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Abstract—Along with the deepening development in commu-
nication technologies and the surge of mobile devices, a brand-
new computation paradigm, Edge Computing, is surging in pop-
ularity. Meanwhile, Artificial Intelligence (AI) applications are
thriving with the breakthroughs in deep learning and the upgrade
of hardware architectures. Billions of bytes of data, generated at
the network edge, put great demands on data processing and
structural optimization. Therefore, there exists a strong demand
to integrate Edge Computing and AI, which gives birth to Edge
Intelligence. In this article, we divide Edge Intelligence into AI
for edge (Intelligence-enabled Edge Computing) and AI on edge
(Artificial Intelligence on Edge). The former focuses on providing
a more optimal solution to the key concerns in Edge Computing
with the help of popular and effective AI technologies while the
latter studies how to carry out the entire process of building AI
models, i.e., model training and inference, on edge. This article
focuses on giving insights into this new inter-disciplinary field
from a broader vision and perspective. It discusses the core
concepts and the research road-map, which should provide the
necessary background for potential future research programs in
Edge Intelligence.

Index Terms—Edge Intelligence, Edge Computing, Wireless
Networking, Computation Offloading, Federated Learning.

I. INTRODUCTION

COMMUNICATION technologies are undergoing a new
revolution, i.e., the advent of the 5th generation cel-

lular wireless systems (5G). 5G brings enhanced mobile
broadband (eMBB), Ultra-Reliable Low Latency Communica-
tions (URLLC) and massive Machine Type Communications
(mMTC). With the proliferation of the Internet of Things
(IoTs), more and more data is created by widespread and
geographically distributed mobile and IoT devices, instead of
the mega-scale cloud datacenters [1]. Specifically, according
to the prediction of Ericsson, 45% of the 40ZB global internet
data will be generated by IoT devices in 2024 [2]. Offloading
such huge data from the edge to cloud is intractable because it
can lead to oppressive network congestion. Therefore, a more
applicable way is handling user demands from edge directly,
which leads to the birth of a brand-new computation paradigm,
(Mobile → Multi-access) Edge Computing [3]. The subject
of Edge Computing spans many concepts and technologies
in diverse disciplines, including Service-oriented Computing
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(SOC), Software-defined Networking (SDN), Computer Ar-
chitecture, etc. The principle of Edge Computing is to push
the computation and communication resources from cloud
to the edge of networks to provide services and perform
computations, avoiding unnecessary communication latency
and enabling faster responses for end users. Edge Computing
is booming now.

No one can deny that Artificial Intelligence (AI) is devel-
oping unprecedentedly nowadays. Big data processing neces-
sitates that more powerful methods, i.e., AI technologies, for
extracting insights that lead to better decisions and strategic
business moves. In the last decade, with the huge success of
AlexNet, Deep Neural Networks (DNNs), which can learn the
deep representation of data, have become the most popular
machine learning architectures. Deep learning, represented
by DNNs and their ramifications, i.e., Convolutional Neu-
ral Networks (CNNs), Recurrent Neural Networks (RNNs)
and Generative Adversarial Networks (GANs), is the most
advanced AI technology. Deep learning has made striking
breakthroughs in a wide spectrum of fields, including com-
puter vision, speech recognition, natural language processing,
and board games. Besides, the hardware architectures and
platforms keep upgrading with a rapid rate, which makes
it possible to satisfy the requirements of the computation-
intensive deep learning models. Application-specific accelera-
tors are designed for further improvement in throughput and
energy efficiency. In conclusion, driven by the breakthroughs
in deep learning and the upgrade of hardware architectures,
AI is undergoing sustained prosperity and development.

Considering that AI is functionally necessary for quickly
analyzing huge volumes of data and extracting insights, there
exists a strong demand to integrate Edge Computing and AI,
which gives the birth of Edge Intelligence. Edge Intelligence
is not the simple combination of Edge Computing and AI. The
subject of Edge Intelligence is tremendous and enormously so-
phisticated, covering many concepts and technologies, which
are interwoven together in a complicated manner. Currently,
the formal and internationally acknowledged definition of
Edge Intelligence is non-existent. To deal with the problem,
some researchers put forward their definitions. For example,
Zhou et al. believe that the scope of Edge Intelligence should
not be restricted to running AI models solely on the edge
servers or devices but in the manner of the collaboration of
edge and cloud [4]. They define six levels of Edge Intelligence,
from cloud-edge co-inference (level 1) to all on-device (level
6). Zhang et al. define Edge Intelligence as the capability to
enable edges to execute AI algorithms [5].
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In this paper, we propose to establish a broader vision and
perspective. We suggest to distinguish edge Intelligence into
AI for edge and AI on edge.

1) AI for edge is a research direction focusing on pro-
viding a better solution to the constrained optimization
problems in Edge Computing with the help of popular
and effective AI technologies. Here, AI is used for
energizing edge with more intelligence and optimality.
Therefore, it can be understood as Intelligence-enabled
Edge Computing (IEC).

2) AI on edge studies how to carry out the entire process
of AI models on edge. It is a paradigm of running
AI models training and inference with device-edge-
cloud synergy, which aims at extracting insights from
massive and distributed edge data with the satisfaction
of algorithm performance, cost, privacy, reliability, effi-
ciency, etc. Therefore, it can be interpreted as Artificial
Intelligence on Edge (AIE).

Edge Intelligence, currently in its early stage, is attracting
more and more researchers and companies from all over the
world. To disseminate the recent advances of Edge Intel-
ligence, Zhou et al. have conducted a comprehensive and
concrete survey of the recent research efforts on Edge In-
telligence [4]. They survey the architectures, enabling tech-
nologies, systems, and frameworks from the perspective of
AI models’ training and inference. However, the material in
Edge Intelligence spans an immense and diverse spectrum of
literature, in origin and in nature, which is not fully covered
by this survey. Many concepts are still unclear and questions
remain unsolved. The researching actuality motivates us to
write this article to provide possible enlightening insights with
simple and clear classification.

We commit ourselves to lucubrating Edge Intelligence in
a broader vision and perspective. In Section II, we discuss
the relation between Edge Computing and AI. In Section III,
we demonstrate the research road-map of Edge Intelligence
concisely with a hierarchical structure. Section IV and Section
V elaborate the state of the art and grand challenges on AI for
edge and AI on edge, respectively. Section VI concludes the
article.

II. THE RELATIONS BETWEEN EDGE COMPUTING AND AI

We believe that the confluence of AI and Edge Computing
is natural and inevitable. In effect, there is an interactive
relationship between them. Edge Intelligence develops in the
process of interaction and mutual promotion between Edge
Computing and AI. On one hand, AI provides Edge Comput-
ing with technologies and methods, and Edge Computing is
unleashing its potential at scale with AI; on the other hand,
Edge Computing provides AI with scenarios and platforms,
and AI broadly flourishes with Edge Computing.

AI provides Edge Computing with technologies and
methods. In general, Edge Computing is a distributed com-
putation paradigm, where software-defined networks have to
be built to decentralize data and provide services with robust-
ness and elasticity. Edge Computing faces resource allocation
problems in different layers, such as CPU cycle frequency,

access jurisdiction, radio-frequency, bandwidth, and so on. As
a result, it has great demands on various powerful optimiza-
tion tools to enhance system efficiency. AI technologies are
competent to take on the task. Essentially, AI models extract
unconstrained optimization problems from real scenarios and
then find the asymptotically optimal solutions iteratively with
Stochastic Gradient Descent (SGD) methods. Either statistical
learning methods or deep learning methods can offer help and
advice for the edge. Besides, reinforcement learning, including
multi-armed bandit theory, multi-agent learning and deep Q-
network (DQN), is playing a more and more important role
in resource allocation problems for the edge.

Edge Computing provides AI with scenarios and plat-
forms. The surge of IoT devices makes the Internet of Ev-
erything (IoE) a reality [6]. More and more data is created
by widespread and geographically distributed mobile and IoT
devices, other than the mega-scale cloud datacenters. Many
more application scenarios, such as intelligent networked vehi-
cles, autonomous driving, smart home, smart city and real-time
data processing in public security, can greatly facilitate the
realization of AI from theory to practice. Besides, AI applica-
tions with high communication quality and low computational
power requirements can be migrated from cloud to edge. In
a word, Edge Computing provides AI with a heterogeneous
platform full of variety. Nowadays, it is gradually becoming
possible that AI chips with computational acceleration such as
Field Programmable Gate Arrays (FPGAs), Graphics Process-
ing Units (GPUs), Tensor Processing Units (TPUs) and Neural
Processing Units (NPUs) are integrated with intelligent mobile
devices. More and more corporations participate in the design
of chip architectures to support the edge computation paradigm
and engage in the DNN acceleration on resource-limited IoT
devices. The hardware upgrade on edge also injects vigor and
vitality into AI.

III. RESEARCH ROAD-MAP OF EDGE INTELLIGENCE

The architectural layers in the Edge Intelligence road-map,
depicted in Fig. 1, describe a logical separation for the two
directions respectively, i.e., AI for edge (left) and AI on edge
(right). By the bottom-up approach, we divide research efforts
in Edge Computing into Topology, Content, and Service. AI
technologies can be utilized in all of them. By top-down
decomposition, we divide the research efforts in AI on edge
into Model Adaptation, Framework Design and Processor
Acceleration. Before discussing AI for edge and AI on edge
separately, we first describe the goal to be optimized for both
of them, which is collectively known as Quality of Experience
(QoE). QoE stays in the top of the road-map.

A. Quality of Experience

We believe that QoE should be application-dependent and
determined by jointly considering multi-criteria from Perfor-
mance, Cost, Privacy (Security), Efficiency and Reliability.

1) Performance. Ingredients of performance are different
for AI for edge and AI on edge. As for the former, perfor-
mance indicators are problem-dependent. For example,
performance could be the ratio of successfully offloading



3

Performance
Problem-based Indicators

Training loss + Test Accuracy

Quality of Experience (QoE)

Cost

Computation Resource (delay)

Communicational Resource (latency)

Energy Consumption

Privacy (Security)

Efficiency

Reliability

AI for Edge

Service

Computation Offloading

User Profile Migration

Mobility Management

Content

Data Provisioning

Service                                          

Provisioning

Placement

Composition

Caching

Topology

Edge Site Orchestration

Wireless                                     

Networking                                   

Data Acquisition

Network Planning

the

bottom-up

approach

AI on Edge

Model

Adaptation

Model Compression

Conditional Computation

Algorithm Asynchronization

Framework

Design
Partitioning

Splitting

Processor

Acceleration

Instrcution Set Design

the

top-down

decomposition

Thoroughly Decentralization

Model

Inference

Model

Training

Federated Learning

Parallel Computation

Near-data Processing

Knowledge Distillation

Fig. 1. The research road-map of Edge Intelligence.

when it comes into the computation offloading problems.
It could be the service providers’ need-to-be-maximized
revenue and need-to-be-minimized hiring costs of Base
Stations (BSs) when it comes into the service placement
problems. As for the latter, performance is mainly con-
stitutive of training loss and inference accuracy, which
are the most important criteria for AI models. Although
the computation scenarios have changed from cloud
clusters to the synergetic system of device, edge, and
cloud, these criteria still play important roles.

2) Cost. Cost usually consists of computation cost, com-
munication cost, and energy consumption. Computation
cost reflects the demand for computing resources such
as achieved CPU cycle frequency, allocated CPU time
while communication cost presents the request for com-
munication resources such as power, frequency band and
access time. Many works also focused on minimizing
the delay (latency) caused by allocated computation
and communication resources. Energy consumption is
not unique to Edge Computing but more crucial due
to the limited battery capacity of mobile devices. Cost
reduction is crucial because Edge Computing promises
a dramatic reduction in delay and energy consumption
by tackling the key challenges for realizing 5G.

3) Privacy (Security). With the increased awareness of the

leaks of public data, privacy preservation has become
one of the hottest topics in recent years. The status quo
led to the birth of Federated Learning, which aggregates
local machine learning models from distributed devices
while preventing data leakage [7]. The security is closely
tied with privacy preservation. It also has an association
with the robustness of middleware and software of edge
systems, which are not considered in this article.

4) Efficiency. Whatever AI for edge or AI on edge, high
efficiency promises us a system with excellent perfor-
mance and low overhead. The pursuit of efficiency is
the key factor for improving existing algorithms and
models, especially for AI on edge. Many approaches
such as model compression, conditional computation,
and algorithm asynchronization are proposed to improve
the efficiency of training and inference of deep AI
models.

5) Reliability. System reliability ensures that Edge Com-
puting will not fail throughout any prescribed operating
periods. It is an important indicator of user experience.
For Edge Intelligence, system reliability appears to be
particularly important for AI on edge because the model
training and inference are usually carried out in a
decentralized and synchronized way and the participated
local users have a significant probability of failing to
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complete the model upload and download due to the
wireless network congestion.

B. A Recapitulation of IEC

The left of the road-map, depicted in Fig. 1, is AI for edge.
We name this kind of work IEC (i.e. Intelligence-enabled Edge
Computing) as AI provides powerful tools for solving complex
learning, planning, and decision-making problems. By the
bottom-up approach, the key concerns in Edge Computing
are categorized into three layers, i.e., Topology, Content, and
Service.

For Topology, we pay close attention to the Orchestration
of Edge Sites (OES) and Wireless Networking (WN). In this
article, we define an edge site as a micro data center with
applications deployed, attached to a Small-cell Base Station
(SBS). OES studies where to deploy and install wireless
telecom equipment and servers. In recent years, research
efforts on the management and automation of Unmanned
Aerial Vehicles (UAVs) come into vogue [8] [9]. UAVs
with a small server and an access point can be regarded as
moving edge servers with strong maneuverability. Therefore,
many works explore the scheduling and trajectory problems
with the minimization of energy consumption of UAVs. WN
studies Data Acquisition and Network Planning. The former
concentrates on the fast acquisition from rich but highly
distributed data at subscribed edge devices while the latter
concentrates on network scheduling, operating and managing.
Fast data acquisition includes multiple access, radio resource
allocation, and signal encoding/decoding. Network planning
studies efficient management with protocols and middlewares.
In recent years, there has been an increasing trend in intelligent
networking. It builds an intelligent wireless communication
mechanism by popular AI technologies. For example, Zhu
et al. propose Learning-driven Communication, whose main
principle is exploiting the coupling between communication
and learning in edge learning systems [10].

For Content, we place emphasis on Data Provisioning,
Service Provisioning, Service Placement, Service Composition
and Service Caching. For data and service provisioning, the
available resources can be provided by remote cloud data-
centers and edge servers. In recent years, there exist research
efforts on constructing lightweight QoS-aware service-based
frameworks [11] [12]. The shared resources can also come
from mobile devices if a proper incentive mechanism is
employed. Service placement is an important complement to
service provisioning, which studies where and how to deploy
complex services on possible edge sites. In recent years,
many works study service placement from the perspective
of Application Service Providers (ASPs). For example, [13]
trys deploying services under the limited budget on basic
communication and computation infrastructures. After that,
multi-armed bandit theory, an embranchment of reinforcement
learning, was adopted to optimize the service placement de-
cision. Service composition studies how to select candidate
services for composition in terms of energy consumption and
Quality of Experience (QoS) of mobile end users [14] [15]
[16]. It opens research opportunities where AI technologies

can be utilized to generate better service selection schemes.
Service caching can also be viewed as a complement to service
provisioning. It studies how to design a caching pool to store
the frequently visited data and services. Service caching can
also be studied in a cooperative way [17]. It opens research
opportunities where multi-agent learning can be utilized to
optimize QoE in large-scale edge computing systems.

For Service, we focus on Computation Offloading, User
Profile Migration, and Mobility Management. Computation
offloading studies the load balancing of various computational
and communication resources in the manner of edge server
selection and frequency spectrum allocation. More and more
research efforts focus on dynamically managing the radio and
computational resources for multi-user multi-server edge com-
puting systems, utilizing Lyapunov optimization technologies
[18] [19]. In recent years, optimizing computation offloading
decisions via DQN is popular [20] [21]. It models the compu-
tation offloading problem as a Markov decision process (MBP)
and maximize the long-term utility performance. The utility
can be composed of the above QoE indicators and evolves
according to the iterative Bellman equation. After that, the
asymptotically optimal computation offloading decisions are
achieved based on Deep Q-Network. User profile migration
studies how to adjust the place of user profiles (configuration
files, private data, logs, etc) when the mobile users are in
constant motion. User profile migration is often associated
with mobility management [22]. In [23], the proposed JCORM
algorithm jointly optimizes computation offloading and migra-
tion by formulating cooperative networks. It opens research
opportunities where more advanced AI technologies can be
utilized to increase optimality. Many existing research efforts
study mobility management from the perspective of statistics
and probability theory. It has strong interests in realizing
mobility management with AI.

C. A Recapitulation of AIE

The right of the road-map is AI on edge. We name this kind
of work AIE (i.e. Artificial Intelligence on Edge) since it stud-
ies how to carry out the training and inference of AI models
on the network edge. By top-down decomposition, we divide
the research efforts in AI on edge into three categories: Model
Adaptation, Framework Design and Processor Acceleration.
Considering that the research efforts in Model Adaptation are
based on existing training and inference frameworks, let us
introduce Framework Design in the first place.

1) Framework Design: Framework Design aims at pro-
viding a better training and inference architecture for the
edge without modifying the existing AI models. Researchers
attempt to design new frameworks for both Model Training
and Model Inference.

For Model Training: To the best of our knowledge, for
model training, all proposed frameworks are distributed, ex-
cept those knowledge distillation-based ones. The distributed
training frameworks can be divided into data split and model
split [24]. Data split can be further divided into master-
device split, helper-device split and device-device split. The
differences lie where the training samples come from and
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how the global model assembled and aggregated. Model
split separates neural networks’ layers and deploys them on
different devices. It highly relies on sophisticated pipelines.
Knowledge distillation-based frameworks may or may not be
decentralized, and they rely on transfer learning technologies
[25]. Knowledge distillation can enhance the accuracy of
shallow student networks. It first trains a basic network on a
basic dataset. After that, the learned features can be transferred
to student networks to be trained on their datasets, respectively.
The basic network can be trained on cloud or edge server while
those student networks can be trained by numerous mobile
end devices with their private data, respectively. We believe
that there exist great avenues to be explored in knowledge
distillation-based frameworks for model training on the edge.
The most popular work in model training is Federated Learn-
ing [7]. Federated Learning is proposed to preserve privacy
when training the DNNs in a decentralized way. Without
aggregating user private data to a central datacenter, Federated
Learning trains a series of local models on multiple clients.
After that, a global model is optimized by averaging the
trained gradients of each client. We are not going to elaborate
Federated Learning thoroughly. For more details please refer
to [7].

For Model Inference: Although model splitting is hard
to realize for model training, it is a popular approach for
model inference. To the best of our knowledge, model split-
ting/partitioning is the only approach that can be viewed
as a framework for model inference. Other approaches such
as model compression, input filtering, early-exit and so on
can only be viewed as adaptations from existing frameworks,
which will be introduced in the next paragraph and elaborated
on carefully in Subsection V-A. A typical example on model
inference on edge is [26], where a DNN is split into two parts
and carried out collaboratively. The computation-intensive part
is running on the edge server while the other is running on the
mobile device. The problem lies in where to split the layers
and when to exit the intricate DNN according to the constraint
on inference accuracy.

2) Model Adaptation: Model Adaptation makes appropri-
ate improvements based on existing training and inference
frameworks, usually Federated Learning, to make them more
applicable to the edge. Federated Learning has potential to
be performed on the edge. However, the vanilla version of
Federated Learning has a strong demand for communication
efficiency since full local models are supposed to be sent back
to the central server. Therefore, many researchers exploit more
efficient model updates and aggregation policies. Many works
are devoted to reducing cost and increasing robustness while
guaranteeing the system performance. Methods to realize
model adaptation include but not limited to Model Compres-
sion, Conditional Computation, Algorithm Asynchronization
and Thoroughly Decentralization. Model compression exploits
the inherent sparsity structure of gradients and weights. Pos-
sible approaches include but not limited to Quantization, Di-
mensional Reduction, Pruning, Precision Downgrading, Com-
ponents Sharing, Cutoff and so on. Those approaches can be
realized by technologies such as Singular Value Decomposi-
tion (SVD), Huffman Coding, Principal Component Analysis

(PCA) and some other acrobatics. Conditional computation
is an alternative way to reduce the amount of calculation
by selectively turning off some unimportant calculations of
DNNs. Possible approaches include but not limited to Com-
ponents Shutoff, Input Filtering, Early Exit, Results Caching
and so on. Conditional Computation can be viewed as block-
wise dropout [27]. Besides, random gossip communication
can be utilized to reduce unnecessary calculations and model
updates. Algorithm Asynchronization trys aggregating local
models in an asynchronous way. It is designed for overcoming
the inefficient and lengthy synchronous steps of model updates
in Federated Learning. Thoroughly decentralization removes
the central aggregator to avoid any possible leakage and
address the central server’s malfunction. The ways to achieve
totally decentralization include but not limited to blockchain
technologies and game-theoretical approaches.

3) Processor Acceleration: Processor Acceleration focuses
on structure optimization of DNNs in that the frequently-
used computation-intensive multiply-and-accumulate opera-
tions can be improved. The approaches to accelerate DNN
computation on hardware include (1) designing special in-
struction sets for DNN training and inference, (2) designing
highly paralleled computing paradigms, (3) moving computa-
tion closer to memory (near-data processing), etc. The highly
paralleled computing paradigms can be divided into temporal
and spatial architectures [28]. The former architectures such
as CPUs and GPUs can be accelerated by reducing the
number of multiplications and increasing throughputs. The
latter architectures can be accelerated by increasing data reuse
with data flows. For example, [29] proposes an algorithm to
accelerate CNN inference. The proposed algorithm converts a
set of pre-trained weights into values under given precision. It
also puts near-data processing into practice with an adaptive
implementation of memristor crossbar arrays. In the research
area of Edge Computing, a lot of works hammer at the
co-design of Model Adaptation and Processor Acceleration.
Considering that Processor Acceleration is mainly investigated
by AI researchers, this article will not launch a careful
discussion on it. More details on hardware acceleration for
DNN processing can be consulted in [28].

IV. AI FOR EDGE

In Subsection III-B, we divide the key concerns in Edge
Computing into three categories: Topology, Content and Ser-
vice. It just presents a classification and possible research
directions but does not provide in-depth analysis on how
to apply AI technologies to edge to generate more optimal
solutions. This Section will remedy it. Fig. 2 gives an example
of how AI technologies are utilized in the Mobile Edge
Computing (MEC) environment. Firstly, we need to identify
the problem to be studied. Take performance optimization as
an example, the optimization goal, decision variables, and
potential constraints need to be confirmed. After that, the
mathematical model should be constructed. At last, we should
design an algorithm to solve the problem. In fact, the model
construction is not only decided by the to-be-studied problem,
but also the to-be-applied optimization algorithms. Take DQN
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Fig. 2. The utilization of AI technology for performance optimization.

for example, we have to model the problem as a MDP with
finite states and actions. Thus, the constraints can not exist in
the long-term optimization problem. The most common way
is transferring those constraints into penalty and adding the
penalty to the optimization goal.

Considering that current research efforts on AI for edge con-
centrate on Wireless Networking, Service Placement, Service
Caching and Computation Offloading, we only focus on these
topics in the following Subsection. For research directions
that haven’t been touched and uncharted yet, we are looking
forward to more exciting works.

A. State of the Art
1) Wireless Networking: 5G promises eMBB, URLLC and

mMTC in a real-time and highly dynamic environment. Under
the circumstances, researchers reach a consensus on that AI
technologies should and can be integrated across the wireless
infrastructure and mobile users [30]. We believe that AI has
every right to be synergistically applied to realize intelligent
network optimization in a fully online manner. One of the
typical works is [10]. This paper advocates a new set of
design principles for wireless communication on edge with
machine learning technologies and models embedded, which
are collectively named as Learning-driven Communication. It
can be achieved across the whole process of data acquisition,
which are in turn multiple access, radio resource management
and signal encoding.

For learning-driven multiple access, it advocates that
the unique characteristics of wireless channels should be ex-
ploited for functional computation. Over-the-air computation
(AirComp) is a typical technique to realize it [31] [32]. [33]
puts this principle into practice based on Broadband Analog
Aggregation (BAA). Concretely, [33] suggests that the simul-
taneously transmitted model updates in Federated Learning
should be analog aggregated by exploiting the waveform-
superposition property of multi-access channels. The proposed

BAA can dramatically reduce communication latency com-
pared with traditional Orthogonal Frequency Division Mul-
tiple Access (OFDMA). [34] also explores the over-the-air
computation for model aggregation in Federated Learning.
Concretely, [34] puts the principle into practice by modeling
the device selection and beamforming design as a sparse and
low-rank optimization problem, which is highly intractably
combinatorial. To solve the problem with fast convergence
rate, this paper proposed a difference-of-convex-functions
(DC) representation via successive convex relaxation. The nu-
merical results show that the proposed algorithm can achieve
lower training loss and higher inference accuracy compared
with state-of-the-art approaches. This contribution can also
be categorized as Model Adaptation in AI on edge, but it
accelerates Federated Learning from the perspective of fast
data acquisition.

For learning-driven radio resource management, it
advocates that radio resources should be allocated based
on the value of transmitted data, not just the efficiency
of spectrum utilization. Therefore, it can be understood as
importance-aware resource allocation and an obvious ap-
proach is importance-aware retransmission. [35] puts the
principle into practice. This paper proposed a retransmission
protocol, named importance-aware automatic-repeat-request
(importance ARQ). Importance ARQ makes the trade-off be-
tween signal-to-noise ratio (SNR) and data uncertainty under
the desired learning accuracy. It can achieve fast convergence
while avoiding learning performance degradation caused by
channel noise.

For learning-driven signal encoding, it advocates that
the signal encoding should be designed by jointly optimizing
feature extraction, source coding, and channel encoding. A
work puts this principle into practice is [36], which proposes a
Hybrid Federated Distillation (HFD) scheme based on separate
source-channel coding and over-the-air computing. It adopts
sparse binary compression with error accumulation in source-
channel coding. For both digital and analog implementations
over Gaussian multiple-access channels, HFD can outperform
the vanilla version of Federated Learning in a poor communi-
cation environment. This principle has something in common
with Dimensional Reduction and Quantization from Model
Adaptation in AI on edge, but it reduces the feature size
from the source of data transmission. It opens great research
opportunities on the co-design of learning frameworks and data
encoding.

Apart from Learning-driven Communication, some works
contribute to AI for Wireless Networking from the perspective
of power and energy consumption management. Shen et al.
utilizes Graph Neural Networks (GNNs) to develop scalable
methods for power control in K-user interference channels
[37]. This paper first models the K-user interference channel
as a complete graph, then it learns the optimal power control
with a graph convolutional neural network. [38] studies an
energy minimization problem where the baseband processes of
the virtual small cells powered solely by energy harvesters and
batteries can be opportunistically executed in a grid-connected
edge server. Based on multi-agent learning, several distributed
fuzzy Q-learning-based algorithms are tailored. This paper can
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be viewed as an attempt on coordination with broadcasting.
As we will expound later, Wireless Networking is often

combined with Computation Offloading when it is studied in
the form of optimization. State of the art of these works is
listed in Subsection IV-A3.

2) Service Placement and Caching: Many researchers
study service placement from the perspective of Application
Service Providers (ASPs). They model the data and service
(it could be composed and complicated) placement prob-
lem as a Markov Decision Process (MDP) and utilize AI
technologies such as reinforcement learning to achieve the
optimal placement decision. Typical work is [39]. This paper
proposes a spatial-temporal algorithm based on Multi-armed
bandit (MAB) and achieves the optimal placement decisions
while learning the benefit. Concretely, it studies how many
SBSs should be rent for edge service hosting to maximize
the expected utility up to a finite time horizon. The expected
utility is composed of delay reduction of all mobile users.
After that, a MAB-based algorithm, named SEEN, is proposed
to learn the local users service demand patterns of SBSs. It
can achieve the balance between exploitation and exploration
automatically according to the fact that whether the set of
SBSs is chosen before. Another work attempts to integrate
AI technologies with service placement is [40]. This work
jointly decides which SBS to deploy each data block and
service component and how much harvested energy should be
stored in mobile devices with a DQN-based algorithm. This
article will not elaborate DQN thoroughly. More details can
be consulted in [41].

Service caching can be viewed as a complement to service
placement. Edge servers can be equipped with special service
cache to satisfy user demands on popular contents. A wide
range of optimization problems on service caching are pro-
posed to endow edge servers with learning capability. Sadeghi
et al. study a sequential fetch-cache decision based on dynamic
prices and user requests [17]. This paper endows SBSs with
efficient fetch-cache decision-making schemes operating in
dynamic settings. Concretely, it formulates a cost minimization
problem with service popularity considered. For the long-
term stochastic optimization problem, several computationally
efficient algorithms are developed based on Q-learning.

3) Computation Offloading: Computation offloading could
be the hottest topic when it comes to AI for edge. It studies
the transfer of resource-intensive computational tasks from
resource-limited mobile devices to edge or cloud. This process
involves the allocation of many resources, ranging from CPU
cycles to channel bandwidth. Therefore, AI technologies with
strong optimization abilities have been extensively used in
recent years. Among all these AI technologies, Q-learning
and its derivate, DQN, are in the spotlight. For example,
[42] designs a Q-learning-based algorithm for computation of-
floading. Concretely, it formulates the computation offloading
problem as a non-cooperative game in multi-user multi-server
edge computing systems and proves that Nash Equilibrium
exists. Then, this paper proposes a model-free Q-learning-
based offloading mechanism which helps mobile devices learn
their long-term offloading strategies to maximize their long-
term utilities.

More works are based on DQN because the curse of
dimensionality could be overcome with non-linear function
approximation. For example, [20] studies the computation of-
floading for IoT devices with energy harvesting in multi-server
MEC systems. The need-to-be-maximized utility formed from
overall data sharing gains, task dropping penalty, energy con-
sumption and computation delay, which is updated according
to the Bellman equation. After that, DQN is used to generate
the optimal offloading scheme. In [21] [43], the computation
offloading problem is formulated as a MDP with finite states
and actions. The state set is composed of the channel qualities,
the energy queue, and the task queue while the action set is
composed of offloading decisions in different time slots. Then,
a DQN-based algorithm is proposed to minimize the long-term
cost. Based on DQN, [44] [45] jointly optimize task offloading
decisions and wireless resource allocation to maximize the
data acquisition and analysis capability of the network. [46]
studies the knowledge-driven service offloading problem for
Vehicle of Internet. The problem is also formulated as a
long-term planning optimization problem and solved based
on DQN. In summary, computation offloading problems in
various industrial scenarios have been extensively studied from
all sort of perspectives.

There also exist works who explore the task offloading
problem with other AI technologies. For example, [47] pro-
poses a long-short-term memory (LSTM) network to predict
the task popularity and then formulates a joint optimization
of the task offloading decisions, computation resource allo-
cation and caching decisions. After that, a Bayesian learning
automata-based multi-agent learning algorithm is proposed for
optimality.

B. Grand Challenges

Although it is popular to apply AI technologies to edge for
the generation of better solutions, there have many challenges
to face. In the next several Subsections, we list grand chal-
lenges across the whole process of AI for edge research, which
in turn are model establishment, algorithm deployment and the
balance between optimality and efficiency. These challenges
are closely related but each has its emphasis.

1) Model Establishment: If we want to use AI technologies,
the built mathematical model has to be limited and the formu-
lated optimization problem can not be unrestrained. On one
hand, this is because the optimization basis of AI technologies,
SGD (Stochastic Gradient Descent) and MBGD (Mini-Batch
Gradient Descent) methods, may not work well if the original
searching space is constrained. On the other hand, especially
for MDPs, the state set and action set can not be infinite, and
discretization is necessary to avoid the curse of dimensionality
before further processing. The common solution is changing
the constraints into a penalty and incorporating them into
the global optimization goal. The status quo greatly restricts
the establishment of mathematical models and leads to the
performance downgrade. It can be viewed as a compromise for
the utilization of AI technologies. Therefore, how to establish
appropriate system model faces great challenges.
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2) Algorithm Deployment: The state-of-the-art works often
formulate a combinatorial and NP-hard optimization problem
which has fairly high computational complexity. Very few
works can achieve an analytic approximate optimal solution
with convex optimization technologies and acrobatics. Ac-
tually, for AI for edge, the achieved solution mostly comes
from iterative learning-based approaches. The status quo face
great challenges when they are deployed on the edge in an
online manner. Besides, another ignored challenge is which
edge device should undertake the responsibility for deploying
and running the proposed complicated algorithms. The existing
research efforts usually concentrate on their specific problems
and do not provide the details on that.

3) Balance between Optimality and Efficiency: Although
AI technologies can indeed provide solutions with optimality,
the trade-off between optimality and efficiency can not be
ignored when it comes to the resource-constrained edge.
Thus, how to improve the usability and efficiency of edge
computing system for different application scenarios with AI
technologies embedded is a severe challenge. The trade-off
between optimality and efficiency should be realized based
on the characteristics of dynamically changing requirements
on QoE and the network resource structure. Therefore, it is
coupling with the service subscribers’ pursuing superiority and
the utilization of available resources.

V. AI ON EDGE

In Subsection III-C, we divide the research efforts in
AI on edge into Model Adaptation, Framework Design and
Processor Acceleration. The existing frameworks for model
training and inference are rare. The training frameworks
include Federated Learning and Knowledge Distillation while
the inference frameworks include Model Spitting and Model
Partitioning. AI models on edge are far limited to cloud-
based predictions because of the relatively limited compute
and storage abilities. How to carry out the model training and
inference on resource-scarce devices is a serious issue. As a
result, compared with designing new frameworks, researchers
in Edge Computing are more interested in improving existing
frameworks to make them more appropriate to edge, usually
reducing resource occupation. As a result, Model Adaptation
based on Federated Learning is prosperously developed. As
we have mentioned before, Processor Acceleration will not
be elaborated in details. Therefore, we only focus on Model
Adaptation in the following Subsection. The state of the art
is only discussed across Model Compression, Conditional
Computation, Algorithm Asynchronization, and Thoroughly
Decentralization.

A. State of the Art

1) Model Compression: As demonstrated in Fig. 3, the
approaches for Model Compression include Quantization, Di-
mensionality Reduction, Pruning, Components Sharing, Pre-
cision Downgrading and so on. They exploit the inherent
sparsity structure of gradients and weights to reduce the
memory and channel occupation as much as possible. The
technologies to compress and quantize weights include but
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Fig. 3. Methods, approaches and technologies of Model Adaptation.

not limited to Singular Value Decomposition (SVD), Huffman
coding and Principal Component Analysis. This article will
not launch a thorough introduction to them due to the limited
space. Considering that many works simultaneously utilize the
approaches mentioned above, we do not further divide the
state of the art in Model Compression. One more thing should
be clearly noted is that Model Compression is suitable for
both Model Training and Model Inference. Thus we do not
deliberately distinguish them.

As we have mentioned before, communication efficiency is
of the utmost importance for Federated Learning. Therefore,
minimizing the number of rounds of communication is the
principal goal when we move Federated Learning to the
edge. A lot of works hammer at reducing the communication
cost for Federated Learning from various perspectives. In
[48], structured updates and sketched updates are proposed
for reducing the uplink communication costs. For structured
updates, the local update is learnt from a restricted lower-
dimensional space; for sketched updates, the uploading model
is compressed before sending to the central server. [49] designs
a communication-efficient secure aggregation protocol for
high-dimensional data. The protocol can tolerate up to 33.3%
of participated devices failing to complete the protocol, i.e.,
the system is robust to the dropping out of participated users.
[50] believes that DNNs are typically over-parameterized and
their weights have significant redundancy. Meanwhile, pruning
compensate with the lost performance. Thus, this paper pro-
poses a retraining-after-pruning scheme. It retrains the DNN
on new data while the pruned weights stay constant. The
scheme can reduce the resource occupation while guaranteeing
learning accuracy. [51] exploits mixed low-bitwidth compres-
sion. It hammers at determining the minimum bit precision
of each activation and weight under the given constraints
on memory. [52] uses Binarized Neural Networks (BNNs),
which have binary weights and activations to replace regular
DNNs. This is a typical exploration of quantization. Analo-
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gously, [53] proposes hybrid network architectures combing
binary and full-precision sections to achieve significant en-
ergy efficiency and memory compression with performance
guaranteed. Thakker et al. study a compressed RNN cell
implementation called Hybrid Matrix Decomposition (HMD)
for model inference [54]. It divides the matrix of network
weights into two parts: an unconstrained upper half and a
lower half composed of rank-1 blocks. The output features are
composed of the rich part (upper) and the barren part (lower).
This is an imaginative acrobatic on compression, compared
with traditional pruning or quantization. The numerical results
show that it can not only achieve a faster run-time than
pruning and but also retain more model accuracy than matrix
factorization.

Some works also explore model compression based on
partitioned DNNs. For example, [55] proposes an auto-tuning
neural network quantization framework for collaborative in-
ference between edge and cloud. Firstly, DNN is partitioned.
The first part is quantized and executed on the edge devices
while the second part is executed in cloud with full-precision.
[56] proposes a framework to accelerate and compress model
training and inference. It partitions DNNs into multiple sec-
tions according to their depth and constructs classifiers upon
the intermediate features of different sections. Besides, the
accuracy of classifiers is enhanced by knowledge distillation.

Apart from Federated Learning, there exist works probe into
the execution of statistical learning models or other popular
deep models such as ResNet and VGG architectures on
resource-limited end devices. For example, [57] proposes Pro-
toNN, a compressed and accurate k-Nearest Neighbor (kNN)
algorithm. ProtoNN learns a small number of prototypes to
represent the entire training set by Stochastic Neighborhood
Compression (SNC) [58], and then projects the entire data
in a lower dimension with a sparse projection matrix. It
jointly optimizes the projection and prototypes with explicit
model size constraint. Chakraborty et al. proposes Hybrid-Net
which has both binary and high-precision layers to reduce the
degradation of learning performance [59]. Innovatively, this
paper leverage PCA to identify significant layers in a binary
network, other than dimensionality reduction. The significance
here is identified based on the ability of a layer to expand into
higher dimensional space.

Model Compression is currently the hottest direction in AI
on edge because it is easy to get started. However, the state-
of-the-art works are usually not tied to specific application
scenarios of edge computing systems. We are looking forward
to exciting works set up on detailed edge platforms and
hardware.

2) Conditional Computation: As demonstrated in Fig. 3,
the approaches for Conditional Computation include Com-
ponents Sharing, Components Shutoff, Input Filtering, Early
Exit, Results Caching and so on. To put it simply, Conditional
computation is selectively turning off some unimportant cal-
culations. Thus it can be viewed as block-wise dropout [27].
A lot of works devote themselves to ranking and selecting
the most worthy part for computation or early stop if the
confident threshold is achieved. For example, [60] instantiates
a runtime-throttleable neural network which can adaptively

balance learning accuracy and resource occupation in response
to a control signal. It puts Conditional Computation into
practice via block-level gating.

This idea can also be put into use for participator selection.
It selects the most valuable participators in Federated Learning
for model updates. The valueless participators will not engage
the aggregation of the global model. To the best of our
knowledge, currently, there is no work dedicated to participator
selection. We are eagerly looking forward to exciting works
on it.

3) Algorithm Asynchronization: As demonstrated in Fig.
3, Algorithm Asynchronization attempts to aggregate local
models in an asynchronous way for Federated Learning. As
we have mentioned before, the participated local users have a
significant probability of failing to complete the model upload
and download due to the wireless network congestion. Apart
from model compression, another way is exchanging weights
and gradients peer-to-peer to reduce the high concurrency on
wireless channels. Random-gossip Communication is a typical
example. Based on randomized gossip algorithms, Blot et al.
propose GoSGD to train DNNs asynchronously [61]. The most
challenging problem for gossip training is the degradation of
convergence rate in large-scale edge systems. To overcome
the issue, Daily et al. introduce GossipGraD, which can
reduce the communication complexity greatly to ensure the
fast convergence [62].

4) Thoroughly Decentralization: As demonstrated in Fig.
3, Thoroughly Decentralization attempts to remove the central
aggregator to avoid any possible leakage. Although Federated
Learning does not require consumers private data, the model
updates still contain private information as some trust of the
server coordinating the training is still required. To avoid
privacy leaks altogether, blockchain technology and game-
theoretical approaches can assist in total decentralization.

By leveraging blockchain, especially smart contract, the
central server for model aggregating is not needed anymore.
As a result, collapse triggered by model aggregation can be
avoided. Besides, user privacy can be protected. We believe
that the blockchain-based Federated Learning will become a
hot field and prosperous direction in the coming years. There
exists work who puts it into practice. In [63], the proposed
blockchain-based federated learning architecture, BlockFL,
takes edge nodes as miners. Miners exchange and verify all the
local model updates contributed by each device and then run
the Proof-of-Work (PoW). The miner who firstly completes the
PoW generates a new block and receives the mining reward
from the blockchain network. At last, each device updates its
local model from the freshest block. In this paper, blockchain
is effectively integrated with Federated Learning to build a
trustworthy edge learning environment.

B. Grand Challenges
The grand challenges for AI on edge are listed from the per-

spective of data availability, model selection, and coordination
mechanism, respectively.

1) Data Availability: The toughest challenge lies in the
availability and usability of raw training data because us-
able data is the beginning of everything. Firstly, a proper
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incentive mechanism may be necessary for data provisioning
from mobile users. Otherwise, the raw data may not be
available for model training and inference. Besides, the raw
data from various end devices could have an obvious bias,
which can greatly affect the learning performance. Although
Federated Learning can overcome the problem caused by non-
i.i.d. samples to a certain extent, the training procedure still
faces great difficulties on the design of robust communication
protocol. Therefore, there are huge challenges in terms of data
availability.

2) Model Selection: At present, the selection of need-to-
be-trained AI models faces severe challenges in the following
aspects, across from the models themselves to the training
frameworks and hardware. Firstly, how to select the befitting
threshold of learning accuracy and scale of AI models for
quick deployment and delivery. Secondly, how to select probe
training frameworks and accelerator architectures under the
limited resources. Model selection is coupling with resource
allocation and management, thus the problem is complicated
and challenging.

3) Coordination Mechanism: The proposed methods on
Model Adaptation may not be pervasively serviceable because
there could be a huge difference in computing power and com-
munication resources between heterogeneous edge devices. It
may lead to that the same method achieves different learning
results for different clusters of mobile devices. Therefore, the
compatibility and coordination between heterogeneous edge
devices are of great essence. A flexible coordination mecha-
nism between cloud, edge, and device in both hardware and
middlewares is imperative and urgently need to be designed.
It opens research opportunities on a uniform API interface on
edge learning for ubiquitous edge devices.

VI. CONCLUDING REMARKS

Edge Intelligence, although still in its primary stage, has
attracted more and more researchers and companies to get
involved in studying and using it. This article attempts to
provide possible research opportunities through a succinct and
effective classification. Concretely, we first discuss the relation
between Edge Computing and Artificial Intelligence. We be-
lieve that they promote and reinforce each other. After that, we
divide Edge Intelligence into AI for edge and AI on edge and
sketch the research road-map. The former focuses on providing
a better solution to the key concerns in Edge Computing with
the help of popular and resultful AI technologies while the
latter studies how to carry out the training and inference of
AI models, on edge. Either AI for edge or AI on edge, the
research road-map is presented in a hierarchical architecture.
By the bottom-up approach, we divide research efforts in Edge
Computing into Topology, Content, and Service and introduce
some examples on how to energize edge with intelligence.
By top-down decomposition, we divide the research efforts in
AI on edge into Model Adaptation, Framework Design, and
Processor Acceleration and introduce some existing research
results. Finally, we present the state of the art and grand
challenges in several hot topics for both AI for edge and AI
on edge. We attempt to provide enlightening thought on the

uncultivated land of Edge Intelligence. We hope this article
can stimulate fruitful discussions on potential future research
programs in Edge Intelligence.
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