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Abstract—Edge computing offers an additional layer of com-
pute infrastructure closer to the data source before raw data
from privacy-sensitive and performance-critical applications is
transferred to a cloud data center. Deep Neural Networks (DNNs)
are one class of applications that are reported to benefit from
collaboratively computing between the edge and the cloud. A
DNN is partitioned such that specific layers of the DNN are
deployed onto the edge and the cloud to meet performance and
privacy objectives. However, there is limited understanding of:
(a) whether and how evolving operational conditions (increased
CPU and memory utilization at the edge or reduced data transfer
rates between the edge and the cloud) affect the performance
of already deployed DNNs, and (b) whether a new partition
configuration is required to maximize performance. A DNN
that adapts to changing operational conditions is referred to
as an ‘adaptive DNN’. This paper investigates whether there
is a case for adaptive DNNs in edge computing by considering
three questions: (i) Are DNNs sensitive to operational conditions?
(ii) How sensitive are DNNs to operational conditions? (iii) Do
individual or a combination of operational conditions equally
affect DNNs? The exploration is carried out in the context of
8 pre-trained DNN models and the results presented are from
analyzing nearly 2 million data points. The results highlight
that network conditions affects DNN performance more than
CPU or memory related operational conditions. Repartitioning
is noted to provide a performance gain in a number of cases,
thus demonstrating the need for adaptive DNNs.

I. INTRODUCTION

Edge computing envisions that compute resources located or
placed at the edge of the network, such as routers, gateways or
dedicated micro data centers, may be used for running certain
application services closer to the end-user device where data
is generated [1]–[4]. Processing data at the edge provides
opportunities for making the application more responsive
by reducing end-to-end latencies, performance efficient by
reducing ingress bandwidth demand beyond the edge resource,
and privacy-sensitive by selectively releasing data beyond the
edge.

Many performance-critical and privacy-sensitive applica-
tions are demonstrated to benefit from edge computing -
for example, cognitive wearable assistance [5], image and
video analytics [6], connected and autonomous vehicles [7]
and privacy preserving denaturing [8]. These applications

take advantage of the edge by distributing services of the
application across the edge and the cloud.

One reason the above applications lend themselves to take
advantage of the edge is because they are underpinned by Deep
Neural Networks (DNNs). A DNN is a sequence of multiple
layers (each layer is a collection of neurons) that carry out
functions, such as convolution, pooling or activation [9], [10].
Therefore, the layers of a DNN can be inherently distributed
in a specific manner across the edge and the cloud to reduce
inference times, reduce the volume of data transferred to the
cloud from a sensor or end-device, or to not release sensitive
data beyond the edge [11], [12]. This is achieved by DNN
partitioning - splitting the DNN into two sequential DNNs at
a specific layer (the layer at which the DNN is partitioned is
referred to as the partitioning point). The partitions can then
be distributed across the cloud and the edge. For example,
consider a DNN that has seven sequential layers and needs
to be distributed across the cloud and edge. If the DNN is
partitioned at the third layer, then the first three layers may
execute on the edge and the remaining four layers on the cloud.

DNN partitioning for performance efficiency in edge com-
puting is an avenue that has been reported in the literature.
There are multiple techniques for partitioning DNNs, such as
using estimation-based [6], [13]–[15], structural modification-
based [16]–[18], and measurement-based techniques [19].
These techniques identify an optimal partitioning point pri-
marily based on the characteristics of the layers of a DNN
and operational conditions, such as resource utilization or
network conditions. From the literature reported above it
is understood that distributed DNN execution has specific
performance advantages.

However, there is limited understanding of whether and
how evolving operational conditions at the edge affect the
performance of the already deployed DNNs and raises an
important question on whether a new partitioning configuration
is required. If new system conditions affect performance,
then the DNN will need to be repartitioned to maximize its
performance under the new operational conditions. Such a
DNN that adapts to operational conditions is referred to in
this paper as an ’adaptive DNN’ and this process is referred
to as ’adaptivity’.
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Therefore, the research reported in this paper sets out to
investigate whether there is a case for adaptive DNNs in
edge computing. In doing so, the following three questions
are considered:

(Q1) Are DNNs sensitive to operational conditions? This
question addresses whether operational conditions, such as
CPU and memory stress (increased utilization) on edge re-
sources or the network data transfer rate between the cloud
and the edge, affect the performance of a distributed DNN.
For example, it is important to understand if the operational
conditions change, whether the initial DNN partitions are
still the most performance efficient partitions under the new
operational conditions.

(Q2) How sensitive are DNNs to operational conditions? If
Q1 is true, then the aim is to answer a second question, which
is to identify how different would the partition configurations
be (and difference in performance) given a change in the op-
erational environment. In other words, whether new partitions
will be significantly different (more or fewer layers) than the
initial partitions.

(Q3) Do individual or a combination of operational con-
ditions equally affect DNNs? In this paper, the operational
conditions are explored individually (only varying a single
operational condition and by not explicitly influencing the
other conditions) and in combination (multiple operational
conditions are varied) to identify their sensitivity to DNN per-
formance. For example, it is important to understand whether
the partitioning point of a DNN changes when operational
conditions change individually or in a combination. This paper
will examine this question by controlling the change in oper-
ational conditions on a range of DNNs to examine the effect
of operational conditions individually and in combination.

The questions raised above have not been considered in
the existing literature. Therefore it is essential that they are
understood within the context of edge computing to further
explore adaptive DNNs and maximally leverage the benefits
of using edge resources. This paper presents a first such
exploratory study to address the above three questions by de-
veloping a practical methodology to benchmark DNNs across
cloud and edge resources. Experimental studies are carried out
on 8 DNNs by examining different but realistic operational
conditions for CPU stress, memory stress and network data
transfer rates to address the above three questions.

The results presented are obtained from a cloud and edge
lab-based experimental platform by analyzing nearly 2 million
data points (the data obtained and the associated code for
benchmarking are available for download1). The key observa-
tion is that DNNs are sensitive to operational conditions. Both
individual and a combination of operational conditions affect
DNN performance. Network conditions have more impact
on DNN performance than CPU stress and memory stress
individually. Repartitioning can provide performance gains,
but there are DNNs that are not significantly impacted. Op-
erational conditions in combination affect DNN performance

1https://github.com/qub-blesson/AdaptiveDNN

TABLE I: Pre-trained DNN models available from Keras that
is used in this paper; Type: S - sequential, N - non-sequential

DNN Model Size (MB) Layers Partition points Type
VGG16 [20] 527 23 22 S
VGG19 [20] 548 26 25 S
MobileNet [21] 16 93 92 S
AlexNet [22] 110 25 24 S
DenseNet [23] 31 429 22 N
ResNet50 [24] 98 177 23 N
ResNet50V2 [24] 98 192 16 N
LeNet [25] 7 11 10 S

more than individual operational conditions considered in this
paper. Thus, there is a case for repartitioning, i.e., the need
for adaptive DNNs.

The remainder of this paper is organized as follows.
Section II provides a background to DNN partitioning and
repartitioning. Section III presents the methodology used in
this paper to explore DNN adaptivity. Section IV provides
a discussion on the results obtained from the experimental
studies. Section V presents related research in the area. Sec-
tion VI concludes this paper by presenting avenues for future
research.

II. BACKGROUND

A DNN consists of an input layer, multiple hidden layers,
and an output layer (each layer is a collection of neurons) [9],
[10]. There are different types of DNN layers, which include:
(1) Fully-connected layers, (2) Convolution layers, (3) Pooling
layers, (4) Activation layers, and (5) Softmax layers.

Eight DNNs are considered in this research and are shown
in Table I. The size of a trained model and its corresponding
weights, the number of layers in the DNN, the number of valid
points for partitioning, and the type of the DNN is shown.
These models are obtained from the Keras2 neural network
library.

There are two types of DNNs - sequential and non-
sequential, represented as S and N, respectively in Table I. In
a sequential DNN the input of one layer is connected to the
next in a linear manner (Figure 1a shows an example with six
layers). A non-sequential DNN on the other hand will have
layers that may be connected to two or more layers (refer
Figure 1b for an example with 11 layers). Hence, there are
multiple paths that connect the first and last layer of the DNN.

Distributing a sequential DNN across the cloud and the edge
is straightforward. The DNN would need to be partitioned at
a suitable layer that would yield maximum performance (for
example, lowest end-to-end latency and/or least amount of data
transferred from the edge to the cloud). For example, consider
VGG19 shown in Table I, which has 26 layers and has 25
suitable partitioning points. Consider a DNN that has N layers.
If the xth layer is identified as the partitioning point, then the
partition running on the edge would consist of a sequence of
the first x layers and the partition to be executed on the cloud
would consist of N − x layers. The output of the xth layer

2https://keras.io
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(a) Sequential DNN

(b) Non-sequential DNN

(c) Non-sequential DNN after pre-processing

Fig. 1: Sequential and non-sequential DNNs

would need to be transferred from the edge to the cloud and
provided as an input layer for the cloud partition.

Distributing a non-sequential DNN requires additional pre-
processing. This is to ensure that a parallel path in a DNN
is not partitioned as it may lead to synchronization issues
that will incur communication overheads [6]. Partitioning is
avoided on the parallel paths by grouping parallel layers as a
single entity, referred to as a block of layers (refer to Figure 1b
and Figure 1c for an example - Layers 2-9 are treated as a
single entity). Therefore, the number of partitioning points is
reduced. For example, in Table I ResNet50V2 has 192 layers,
but with only 16 suitable partitioning points.

The layer at which a DNN needs to be partitioned may
depend on the characteristics of the DNN. For example, the
layer at which the DNN is partitioned may be based on
creating partitions that will result in the lowest execution time
and the least volume of data that will be transferred between
the edge and the cloud. Such a partitioning approach based on
the DNN characteristics will create ideal DNN partitions.

However, would an ideal partition be the most suitable
for a given set of operational conditions, such as utilization
of edge resources or network state between the cloud and
edge? In addition, if an ideal partition were deployed and the
operational conditions changed, would a more context-driven
partition improve the overall performance of the DNN? For
example, the edge may execute multiple workloads, resulting
in increasing CPU utilization, which may affect the edge
partition running on the network. Alternatively, the network
between the edge and the cloud may be congested resulting
in sub-optimal performance due to communication overheads.
In such cases, the DNN performance may be sensitive to the
operational conditions. As already highlighted in the previous
section, it is currently not fully understood how sensitive
DNNs are to operational conditions.

III. METHODOLOGY

The aim of this paper is to carry out exploratory research
to address the three questions raised initially in Section I.

Fig. 2: Exhaustive benchmarking method adopted for obtain-
ing data on performance partitioning points of DNNs

This requires a methodology for measuring and exhaustively
benchmarking the DNN partitions to collect data relevant
to the individual layers/blocks of the DNN under varying
operational conditions. This section, presents the methodology
adopted in this paper and the practical technique used for
measurement and benchmarking as shown in Figure 2.

The methodology adopted for obtaining data from the DNNs
shown in Table I has the following four steps:

Step 1 - Pre-process the DNN and identify suitable parti-
tioning points: As discussed in the previous section, a DNN
may be a sequential or non-sequential DNN. All layers of a
sequential DNN can be partitioned. However, a non-sequential
DNN may have parallel paths and therefore there will be
fewer suitable partitioning points. In this step, the DNN is
pre-processed to identify the valid partitioning points of the
DNN. As shown in Table I non-sequential DNNs have fewer
partitioning points than the number of layers; a block of layers
will need to be treated as a single entity to avoid partitioning
any parallel paths in the DNN. This is to avoid synchronization
issues [6].

Step 2 - Partition the DNN across all suitable partitioning
points: The DNN is then partitioned across all the above identi-
fied partitioning points to ensure that all possible combinations
of partitions are available for benchmarking. In this paper,
an exhaustive approach is adopted to avoid any assumptions
regarding performance as the research reported is an empirical
investigation.

Step 3 - Measure the performance on the edge and cloud
resource for varying operational conditions: The partitioned
DNNs are executed on the edge and cloud resource to measure
the end-to-end latencies of discrete individual layers and/or a
block of layers of the DNN. For example, consider a sequential
DNN with five layers. Then the DNN will be benchmarked for
the following 4 combination of partitions: Layer 1 on the edge
and Layer 2-5 on the cloud, Layer 1-2 on the edge and Layer
3-5 on the cloud, Layer 1-3 on the edge and Layer 4-5 on the
cloud, and Layer 1-4 on the edge and Layer 5 on the cloud.
The most performance efficient partition will have the lowest
end-to-end latency (which is the sum of the compute time of
the partitions on the edge and cloud and the communication
time of data from the edge to the cloud). The average of 10
executions of the combination of partitions is noted.

The operational conditions considered are: (i) CPU stress on
the edge: five different stress levels are considered - 0%, 22%,
45%, 67%, and 90% CPU utilization; (ii) Memory stress on
the edge: five different stress levels are considered - 0%, 22%,
45%, 67%, and 90% memory utilization; (iii) Network data
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transfer rates: 10 Mb/s, 25Mb/s, 37.5Mb/s, and 50Mb/s. For
CPU and memory stress on the edge, explicit stress is created
on the resource using the Linux tool, namely stress, and the
network data transfer rate is controlled using the Linux traffic
control tool, namely tc. The network data transfer rates are
based on different speeds observed in the wide-area network
- 50Mb/s is a fast connection available to small businesses in
the UK, 25Mb/s is equivalent to the average UK household
data download speed, and 10Mb/s is equivalent to the speeds
of a more busy network.

The measurement step is time consuming in that a 1000
executions need to be considered (5×5×4×10). One execution
of the different DNNs required between 1-7 minutes depending
on the depth of the neural network. Therefore, between 1-5
whole days were required for recording the measurements of
individual DNNs.

Step 4 - Analyze recorded measurements to identify perfor-
mance efficient partitions for different scenarios: The measure-
ments obtained from benchmarking are used to determine the
most performance efficient partitions. The data is aggregated
across multiple dimensions and are presented in the next
section.

IV. EXPERIMENTAL STUDIES

In this section, the experimental platform used for pursuing
studies to identify scenarios when a DNN is sensitive to
adaptivity and the results obtained from the study is presented.

A. Experimental Platform

The experiments were carried out on two nodes represen-
tative of resources on a cloud and edge resource. The cloud
resource is a dual-core Intel Xeon CPU E5 @ 2.3GHz with
8GB of main memory. The edge resource is a single core
ARM Cortex-A72 @ 2.3GHz with 2GB of main memory. Both
resources run Ubuntu 18.02 LTS.

The above benchmarking methodology is implemented in
Python and requires Tensorflow 1.5+. Tensorflow [26] is used
to execute the pre-trained DNNs shown in Table I that is
provided by the Keras3, an open source neural network library.
NumPy is used for processing multi-dimensional arrays that
are produced as outputs of individual layers or a block of
layers.

The different levels of: (i) CPU stress considered are 0%,
22%, 45%, 67%, and 90%, (ii) memory stress considered
are 0%, 22%, 45%, 67%, and 90%, and (iii) network data
transfer rates considered are 10Mb/s, 25Mb/s, 37.5Mb/s and
50Mb/s. However, some of the experiments considered will
only present results for fewer stress values and data transfer
rates for a meaningful representation of the results.

B. Results

Performance efficiency considered in the results is measured
as the lowest end-to-end latency when the DNN partitions are
executed across the cloud and the edge for a single test image

3https://keras.io

Fig. 3: Percentage of performance efficient partitioning points
for DNNs across all combinations of CPU stress, memory
stress and data transfer rate. X-axis shows the partitioning
point n, which is the nth layer of the DNN where the DNN
is partitioned.

of approximately 115KB. The values reported for end-to-end
latency is the average of ten experimental runs.

Experimental results are presented to highlight that:
(i) DNNs are sensitive to operational conditions (to address

Q1 posed in Section I). For this the percentage of performance
efficient partitioning points for DNNs across all combinations
of CPU stress, memory stress and network data transfer rates
is presented. It is noted that all eight DNNs considered have
scope for adaptivity across all potential combinations of CPU
stress, memory stress and data transfer rates.

(ii) A performance gain is observed when repartitioning
under different operational conditions (to address Q2 presented
in Section I). This is explored in the context of individual
operational conditions. It is noted that although there are
performance gains in a number of cases, the overheads in
repartitioning and deployment may offset the gain and is likely
to depend on the input stream (not considered in this paper).

(iii) Both individual and a combination of operational con-
ditions affect DNNs (to address Q3 presented in Section I).
The network conditions affect the DNN performance more
directly than CPU and memory stress individually (network
conditions have been noted as an important consideration for
performance efficiency in connected and autonomous vehicles
given that the vehicles move [7]). There is more impact
on DNN performance when a combination of operational
conditions are considered.

1) General Observation on DNN Sensitivity to Operational
Conditions: Figure 3 shows the percentage of the top 5
performance efficient partitioning points for all combinations
of operational conditions considered – CPU stress, memory
stress and network data transfer rates. The x-axis shows
the partitioning point (the layer after which the DNN is
partitioned; for example, a number 81 corresponds to the first
partition having layers 1-81 on the edge, and the remaining
layers from Layer 82 will be a second partition that is executed
on the cloud.

Consider the partition points for VGG16. Regardless of the
operational conditions three partitioning points (Layer 1, Layer

4
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Fig. 4: Percentage of performance efficient partitioning points
for the DNNs for different CPU stress when no additional
memory stress is applied on the edge and the network data
transfer rate is 50Mb/s. X-axis shows the partitioning point
n, which is the nth layer of the DNN where the DNN is
partitioned.

4 and Layer 7) result in over 95% of the most performance
efficient partitions. It can then be inferred that in most cases for
VGG16, it is highly probable that there will be three options
for partitioning. For instance, if the current partition is at
Layer 1, then either that is still the most optimal partition,
or performance can be optimized by repartitioning with Layer
4 or Layer 7 as the partitioning point.

Similarly for VGG19 there are three main partitioning
points, namely Layer 1, Layer 7 and Layer 4. However, nearly
10% of operational conditions have Layer 12 as the optimal
partition point.

If ResNet50 is taken as an example, then the partitioning
points that result in performance efficient partitions are nearly
50% of the time at Layer 1 or Layer 92. However, for another
20% of the cases the partitioning points are at Layer 175
and Layer 154. This is just one evidence of the variation
in the partitioning points if the DNN adapts to the changing
operational condition.

Although there is a dominant partitioning point for
DenseNet, AlexNet, and LeNet, there are a number of cases
in which other partitioning points are optimal.

The paper will next focus on the sensitivity of the DNNs
to individual operational conditions.

2) DNN Adaptivity and Individual Operational Conditions:
The effect of CPU stress, memory stress and network data
transfer rate individually on DNN adaptivity is considered. The
results presented for varying individual operational condition
do not additionally stress other conditions. For example, the
experiments for identifying the sensitivity of CPU stress to
DNN adaptivity has no additional memory stress applied and
has the maximum network data transfer rate.

Two comparisons are relevant and are considered here.
Firstly, comparing DNN sensitivity to CPU stress, memory
stress and network data transfer rates individually against
Figure 3. This will highlight the effect of the individual
operational conditions on DNN partitioning points against all
combinations of the operational conditions. Secondly, com-

Fig. 5: Percentage of performance efficient partitioning points
for the DNNs for different memory stress when no additional
CPU stress is applied on the edge and the network data transfer
rate is 50Mb/s. X-axis shows the partitioning point n, which
is the nth layer of the DNN where the DNN is partitioned.

Fig. 6: Percentage of performance efficient partitioning points
for the DNNs for different network data transfer rates when
no additional CPU or memory stress is applied on the edge.
X-axis shows the partitioning point n, which is the nth layer
of the DNN where the DNN is partitioned.

paring the graphs that show the impact of DNN partitioning
points on CPU stress, memory stress and network data transfer
rates against each other. This will highlight the DNNs that are
sensitive to specific individual operational conditions.

Sensitivity to CPU stress: Figure 4 shows the percentage
of the top performance efficient partitioning points for dif-
ferent values of CPU stress on the edge, when no additional
memory stress is applied and the network data transfer rate is
50Mb/s. Comparing with Figure 3, it is noted that AlexNet,
ResNet50V2, and LeNet are not sensitive to CPU stress
individually. There is only one optimal partitioning point for
these DNNs for different CPU stress. The other partitioning
points, for example layers 23, 22, 21 and 20 of AlexNet
shown in Figure 4 are the sub-optimal partitioning points in
decreasing order. For VGG19 it is noted that the partitioning
point that is most prominent across the search space (Layer 1;
Figure 3) is the optimal partition point under maximum CPU
stress (most layers have to reside on the cloud). MobileNet
demonstrates the impact of CPU stress on optimal partitioning
points effectively. A number of layers are sensitive to CPU
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TABLE II: Sensitivity of DNNs to individual operational
conditions; Y - Yes, N - No

DNNs Individual operational conditions

CPU stress Memory stress Network data
transfer

ResNet50V2 N Y Y
MobileNet Y N Y
ResNet50 Y Y Y
VGG16 Y Y Y
VGG19 Y Y Y
DenseNet Y N Y
AlexNet N N Y
LeNet N Y N

stress, but are less sensitive to memory stress and network data
transfer rates. In the case of VGG16, Layer 4 is an optimal
partitioning point for more cases than Layer 1 for different
CPU stress. However, when all possible combinations of stress
are considered, Layer 1 is more prominent as a partitioning
point in Figure 3. A similar observation is made for DenseNet.

Sensitivity to memory stress: Figure 5 shows the percentage
of the top performance efficient partitioning points for different
values of memory stress on the edge, when no additional CPU
stress is applied and the network data transfer rate is 50Mb/s.
Similar to the sensitivity to CPU stress, MobileNet, AlexNet
and DenseNet are not sensitive to memory stress individually.
VGG19 and AlexNet have the same optimal partitioning points
as in Figure 4. VGG16 and ResNet50 have a similar profile
as seen in Figure 4. Both CPU stress and memory stress have
a similar diversity of partitioning points.

Sensitivity to network data transfer rate: Figure 6 shows the
percentage of the top performance efficient partitioning points
for different network data transfer rates when no additional
CPU or memory stress is applied on the edge. LeNet is
not sensitive to different network data transfer rates when
comparing with Figure 3. Two layers, Layer 1 and Layer 7
are prominent partitioning points for VGG16. In the case of
AlexNet, Layer 23 appears as an optimal partitioning point
although it does not appear as a top five across all combina-
tions of the operational conditions. The optimal partitioning
point Layer 427 in Figure 6 is less prominent for DenseNet
in Figure 3.

The comparison of the DNNs among the three individ-
ual operational conditions is summarized in Table II in de-
scending order of diversity to optimal partitioning points.
ResNet50, VGG16 and VGG19 are sensitive to all individual
operational conditions. Such DNNs are referred to as fully-
sensitive. ResNet50V2 is not sensitive to CPU stress (only
one partitioning point), but is sensitive to memory stress and
network data transfer rates. This is a partially-sensitive DNN.
MobileNet and DenseNet are more sensitive to the operational
conditions than LeNet or VGG19 and are all partially-sensitive
DNNs. The DNNs in Table II are ordered in decreasing
sensitivity to the operational conditions measured by the total
diversity of partitioning points (has maximum number of
optimal partitioning points across the operational conditions).
Therefore, partially-sensitive DNNs, such as ResNet50V2 and

MobileNet (9 and 7 optimal partitioning points in total across
the individual operational conditions) appear ahead of fully-
sensitive DNNs.

Performance Gain: Table III shows the performance gain of
repartitioning DNNs for different CPU stress levels. The table
shows the end-to-end latency (in seconds) and the partitioning
layer for 0%, 45% and 90% CPU stress at the edge. The
partitioning layer is the same for 45% and 90% as it is for
when there is no CPU stress. The general trend is that the end-
to-end latency increases with increasing CPU stress. The table
then shows the end-to-end latency of the best DNN partition
at a different partition layer for 45% and 90% CPU stress
(shown in the table as best partition). The performance gain
of the best partition over using a static partitioning layer (best
partitioning point when CPU stress is 0%) is indicated in the
table.

Consider DenseNet as an example in Table III. The perfor-
mance gain is immediately evident. If the original partition is
used (at Layer 428; optimal partition when CPU stress is 0%),
then the end-to-end latency of this distributed DNN would
be 2.254 seconds when the CPU stress is 90%. However,
repartitioning at Layer 2, results in a DNN with 1.296 seconds
end-to-end latency resulting in a 42.50% performance gain. A
smaller gain of 17.89% is noted when the DNN is repartitioned
at Layer 2 if there is 45% CPU stress. The performance gain
is only an indicator that there is benefit to repartitioning and
DNNs are sensitive to adaptivity.

Table IV shows the performance gain of repartitioning
DNNs for different memory stress levels. The table shows the
end-to-end latency (in seconds) and the partitioning layer for
0%, 45% and 90% memory stress at the edge. The partitioning
layer is the same for 45% and 90% as it is for when there is no
memory stress. The general trend is that the end-to-end latency
increases with increasing memory stress. The table then shows
the end-to-end latency of the best DNN partition at a different
partition layer for 45% and 90% memory stress (shown in
the table as best partition). The performance gain by using a
best partition layer over using a static partitioning layer (best
partitioning point when memory stress is 0%) is indicated in
the table. A noteworthy gain from repartitioning is observed
for VGG19 and ResNet50 V2. The DNNs tend to show less
sensitivity to memory stress when compared to CPU stress.

Table V shows the performance gain of repartitioning DNNs
for different network data transfer rates. The table shows the
end-to-end latency (in seconds) and the partitioning layer for
50Mb/s, 25Mb/s, and 10Mb/s between the edge and the cloud.
The partitioning layer is the same for 25Mb/s and 10Mb/s as
it is when there is maximum available bandwidth. The general
trend is that the end-to-end latency increases with decreasing
data transfer rates. The table then shows the end-to-end latency
of the best DNN partition at a different partition layer for
25Mb/s and 10Mb/s (shown in the table as best partition). The
performance gain of employing the best partition over using a
static partitioning layer (best partitioning point when network
data transfer rate is 50Mb/s) is highlighted in the table.

It is immediately inferred that the performance gain for the
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TABLE III: Effect of CPU stress on end-to-end latency (seconds); partitioning layer is shown in brackets beside the end-to-end
latency values. End-to-end latency is shown for 0%, 45% and 90% CPU stress when partitioning layer is the same as for CPU
stress is 0%. End-to-end latency for the best DNN partition when CPU stress is 45% and 90% along with the partitioning
layer is shown. The performance gain of best partition is shown. AlexNet, ResNet50V2 and LeNet are not included as they
are not sensitive to CPU stress (refer to Table II).

DNN Model 0%
(best partition) 45% 45%

(best partition) Gain (%) 90% 90%
(best partition) Gain (%)

VGG16 1.048 (1) 3.236 (1) 2.022 (4) 37.51 3.260 (1) 2.349 (4) 27.94
VGG19 1.261 (1) 3.395 (1) 2.417 (4) 28.81 3.468 (1) 2.564 (1) 26.10
MobileNet 0.280 (88) 0.524 (88) 0.291 (83) 44.47 0.554 (88) 0.370 (78) 33.21
DenseNet 1.179 (428) 1.554 (428) 1.276 (2) 17.89 2.254 (428) 1.296 (2) 42.50
ResNet50 0.952 (112) 1.046 (112) 0.960 (1) 8.22 1.827 (112) 0.953 (5) 47.84

TABLE IV: Effect of memory stress on end-to-end latency (seconds); partitioning layer is shown in brackets beside the end-to-
end latency values. End-to-end latency is shown for 0%, 45% and 90% memory stress for the partitioning layer when memory
stress is 0%. End-to-end latency for the best DNN partition when memory stress is 45% and 90% along with the partitioning
layer is shown. The performance gain of the best partition is shown. MobileNet, AlexNet and DenseNet are not included as
they are not sensitive to memory stress (refer to Table II).

DNN Model 0%
(best partition) 45% 45%

(best partition) Gain (%) 90% 90%
(best partition) Gain (%)

VGG16 1.048 (1) 1.897 (1) 1.817 (4) 4.22 2.059 (1) 2.059 (1) 0
VGG19 1.261 (1) 3.389 (1) 2.040 (4) 39.81 3.385 (1) 2.039 (1) 39.76
ResNet50 0.952 (112) 1.054 (112) 0.945 (1) 10.34 1.048 (112) 0.941 (1) 10.31
ResNet50V2 0.678 (2) 0.684 (2) 0.676 (1) 1.17 2.094 (2) 0.753 (87) 64.04
LeNet 0.008 (3) 0.010 (3) 0.009 (6) 10.00 0.012 (3) 0.011 (7) 8.33

TABLE V: Effect of network data transfer rates between the edge and the cloud on end-to-end latency (seconds); partitioning
layer is shown in brackets beside the end-to-end latency values. End-to-end latency is shown for 10Mb/s, 25Mb/s and 50Mb/s
data transfer rate (partitioning layer is the same as when transfer is 50Mb/s). End-to-end latency for the best DNN partition
when network data transfer rate is 25Mb/s and 10Mb/s along with the partitioning layer is shown. The performance gain of
the best partition is shown. LeNet is not shown as it is not sensitive to network transfer rates (refer to Table II).

DNN Model 50Mb/s
(best partition) 25Mb/s 25Mb/s

(best partition) Gain (%) 10Mb/s 10Mb/s
(best partition) Gain (%)

VGG16 1.048 (1) 1.131 (1) 1.131 (1) 0 3.606 (1) 3.004 (6) 16.70
VGG19 1.261 (1) 5.585 (1) 2.489 (7) 55.43 14.307 (1) 3.254 (7) 77.25
MobileNet 0.280 (88) 0.319 (88) 0.293 (90) 8.15 0.384 (88) 0.346 (90) 9.89
AlexNet 0.107 (3) 0.446 (3) 0.278 (23) 37.67 0.516 (3) 0.345 (10) 33.14
DenseNet 1.179 (428) 1.561 (428) 1.561 (428) 0 2.151 (428) 2.151 (428) 0
ResNet50 0.952 (112) 1.174 (112) 0.971 (1) 17.29 1.632 (112) 1.196 (1) 26.72
ResNet50V2 0.678 (2) 0.721 (2) 0.717 (1) 0.55 2.295 (2) 0.974 (155) 57.56

selected DNNs in response to different network data transfer
rates is greater than for CPU or memory stress. AlexNet,
that was not sensitive to CPU and memory stress, is more
sensitive to changing network conditions and benefits from
repartitioning; up to 37.67% gains are noted. Although VGG16
and DenseNet are sensitive to network conditions, there are
instances when there is no performance gain. This is because
best partition does not provide any added benefit in these
particular cases.

3) DNN Adaptivity and a Combination of Operational
Conditions: Figure 7 and Figure 8 show the percentage of
the top five performance efficient partitioning points for the
DNNs when there is a CPU stress of 90% and of 0% on the
edge, respectively, when there is different memory stress at the
edge and data transfer rates between the edge and the cloud.
The general observation is that partitions with more layers on
the cloud are appropriate when CPU stress is maximum. For
example, consider ResNet50. The two prominent partitioning

layers when CPU stress is at a minimum are 175 and 92.
However, when CPU stress is at 90% the optimal partitioning
points are layers 1 and 2. A few observations from the results
are that: (i) for VGG16 and VGG19 there are usually three
prominent performance efficient partitioning points when CPU
stress is 90%, (ii) AlexNet becomes less sensitive to increased
CPU stress as Layer 3 becomes a prominent partitioning point,
(iii) the optimal partitioning point for DenseNet is Layer 2 for
20% of the combinations. However, this partitioning point is
not featured when there is minimum CPU stress, (iv) a more
cloud-native DNN partition is appropriate for ResNet50 when
CPU stress is maximum.

Figure 9 and Figure 10 show the percentage of the top
five performance efficient partitioning points for the DNNs
when there is a memory stress of 90% and 0% on the
edge, respectively, for different CPU stress at the edge and
data transfer rates between the edge and the cloud. The
general observation is that there are fewer changes to the
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Fig. 7: Percentage of performance efficient partitioning points
for the DNNs when there is an edge CPU stress of 90%
for different memory stress on the edge and network data
transfer rates between the edge and the cloud. X-axis shows
the partitioning point n, which is the nth layer of the DNN
where the DNN is partitioned.

Fig. 8: Percentage of performance efficient partitioning points
for the DNNs when there is 0% edge CPU stress for different
memory stress on the edge and network data transfer rates
between the edge and the cloud. X-axis shows the partitioning
point n, which is the nth layer of the DNN where the DNN
is partitioned.

optimal partitioning points. Memory stress does not impact
the partitioning profile significantly.

Figure 11 and Figure 12 show the percentage of perfor-
mance efficient partitioning points for the DNNs when the
network data transfer rate between the edge and the cloud
is 50Mb/s and 10Mb/s under different CPU and memory
stress levels on the edge. The graphs highlight that DNNs are
sensitive to a combination of operational conditions. Although
individual operational conditions, such as CPU or memory
stress may not affect DNNs substantially, the combination of
operational conditions makes a case for adaptive DNNs.

Figure 13 and Figure 14 show the percentage of perfor-
mance efficient partitioning points for the DNNs for different
network data transfer rates when there is maximum and
minimum CPU and memory stress respectively. The general
trend as previously observed is that DNNs are sensitive to a
combination of operational conditions. However, when both
figures are compared, VGG19 and AlexNet tend to have a

Fig. 9: Percentage of performance efficient partitioning points
for the DNNs for a maximum memory stress of 90% at the
edge for different CPU stress on the edge and network data
transfer rate. X-axis shows the partitioning point n, which is
the nth layer of the DNN where the DNN is partitioned.

Fig. 10: Percentage of performance efficient partitioning points
for the DNNs for a minimum memory stress of 0% at the edge
for different CPU stress on the edge and network data transfer
rate. X-axis shows the partitioning point n, which is the nth

layer of the DNN where the DNN is partitioned.

more dominant partitioning point when the CPU and memory
stress is maximum. In other words, these DNNs are less sen-
sitive to adaptivity under maximum CPU and memory stress.
These observations are in line with those made previously.

Summary: The experimental results have highlighted that
the DNNs considered are sensitive to operational conditions
and therefore are amenable to repartitioning. However, it
is observed that the DNNs are more sensitive to network
data transfer than CPU or memory stress when considered
individually. A performance gain is observed when DNNs are
repartitioned. A case for DNN adaptivity is stronger when a
combination of operational conditions are considered.

V. RELATED WORK

The concept of adaptivity in DNNs has not been presented
as a singular concept in the existing literature, rather is a
reference to multi-faceted aspects of DNN execution. In this
section, the presentation of two classes of adaptive DNNs is
highlighted. The first is adaptivity in the context of DNNs
that natively execute on a device or a server is considered.
The second is adaptivity in the context of DNN partitioning.
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Fig. 11: Percentage of performance efficient partitioning points
for the DNNs when the network data transfer rate between
the edge and the cloud is 50Mb/s under different CPU and
memory stress on the edge. X-axis shows the partitioning point
n, which is the nth layer of the DNN where the DNN is
partitioned.

Fig. 12: Percentage of performance efficient partitioning points
for the DNNs when the network data transfer rate between
the edge and the cloud is 10Mb/s under different CPU and
memory stress on the edge. X-axis shows the partitioning point
n, which is the nth layer of the DNN where the DNN is
partitioned.

Adaptivity in the context of DNNs that natively execute on a
device or a server is considered in three different ways. Firstly,
DNN adaptivity for executing pre-trained models natively on
a resource has been reported, for example in the acoustic
context by taking into account the speaker or environment [27].
Typically, the DNNs are fine-tuned to provide a higher quality
result, primarily measured by accuracy [28]. Three types of
adaptive approaches are considered. The first is input feature
transformation, the second is direct adaptation by transform-
ing DNN parameters, and finally using the auxiliary context
features (noise estimates which are provided as input to the
DNN) [27]. In the above, adaptivity is a reference to taking
the acoustic environment or user into account for maximizing
the performance of the DNN.

Secondly, adaptivity is considered as choosing an appro-
priate DNN model for inference from a portfolio of pre-
trained DNN models [29]. For this a learning approach is used
to estimate the optimal DNN model that will maximize the

Fig. 13: Percentage of performance efficient partitioning points
for the DNNs when there is maximum CPU and memory
stress for different network data transfer rates. X-axis shows
the partitioning point n, which is the nth layer of the DNN
where the DNN is partitioned.

Fig. 14: Percentage of performance efficient partitioning points
for the DNNs when there is no CPU and memory stress
for different network data transfer rates. X-axis shows the
partitioning point n, which is the nth layer of the DNN where
the DNN is partitioned.

estimation accuracy for a particular type of input.
Thirdly, adaptivity is investigated in the context of model

compression to execute DNN models on resource constrained
devices [30]. In this approach, the weight matrices of fully
connected and convolutional neural networks are compressed
without loosing significant accuracy. The approach does not
randomly drop components of the weight matrix, rather a
more disciplined approach using singular value decomposition
is used to prune fully-connected structures, which is what is
referred to as being adaptive.

Adaptivity in the context of DNN partitioning is also
presented in the literature. With the emergence of edge com-
puting, DNN partitioning and distribution across devices, edge
and cloud resources for inference has become an important
avenue of research. Literature would suggest that adaptivity
in the context of partitioning and distributing DNNs across
multiple resources is not only about improving accuracy,
but about optimizing end-to-end latencies. In other words,
adaptivity is understood as making DNN partitions suitable
for the operational context.

There are numerous DNN partitioning methods presented
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in the literature. These methods include, estimation-based
techniques [6], [13]–[15], structural modification-based tech-
niques [16], [17], and measurement-based techniques [19].
These techniques identify an optimal partitioning point pri-
marily based on the characteristics of the layers of a DNN and
operational conditions, such as resource utilization or network
conditions.

The above referenced research on DNN partitioning focuses
on the initial partitioning and deployment of the DNNs. They
do not focus on whether and how DNNs are sensitive to
operational conditions after the initial deployment. This is
significantly important for use-cases that are latency-critical
and operate in a transient environment. Consider for example,
an autonomous car or a fleet of drones for which a DNN was
partitioned and deployed. The initial partition configuration
may not be an optimal configuration or may even be obsolete
with regard to performance given changes in the operational
environment. This would require the DNN to be repartitioned
for a new configuration.

Currently, the sensitivity of DNNs to operational conditions
of the edge resource (resource utilization) and the network
state between the edge and the cloud for repartitioning is
understood in a limited way. This is because the above
referenced research has considered the initial deployment of a
partitioned DNN.

There is recent research that focuses on adaptivity for
DNN partitioning [31]. However, the main consideration is
performance-awareness for which metrics, such as per layer
latency, are used to inform DNN partitioning. A combination
of an estimation-based approach is used for finding the par-
titioning point. An early exit strategy is employed for further
optimizing performance. The research is pursued in the context
of initial partitioning and the effect of evolving operational
conditions are not explored.

The impact of network conditions for DNN repartitioning
has been considered [32]. The network is assumed to have
two states - lightly and heavily loaded states. However, how
sensitive are DNNs to operational conditions (both resource
specific and network specific) is not considered.

Similarly, there is research that considers adaptivity in the
context of partitioning output data from the layers using a
compression-based technique, referred to as the compressed
sparse row scheme [33]. The output matrices of a layer are
partitioned into dense and sparse partitions. This compression
relies on network conditions and hence is referred to as being
adaptive.

Privacy for adaptive partitioning of DNNs is considered
by employing the Kullback-Leibler divergence between the
intermediate layer outputs and the original input [34]. A Lya-
punov optimization framework is employed for partitioning
the DNNs.

Contrary to the above considerations, this paper sets out
to investigate whether there is a case for adaptive DNNs in
edge computing. The key questions that concern this paper
in the context of adaptivity are whether DNNs are sensitive
to operational conditions, and if so, how sensitive are they.

In addition, the study explores the effect of individual and a
combination of operational conditions on DNNs.

VI. CONCLUSIONS

Performance-critical and privacy-sensitive applications ben-
efit from edge computing by distributing selected services of
an application closer to where data is generated. This allows
applications to pre-process and selectively release data to make
the overall application more responsive and privacy-aware.
Deep Neural Networks (DNNs) are a class of applications that
naturally lend themselves to distribution across the cloud and
edge given that they are organized as a sequence of layers. The
distribution of a DNN is achieved by partitioning it at a layer
that would maximize its performance while taking operational
conditions where the distributed DNN will be deployed into
account (for example, CPU/memory stress on an edge resource
or network data transfer rates between the edge and the cloud).

There is limited understanding of how evolving operational
conditions might affect the performance of a distributed DNN
and whether a new partition is required to optimize the overall
performance. If operational conditions affect DNNs, then they
will need to be repartitioned (a new layer at which the DNN
can be partitioned needs to be identified). A DNN that adapts
to the operational conditions is defined in this paper as an
‘adaptive DNN’.

This paper set out to investigate whether there is a case
for adaptive DNNs in edge computing. In doing so, the
following three questions were considered: (i) Are DNNs
sensitive to operational conditions? (ii) How sensitive are
DNNs to operational conditions? (iii) Do individual or a
combination of operational conditions equally impact DNNs?
To address the above an exploratory exercise was carried
out by benchmarking 8 pre-trained production DNNs for
different operational conditions, such as CPU/memory stress
and network data transfer rates. The results presented were
obtained from a cloud-edge lab-based experimental platform
by analyzing nearly 2 million data points (the data and code
is available for public download4). The key observations are
that DNNs are sensitive to both individual and a combination
of operational conditions. When considering individual opera-
tional conditions, network conditions have a more substantial
impact on DNN performance than CPU/memory stress on an
edge node. Repartitioning can provide performance gains for
certain DNNs considered. Operational conditions in combi-
nation have a more significant impact on DNN repartitioning
than individual operational conditions. This paper concludes
that there is a case for adaptive DNNs at the edge.

One of the limitations of the current exploration is that the
case for adaptivity assumes the execution of the DNNs on
CPUs. There is a compelling case in the real-world for using
hardware accelerator platforms, such as GPUs, TPUs and
ASICs. Distributed inference on such platforms, with applied
stresses to investigate whether there is a case for adaptivity,

4https://github.com/qub-blesson/AdaptiveDNN
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will be considered in the future. Since the number of combi-
nations for varying stress in reality can be significantly higher
than those considered in this paper, a learning approach may
be useful to estimate best partition points. Such an approach or
the measurement-based approach presented in this paper can
be incorporated in an orchestration management system that
deploys distributed DNNs. In addition, the implementation of
adaptive DNNs for real applications and exploring domain-
specific performance benefits will be considered.
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