
Invited Paper: DeepSLOs for the Computing Continuum
Victor Casamayor Pujol

Boris Sedlak
Yanwei Xu

Distributed Systems Group, TU Wien,
Vienna 1040, Austria

{vcasamayor,bsedlak,y.xu}@dsg.tuwien.ac.at

Praveen Kumar Donta
Schahram Dustdar

Distributed Systems Group, TU Wien,
Vienna 1040, Austria

{pdonta,dustdar}@dsg.tuwien.ac.at

ABSTRACT
The advent of the computing continuum, i.e., the blending of all
existing computational tiers, calls for novel techniques and meth-
ods that consider its complex dynamics. This work presents the
DeepSLO as a novel design paradigm to define and structure Ser-
vice Level Objectives (SLOs) for distributed computing continuum
systems. Hence, when multiple stakeholders are involved, the Deep-
SLO allows them to plan the overarching behaviors of the system.
Further, the techniques employed (Bayesian networks, Markov blan-
ket, Active inference) provide autonomy and decentralization to
each SLO while the DeepSLO hierarchy remains to account for
objectives dependencies. Finally, DeepSLOs are represented graphi-
cally, as well as individual SLOs enabling a human interpretation
of the system performance.

CCS CONCEPTS
• Software and its engineering→ Software design engineer-
ing.

ACM Reference Format:
Victor Casamayor Pujol, Boris Sedlak, Yanwei Xu, Praveen Kumar Donta,
and Schahram Dustdar. 2024. Invited Paper: DeepSLOs for the Computing
Continuum. In Advanced Tools, Programming Languages, and PLatforms
for Implementing and Evaluating algorithms for Distributed systems (Ap-
PLIED’24), June 17, 2024, Nantes, France. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3663338.3663681

1 INTRODUCTION
The Computing Continuum (CC) is a new computing paradigm that
is steadily emerging and promising to link the huge computational
capabilities of the Cloud with the proximity and low latency of the
Edge. Cloud capabilities and its landscape of services and appli-
cations have driven how we interact and benefit from computing
systems. For many years, the Cloud has been the only way to con-
sume large-scale internet-based services [17]. However, society is
exploring the benefits from new applications concerned with smart
cities [11], autonomous driving [5], resource management [3], or
e-health [2]. These applications set service requirements at a level
the Cloud cannot fulfill.

This work is licensed under a Creative Commons Attribution International 4.0
License.
ApPLIED’24, June 17, 2024, Nantes, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0670-7/24/06
https://doi.org/10.1145/3663338.3663681

As an initial answer to that demand, Edge computing arose to de-
crease the latency of this next generation of internet-based services,
reduce network bandwidth utilization by performing computations
close to data sources, and by enhancing privacy by not storing
users’ data [29]. Regardless, more than Edge computing is needed
to provide the computing, networking, and storage capabilities
that the Cloud is giving. Hence, crucial to the CC is its ambition
of blending all computing tiers, e.g., the Cloud, the Fog, the Edge,
and the Internet of Things (IoT), to build Distributed Computing
Continuum Systems (DCCS) [6], which leverage the best from each
computing model.

Developing and managing DCCS brings new challenges that
must be addressed. To start, the CC will be a multi-proprietary
and multi-tenant computing environment, which implies that parts
owned by different actors will be combined in a single system. One
can imagine the system having at least one vendor for Cloud ser-
vices, another for Edge services, the IoT layer covered by a third
company, and the network provider also offering specific network-
related functions to enhance critical services. Further, all these
infrastructure components will be shared with other applications;
thus, creating a multi-tenant environment, as it is currently occur-
ring in the Cloud [1]. Hence, on the one side, there is a need to
build appropriate and manageable solutions for all the system’s
stakeholders, meaning solutions that consider both the system’s
high-level needs and each of the stakeholders’ lower-level specifica-
tions. On the other side, services might not always encounter their
ideal environment because devices’ capabilities and availability
fluctuate over time; therefore, runtime adaptations need to be built
into the system, such as changing data quality.

In addition, these systems are geographically distributed. Imag-
ine an application being used in a region for smart citymanagement;
it will employ IoT deviceswhere data is collected, constrained single-
board computers (SBC) next to the IoT for light processing, edge
servers in the larger cities for inference and low-latency servicing,
and somewhere distant there will be a data center, providing Cloud
functionalities. Indeed, if we foresee larger and more complex ap-
plications, the distribution is even more accentuated. This property
challenges the deployment and adaptation capabilities of the ser-
vices in the infrastructure, leading toward the need of decentralized
techniques. Interestingly, decentralization is well aligned with the
needs associated in a multi-proprietary and multi-tenant system,
but it is opposite to the main trends for the Cloud current busi-
ness. Fortunately, from the research community there are important
voices calling for multi-proprietary Cloud environments [31].

In that regard, current Cloud-based providers use Service Level
Objectives (SLOs) to offer application owners guarantees of per-
formance through Service Level Agreements (SLAs) [13, 32, 37].

https://orcid.org/0000-0003-2830-8368
https://orcid.org/0009-0001-2365-8265
https://orcid.org/0000-0002-9340-3620
https://orcid.org/0000-0002-8233-6071
https://orcid.org/0000-0001-6872-8821
https://doi.org/10.1145/3663338.3663681
https://doi.org/10.1145/3663338.3663681
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3663338.3663681&domain=pdf&date_stamp=2024-06-20

ApPLIED’24, June 17, 2024, Nantes, France Victor Casamayor Pujol, Boris Sedlak, Yanwei Xu, Praveen Kumar Donta, and Schahram Dustdar

Briefly, SLOs are constraints to specific Services Level Indicators
(SLI), which are measurable system metrics such as the CPU usage.
The provider must fulfill its constraints as part of the SLA; however,
if the SLO is violated by exceeding the SLO limits, the provider will
have to compensate its client, e.g., by paying a penalty. Hence, de-
ployment and adaptation operations are linked to the fulfillment of
the selected SLO, as a bilateral agreement and considering only the
performance on the provider’s side. Clearly, in a multi-proprietary
scenario, where infrastructure components are related but belong
to different providers, the SLOs selected will need to consider the
performance on several providers’ ends and the possible ramifica-
tions of SLO violations. Hence, acknowledging propagation effects
is fundamental to equip DCCS with accountability capacity, which
is crucial to reach agreement among stakeholders.

In the forthcoming CC paradigm, the current approach to man-
agement through an SLO falls short. First, when considering ap-
plications consisting of a set of services, a single SLO is incapable
to properly hinting the adequate adaptation operation to correct
the application’s performance. Workarounds exist, for example Qiu
et al. [21] compute the critical path over the application’s services
to detect and act on the service that might violate the SLO. How-
ever, finding the critical path to detect such issues have a couple
of drawbacks: (1) computing the critical path is neither a fast nor
simple task, although there are some approaches into huge appli-
cations [40]. (2) identifying the service that is producing the delay
is not enough to pinpoint its cause, possibly leading to ill-posed
adaptations. Another common approach to ensure SLO fulfillment
for Cloud-based applications with many services is finding the root-
cause of the SLO violation. In that regard, a good example is the
work of Chen et al. [4].

Unfortunately, the underlying problem is the same as before and
it is not tackled: a limited and centralized visibility into the sys-
tem’s structure and performance. Further, most of solutions react
only when the SLO has been violated, which can be too late for a
recovery in large, distributed, and complex systems. Other works
aim at using high-level SLOs with the purpose of gaining more ac-
curate information on system’s behavior and to achieve a proactive
adaptation by means of deep learning techniques [16]. However,
the definition of the high-level SLOs, their linking to lower-level
system metrics, and how to consequently adapt the system are
still open questions under research. Further, when discussing about
adaptation the Kubernetes autoscaler is the state-of-the-art solution
for Cloud-based deployments. However, when moving to the Edge
or when the scenario is the CC, autoscaling is not sufficient due to
the limited resources of the devices. Hence, solutions considering
offloading or measures that can trade-off service performance with
quality or cost are needed to be explored [27]. Hence, new solutions
for DCCS require precise specification and visibility on the system
to have efficient and effective adaptation capabilities.

The vanilla method to provide a sufficient level of visibility and
to have a fully specified system is generating SLOs for each service.
This way, whenever an SLO is violated, the affected service can
be identified immediately and the measures for the adaptation can
be tailored to the service. Indeed, this is seen as an overhead for
any Cloud-based application as it requires collecting and centrally
analyzing the system’s data and to timely respond if required. It
implies building an ad-hoc network to transfer all information

without affecting the application behavior, which has to be fast
enough to maximize system’s availability. Regardless, we all have
witnessed the success of Cloud applications, which work generally
well with its current, and more simple, management approach.

However, the CC with its geographic distribution, decentraliza-
tion, and multi-tenancy, leads to the specification of all services as
the only approach to properly develop an accountable system for all
its participants. Further, a complete services specification aids keep-
ing the system functionality as expected. Nevertheless, specifying
SLOs for each service requires a detailed study of their interconnec-
tions. The system’s information shared between services has to be
carefully measured (for performance, security, and privacy issues)
sending only the essential data for a service to evaluate its SLO
compliance and to apply the most appropriate elasticity strategy.
Further, this means that each service requires a certain level of
autonomy being able to take care of its SLO with the minimum
interaction with other services or other higher-level entities (e.g.,
the orchestrator or other meta-services). Hence, each service and its
SLO (or SLOs) becomes a single accountable entity. It is crucial to
clarify that this does not entail service providers incorporating all
of this logic into the service itself, but rather, the service is required
to expose the necessary interfaces for the SLOs.

In this article, we propose the DeepSLO as a design paradigm. A
DeepSLO encompasses concepts, structures, and a mathematical
framework as the cornerstone to define and specify CC applications.
The DeepSLO is an overarching structure for a CC application. It
connects conditionally dependent SLOs by building it as a Bayesian
network. The Bayesian network provides the proper mathematical
framework to predict their behavior, to allow any further system
optimization, and to study trade-offs between SLOs. Further, the
Bayesian model is interpretable, which means that its outcomes are
explainable. The DeepSLO provides a deep (hierarchical) structure
between the requirements (SLOs), allowing their interconnection
and conflict resolution. These aspects enable the integration of all
stakeholders, by letting them specify service-device requirements
and providing a hierarchical structure to agree and prioritize inter-
actions between each SLO. The SLOs within the DeepSLO are used
to fully describe the application’s requirements, considering both
the services they control and the devices where they are deployed.
Each SLO has its area of interest, which means that all system
variables that affect the SLO are considered, but all the others are
removed from the analysis as a causal filter. Further, SLOs are given
means to act autonomously with active inference, and hence, they
can plan the best strategy to keep SLOs fulfilled. Developing the
SLOs as intelligent agents with a narrow set of system variables
to look at aids their decentralization and autonomous SLO-based
management.

In the following sections, we will provide a bottom-up descrip-
tion of the DeepSLO. We take this perspective because some fun-
damental characteristics of the DeepSLO naturally emerge from
its components. Further, to clarify the explanations given at each
section a running example will follow them.

Invited Paper: DeepSLOs for the Computing Continuum ApPLIED’24, June 17, 2024, Nantes, France

2 SLOS AS SERVICE REQUIREMENTS
Applications can be composed of a large variety of services. Indeed,
depending on the application, services will vary. However, it is rea-
sonable to think that services can be grouped or profiled, severely
reducing their diversity according to their specific computational
demands. Simply put, services requiring high CPU utilization would
be a different category than those that are doing I/O operations, and
services requiring a GPUwould be another. The granularity of these
categories has to be helpful to identify services while keeping the
number of categories at a manageable level [15]. For the sake of clar-
ity, we assume that services providing similar functionalities have
similar computational demands. If such an assumption is refuted, it
would be done based on their computational demands instead of
classifying services by functionality, as previously explained.

Understanding SLOs as service requirements means that each
service has to be associated with SLOs that guarantee its expected
behavior. The complexity of the service can demand more than
one SLO; hence, it is fundamental that the SLOs properly reflect
the service’s requirements. Having defined types of services can
ease the identification of their required SLOs. Interestingly, this
expected behavior of the service implies some knowledge of the
type of device that will be hosting it. If we look into current Cloud-
based SLOs, they do not need to consider the device in which it
will be deployed to adjust the SLO. Actually, if the service requires
a specific piece of hardware, e.g., a GPU, this constraint is sent to
the scheduler. However, in this new CC paradigm, having a single
scheduler (or resource manager) managing all hardware resources
is impossible due to their geographical distance or the different
ownership of the computing resources. Hence, adding this type of
constraint to the service, e.g., a specific hardware need, gives the
flexibility that, regardless of the final geographical location of the
service in the continuum, the local resource manager will be aware
of the service requirements.

In addition, the continuum consists of a large variety of het-
erogeneous devices. Hence, expecting the same SLO compliance
rate for the same service deployed in the Cloud as in a constraint
edge device is unrealistic. In that regard, SLOs need to be aware of
the possible deployment options for the service. Similarly, hosting
devices can be grouped or classified with respect to their character-
istics [20], as has been done with the services. Hence, in situations
where the behavior of the service is known for a specific device
type, it is possible to infer its expected behavior in other types.
Figure 1 shows the different components required to build SLOs as
service requirements for the CC. In the following subsections, each
of the aspects shown in the figure will be explained.

Running example. To start, consider a simplemachine learning pipeline
with three services: data gathering and pre-processing, model train-
ing, and inference. Further, imagine that these services are part of
an eHealth application able to predict if the monitored person will
suffer from an adverse medical condition and, if so, trigger the needed
alarms to provide medical assistance as fast as possible. Defining the
requirements of the services needs proper dedication. Still, the classifi-
cation of services, e.g., data gathering or inference, already identifies
which requirements can be meaningful for the service.

Device1

ServiceA

Processing Time
SLO as service requirement

Elasticity strategies

Hw Sw

Figure 1: The SLO as a service requirement can be cast as
a requirement (processing time) over service (A) hosted in
device (1), which has elasticity strategies (Hw & Sw).

2.1 SLOs definition
Wewill define an SLO as the probability (𝑃) that its associated SLI is
within a specified (i.e., desirable) range. In such a case, we will say
that the SLO is accomplished or fulfilled. Otherwise, it is violated.
Mathematically, it can be expressed as in Eq. (1):

𝑆𝐿𝑂 = 𝑃 (𝑥 ≤ 𝑠𝑙𝑖 ≤ 𝑦) | 𝑥 ≤ 𝑦 ; ∀𝑥,𝑦 ∈ 𝑆𝐿𝐼 (1)

Where 𝑥 is the lower-bound and 𝑦 is the upper-bound for the SLI,
which is interpreted as the set of values that the metric can take. La-
tency, for example, assumes values in R+, because time will always
be a positive real number. Hence, 𝑠𝑙𝑖 describes a specific value of the
SLI for a given time. Notice that we have omitted any time reference
in the previous equation, but given that 𝑠𝑙𝑖 is time-dependent while
monitoring the SLO compliance state, we will obtain a time series.
In general, SLO-based management of DCCS implies adapting the
system to maximize the probability that the 𝑠𝑙𝑖 is within its range.

To define an SLO, we need to specify its operation range, “𝑦 − 𝑥”.
This means defining where we center the range and what its length
is. For the following discussion we assume that the SLO range is
normalized, so it is fair to compare ranges between different SLOs.
Intuitively, the center of the range is the expected value for the SLI.
Interestingly, this might vary depending on the device in which the
service will be deployed. Simply put, the expected response time of
a service performing a machine learning inference task in the Cloud
will be lower than the same service in the Edge. The "length" of this
range describes the criticality of the service. Services with large
SLO ranges can adapt easily to many situations and, consequently,
are less critical. Conversely, a short range indicates that the SLO is
heavily constrained and the service is critical. Hence, it is important
to consider the SLO range when elasticity strategies need to be
applied. SLOs with longer ranges will be adapted with less effort;
however, adapting the ones with shorter ranges will be safer, given
that the propagation effects will have a lower impact on SLOs with
longer ranges.

Running example. Hence, for each service requirement, an SLO must
be defined. With the medical example, one could constrain the infer-
ence service processing time (𝑇) between 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 . Of course,
the lower bound for the processing time could be removed, but if there
is knowledge about the service behavior, the lower bound can help
identify faults or anomalies. When the underlying infrastructure
is considered, i.e., the specific type of hardware that shall host the
services, the SLOs definition might vary, and some other SLOs might

ApPLIED’24, June 17, 2024, Nantes, France Victor Casamayor Pujol, Boris Sedlak, Yanwei Xu, Praveen Kumar Donta, and Schahram Dustdar

be required. For instance, considering that the gathering and pre-
processing service is hosted in an SBC on the user. This might need
a constraint on the device’s power consumption (e.g., hourly average
consumption < 8𝑊), which can be reflected in the device’s processing
availability. Also, if the inference service is in an Edge device for
privacy enhancement and latency minimization, this can shift the
SLO on processing time (now being 𝑇 ′

𝑚𝑖𝑛
and 𝑇 ′

𝑚𝑎𝑥).

2.2 Types of SLOs
SLOs are linked to services and specify their expected behavior.
However, we must remember that services are components of a
larger application. In that regard, the application or significant parts
of it might need specific requirements. Imagine a machine learning
pipeline (e.g., a set of sequential services that gathers data, pre-
process, trains a model, and broadcasts it to edge devices) having
specific time-based requirements for each service and an overall
requirement of achieving a test accuracy of at least 95%. In this case,
the accuracy SLO can be part of any of these services, but it is really
an SLO for the pipeline meta-service1. In parallel, the underlying
infrastructure belongs to other stakeholders. Hence, it is probable
that they need to set requirements for their devices to ensure their
performance when providing a host for several tenants. In such
a case, a service hosted in the device will also have an SLO con-
straining, for instance, the total amount of CPU used. Interestingly,
this case unveils an aspect of DeepSLOs, which is conflict analysis,
i.e., the impossibility of simultaneously fulfilling two conflicting
SLOs. Hence, a service SLO might need to be violated to fulfill the
meta-service SLO. Section 4.3 will develop this aspect.

We can define three types of SLOs: infrastructure, service, and
application (or meta-services). Figure 2 shows a graphical represen-
tation of each type of SLO. We will use the term high-level SLO for
those related to the application or meta-services and low-level SLO
for the ones that relate to the infrastructure components. Regard-
ing the SLOs placement, services’ SLOs will be located together
with their service. For instance, both entities would share a pod
in a Kubernetes-based application. Infrastructure SLOs would be
deployed in services hosted in the critical infrastructure, i.e., de-
vices that need to be specifically monitored to ensure their proper
behavior. However, the placement of the application SLOs is not
that clear. Actually, it brings a novel degree of freedom for system
optimization. However, our intuition is that the system architecture
will show the best candidate locations for these SLOs. It is nec-
essary to minimize the overhead of system management and the
resources in use. Hence, one can assume that proximity to data and
to elasticity strategies is valuable. For clarification, by proximity
to the elasticity strategies, we mean that there are no significant
delays between the service that requires the elasticity strategy and
the one that can apply.

Running example. The eHealth pipeline can include high-level SLOs
that consider the overall cost of the application. Similarly, another
high-level SLO can monitor the overall success of the alarm system. In
contrast, lower-level SLOs are bond to the underlying infrastructure.
Edge devices might have a GPU available for inference, but with

1We use meta-service for services that could be grouped, e.g., a pipeline, and for
services that provide functions beyond the application scope, e.g., an orchestrator.

Service SLO
"SLO"

Device SLO
"Low-level SLO"

Application SLO
"High-level SLO"

Figure 2: Types of SLO

shared usage, their overall usage throughout the day is limited. Or
the SBCs might run on battery power limiting its availability.

2.3 Tailored adaptations
One crucial aspect that motivates defining SLOs, considering both
the service and the device to be deployed, is the capacity to de-
fine tailored elastic strategies for service-device pair. An elastic
strategy or adaptation is a change in the service or device that en-
sures the fulfillment of the SLO when it has been violated (reactive
behavior) or when it is about to be violated (proactive behavior).
In cloud-based applications, the adaptation capabilities are basi-
cally horizontal and vertical scaling; the Kubernetes autoscaler is
the reference for both scientific and production systems. This di-
chotomy, horizontal or vertical scaling, is not always available at
the Edge or in constraint devices. Hence, tailoring the elasticity
strategies to the service-device pair is fundamental for autonomous
and decentralized behavior.

Hence, when considering the service and the device, we are ca-
pable of knowing if the service will scale or if offloading to near and
similar devices is an option [27]. Further, some devices can modify
their characteristics. As an example, most NVIDIA Jetson devices2
allow runtime configuration of their maximum energy consump-
tion, or they can enable/disable the GPU at runtime. Hence, these
configuration options are cast as elasticity strategies. Further, we
consider service-based elasticity measures, which go beyond adding
or removing more replicas. Services configuration can be changed
if they have the proper interfaces to adapt their behavior for the
specific moment. It is important to clarify that these measures do
not aim to change the service logic but to change its behavior. For
instance, one can easily change the granularity of the input data
to alleviate data processing tasks [26]. Similarly, the ML model for
inference processes can be selected by trading off accuracy with
energy consumption. Hence, services must provide interfaces to
trade-off characteristics regarding quality, cost, or performance.

Running example. Executing the inference service at an Edge device
with GPU allows the design of two elasticity strategies that go beyond
scaling, and might be specific for this type of host. For instance, if the
GPU can be utilized on demand, the service can run initially without,
and when the required number of inferences increases, the GPU is
switched on. Further, if the GPU usage limit is reached, the service
can be offloaded (or the requests re-directed) to another Edge device
with GPU time available for the application.

2https://developer.nvidia.com/embedded/jetson-modules

Invited Paper: DeepSLOs for the Computing Continuum ApPLIED’24, June 17, 2024, Nantes, France

3 SLO AREA OF INTEREST
Up to this point, we have been explaining that (1) SLOs have to
define service requirements together with the hosting device, that
(2) we have different types of SLOs, and that (3) tailored adaptations
for the service-device pair are needed to ensure SLO compliance.
However, we have skipped a crucial aspect: decentralization.

Decentralization requires that each SLO knows its needs and
capacities as any autonomous agent. We define the area of interest
of an SLO as those variables and parameters that the SLO must
consider to evaluate its current state autonomously and to take ac-
tion accordingly. Hence, evaluation and adaptation are performed
locally. Indeed, higher-level SLOs will require data coming from
different parts of the system. Hence, their area of interest might be
more extensive. Regardless, filtering out redundant or irrelevant
data for the specific SLO is fundamental to achieving scalable sys-
tem management. Interestingly, why would someone need to check
influencing variables or parameters to the SLO if directly observing
the SLO is feasible? The answer is twofold; on one side, having
the knowledge of the influencing variables provides information
on the causes of the SLO behavior, which leads to explainable and
accountable systems. On the other side, the influencing variables
and parameters are needed to properly take the most adequate
elasticity strategy. Hence, providing an area of interest per SLO
maximizes the level of decentralization for any SLO-based system.
Local decisions are framed to an SLO. Therefore, its elastic strate-
gies [39] are cast as parameters that the SLO can consider to choose
its available elasticity strategies. Hence, the possible adaptations
for the SLO are known and available only locally.

Running example. Let’s assume that there is at least 1 SLO defined
per service, at least 1 higher-level SLO, and another lower-level one.
At this point, besides monitoring the SLO behavior, other metrics and
parameters of the system are required to be tracked. This consists
of metrics of the underlying infrastructure, from CPU/GPU usage to
power consumption or requests received per second; metrics derived
from the services such as inference time or pre-processing data queue;
and finally, parameters that can influence the service behavior and
might be used as elasticity strategies, this can range from ML model,
data pre-processing steps, or GPU status (on/off) at the Edge node.
Expert knowledge is needed to build this list of candidate elements
to track. However, once DCCS are more common, it will be easier to
define this step; further, ML technologies can help suggest required
metrics or parameters.

3.1 Markov Blanket
The Markov Blanket3 is the mathematical concept that defines each
SLO area of interest. This concept has two valuable perspectives.
On one side, the Markov Blanket, defined by J. Pearl [18], is purely
probabilistic. Conversely, the Markov Blanket used by K. Friston [8]
to define the Free Energy Principle has an ontological perspective,
i.e., it is used to define what any thing is. The Markov Blanket of
a random variable, 𝑥 , (in the probabilistic sense of the meaning)
contains all those variables that make 𝑥 conditionally independent

3Formally, there is a difference between the Markov Blanket and the Markov Boundary.
The latter is the minimal set of the first. However, to align with previous work and
because this distinction is not critical for our work, we indiscriminately use the term
Markov Blanket.

of any other set of variables. In a Bayesian Network, the Markov
Blanket of a variable can be visually identified because it is al-
ways composed of its parents, children, and co-parents. Formally,
if𝑀𝐵(𝑥) are the variables from the Markov Blanket of 𝑥 and 𝑌 are
all other variables, then the following equation holds:

𝑃 (𝑥 |𝑀𝐵(𝑥), 𝑌) = 𝑃 (𝑥 |𝑀𝐵(𝑥)) (2)

It is possible to bring this concept to the DCCS by assuming that
this central variable, 𝑥 , is the SLO at hand. Then, applying the
Markov Blanket over this variable provides the set of variables that
will affect the behavior of the SLO compliance. Hence, this sets a
causality filter over the SLO, identifying only the system metrics
that have to be tracked for the SLO, heavily reducing the time
needed to assess the SLO status and inferring possible adaptation
measures, see Sedlak et al. [27] figure 8 for an initial quantitative
result of the reduction. Indeed, this minimizes the monitoring effort
while maximizing its effectiveness.

Discovering the Markov Blanket of an SLO is a complex task, and
when considering our previous work, it requires the combination of
two types of knowledge. On the one hand, there is a need for expert
knowledge to identify the system variables that might be needed to
assess the SLO. On the other hand, it requires the system’s data to
use Markov Blanket discovery methods to quantify the relation of
the selected variables with the SLO, such as the one presented by
Fu et al. [10], the interested reader can check this survey for more
detail and candidate methods [36].

The second perspective of the Markov Blanket uses the concept
to build the interfaces of a thing (the SLO) with its environment. It
defines the sensory states, those variables affected by the environ-
ment that influence the internal state (SLO compliance). And the
active states are those variables affected by the internal state that
influence the environment. We leverage this dichotomy to identify
those variables that the SLO can change to affect its behavior, which
we generally call parameters. It is needed to stop here for clarifica-
tion: the SLO describes the state of a system component. Further,
we assume that if components were completely isolated, the SLO
would not change its state. Hence, it is the environment that influ-
ences the SLO to deviate from its equilibrium. The environment
is composed of many things (all external to the SLO). It includes
other application services, the users, the hardware in which it is
hosted (assuming a multi-tenant environment), etc. When defining
the active states, we have said that they are those states that influ-
ence the environment. This is partially true. What they do is affect
the relation of the SLO with the environment. This means that if
something in the environment is making the SLO deviate from its
equilibrium, the SLO (meaning the autonomous agent controlling
it) has to perform an elasticity strategy to revert that trend. This can
be on the environment itself (external action), e.g., spawning a new
service instance to absorb the high demand. Still, it can also change
the service itself (internal action) [25], e.g., reduce the granularity
of the data being analyzed, adapting the QoS offered to keep the
relation between the SLO and the environment in equilibrium.

Figure 3 represents an SLO with its Markov Blanket: M1, M2,
and M3 depict metrics influencing the SLO behavior, while M4 is
a metric that does not influence the SLO. Additionally, the two
squares at the bottom represent action states, which can influence
the relation of the SLO with its environment. The next section will

ApPLIED’24, June 17, 2024, Nantes, France Victor Casamayor Pujol, Boris Sedlak, Yanwei Xu, Praveen Kumar Donta, and Schahram Dustdar

M2 M3

M4M1

Figure 3: Markov Blanket representation of an SLO.

introduce the brain behind the SLO, i.e., how we provide autonomy
to the SLO.

Running example. Now that the metrics and parameters available
for each SLO are defined, it is necessary to keep only those directly
affecting the SLO at hand. Computing the Markov Blanket of each
SLO allows for determining which variables (i.e., the metrics and
parameters defined previously) the SLO is conditionally dependent on.
This way, all those variables that do not directly affect the SLO can
be discarded, reducing the total amount of data to be analyzed. The
requirement is modeled as a simplified Bayesian network, where the
SLO is the central variable. Further, those parameters that might be
used as elasticity strategies are linked with other systemmetrics, which
will help identify the best strategy according to the system status. For
instance, the inference processing time will have dependencies only
with the GPU status and the model time. Hence, if the GPU status is
already ON, the only way to reduce the processing time is by using a
cached model that requires less computational effort.

3.2 Autonomy
At this point, SLOs have all but one required ingredient to be-
have autonomously: intelligence. Simply put, the capacity of the
SLO/service to autonomously decide how to adapt given its cur-
rent state. Currently, software systems have three main directions
to achieve intelligence: rule-based, model-based, or agent-based.
Firstly, dealing with large, heterogeneous, and distributed systems
precludes the usage of rule-based decisions as the space of possible
situations is too large and complex for anyone to predetermine all
rules. Interestingly, this is the standard approach for state-of-the-art
Cloud systems (i.e., the Kubernetes autoscaler). This works due to
Cloud homogeneity and centralization.

However, research is already going beyond this when consider-
ing the Edge. For example, the work of Toka et al. [34] develops
AI-based models to manage Edge resources. Further, model-based
requires previously specifying the model by using the underlying
laws of physics of the system or its data to build the model. For in-
stance, Liang et al. [14] build models for different Edge devices that
perform machine learning tasks using queue theory. However, this
results in developing and validating specific models for each service
and device type combination. Model-based approaches using deep
learning have also great success. However, the amount of data to
train these models is huge; for instance, Jeong et al. [12] used 30
days of data for training, while the generalization capabilities on
dynamic environments, such as in the CC, still need to be proven.

Lastly, agent-based systems can learn a behavioral model pro-
gressively while performing actions. As explained by J. Pearl [19],
performing actions on the systems incorporates information to
the data about the system’s behavior that can’t be seen only from
observational data. The most common agent-based intelligence is
the one brought by reinforcement learning. Specifically, most of its
applications for Edge systems are model-free, which means that the
consequences of actions are not evaluated before the action is taken.
Formally, the probability of the new state (𝑠′) given the current
state (𝑠) and the action taken (𝑎) is not assessed (𝑃 (𝑠′ |𝑠, 𝑎)). See
the works of Xiong et al. [38] for task allocation or the work from
Tang and Wong [33] for task offloading. In any case, agent-based
techniques usually require time to learn properly and suffer from
the exploitation-exploration trade-off.

Hence, we opt for using the combination of both, agent-based
intelligence with a system model. Also, instead of using reinforce-
ment learning, we use active inference, which derives from the Free
Energy Principle; refer to works from K. Friston [7] or a recent work
from R. Smith et al. [30] for a comprehensive explanation. Active
inference is an agent-based solution and is convenient to make
SLOs intelligent for the following reasons. First, agent-based solu-
tions are well-suited for decentralized systems, where components
can have their own autonomous agent, and they are self-adaptive.
Second, the formulation of active inference is perfectly aligned with
the Markov Blanket representation of the system. This enables a
complete and more straightforward integration into the SLO-based
model that we are proposing. Third, as it is derived from the Free
Energy Principle, its objective function is not reward-based but to
improve its model of the environment [22]. This subtle difference
better suits systems that might need to change their requirements
with time, given that when the requirement changes and the model
no longer fits, it will always try to make the model match with the
observations. Fourth, active inference allows injecting the expected
observations into the model, i.e., fulfilling its SLO becomes the main
driver for the agent actions. Hence, it can learn how their actions
affect the SLO fulfillment.

As previously mentioned, the exploitation-exploration trade-
off is always challenging for agent-based intelligent systems. In
that regard, we can quantify the risk of new observation balanced
against the information gain (e.g., model improvement) that it can
provide, and depending on the criticality of the SLO (i.e., the length
of its operation range), we can weigh the risk against the gain.

Running example. Now that each SLO is modeled as the central
node of a Markov Blanket, we can use active inference to improve
the SLO behavioral model and to decide the best policy to keep the
SLOs fulfilled. Improving the model means closing the gap between
the predicted outcomes of using elasticity strategies with respect to the
actual behavior of the system. Simply put, what I believe will happen
if I turn on the GPU against what really happens when I do it. In that
regard, active inference can build policies that balance the learning of
the model (when the system behavior is stable) with the SLO stability
optimization. Taking back the running example, the effect of GPU
usage on the processing time is favorable. However, the model can be
refined so that the effect can be quantitatively measured, and hence,
when the GPU capacity is exceeded, another elasticity strategy can be
used, e.g., changing the ML model.

Invited Paper: DeepSLOs for the Computing Continuum ApPLIED’24, June 17, 2024, Nantes, France

High-level SLO

Low-level SLO
Fast

Te
m

po
ra

l s
ca

le

Slow

Figure 4: A DeepSLO representation with a high-level SLO,
three SLOs and one low-level SLOs. Dependencies between
SLOs are depicted with arrows.

4 DeepSLO
We have described how to define SLO-based requirements for DCCS
considering the service-device pair and explained how to decen-
tralize and make each SLO autonomous using the Markov Blanket
concept and active inference. In that regard, from the previous
section, we have a behavioral model of each SLO that we use to
understand its performance and plan future elasticity strategies if
the SLO is violated or about to be violated.

However, we must remember that DCCS are complex and inter-
connected systems. Hence, we need to account for these character-
istics, and when doing so, the DeepSLO emerges. Figure 4 shows
a representation for a DeepSLO with three levels. DeepSLOs are
hierarchical structures that link all SLOs of a single system. In that
regard, one can imagine it as the composition of all SLOs defined
for a system. Further, this is a hierarchical structure, where higher-
level SLOs are above the hierarchy and lower-level SLOs are below.
This structure appears because high-level SLOs will require input
from lower-level ones, generating different temporal scales within
the DeepSLO structure.

Running example. So far, we have defined SLOs for each service, the
overall ML pipeline, and some critical infrastructure elements. These
SLOs have been modeled with a Markov Blanket and provided with
autonomy by active inference. Now, we are building a model of the
entire application, which connects the SLOs if they are conditionally
dependent (using Bayesian network learning techniques), this way we
can see if there are SLOs that are not compatible or elasticity strategies
that might have a negative effect on a connected SLO. Hence, the
DeepSLO will allow the application stakeholders to address design
and runtime trade-offs properly. For instance, take the two overall
SLOs, cost (infrastructure) and user satisfaction (QoE), and imagine
that the inference service requires improving its processing time; it has
2 options: switching ON the GPU or changing the ML model. Hence,
we can easily foresee that these will have an effect on the high-level
SLOs. Hence, understanding the propagation effects from the elasticity
strategies and the SLO violations on the other system components is
vital to properly deciding the best set of actions at each given moment
while making all stakeholders aware.

4.1 SLOs Links
The DeepSLO structure requires bridging all Markov Blanket struc-
tures to generate a Bayesian Network (BN). This holistic structure
defines the dependencies between the system requirements. Before,
with the MB representation of an SLO, we could describe the behav-
ior of a single requirement; now, we hide the internal behavior of
the requirement to focus on the dependency between requirements.
The edges on the BN represent these dependencies, stemming from
three different sources.

The first set of edges that build the DeepSLO come from services’
dependencies. DCCS applications are a set of interconnected ser-
vices. Hence, the dependencies between these services are added as
edges between Markov Blankets. Of course, these dependencies are
going to be observed in the data, but knowing the application archi-
tecture and dependencies allows us to add a set of initial constraints
on the methodology to build the DeepSLO structure.

The second set of edges emerges from the data. The system’s data
can be analyzed with techniques that build Bayesian networks. Con-
sider the work from Scurati et al. [24] or the survey from Scanagatta
et al. [23] for a comprehensive understanding of the available tech-
niques. Hence, the DeepSLO structure can add the dependencies
between hardware and network metrics shared between different
Markov Blankets. These dependencies stem from shared devices
or geographical distances. Further, the constraints specified by the
services can finally be instantiated in this step when the system’s
data is analyzed, and hence, service dependencies are connected
through specific system variables. An important point to consider
here is semantics. It is crucial to know whether these are the same
variables (e.g., they have the same names, they statistically show
the same pattern, etc.) to link them from different Markov Blankets.
Otherwise, it is likely to omit relevant dependencies.

The final set of edges might not appear in the data – it is related
to high-level SLOs that specify requirements in terms of overall
system performance or cost. Hence, these edges need to be added
manually. Hence, the individual models of the SLOs (represented as
Markov blankets) have to incorporate variables accounting for these
relations. As an example, imagine that we have a high-level SLO
constraining the amount of energy that the system can use. Then,
we will need to incorporate into the individual Markov Blankets the
knowledge of the energy that service is consuming and, if possible,
means to change that value. This is a simple example, but in general,
business or application-related dependencies can be very hard to
find in data, and they might need explicit modeling.

We are providing a bottom-up description of the DeepSLO, and
hence, nowwe need to express the need to complete each individual
SLO model to account for the system dependencies. However, when
designing a system, its high-level SLOs (top-level requirements) are
known. Hence, these variables and parameters linking individual
behaviors can be considered as part of each Markov Blanket model
from the beginning.

Running example. When building the DeepSLO structure from the
system’s data, there will be variables that, if they are not properly
included on the system’s analysis, the links will not appear. Simply
put, if the cost of switching ON a GPU is not considered, the SLO
cost will never be affected. In that regard, if we are aware that there
are links that come from the services dependencies, others that stem

ApPLIED’24, June 17, 2024, Nantes, France Victor Casamayor Pujol, Boris Sedlak, Yanwei Xu, Praveen Kumar Donta, and Schahram Dustdar

from the infrastructure usage, and others that depend on the higher
level SLOs, making sure that all required data is considered becomes
simpler.

4.2 Network overlay
The DeepSLO is a geographically distributed structure to manage
DCCS in a decentralized manner. Hence, keeping the structure
functional during the application life-cycle requires building an
overlay network on top of the one for the application itself. This
network has to allow information propagation through the network,
making all interested SLOs aware of any change in the system. As
explained in Section 3, leveraging the Markov Blankets structure to
evaluate SLOs minimizes the sources of information that need to be
gathered. Further, the connections between Markov Blankets that
arose from the system’s data do not require specific connections as
each Markov Blanket independently will be aware of the metric’s
change, as they will be subscribed by definition. Hence, they just
need the means to monitor.

Hence, there is a need to manage connections for the edges de-
rived from services’ dependencies and those that do not appear in
the data and relate to high-level SLOs. Interestingly, the informa-
tion that relates to services’ dependencies can also be obtained by
leveraging the already existing connection between the services.
Simply put, if two services within a pipeline depend on throughput
or latency, this information can be obtained from the messages that
these services exchange within the application logic, alleviating
the need to build an extra connection to convey this information.
Further, suppose the information they have to exchange is more
complex, e.g., it can’t be derived from the messages’ headers. In that
case, it can be envisioned adding encoders/decoders [28] at each
end of the service in order to merge the system’s information with
the service’s information that they usually share. This would be
equivalent to using semantic communication among services [35].

The last type of connection relates to high-level SLOs and it
originates from the third type of edges explained in Section 4.1.
Connecting these high-level SLOs would require putting in place
specific connections in the system to transfer the required infor-
mation from lower-level to higher-level SLOs. In that regard, the
benefit of being from lower levels to higher ones is that the higher-
level SLOs have lower managing frequencies. Hence, the latency
constraints for this information will be lower than the general la-
tency required for low-level SLOs of the system. In that regard,
strategies to group or simplify the data that is required to be sent
can be put in place to minimize the impact of these connections on
the system’s overall cost.

Running example. The DeepSLO structure forces to share data be-
tween SLOs, and hence, the question is how to minimize its overhead.
In that regard, we use the previous classification of dependencies to see
how these connections can be built. In some situations, the information
might be embedded in the services data exchange, but others will need
to be built ad-hoc. Hence, deciding where the SLO is executed and
orchestrated can help minimize this communication overhead.

4.3 Prioritization and conflict resolution
Conflicting SLOs refer to different SLOs that cannot be fulfilled
simultaneously, or in other words, the fulfillment of one makes the

other fail. It is important to clarify that we do not foresee SLOs
conflicting within a single service, even if more than one SLO
specifies the service. We assume that in design time for a single
service the SLOs will have been designed to properly address the
required trade-offs.

However, high-level SLOs, the ones that specify meta-services,
application or business requirements can conflict with lower-level
SLOs, i.e., the ones specifying single services or hardware. This is
exacerbated by the fact that the stakeholders supporting high-level
SLOs will, most likely, be different than the ones supporting the
low-level ones. In that regard, special care has to be taken at design
time in order to understand and incorporate all DCCS requirements.

Indeed, the best solution is a design that does not allow this type
of conflict. In that regard, we opt for using top-bottom diffusion
and bottom-up capillarity techniques to specify the requirements.
Top-bottom diffusion consists of specifying only the higher-level
SLOs of the system and study which are the equilibrium values for
the low-level SLOs. On the contrary, bottom-up capillarity implies
specifying only the low-level SLOs and check which are the equi-
librium values for the high-level SLOs. If both methodologies are
taken, it might be possible to find those trade-offs between values
that account for the fulfillment of all SLOs.

Regardless, if it is not possible to fulfill all SLOs, our intuition
accounts for prioritizing high-level SLOs over low-level ones, i.e.,
using the hierarchical structure of the DeepSLO to define the prior-
itization between SLOs. However, we encourage all stakeholders to
properly address this issue at design time to foster the best solution
for the application being developed.

Running example. Let’s take back the basic case of the conflicting
SLOs, where cost and QoE conflicted. Considering the use case that
we have been presenting, the eHealth, one can argue that health
is a priority, and hence, QoE, i.e., the proper response to a medical
situation, is a priority over the cost (perhaps the system will send a
higher invoice to the user). The point here is that inmost situations, this
type of conflict requires that the stakeholders agree on a prioritization
of the requirements. Hence, building the overall application model as
a Bayesian network provides clarity on the decisions that are required
and the effects that will be produced, which is a fundamental feature
when several stakeholders need to agree.

5 CONCLUSIONS
DeepSLOs are a fundamental step to developing DCCSwith explain-
able behaviors, which self-adapt to changes in external conditions
while fulfilling their requirements. The DeepSLO is an artifact that
specifies the complete behavior of a DCCS for decentralized and
autonomous management while accounting for key general behav-
iors of the system. This article provides a bottom-up description
of the DeepSLO artifact. Starting with the breakthrough of DCCS
with respect to Cloud systems, we pinpoint the needs of DCCS
and then, step-by-step, build the functionalities needed to fulfill
them. Table 1 presents a summary of the functions required to build
DeepSLOs with potential methods to achieve them. Further, several
have been tested in the context of SLO management for constraint
and heterogeneous devices with promising results.

Indeed, our vision is to develop a sound and formal methodology
to build systems for the CC, and we expect to attach powerful

Invited Paper: DeepSLOs for the Computing Continuum ApPLIED’24, June 17, 2024, Nantes, France

Table 1: Summary of methods for DeepSLO-related functions

Function Potential methods
Services characterization Profiling as in [15]
Devices characterization Feature space mapping as in [20]
Latency SLO Deep learning [37]
SLO definition Design process
Tailored adaptations For device and service as in [26]
SLO area of interest Markov Blanket discovery as in [10]
SLO Autonomy Active inference as in [27]
DeepSLO links Design process
DeepSLO network overlay Semantic communication as in [28]
DeepSLO management Bayesian inference

mathematical tools to it so that the future applications of the CC
are helpful, sustainable, and resilient. In that regard, besides refining
and expanding the applicability of the methods that we have tested
in previous works, we have several research directions that we aim
to push. As an example, we look forward to modeling the relations
of a DeepSLO as differential equations, for instance, using Dynamic
causal modeling [9] to address the diffusion and capillarity methods
with two sets of initial conditions. This would lead to an automatic
definition of SLO ranges. Further, we are aware that the definition of
service-device requirements for DCCS can be a complex task. There
is a myriad of different services and devices; hence, having adequate
knowledge of all service-device combinations is a gargantuan task.
Regardless, once data is available, a deep learning approach can
simplify its development, leaving only a verification step required. It
is still part of our research agenda to identify and applymethods that
can ease and, if possible, automate this process. We envision using
large-language models (LLMs) to acquire the expert knowledge to
obtain the set of candidate system metrics and the usage of graph-
neural networks (GNNs) to build initial DeepSLOs from the input
of an LLM automatically.

ACKNOWLEDGEMENT
Funded by European Union (TEADAL, 101070186). Views and opin-
ions expressed are those of the authors and do not necessarily
reflect those of the European Union. Neither the European Union
nor the granting authority can be held responsible.

REFERENCES
[1] Hussain AlJahdali, Abdulaziz Albatli, Peter Garraghan, Paul Townend, Lydia

Lau, and Jie Xu. 2014. Multi-tenancy in Cloud Computing. In 2014 IEEE 8th
International Symposium on Service Oriented System Engineering. 344–351. https:
//doi.org/10.1109/SOSE.2014.50

[2] Ahmad Alzu’bi, Ala’a Alomar, Shahed Alkhaza’leh, Abdelrahman Abuarqoub,
and Mohammad Hammoudeh. 2024. A Review of Privacy and Security of
Edge Computing in Smart Healthcare Systems: Issues, Challenges, and Re-
search Directions. Tsinghua Science and Technology 29, 4 (Aug. 2024), 1152–1180.
https://doi.org/10.26599/TST.2023.9010080

[3] Himani Bajaj, Anjali Sharma, Deepshi Arora, Mayank Yadav, Devkant Sharma,
and Prabhjot Singh Bajwa. 2024. Challenges in E-Waste Management. In
Sustainable Management of Electronic Waste. John Wiley & Sons, Ltd, 201–220.
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781394166923.ch10

[4] Pengfei Chen, Yong Qi, and Di Hou. 2019. CauseInfer: Automated End-to-End
Performance Diagnosis with Hierarchical Causality Graph in Cloud Environment.
IEEE Transactions on Services Computing 12, 2 (March 2019), 214–230. https:
//doi.org/10.1109/TSC.2016.2607739

[5] Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, and Ziran Wang. 2024. Drive As
You Speak: Enabling Human-Like Interaction With Large Language Models in
Autonomous Vehicles. 902–909.

[6] Schahram Dustdar, Victor Casamayor Pujol, and Praveen Kumar Donta. 2023.
On Distributed Computing Continuum Systems. IEEE Transactions on Knowledge
and Data Engineering 35, 4 (April 2023), 4092–4105. https://doi.org/10.1109/
TKDE.2022.3142856

[7] Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck, John
O’Doherty, and Giovanni Pezzulo. 2016. Active inference and learning. Neuro-
science & Biobehavioral Reviews 68 (Sept. 2016), 862–879. https://doi.org/10.1016/
J.NEUBIOREV.2016.06.022

[8] Karl Friston, James Kilner, and Lee Harrison. 2006. A free energy principle
for the brain. Journal of Physiology Paris 100, 1-3 (July 2006), 70–87. https:
//doi.org/10.1016/j.jphysparis.2006.10.001

[9] K. J. Friston, L. Harrison, andW. Penny. 2003. Dynamic causal modelling. NeuroIm-
age 19, 4 (Aug. 2003), 1273–1302. https://doi.org/10.1016/S1053-8119(03)00202-7

[10] Shunkai Fu and Michel C. Desmarais. 2008. Fast Markov Blanket Discovery Algo-
rithm Via Local Learning within Single Pass. In Advances in Artificial Intelligence.
Springer, Berlin, Heidelberg, 96–107. https://doi.org/10.1007/978-3-540-68825-
9_10

[11] Noor Ul Huda, Ijaz Ahmed, Muhammad Adnan, Mansoor Ali, and Faisal Naeem.
2024. Experts and intelligent systems for smart homes’ Transformation to Sus-
tainable Smart Cities: A comprehensive review. Expert Systems with Applications
238 (March 2024), 122380. https://doi.org/10.1016/j.eswa.2023.122380

[12] Byeonghui Jeong, Seungyeon Baek, Sihyun Park, Jueun Jeon, and Young-Sik Jeong.
2023. Stable and efficient resource management using deep neural network on
cloud computing. Neurocomputing 521 (Feb. 2023), 99–112. https://doi.org/10.
1016/j.neucom.2022.11.089

[13] Faria Kalim. 2020. Satisfying service level objectives in stream processing systems.
Ph. D. Dissertation.

[14] Qianlin Liang, Walid A. Hanafy, Ahmed Ali-Eldin, and Prashant Shenoy. 2023.
Model-driven Cluster Resource Management for AI Workloads in Edge Clouds.
ACM Transactions on Autonomous and Adaptive Systems 18, 1 (March 2023),
2:1–2:26. https://doi.org/10.1145/3582080

[15] Andrea Morichetta, Víctor Casamayor Pujol, Stefan Nastic, Schahram Dustdar,
Deepak Vij, Ying Xiong, and Zhaobo Zhang. 2023. PolarisProfiler: A Novel
Metadata-Based Profiling Approach for Optimizing Resource Management in the
Edge-Cloud Continnum. In 2023 IEEE International Conference on Service-Oriented
System Engineering (SOSE). 27–36. https://doi.org/10.1109/SOSE58276.2023.00010

[16] Andrea Morichetta, Thomas Pusztai, Deepak Vij, Víctor Casamayor Pujol, Philipp
Raith, Ying Xiong, Stefan Nastic, Schahram Dustdar, and Zhaobo Zhang. 2023.
Demystifying deep learning in predictive monitoring for cloud-native SLOs. In
2023 IEEE 16th International Conference on Cloud Computing (CLOUD). 1–11.
https://doi.org/10.1109/CLOUD60044.2023.00013

[17] Michael R. Nelson. 2009. Building an Open Cloud. Science 324, 5935 (June 2009),
1656–1657. https://doi.org/10.1126/science.1174225

[18] Judea Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[19] Judea Pearl and Dana Mackenzie. 2018. The Book of Why: The New Science of
Cause and Effect. Basic Books, Inc., USA.

[20] Victor Casamayor Pujol, Andrea Morichetta, and Stefan Nastic. 2023. Intelligent
Sampling: A Novel Approach to Optimize Workload Scheduling in Large-Scale
Heterogeneous Computing Continuum. In 2023 IEEE International Conference on
Service-Oriented System Engineering (SOSE). 140–149. https://doi.org/10.1109/
SOSE58276.2023.00024

[21] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Rav-
ishankar K. Iyer. 2020. FIRM: an intelligent fine-grained resource management
framework for SLO-oriented microservices. In Proceedings of the 14th USENIX
Conference on Operating Systems Design and Implementation (OSDI’20). USENIX
Association, USA, 805–825.

[22] Noor Sajid, Philip J. Ball, Thomas Parr, and Karl J. Friston. 2021. Active Inference:
Demystified and Compared. Neural Computation 33, 3 (March 2021), 674–712.
https://doi.org/10.1162/NECO_A_01357

[23] Mauro Scanagatta, Antonio Salmerón, and Fabio Stella. 2019. A survey on
Bayesian network structure learning from data. Progress in Artificial Intelligence
8, 4 (Dec. 2019), 425–439. https://doi.org/10.1007/S13748-019-00194-Y/TABLES/1

[24] Marco Scutari, Catharina Elisabeth Graafland, and José Manuel Gutiérrez. 2019.
Who learns better Bayesian network structures: Accuracy and speed of structure
learning algorithms. International Journal of Approximate Reasoning 115 (Dec.
2019), 235–253. https://doi.org/10.1016/J.IJAR.2019.10.003

[25] Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and Schahram
Dustdar. 2023. Controlling Data Gravity and Data Friction: From Metrics to
Multidimensional Elasticity Strategies. In 2023 IEEE International Conference on
Software Services Engineering (SSE). 43–49. https://doi.org/10.1109/SSE60056.
2023.00017

[26] Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and SchahramDust-
dar. 2023. Designing Reconfigurable Intelligent Systems with Markov Blankets.
In Service-Oriented Computing (Lecture Notes in Computer Science), Flavia Monti,
Stefanie Rinderle-Ma, Antonio Ruiz Cortés, Zibin Zheng, and Massimo Mecella
(Eds.). Springer Nature Switzerland, Cham, 42–50. https://doi.org/10.1007/978-
3-031-48421-6_4

https://doi.org/10.1109/SOSE.2014.50
https://doi.org/10.1109/SOSE.2014.50
https://doi.org/10.26599/TST.2023.9010080
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781394166923.ch10
https://doi.org/10.1109/TSC.2016.2607739
https://doi.org/10.1109/TSC.2016.2607739
https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1016/J.NEUBIOREV.2016.06.022
https://doi.org/10.1016/J.NEUBIOREV.2016.06.022
https://doi.org/10.1016/j.jphysparis.2006.10.001
https://doi.org/10.1016/j.jphysparis.2006.10.001
https://doi.org/10.1016/S1053-8119(03)00202-7
https://doi.org/10.1007/978-3-540-68825-9_10
https://doi.org/10.1007/978-3-540-68825-9_10
https://doi.org/10.1016/j.eswa.2023.122380
https://doi.org/10.1016/j.neucom.2022.11.089
https://doi.org/10.1016/j.neucom.2022.11.089
https://doi.org/10.1145/3582080
https://doi.org/10.1109/SOSE58276.2023.00010
https://doi.org/10.1109/CLOUD60044.2023.00013
https://doi.org/10.1126/science.1174225
https://doi.org/10.1109/SOSE58276.2023.00024
https://doi.org/10.1109/SOSE58276.2023.00024
https://doi.org/10.1162/NECO_A_01357
https://doi.org/10.1007/S13748-019-00194-Y/TABLES/1
https://doi.org/10.1016/J.IJAR.2019.10.003
https://doi.org/10.1109/SSE60056.2023.00017
https://doi.org/10.1109/SSE60056.2023.00017
https://doi.org/10.1007/978-3-031-48421-6_4
https://doi.org/10.1007/978-3-031-48421-6_4

ApPLIED’24, June 17, 2024, Nantes, France Victor Casamayor Pujol, Boris Sedlak, Yanwei Xu, Praveen Kumar Donta, and Schahram Dustdar

[27] Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and SchahramDust-
dar. 2023. Equilibrium in the Computing Continuum through Active Inference.
https://doi.org/10.48550/arXiv.2311.16769

[28] Hyowoon Seo, Jihong Park, Mehdi Bennis, and Mérouane Debbah. 2021.
Semantics-Native Communication with Contextual Reasoning. (Aug. 2021).
https://doi.org/10.48550/arxiv.2108.05681

[29] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal 3, 5 (Oct.
2016), 637–646. https://doi.org/10.1109/JIOT.2016.2579198

[30] Ryan Smith, Karl J Friston, and Christopher J Whyte. 2022. A step-by-step tutorial
on active inference and its application to empirical data. Journal of Mathematical
Psychology 107 (2022), 102632. https://doi.org/10.1016/j.jmp.2021.102632

[31] Ion Stoica and Scott Shenker. 2021. From cloud computing to sky computing.
In Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS ’21).
Association for Computing Machinery, New York, NY, USA, 26–32. https://doi.
org/10.1145/3458336.3465301

[32] Ajaya K Swain and Valeria R Garza. 2023. Key factors in achieving Service
Level Agreements (SLA) for Information Technology (IT) incident resolution.
Information Systems Frontiers 25, 2 (2023), 819–834.

[33] Ming Tang and Vincent W.S. Wong. 2022. Deep Reinforcement Learning for
Task Offloading in Mobile Edge Computing Systems. IEEE Transactions on Mobile
Computing 21, 6 (June 2022), 1985–1997. https://doi.org/10.1109/TMC.2020.
3036871

[34] László Toka, Gergely Dobreff, Balázs Fodor, and Balázs Sonkoly. 2021. Ma-
chine Learning-Based Scaling Management for Kubernetes Edge Clusters. IEEE

Transactions on Network and Service Management 18, 1 (March 2021), 958–972.
https://doi.org/10.1109/TNSM.2021.3052837

[35] Elif Uysal, Onur Kaya, Anthony Ephremides, James Gross, Marian Codreanu,
Petar Popovski, Mohamad Assaad, Gianluigi Liva, Andrea Munari, Touraj Soley-
mani, Beatriz Soret, and Karl Henrik Johansson. 2021. Semantic Communications
in Networked Systems: A Data Significance Perspective. arXiv (March 2021).
https://doi.org/10.48550/arxiv.2103.05391

[36] Matthew J. Vowels, Necati Cihan Camgoz, and Richard Bowden. 2021. D’ya like
DAGs? A Survey on Structure Learning and Causal Discovery. (March 2021).
https://arxiv.org/abs/2103.02582v2

[37] JingWu, LinWang, Qirui Jin, and Fangming Liu. 2024. GRAFT: Efficient inference
serving for hybrid deep learning with SLO guarantees via DNN re-alignment.
IEEE Transactions on Parallel and Distributed Systems 35, 2 (2024), 280–296.

[38] Xiong Xiong, Kan Zheng, Lei Lei, and Lu Hou. 2020. Resource Allocation Based on
Deep Reinforcement Learning in IoT Edge Computing. IEEE Journal on Selected
Areas in Communications 38, 6 (June 2020), 1133–1146. https://doi.org/10.1109/
JSAC.2020.2986615

[39] Fan Zhang, Xuxin Tang, Xiu Li, Samee U Khan, and Zhijiang Li. 2019. Quantifying
cloud elasticity with container-based autoscaling. Future Generation Computer
Systems 98 (2019), 672–681. https://doi.org/10.1016/j.future.2018.09.009

[40] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek Parwal,
Timothy Sherwood, and Milind Chabbi. 2022. {CRISP}: Critical Path Analysis
of {Large-Scale} Microservice Architectures. 655–672. https://www.usenix.org/
conference/atc22/presentation/zhang-zhizhou

https://doi.org/10.48550/arXiv.2311.16769
https://doi.org/10.48550/arxiv.2108.05681
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1016/j.jmp.2021.102632
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1145/3458336.3465301
https://doi.org/10.1109/TMC.2020.3036871
https://doi.org/10.1109/TMC.2020.3036871
https://doi.org/10.1109/TNSM.2021.3052837
https://doi.org/10.48550/arxiv.2103.05391
https://arxiv.org/abs/2103.02582v2
https://doi.org/10.1109/JSAC.2020.2986615
https://doi.org/10.1109/JSAC.2020.2986615
https://doi.org/10.1016/j.future.2018.09.009
https://www.usenix.org/conference/atc22/presentation/zhang-zhizhou
https://www.usenix.org/conference/atc22/presentation/zhang-zhizhou

	Abstract
	1 Introduction
	2 SLOs as service requirements
	2.1 SLOs definition
	2.2 Types of SLOs
	2.3 Tailored adaptations

	3 SLO area of interest
	3.1 Markov Blanket
	3.2 Autonomy

	4 DeepSLO
	4.1 SLOs Links
	4.2 Network overlay
	4.3 Prioritization and conflict resolution

	5 Conclusions
	References

