one can see
that the on-chain confirmation latency of all the tested files
are similar and remain stable. This is because the transac-
tion sizes remain stable no matter how large the files are
as transactions only contain CIDs or hashes whose sizes
are constants. Additionally, based on our observation, the
confirmation latency of FileDAG is about 1 second shorter
than those of the two Filecoin implementations, thanks to
the performance improvement brought by the consensus
algorithm in our two-layer DAG ledger. Processing and
transmission latencies intuitively depend on the sizes of
the payloads. In Fig. 7b and Fig. 7c, one can see that due
to increment generation, FileDAG has higher processing
latencies and lower transmission latencies4. In most cases,
the put latencies of FileDAG are lower than those of the
baseline. In some other cases such as for Minecraft, due
to the complexity of the increment generation algorithm,
the put latencies of FileDAG might be longer, but they are
still acceptable, as usually put (upload) is an infrequent

4. The processing and transmission latences of Git in Fig. 7a is not
obvious as they are too short.
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operation compared to the get (download) operation of
the same file. What’s more, one can see that for the initial
version of each file, FileDAG and Filecoin spend equal time
on processing and transmission, because all DSNs process
and transmit the same full-versioned file.

Get Runtime. Similar to the put phase, the get phase of
most DSNs also consists of three steps: retrieval, transmis-
sion, and file recovery. During retrieval, a miner gathers the
required information (CIDs and the miner addresses) from
the blockchain. Then the corresponding files (or increments)
are sent to the client during the transmission step. As files
can be encrypted for transmission or transmitted in small
pieces, the client needs to recover the file in the last step.
Therefore we also split each bar in Fig. 7a, Fig. 7b, and Fig. 7c
into three sections with different textures. One can see that
the latency of a get operation is mainly attributed to retrieval
and transmission, while file recovery latency is negligible.
The retrieval latency of FileDAG and Filecoin are close
and both stay stable at around 0.7 seconds. The transmis-

sion latency of FileDAG is lower because of the increment
mechanism. Particularly, version 207 of Minecraft has a
small update compared to version 206, so the corresponding
increment is small, thus the transmission process finishes
shortly. Note that the latency saved by FileDAG during the
get phase is much more than that saved during the put
phase, because the increment generation takes more time
than recovery. As we have mentioned earlier, practically a
file is usually downloaded multiple times once being put
on the network, the total latency saved by FileDAG can be
significant.

6 CONCLUSIONS

In this paper, we describe the design and implementa-
tion of FileDAG, a DSN built on DAG-based blockchain.
FileDAG supports file-level deduplication in storing multi-
versioned files by adopting an increment mechanism. Be-
sides, FileDAG supports flexible and storage-saving file
indexing by introducing a two-layer DAG-based blockchain
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ledger. We implement an actual instance of FileDAG and
evaluate its performance. The results demonstrate that
FileDAG outperforms the state-of-the-art industrial DSNs
in storage cost and latency. In our future research, we plan
to improve the performance of DSN by designing a faster
and more effective proof of storage mechanism to further
save storage cost of DSNs.
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