
Digital Communications and Networks(DCN)

journal homepage: www.elsevier.com/locate/dcan

Survey on recent advances in IoT application layer protocols and
machine learning scope for research directions

Praveen Kumar Dontaa,c, Satish Narayana Sriramab,c,∗, Tarachand Amgotha,
Chandra Sekhara Rao Annavarapua

aDepartment of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India-826004
bSchool of Computer and Information Sciences, University of Hyderabad, Hyderabad 500 046, India.

cMobile & Cloud Lab, Institute of Computer Science, Faculty of Science and Technology, University of Tartu, Estonia-50090.

Abstract

The Internet of Things (IoT) has been growing over the past few years due to its flexibility and ease of use in real-time
applications. The IoT’s foremost task is ensuring that there is proper communication between different types of applications
and devices, and that the application layer protocols fulfill this necessity. However, as the number of applications grows, it is
necessary to modify or enhance the application layer protocols according to specific IoT applications, allowing specific issues
to be addressed, such as dynamic adaption to network conditions and interoperability. Recently, several IoT application layer
protocols have been enhanced and modified according to application requirements. However, no existing survey articles have
focused on these protocols. In this article, we survey traditional and recent advances in IoT application layer protocols, as well
as relevant real-time applications and their adapted application layer protocols for improving performance. As changing the
nature of protocols for each application is unrealistic, machine learning offers means of making protocols intelligent and able
to adapt dynamically. In this context, we focus on providing open challenges to drive IoT application layer protocols in such a
direction.

© 2021 Published by Elsevier Ltd.

KEYWORDS: Internet of things, Machine learning, Application layer, Request-response protocols, Publish-subscribe
protocols

1. Introduction

In recent years, a large variety of devices have
become interconnected over the Internet at an unex-
pected rate by using the Internet of Things (IoT). In-
creasing interest in the IoT has driven many areas
(such as agriculture, hospitals, manufacturing, secu-
rity surveillance [1, 2, 3], air and water quality, trans-
port, and domotics) to adopt IoT features [4, 5]. The
primary goal of these applications is to either ex-
change data and control signals among devices or to
use cloud-based communication protocols. In the lay-
ered architecture of the IoT, the application layer pro-
vides various communication protocols and acts as an
interface between desired application and end-users
[6, 7, 8]. As the number of IoT applications increases,
so does the need to modify or introduce new protocols
that address issues, such as dynamic adaption to the

∗Corresponding Author
Email addresses: praveeniitism@gmail.com,

satish.srirama@uohyd.ac.in, tarachand@iitism.ac.in,
acsrao@iitism.ac.in

network conditions and interoperability. However, up-
dating or providing new protocols for each and every
application is a challenging task. Machine Learning
(ML) can be used to make these protocols dynamic
and intelligent.

ML extracts complex models through analysis of
(or learning from) the experiences without being ex-
plicitly programmed [9, 10, 11]. It is used in sev-
eral applications, such as Wireless Sensor Networks
(WSNs) [12], medical data analysis [13, 14], and so-
cial networks [15, 16], and also helps to mitigate sev-
eral issues in IoT, such as intrusion detection [17], im-
proving wireless communication [18], and data ana-
lytics [19, 20]. Applying ML to an IoT application
layer not only produces intelligent protocols, but also
reduces redesign overheads and limits human inter-
vention [12]. For instance, data-sensitive real-time
applications (e.g., medical, industrial, and smart city
apps) frequently and quickly require data from IoT de-
vices, but getting the most recent data quickly from
edge nodes is difficult, due to network delays and con-
nection failures. To address these issues, ML is used



2 P. K. Donta, et al.

extensively in the IoT for predicting values in situa-
tions where real-time data cannot be acquired [21].
There are several other advantages, summarized be-
low, to using ML with IoT applications:

• IoT applications require less human intervention
and redesign in the dynamic environments.

• ML–based clustering algorithms are efficient and
accurate [12], such as those used by message
brokers (e.g., Apache Qpid, VerneMQ, and Hor-
netMQ).

• ML used for data pre-processing and feature se-
lection reduces traffic overheads and optimizes
the energy consumption of IoT devices

However, ML does have certain limitations that re-
quire consideration when applied to IoT applications
and their protocols. ML is non-deterministic, has few
datasets available, and requires prediction validation.

Over the past decade, there have been several sur-
veys of the IoT, its applications, applicable technolo-
gies, architectures, IoT privacy, IoT security, and so on
[4, 5]. Articles [18] and [19] were written about ML
approaches to, among other subjects, IoT applications
and challenges as well as fifth-generation communi-
cation and security. In [6, 7, 22, 8], the authors cov-
ered various IoT protocols supporting the application,
network, and physical layers. Al et al. [6] studied
some traditional protocols, such as Constrained Ap-
plication Protocol (CoAP), Hypertext Transfer Proto-
col (HTTP), Extensible Messaging and Presence Pro-
tocol (XMPP), Message Queue Telemetry Transport
(MQTT), and Data Distribution Service (DDS). In [7],
Sethi et al. briefly compared HTTP, CoAP, and MQTT
protocols along with other layer protocols. An edito-
rial column [22] discussed the importance of the IoT
application layer protocols. In [8], Salman et al. com-
pared a few application layer protocols and their fea-
tures very briefly along with other layer protocols.

The CoAP and HTTP were compared in [23]. This
article discussed the benefits of these protocols, but
did not make any open challenges to enhance the re-
search. A comparison of MQTT and CoAP in terms
of error and delay prone links was performed in [24],
which stated that MQTT performs better with the IoT.
IoT protocols were studied for cognitive Machine-to-
machine (M2M) communication by [25]. In that ar-
ticle, Aijaz et al. restricted their focus to application
layer protocols, specifically CoAP. In [26], the authors
studied various CoAP security issues while failing
to consider other application layer protocols or pro-
vide significant open issues for future research. [27]
summarized the benefits and features of various tradi-
tional IoT application layer protocols (such as HTTP,
CoAP, XMPP, Advanced Message Queuing Protocol
(AMQP), MQTT, and DDS). However, it did not list
any limitations or future enhancements. The computa-
tional performances of CoAP, MQTT, and WebSocket

were compared across various scenarios and network
conditions by [28].

In [29], Saritha et al. compared various traditional
application layer protocols. This article briefly dis-
cusses these protocols and has not provided sufficient
limitations to enhance the research in this area. The in-
teroperability issues of various application layer proto-
cols such as HTTP, CoAP, MQTT and AMQP are cov-
ered in [30]. In [31], Safaei et al. discussed reliabil-
ity side effects related to application layer protocols,
stating that MQTT works well for IoT among other
protocols. Similarly, empirical studies on MQTT and
CoAP were performed in [32, 33]. In [34], experi-
mental evaluations were conducted on CoAP, HTTP,
XMPP, WebSocket, MQTT, and AMQP using vari-
ous conditions and network scenarios. A performance
evaluation of IoT application layer protocols is per-
formed in [35]. [36] discussed application layer cod-
ing for IoT along with its implementation aspects, ben-
efits, and limitations. A performance analysis of the
HTTP, CoAP, and MQTT was performed in [37] under
various circumstances, proving that the MQTT was
lightweight and faster. Table 1 compares these surveys
on IoT application layer protocols.

In the past decade, several IoT application layer
protocols have been introduced and modified accord-
ing to rapid changes in the network properties of the
IoT. Existing surveys have not covered the advance-
ments made for traditional application layer protocols.
This motivates us to study recent advancements in
application layer protocols and relevant applications
used by these protocols. These enhancements are cov-
ered in this article, along with their benefits, limita-
tions, and further research scope. Existing surveys
have also neglected to discuss the scope of ML in IoT
application layer protocols, despite a broad scope ex-
isting for making IoT application layer protocols in-
telligent. The primary focus of this article is shown in
Fig. 1. Considering the gaps in existing surveys, this
article contributes:

• A study of previous and recent advancements in
IoT application protocols (e.g., request-response
method, publish–subscribe (PubSub) pattern).

• A survey of various IoT application layer pro-
tocols and the benefits of using them in real-
time applications, including industrial IoT, smart
city and home, Healthcare, Mobility manage-
ment, video and security surveillance, healthcare,
mobility management, and the Web of Things
(WoT).

• Open challenges to make IoT application layer
protocols intelligent and dynamic by employing
ML approaches. These challenges highlight the
major issues of application layer protocols, such
as congestion control, message expiry, end-to-
end delay, energy-efficiency, and resource man-
agement.



Recent Advances in IoT Application Layer Protocols & ML for Research Directions 3

Table 1: Comparison of Recent and Related Surveys on IoT Application Layer Protocols

R
ef

er
en

ce

Ye
ar

C
oA

P

H
T

T
P

X
M

PP

W
eb

So
ck

et

M
Q

T
T

M
Q

T
T-

SN

A
M

Q
P

W
S–

N

ST
O

M
P

D
D

S

M
es

sa
ge

Q
ue

ue
s

O
th

er
s

Remarks

[23] 2012 3 3 7 7 7 7 7 7 7 7 7 7
1. Covered CoAP and HTTP along with their benefits
2. No open issues discussed in this article

[24] 2014 3 7 7 7 3 7 7 7 7 7 7 7 Compared MQTT and CoAP in terms of error and delay
prone links

[6] 2015 3 3 3 7 3 3 7 7 7 3 7 7
1. Discussed no open issues related to application layer protocols
2. Failed to cover the latest advances in the application layer
protocols and message queues

[25] 2015 3 7 7 7 7 7 7 7 7 7 7 7 Focused on non-application layer protocols

[26] 2015 3 7 7 7 7 7 7 7 7 7 7 7
1. Covered CoAP security issues.
2. Focused on no other application layer protocols.

[27] 2016 3 3 3 3 3 7 3 7 7 3 7 7
1. Covered traditional application layer protocols only
2. Discussed no recent advancements

[28] 2016 3 7 7 3 3 7 7 7 7 7 7 7 Compared CoAP, MQTT and WebSocket protocols using var-
ious scenarios for performance computation

[7] 2017 3 3 7 7 3 3 7 7 7 7 7 7
1. Covered application layer protocols briefly
2. Provided no open challenges related to said protocols

[29] 2017 3 3 3 3 3 3 3 7 3 7 7 7
1. Described traditional protocol benefits
2. Provided no open issues or recent advancements of
application layer protocols

[30] 2017 3 3 7 7 3 7 3 7 7 7 7 7 Described interoperability issues for application layer proto-
cols

[31] 2017 3 3 7 7 3 7 3 7 7 3 7 7 Discussed reliability side effects for application layer proto-
cols

[32] 2017 3 7 7 7 3 7 7 7 7 7 7 7
1. Studied MQTT and CoAP empirically
2. Failed to study other application layer protocols.

[34] 2017 3 3 3 3 3 7 3 7 7 7 7 7 Performed an experimental evaluation of CoAP, HTTP,
XMPP, WebSocket, MQTT, and AMQP using various con-
ditions

[33] 2017 3 7 7 7 3 7 7 7 7 7 7 7 Compared the CoAP and MQTT using various IoT conditions
[22] 2018 7 3 7 7 7 7 7 7 7 7 7 7 Covered basic information about communication protocols
[37] 2018 3 3 7 7 3 7 7 7 7 7 7 7 Performed comparative study on HTTP, CoAP, and MQTT
[35] 2018 3 7 3 7 3 7 3 7 7 7 7 7 Evaluated performance of application layer protocols

[8] 2019 3 7 3 7 3 7 7 7 7 3 7 7
1. Covered application layer protocols briefly
2. Discussed no open challenges

[38] 2020 3 3 3 7 3 7 3 3 7 3 7 7 Focuses on research efforts for smart farming using IoT ap-
plication layer protocols

Our
Survey – 3 3 3 3 3 3 3 3 3 3 3 3 Discusses recent advances, relevant applications, and the

scope of ML in IoT application layer protocols

Internet of Things

Application Layer 
Protocols

Machine Learning

Scope of 
Survey

Future Research 
Scope

Fig. 1: Survey scope and future research directions

Most of the abbreviations we use throughout the ar-
ticle are either standard or defined on the first use, and
for the reader’s convenience, we listed the most used
acronyms in Table 2. The remaining sections of this
article are arranged as follows. In Section 2, we pro-
vide a survey on previous and recent advancements in

IoT application layer protocols and list their limita-
tions. In Section 3, we list various IoT applications
that use application layer protocols and their evalu-
ations. In Section 4, ML’s adaptability to request-
response and PubSub for further research is discussed.
Finally, in Section 5, we conclude our discussions.

2. Recent Advances in IoT Application Layer Pro-
tocols

The Constrained RESTful Environments (CoRE)
group under the Internet Engineering Task Force
(IETF) and International Telecommunication Union-
Telecommunication works on application layer pro-
tocol development in the IoT. These protocols
are mainly categorized into request–response (e.g.,
client/server), PubSub, push-pull, and exclusive-pair
communication protocols. Of these, request–response
and PubSub protocols have been well received in the
literature. This section describes historical and recent
advances of these protocols, along with their benefits
and limitations. The taxonomy of conventional and
current application layer protocols of IoT are shown
in Fig. 2, and the comparisons are summarized in Ta-
ble 3.



4 P. K. Donta, et al.

IoT Application Layer
Protocols

Request-response
Protocols PubSub Protocols

HTTP CoAP WebSocket XMPP MQTT AMQP DDS WS-N STOMP Other Message
Brokers

XMPPHTTP CoAP

CoCoA

CoCoA+

CoCoA++

pCoCoA

CoCo-RED

CoAP-EAP

multicast CoAP

secure CoAP

CoEP

smart CoAP

hybrid CoAP

dynamic CoAP delay-aware CoAP
OSCoAP

mlCoAP

Lightweight
WebSocket

Extended
WebSocket

xep-000

xep-0322

xep-0323

xep-0324

xep-0325

xep-0326

xep-0347

MQTT-SN

Poho MQTT

Mosquitto

HiveMQ

VerneMQ

MQTT-G

DM-MQTT

MQTT-ST

Apache
ApolloMQ

Apache
ActiveMQ

Red Hat MQ

RabbitMQ

Fog-based
DDS

Zero MQ

Microsoft MQ

AmazonMQ

Apache QPID

HornetMQ

OpenMQ
LEARN

Fig. 2: Taxonomy of conventional and recent advances in IoT application layer protocols

2.1. Request-response Protocols

The request-response model is one of the basic
stateless and bidirectional communication models on
the Internet; it is also used in a constrained IoT. In this
model, two or more end parties (e.g., clients/servers)
exchange their data asynchronously. In the IoT, Rep-
resentational State Transfer (REST)ful HTTP, XMPP,
CoAP, and WebSocket use the request-response com-
munication pattern. In this subsection, we discuss re-
cent advancements in each of these request-response
protocols.

2.1.1. RESTful HTTP
HTTP was initially developed by Tim Berners-Lee

[39] later enhanced jointly by IETF and World Wide
Web (WWW) Consortium for web-based messaging.
It commonly uses a Transmission Control Protocol
(TCP) for reliable transmissions over the Internet [40].
This protocol is not recommended for the IoT, as it
uses existing web standards instead of developing ser-
vices or components for constrained IoT applications.
Its limitations with respect to the IoT are highlighted
as follows.

• Scalability: The IoT is composed of a large num-
ber of nodes, and each node that connects with
a server requires an underlying persistent con-
nection, as the limited capability of holding re-
quests by an HTTP server precludes it from hold-
ing connection requests from all nodes. Be-
sides, each node in the network connects with
multiple nodes, creating heavy loads on con-
strained IoT devices. These heavy resource con-
straints force HTTP servers to consume equiva-
lent power, preventing them from providing scal-
ability and energy-awareness with IoT applica-
tions.

• Uni-directional: Due to large number of connec-
tions, the IoT needs to communicate with multi-
ple devices simultaneously. By contract, HTTP
protocol can only process a single request or re-
sponse at a time. This uni-directional commu-
nication is not a recommended solution for IoT
applications.

• Responsiveness: HTTP requires large bandwidth
because of its weighty message size that increase
latency and energy consumption. The synchro-
nization feature of HTTP leads to latency during
data transmission.

• Point-to-point Communication: In the IoT, a
large number of nodes collect and transmit data
to base stations simultaneously. As stated previ-
ously, HTTP cannot handle multiple requests si-
multaneously, as it can only communicate with
two point-to-point (one-to-one) devices (e.g.,
nodes, servers).

• No Event-driven Nature: Most IoT applications
are event-driven, responding only when they
identify an event. HTTP is design is based
on the request–response pattern, which is not
event driven and requires unnecessary energy
consumption.

2.1.2. Extensible Messaging and Presence Protocol
XMPP was developed by the IETF for the Internet,

initially for heterogeneous networks [41] to avoid in-
teroperability issues. It also provides efficient com-
munication between devices while supporting both
request–response and PubSub. These features are at-
tractive to IoT users to implement various applica-
tions. Extended versions of the XMPP have been
published through the XMPP Standards Foundation
(XSF), and the recent versions are listed below.



Recent Advances in IoT Application Layer Protocols & ML for Research Directions 5

Table 2: Most Used Acronyms

Acronym Abbreviation
ACK Acknowledgement

AMQP Advanced Message Queuing Protocol
BEB Binary Exponential Backoff

CAIA Centre for Advanced Internet Architectures
CBOR Concise Binary Object Representation

CDG CAIA Delay-Gradient
CoAP Constrained Application Protocol

CoCoA Congestion Control/Advanced
CoCO-RED Congestion Control Random Early Detection

CoEP Constrained Extensible Protocol
CoRE Constrained RESTful Environments
DDS Data Distribution Service

DTLS Datagram Transport Layer Security
EAP Extensible Authentication Protocol
FPB Fibonacci Pre-increment Backoff

HTTP Hypertext Transfer Protocol
ICA Independent Component Analysis

IETF Internet Engineering Task Force
IoT Internet of Things

k-NN k-Nearest Neighbors
M2M Machine-to-Machine

MQTT Message Queue Telemetry Transport
MSSQ Microsoft Message Queue
OASIS Organization for the Advancement of Structured

Information Standards
PBF Probabilistic Backoff Function
PCA Principal Component Analysis
PDR Packet Delivery Ratio

PubSub Publish – Subscribe
RELOAD Resource Location And Discovery

REST Representational State Transfer
RFC Request for Comments

RF Random Forest
RL Reinforcement Learning

RTO Retransmission TimeOut
RTT Retransmission Time
SOA Service Oriented Architecture

STOMP Simple/Streaming – Text Oriented Messaging
Protocol

SVD Singular Value Decomposition
SVM Support Vector Machine
TCP Transmission Control Protocol
UDP User Datagram Protocol
VBF Variable Backoff Factor

WWW World Wide Web
WSNs Wireless Sensor Networks
WS–N Web Services-Notification

XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol

XoR XMPP over RELOAD
XSF XMPP Standards Foundation

• xep-0000: This version provides an efficient mul-
ticast data transmission between low-powered
devices and uses the PubSub communication pat-
tern. It also includes an interoperability interface
over heterogeneous networks.

• xep-0322, xep-0323, xep-0324: The major ex-
tensions in these versions are about packet size
optimization and memory issues. The xep-0323
version performs basic operations on sensor data,
and xep-0324 incorporates the access privilege
management approaches.

• xep-0325, xep-0326: These versions control
servers, devices, and actuators in IoT infrastruc-

tures.

• xep-0347: This version defines localization and
discovers needs for the deployment or removal
of any device in a network.

The Lightweight Directory Access Protocol (RFC-
8284) was introduced recently over XMPP using
white page objects rather than Jabber IDs [42]. A
Lightweight XMPP (LXMPP) was introduced in [43]
for resource-constrained IoT. This protocol performs
periodic data transmissions by using a sleeping mech-
anism. The development of this protocol inherited the
merits of xep-0060 with the support of PubSub archi-
tecture [44]. In this approach, sleeping clients pro-
long battery lifespan. In [45], Khramtsov et al. pro-
posed an XMPP over RELOAD (XoR) protocol based
on XMPP. In this, XMPP clients establish peer-to-
peer streams without routing to XMPP servers. Some
other XMPP projects, such as mbed XMPPClient and
µXMPP [46], use the LXMPP to allow the deployment
of sensor nodes. The XSF team encouraged develop-
ers to modify or incorporate additional services in to
XMPP. A summary of recent XMPP advances is pre-
sented in Table 4.

2.1.3. CoAP and its recent advances
CoAP (RFC-7252) is a low-powered, low-

bandwidth, and lightweight constrained protocol
for the IoT. This protocol was developed by the
IETF CoRE group and inspired by HTTP over User
Diagram Protocol (UDP). Due to low bandwidth and
higher network traffic, CoAP faces problems when
handling the congestion and delay increases because
of simple Binary Exponential Backoff (BEB) [47, 48].
Congestion leads to network retransmission, increas-
ing energy consumption, latency, and packet loss,
while reducing throughput and the Packet Delivery
Ratio (PDR) [49]. There are several recent CoAP
advances and extensions summarized in Table 5. An
end-to-end congestion control mechanism called Con-
gestion Control/Advanced (CoCoA) was developed
based on the CoAP [50]. The major enhancement
from CoAP to CoCoA is the Retransmission Timeout
(RTO). The CoAP uses a fixed RTO, whereas CoCoA
uses a variable RTO based on the Retransmission
Time (RTT) calculation used in TCP. In [51], Betzler
et al. performed experimental testbeds on CoAP and
CoCoA in various conditions with different nodes.
These testbeds indicated that CoCoA produces a
PDR 14–45% better than the CoAP. An extension
of CoCoA, CoCoA+, introduces a Variable Backoff

Factor (VBF) in place of the BEB. The VBF is
calculated based on the initial RTO, avoiding the
successive retransmissions over a short period [52].
CoCoA and CoCoA+ require weak and strong RTOs
to determine their RTOs. Congestion Control Random
Early Detection (CoCo-RED) was been developed
by [53] using a Fibonacci Pre-increment Backoff



6 P. K. Donta, et al.

Table 3: Summary of Traditional and Recent Advances in IoT Application Layer Protocols

Protocol/Broker Transport Reliability Security Flow Control Clustering QoS Interoperability Architecture
HTTP TCP/UDP Yes Yes Yes No Yes No Req/Res
CoAP UDP Yes Yes Yes No Yes No Req/Res
CoCoA/ +/ ++ TCP/UDP Yes Yes Yes No Yes No Req/Res
XMPP TCP Yes No Yes No No No Both
WebSocket TCP Yes No Yes No No No Both
MQTT TCP Yes No Yes No Yes No PubSub
MQTT-SN UDP Yes No No No Yes No PubSub
Mosquitto TCP Yes No No No Yes Yes PubSub
HiveMQ TCP Yes No Yes No Yes Yes PubSub
VerneMQ TCP Yes Yes Yes Yes Yes Yes PubSub
Paho MQTT TCP Yes No No No Yes Yes PubSub
AMQP TCP Yes Yes No No Yes Yes PubSub
Rabbit MQ TCP Yes Yes No No Yes Yes Both
ActiveMQ TCP Yes Yes Yes Yes Yes No PubSub
RedHat AMQ TCP Yes Yes Yes Yes Yes No PubSub
WS–N – Yes Yes No No No No PubSub
STOMP TCP Yes No Yes No No Yes PubSub
DDS TCP/UDP Yes No No No No Yes PubSub
ZeroMQ TCP No Yes No No Yes Yes (only zMQ) -
MicrosoftMQ UDP Yes Yes Yes No Yes Yes –
Amazon MQ TCP – Yes No No Yes No –
Apache QPID TCP – No Yes Yes Yes No –
HornetMQ TCP/UDP Yes Yes Yes Yes Yes No Both

Table 4: Summary of Recent Advances in XMPP

Protocol Features
xep-0000 Multicast data transmissions, Interoperability
xep-0322 Compress XML files and fragments, decreasing

packet size
xep-0323 Sensor data exchange over IoT
xep-0324 The management of access privileges and provi-

sioning
xep-0325 Controlling actuators
xep-0326 Handling multiple Things
xep-0347 Location discovery
LADP [42] Use of white pages instead of Jabber IDs
LXMPP [43] Adopting duty-cycle mechanism
XoR [45] Peer-to-Peer communication instead of routing
µXMPP [46] Lightweight and low power to deploy in Sensor

nodes

(FPB). In [54], Akpakwu et al. introduced a context-
aware congestion control mechanism for CoAP, that
computes RTO based on the weak and strong RTTs.

Further extensions for CoCoA+ with an optimized
RTO was introduced in Precise CoCoA (pCoCoA)
[55] and CoCoA++ [56]. The pCoCoA uses only
one RTO (a smooth RTO) rather than maintaining two
RTOs. It additionally uses the retransmission count
at Acknowledgement (ACK) during the retransmis-
sion of the Confirmable (CON) message to regulate
the number of packet retransmissions. It has less com-
putational overhead compared with CoCoA+ or Co-
CoA. CoCoA++ maintains a single RTO, and com-
putes a new RTO by integrating with the CAIA Delay-
Gradient (CDG) and Probabilistic Backoff Function.
CDG gets congestion information from TCP’s con-
gestion window. CoCoA++ replaces the VBF with
a PBF during RTO computation, and it does not use
per-packet RTT like other protocols. Overall, most
CoAP advancements were made to prevent congestion

RTT	Updates

RTO	Estimations

New	Transactions

Retransmissions

Client

Client

Server

Server

Minimum	
RTT

Maximum	
RTT

Minimum	
RTO

Calculate
RTO

Maximum	
RTO

Initial
	RTO

PBF	or	BEB	or	VBF	or	FPB

Previous
RTO

New
	RTO

Update Update

Apply

Sets

Retransmission

Fig. 3: General RTO estimation strategies for CoAP and its recent
enhancements

by computing an optimal RTO. The general RTO es-
timation strategies of these protocols are illustrated in
Fig. 3.

In [70], Ishaq et al. proposed a CoAP group com-
munication approach by allowing them to monitor re-
sources. The parallel operation of group communica-
tion and observation in the CoAP is an incessant task,
but it enables both operations to be performed while
making the protocol intelligent at the data source.



Recent Advances in IoT Application Layer Protocols & ML for Research Directions 7

Table 5: Summary of Recent Advances in CoAP

Protocol Features Advantages Limitations
CoCoA/+ [52] PBF and VBF introduced Congestion control, packet loss

minimization
End-to-end delay

CoCoA++ [56] CAIA Delay-Gradient and PBF introduced Congestion control, packet loss
minimization

End-to-end delay and heavy
computations

pCoCoA [55] ACK maintained, single RTO used for new
RTO computation

Congestion control, packet loss
minimization

End-to-end delay

CoCo-RED [53] FPB introduced Congestion control, packet loss
minimization

End-to-end delay

multicast CoAP [57] Max-Age approach to maintain the cache Congestion control, secure,
energy-efficient, and delay-
aware

Heavyweight

CoEP [58] Lightweight security protocol Authentication, confidentiality,
and integrity

End-to-end delay

OSCoAP [59] CMM-based security in the cross-layer Security Packet loss and high latency
secure CoAP [60] Group key management and access control

mechanisms
DTLS handshake mechanism High latency

smart CoAP [61] ML-based spoofing vulnerability attacks Remote server access, fake
message identification

High latency and packet loss

EDHOC [62] Used Ephemeral Diffie-Hellman for security End-to-end security High packet loss
hybrid CoAP [63] Switched dynamically between local and

central executions
Low-cost, faster, scalable Heavyweight

dynamic CoAP [64, 65] Latency-aware data delivery using super-
vised classification methods

Minimum end-to-end delay High computational

dynamic CoAP [66] Multimedia streaming data transmissions Traffic control Heavyweight
delay-aware CoAP [67] Delay-aware data communications in CoAP Categorizes data deliveries ac-

cording to demand
Handling the delay times with
in the messages

CoAP-EAP [68] Lightweight authentication mechanism Supports authentication, flexi-
bility, scalability, and identity
federation

Packet loss

mlCoCoA [69] Used ML to compute dynamic RTO times Throughput improvement Computationally heavy

Larmo et al. [71] tested the performances of the CoAP
and MQTT on a narrowband IoT. The data transmis-
sions between the sensor nodes and the cloud were
faster in the UDP-based CoAP when compared with
the TCP-based MQTT in terms of system capacity,
coverage, and latency, even with a massive network
load. The MQTT performs well under low network
loads. The authors of [72] developed an efficient proxy
for IoT to estimate congestion. Their approach also
adopted the Max-Age approach to maintain the cache.
CoAP cache management was also performed in [57]
focusing on multicast CoAP to update cache informa-
tion at the proxy. This approach also focused on effi-
cient energy management and delay-aware data trans-
missions by preventing congestion. In [69], Demir
et al. proposed a ML-based CoAP protocols with
an RTO computation strategy that adopted ML-based
technique.

Several articles [58, 59, 60, 61, 62, 73, 74, 75]
have focused on CoAP protocol security. A Con-
strained Extensible Protocol (CoEP) was introduced
in [58] for a secure and lightweight IoT application
layer protocol, embedding authentication, confiden-
tiality, and integrity for efficient security-based data
transmissions. A lightweight secure protocol using
Datagram Transport Layer Security (DTLS) was is in-
troduced in [73]. Bhattacharyya et al. [74] extended
this approach by using DTLS with a pre-shared key
to exchange encrypted data between IoT nodes. Simi-
larly, a cross-layer approach of the Object Security of

CoAP (OSCoAP) with a Cipher-block Chaining Mes-
sage was proposed in [59] for media access control
layer security in the IoT. The authors experimentally
proved that this approach was more energy efficient
(≈10%) and 37% faster than existing protocols. A
patent from [76] enhanced the CoAP for group com-
munication with selective responses in the IoT. In [61],
Roselin et al. used ML to mitigate spoofing vulner-
ability attacks while supporting remote server access.
This approach efficiently controlled fake requests from
attackers to the remote servers. A security frame-
work for CoAP was developed by [60] that included
group key management and access control mecha-
nisms as well as a pairwise symmetric key to avoid the
DTLS handshake mechanism. Generic-bootstrapping
architecture-based authentication and security mech-
anisms were introduced for CoAP in [75]. In [62],
Perez et al. implemented a CoAP security mech-
anism using Ephemeral Diffie-Hellman Over COSE
(EDHOC), an alternative to the DTLS handshake for
an end-to-end security mechanism.

In [64, 65, 66], dynamic CoAP was introduced to
control an IoT network. In [64, 65], Herrero et al.
focused on latency awareness to guarantee packet de-
livery using supervised classification on the data pack-
ets. This method also optimized power usage by min-
imizing network retransmissions. In [66], Krawiec
et al. focused on multimedia streaming data trans-
mission using the CoAP. This approach adjusted net-
work parameters to improve traffic efficiency in the



8 P. K. Donta, et al.

IoT. Hybrid CoAP was introduced in [63], that au-
tomatically switched between local devices and cen-
tralized server. This approach also detected and re-
moved resources based on availability, making it scal-
able, cheaper, faster, and able to adapt to a dynamic
system. The CoAP-Extensible Authentication Proto-
col (EAP) is a lightweight CoAP that was introduced
as an authentication mechanism in [68], using boot-
strapping services (such as the architecture) with enti-
ties, interfaces, and and the flow operation. This proto-
col also supports authentication, flexibility, scalability,
and identity federation.

2.1.4. WebSocket
WebSocket is a bidirectional, asynchronous, low-

latency, full-duplex protocol developed for constant
data transmission between two devices using a single
TCP channel. This protocol was inspired by HTTP
with advances that included event-driven communica-
tion in real-time IoT applications [77]. A WebSocket
session can also start without using a request-response
or PubSub communication pattern. Wong [78] devel-
oped a server system for WebSocket without using a
master. Another WebSocket enhancement is commu-
nication clustering in master-slave servers. However,
security is a major issue for this protocol. An extended
WebSocket protocol was introduced in [79] that al-
lowed control messages to be included in the frame
without interruption, whereas the existing WebSocket
protocol failed to get control messages.

2.1.5. Summary of Request-Response Protocols
As pointed out earlier in Subsection 2.1, most CoAP

advances have been introduced at the RTO computa-
tions, using static mathematical approaches or TCP re-
transmission strategies, and focusing on minimizing
the number of retransmissions. These methods use
only the RTT to estimate RTOs, yet RTTs are some-
times noisy [56]. These methods can control, but not
prevent, congestion. The CoAP is embedded with the
security features, but all the techniques discussed in
the literature are heavyweight. XMPP, by contrast, is
decentralized with redundant protocols that create ex-
cessive traffic, making it unsuitable for larger appli-
cations. XMPP is also unable to transmit unmodified
binary data over the network.

2.2. Publish–subscribe Model

The PubSub model is an asynchronous and loosely
coupled model for data exchange between two devices
uses an event bus or message broker. In this model,
endpoints do not know about each other, but the bro-
ker knows about them. The broker makes a bridge
between publishers and subscribers during data trans-
missions. The basic PubSub communication pattern is
illustrated in Fig. 4. The most commonly used Pub-
Sub protocols (such as MQTT, AMQP, Web Services-
Notification (WS-N), Simple/Streaming Text – Ori-

Publisher 1

Publisher 2

Publisher 3

Message Broker Subscriber 1

Subscriber 2

Subscriber 3

Subscriber 4

Subscriber 5

Event Bus

Message Queues

subscribe()/notify()

Fig. 4: Basic SubPub communication pattern

ented Messaging Protocol (STOMP), and DDS) are
described as follows.

2.2.1. MQTT and its recent advances
Andy Stanford-Clark and Arlen Nipper initially de-

veloped MQTT at IBM in 1999, and it was standard-
ized in 2013 by the Organization for the Advancement
of Structured Information Standards (OASIS). MQTT
is a lightweight PubSub messaging protocol widely
used by many web applications, including the IoT [80,
81]. MQTT connection uses M2M communication
with a many-to-many routing mechanism. MQTTv3.1
adopted the feature of expiry (i.e., discarding unre-
ceived messages after a set time period). Recently,
several modified versions of MQTT clients, servers,
and brokers have evolved; among these versions,
MQTT-SN, Mosquitto, hiveMQ, verneMQ, and Paho-
MQTT have been well eceived. Their benefits and
limitations are summarized in Table 6. The MQTT
for Sensor Networks (MQTT-SN) protocol is specially
designed for WSNs; currently, it is renamed as MQTT-
SN [82]. The primary modifications performed in
MQTT-SN prevent permanent connections through
UDP and reduce payload sizes. This lightweight pro-
tocol consumes less power than MQTT. In [83], Roy
et al. proposed gateway-to-gateway message trans-
missions using MQTT-SN. This approach performs
communications efficiently between sensor nodes and
gateway. Datasets used to evaluate the MQTT pro-
tocol with various ML algorithms are available in
[84, 85].

Geolocation-based MQTT (MQTT-G) was intro-
duced in [86], an extension of the MQTT protocol.
This protocol advertises the specific range of locations
as a notification to clients and provides search and
rescue improvements. However, this application can
only be used for a particular application, not for all
categories. Kumar et al. [96] integrated MQTT with
quick UDP Internet connections to reduce connection
overhead during the message exchange between IoT
devices or other devices and servers. MQTT with
TCP takes the additional burden to make the hand-
shake during the transmission. This approach reduces
latency up to 55%, while processor and memory us-
age are lowered by 80% and 50%, respectively when
compared to MQTT. The Spanning Tree-based MQTT
(MQTT-ST) protocol was introduced in [88] with a
bidirectional communication pattern. In addition to



Recent Advances in IoT Application Layer Protocols & ML for Research Directions 9

Table 6: Summary of Recent Advances in MQTT

Protocol Features Advantages Limitations
MQTT-SN [82] Designed for WSNs Lightweight with low payload

size
Works between sensor nodes or
gateways

MQTT-G [86] Search and rescue improvement Packet loss reduction Application specific, high de-
lay

DM-MQTT [87] Minimized data transmission delay in
MQTT

Bidirectional communication
and centralized broker

Heavy power consumption

MQTT-ST [88] Enhanced MQTT with bidirectional commu-
nications

Quick response on failure mes-
sages and embedded message
expiry

Heavyweight and high power
consumer

lightweight MQTT [89] Modified MQTT with limited features Lightweight and quicker No security
Paho MQTT [90] Cost-effective and open source MQTT mes-

sage broker
Reliable and interoperable Not scalable

Mosquitto [91] Lightweight message broker/server for
MQTT

Maximizes bandwidth, reli-
able, and scalable

Limited message size, no
cross-platform support

Modified Mosquitto [92] Message priority embedded instead of FIFO On-demand message delivery High latency
RabbitMQ [93] MQTT broker that uses Mosquitto Scalable and reliable Limited message size
HiveMQ [94] MQTT message broker for M2M communi-

cation
Scalable and reliable Large packet size

VerneMQ [95] Distributed master-less clustering MQTT
broker for reliable, highly scalable, and
availabile

Low-latency and fault-tolerant Lack of security

this feature, enhances functions that include message
expiry enhancement, optimal route selection, routing
path with minimal RTT, run-time message tracking,
and early reaction on failure messages. However,
when these functions are enhanced, the protocol be-
comes heavyweight and consumes additional power to
perform them.

Park et al. [87] proposed a Direct Multicast-MQTT
(DM-MQTT) protocol for efficient network resource
utilization by preventing data transmission delay. This
approach uses a bidirectional multicast mechanism be-
tween publishers and subscribers without using a cen-
tralized broker. This approach performs 58% and 65%
better than MQTT in network usage and transmission
delay, respectively. A lightweight MQTT was pro-
posed in [89], using IEEE 1451 to modify MQTT’s ex-
isting architecture and network features. This method
is not a secured one, but it can be extended to allow for
security. The Mosquitto is an open source lightweight
message broker/server for low-powered IoT devices; it
implements MQTT/MQTT-SN using C programming
and is maintained by the Eclipse Foundation [91]. It
does not support have cross-platform support and does
not categorize message priorities; instead, it follows a
first-come first-served approach. The message prior-
ity feature included in modified Mosquitto [92], sep-
arates urgent and regular messages, assigning critical
messages higher priority and serving them first.

RocketMQ is an MQTT-based message broker in-
troduced for MQTT protocol in [93]. This broker
controls the message push server with the help of
Mosquitto by using the producer-consumer approach.
HiveMQ is a client-based MQTT broker for reliable,
efficient, and high-speed data transmission protocols
on IoT devices. It is highly secured and provides con-
tinuous real-time data processing for brokers. This
protocol works on MQTTv3.1 and all subsequent ver-

sions [94]. VerneMQ is a distributed, reliable, high-
performance, master-less clustered messaging pro-
tocol developed in Erlang for MQTT brokers [95].
This protocol included many features such as flow-
control mechanism, message expiration, and shared
subscriptions. The Paho-MQTT is a cost-effective
open source client-based MQTT messaging protocol
for constrained M2M and IoT applications [90].

2.2.2. AMQP and its recent advances
The AMQP is an open source protocol initially

designed for business transactions exchanging mes-
sages between two parties (i.e., point-to-point com-
munication) [97, 98]. The messaging structure of
the AMQP is quite different in internal design and
has more overhead compared to MQTT. The AMQP
maintains multiple queues, storing messages in them
temporarily before subscribers receive them. Thus, it
supports interoperability between brokers and clients,
enabling communication between heterogeneous con-
nected systems [99, 100]. The AMQP is also suitable
for applications that require safe, high-quality, reli-
able, and rapid message delivery. However, it is not
completely suitable for constrained applications be-
cause of its substantial features.

RabbitMQ is a server initially implemented using
Erlang programming [101]. It is an open source hybrid
message broker for MQTT, AMQP, STOMP, and Web-
Socket. It sorts messages according to message prop-
erties and ensures efficient and reliable delivery while
managing component relationships well. However,
this protocol is heavyweight, high-latency, and slow.
It requires computation, deployment, and maintenance
costs. Apache ActiveMQ is an open source, asyn-
chronous java-based multi-protocol message server
for constrained applications [102, 103, 104]. It man-
ages and allocates resources very efficiently, achieves
high throughput, and also possesses interoperability.



10 P. K. Donta, et al.

ActiveMQ also supports flow-control, message expi-
ration, and message persistence by default. Its major
limitations are memory limits per queue and not us-
ing its heap by default. An ActiveMQ broker is also
limited by its architecture in terms of reliability, ro-
bustness, and scalability. Red Hat AMQ is an open
source, lightweight, fast, and secure Java-based mes-
sage protocol for large-scale Internet business appli-
cations that was inspired by ActiveMQ. This protocol
does not require any administrative costs, installation,
or configurations. Apache Apollo is a new core for
ActiveMQ that includes thousands of concurrent con-
nections and a large multi-core server. Apache Apollo
is a faster MQ that does not include all the features of
ActiveMQ.

2.2.3. Web Services-Notification
The WS-N protocol is standardized by OASIS, and

it exchanges messages in a coalition environment us-
ing predetermined notifications. It transmits packets
simultaneously to all registered clients and supports
interoperability well between middleware providers.
This protocol also takes care of security during data
transmissions, subscriptions, and notifications using
various key exchange mechanisms. It is a loosely-
coupled architecture that uses Extensible Markup Lan-
guage (XML) and follows Service-oriented Architec-
ture (SOA) principles. This protocol was initially de-
veloped for resource-constrained applications, but it is
resource-heavy compared with other protocols due to
SOA restrictions, XML, and multiple queues. Thus, it
is not ideal for all types of IoT applications.

2.2.4. STOMP
The STOMP is a lightweight, secure, reliable text-

based messaging protocol similar to HTTP that uses
the PubSub pattern [105]. It has a straightforward im-
plementation at the client level and also supports inter-
operability. Similar to AMQP, it uses frames for mes-
sage exchanges between clients and servers by using
a message broker. It does not use any comprehensive
Application Programming Interfaces (APIs); instead,
it uses simple, commonly used message operations
with ACKs. The server implementation of STOMP
is complicated, but it uses various existing server pro-
tocols (RabbitMQ, ActiveMQ, Apache Apollo, etc.).

2.2.5. DDS
DDS was developed by the Object Management

Group (OMG) for real-time, lightweight IoT applica-
tions and is available for both open source and com-
mercial implementations. It uses the PubSub model
for reliable and scalable multicast message exchanges,
whereas the multicast improves the QoS for real-time
IoT applications. DDS has a broker-less architecture,
unlike MQTT or AMQP, and requires no additional
memory for a message queue. DDS is inexpensive,
smart, secure, fast, interoperability capable, and sim-
plifies the deployment, integration, development, and

management of IoT applications. Fog-based DDS ar-
chitecture was used between fog devices and cloud
centers in [106]. The fog-based DDS architecture clas-
sifies data by considering the minimum storage cost
and latency. This model was specially designed for
fog-cloud communication, so it is not useful for con-
strained IoT devices. In [107], the DDS protocol was
used as middleware between software and hardware
devices for microgrid applications. It is a centralized
approach used to identify and clear faults optimally.
The DDS protocol is currently used in real-time large-
scale IoT applications, such as air-traffic control, smart
grid, healthcare, robotics, industrial integration, mili-
tary [108, 109, 110].

2.2.6. Summary of PubSub protocols
In the PubSub model, there are still some open chal-

lenges. For instance, there is no consistency check in
the message queue or the brokers. As the model de-
pends entirely on its brokers, a broker crash can ren-
der the whole system useless. Should a message crash
while a client is handling it, the message cannot be
recovered (e.g., Mosquitto allows the client to con-
trol the message). Most of these protocols use multi-
ple message queues when providing transmission be-
tween publishers and subscribers, yet the queues work
based on predetermined rules in static conditions, but
not work in dynamic conditions. Message expiry time
management is also challenging. PubSub model per-
formance can be determined based on its constraints
(such as message size, required queues, and clients ac-
cessing a queue simultaneously). However, determin-
ing these parameters on-the-fly is very difficult under
conventional PubSub protocols. Finally, the MQTT
protocol does not support multicast messaging and is
also unsuitable for service discovery auto configura-
tions [111].

2.3. Other Protocol/Message Brokers

There have been several other recent advancements
for message brokers. Some popular brokers are sum-
marized in Table 7. ZeroMQ (i.e., 0MQ, zMQ) is
a message exchange protocol that uses a broker-less
PubSub pattern for concurrent or distributed applica-
tions. It provides low-latency, high-throughput perfor-
mance that integrates components easily [112]. How-
ever, this protocol is unreliable because of the load it
places on local control modules. ZeroMQ also fails
to manage relationships between all network compo-
nents. Microsoft Message Queue (MSSQ) is a mes-
sage broker for reliable message exchange between
applications in an enterprise [113, 114]. In MSSQ,
resource failure may happen when the message limit
exceeds its threshold. There are also synchroniza-
tion problems between the operations (e.g., copy,
move, send, retrieve, and receive). Amazon MQ is a
java-based durable message broker developed for Ac-
tiveMQ that also supports for MQTT, AMQP, STOMP,



Recent Advances in IoT Application Layer Protocols & ML for Research Directions 11

and WebSocket [115]. Apache Qpid functionalities
are similar to RabbitMQ and is used to implement
the AMQP for reliable message exchanges between
elements [116]. It easily detects client failover and
assigns messages to different brokers. HornetQ is
an asynchronous clustered open source middleware
multi-protocol message project under the umbrella of
ActiveMQ. Its most recent version (v 2.4) also sup-
ports AMQP and STOMP [117]. The revised ver-
sion of the HornetQ is Apache Artemis 1.0.0 which
provides better performance and stability by combin-
ing ActiveMQ. Open Message Queue (OpenMQ) is
an open source java-based messaging protocol devel-
oped by Oracle with scalable, clustered, and loosely-
coupled architecture [118, 119]. Latency-aware Pop-
ular Resource Re-caching (LEARN) is a middleware
message broker developed to recache and reallocate
heavily loaded resources in the IoT [120]. LEARN
is useful for reducing the average delay between two
brokers with optimized resource utilization.

Apache Qpid, VerneMQ, HornetQ use simple and
static clustering methods over message queues in dif-
ferent servers. ML-based clustering algorithms (such
as k-means, hierarchical, or fuzzy-c-means ) may be
used in these protocols to make the clustering dy-
namic, efficient, and comforTable

3. Significance of IoT Application Layer Protocols
in Use Cases

Real-time applications benefit from using the ap-
plication layer protocols of IoT in terms of latency,
energy-efficiency, and throughput. This section re-
views protocols used in specific applications, such
as industrial IoT, smart cities and homes, healthcare,
WoT, mobility management, and video surveillance.
A summary of various applications that use applica-
tion layer protocols are listed in Table 8.

3.1. Industrial IoT

Industrial IoT (IIoT) refers to IoT devices inter-
connected with manufacturing, automation, or control
systems to perform data collection and analysis for im-
proved machine efficiency and productivity [166]. The
IIoT is a delay-sensitive application that allows data
transmissions and analytics to be performed rapidly
when a correct application layer protocol is selected.
Here, we discuss a few real-time works that adopted
various IoT application layer protocols in the IIoT,
which are summarized in Table 8.

In [121], Derhamy et al. used CoAP protocols for
on-demand, transparent, and secure IIoT translation to
provide interoperability between communication pro-
tocols. In this work, CoAP acted as a SOA instead
of as middleware. This application also proved that
the CoAP supports low latencies. A CoAP was used
for a smart grid in [122] to improve throughput by
reducing the mapping delay. The CoAP gateway is

was intercompatible in the smart grid network. In
[123], CoAP was also used for a smart grid applica-
tion through a combination with Concise Binary Ob-
ject Representation (CBOR) to improve interoperabil-
ity, system integration, and interaction. This combined
protocol reduced message sizes and times compared
with HTTP and other web service protocols. Latency
estimation between data sources and the cloud (i.e.,
RTT and MQTT) was performed in [124]. This pro-
tocol provided inexpensive low latency. Smart agri-
culture through a remote monitoring station was intro-
duced in [125] using the IoT. Initially, sensor nodes
collected data and transmitted it to a remote monitor-
ing system using the MQTT protocol. The station pro-
cessed the data to provide farmers with decisions.

Automatic keyword mining was proposed in [126]
for network load and security management in Web-
Socket. Initially, it identified frequently appearing
keywords before using a hidden semi-Markov ap-
proach to establish relations between them. The ex-
perimental validations outperformed previous Web-
Socket. In [127], Sunardi et al. used WebSocket pro-
tocol for agriculture applications to collect and trans-
fer data from the field. In this context, a sensor node
collects the temperature, soil moisturizer, and con-
trol of the field’s irrigation conduit. A fully parti-
tioned DDS for real-time middleware systems was in-
troduced in [128] for reliable data communication be-
tween the IoT devices. This approach performed well
in terms of communication functions on a distributed
network. In [129], XMPP was used to manage the
microgrid’s reactive power requirements. XMPP pro-
vided an abstract communication service with delay-
aware, interoperable, scalable, and secure data trans-
missions.

3.2. Smart City and Smart Home

Smart cities and homes are rapidly growing IoT ap-
plications that enable smart technology with remote
access, and monitoring [167, 168, 169]. Growing
these applications generates a vast amount of data,
and this data management requires efficient applica-
tion layer protocols. A summary of various IoT appli-
cation layer protocols used in smart cities and smart
homes is summarized in Table 8.

A novel time synchronization mechanism was pro-
posed in [130] for smart home applications using
CoAP. This approach achieved high accuracy due to
CoAP usage between the sensor nodes and the gate-
way for reliable data transmissions. This method also
minimized network overload and resource utilization.
In [170], an energy-efficient, privacy-preserving, and
secure data transmission protocol was introduced for
smart home application. Bansal et al. [131] tested ap-
plication layer protocols over smart city application,
comparing them with latency and bandwidth parame-
ters. MQTT provided the best performance in a real-
time environment. CoAP, MQTT, XMPP, and Web-



12 P. K. Donta, et al.

Table 7: Summary of Message Brokers for Application Layers

Protocol Features Advantages Limitations
Zero MQ [112] Broker-less PubSub pattern for concurrent or

distributed applications
Low-latency and high-
throughput

Unreliable

Microsoft MQ [113, 114] Reliable message exchange Asynchronous data delivery Limited number of message
exchanges (4MB)

Amazon MQ [115] Java-based durable message broker for Ac-
tiveMQ

Provisioning, failure detection
and recovery

Latency

Apache QPID Reliable message exchange Able to tolerate failures, and
Interoperable

Latency

HornetQ Asynchronous, clustered, middleware, and
multi-protocol for ActiveMQ

Clustering mechanism over the
message queues, grater stabil-
ity

Data loss

Open MQ Java-based open source message protocol High availability, clustering for
scalability

Latency

Socket performances were analyzed for a smart park-
ing application in [132]. WebSocket and XMPP pro-
vided better scalability, while the others had single
point of failure. XMPP also had the lowest server
interaction. Using MQTT for event-based message
communication in smart cities was proposed in [133].
This approach collected data using a network of IoT
devices (e.g., Arduino, Raspberry Pi, and ESP8266)
along with sensors and actuators. The communication
system’s primary goal was preventing latency by min-
imizing the number of data transmissions.

Remote control based smart home automation was
presented in [134] using MQTT. This mechanism
measured the current used in a house at each socket
and also monitored the AC power while permitting re-
mote access to home appliances. Similarly, an user
energy management system with automated demand
response was presented in [135] for smart home appli-
cations. In this work, Cornel et al. used MQTT pro-
tocols for data transmission over devices. In [136], an
autonomous resource allocation mechanism was pro-
posed for smart cities. In this approach, the Jambor-
salamati et al. used MQTT for efficient data transmis-
sion between sensor nodes, an energy exchange, and a
typical storage facility between neighborhoods. The
method monitored network communication failures
while investigating latency. In [137], fog computing-
based home automation techniques were provided us-
ing ZiWi [171]. This approach used MQTT protocols
for low-latency data communication. In this approach,
home power consumption was reduced by ZiWi.

3.3. Healthcare

In healthcare and biomedical systems, the IoT has
significantly addressed the most challenging issues,
saving lives at minimal cost [172]. Use the IoT in the
healthcare system has several benefits, such as remote
health monitoring, monitoring hardware availability
and accessibility, minimizing emergency room wait
times, tracking patients and staff, addressing chronic
disease, and managing drug plans [173]. In this sec-
tion, we present application layer protocols that bene-
fited healthcare IoT applications.

A patient-centric eHealth system was proposed in
[138] using a layered architecture including IoT de-
vices, fog, and the cloud for handling complex data.
This system covered assisted living, e-medicine, mo-
bile health, early warning systems, and implants. In
[139], an authentication mechanism was proposed to
protect physiological data from malicious users. A
smart gateway based on DTLS was used for efficient
authentication authorization along with CoAP. Be-
cause of the enhanced DTLS, this algorithm efficiently
performed data transmissions and minimized hand-
shake delay. A mobility-based remote health moni-
toring system was introduced in [140]. Here, IoT de-
vices were used to collect various patient details (e.g.,
pulse and ECG signals, body temperature, and body
gesture). These details were transferred to the remote
server using MQTT. This approach proved that MQTT
performed better than HTTP and XMPP for this appli-
cation.

In [141], an IoT-based ECG monitoring system was
presented. IoT devices collected patient information
and transferred it directly to the cloud using HTTP and
MQTT protocols. In this approach, the data transmis-
sions and analyses were performed efficiently without
delays between the server and web platforms. A smart
healthcare system was proposed in [142], where IoT
devices collected patient information and used AMQP
to transfer the data to the cloud for further analysis.
After analysis, a physician received sufficient deci-
sions.

3.4. Mobility Management

The number of mobility based applications are
rapidly increasing in the IoT, making tracking and
managing these devices a challenging issue [174]. The
mobility management highly depends on the wireless
communication channel, and the application layer pro-
tocols also play a significant role in it [175]. The
advantages and support of IoT application layer pro-
tocols for mobility management are discussed in this
section.

An MQTT-based connection management system
for vehicles was proposed in [143, 144]. Here, the



Recent Advances in IoT Application Layer Protocols & ML for Research Directions 13

Table 8: Summary of Application Layer Protocols used in various IoT Applications

Article Protocols Advantages Remarks

In
du

st
ri

al
Io

T

[121] CoAP Security, interoperability, on-demand Protocols cannot act as a middleware, only as a service ori-
ented architecture

[122] CoAP Improves throughput and reduces the mapping de-
lay

Inter-compatibility of CoAP

[123] CoAP + CBOR Minimizes message size and delay compared with
HTTP and other web service protocols

Supports interoperability through uniform identification and
interaction, and system integration

[124] MQTT Inexpensive and low-latency Estimate round trip latency between the cloud and data source
[125] MQTT Smart agriculture through remote monitoring Collect and process instantaneous data of agricultural field

atmosphere
[126] WebSocket Automatic keyword mining Network traffic management and security inspection
[127] WebSocket Full duplex communication for fast data transmis-

sions
Monitoring temperature, soil humidity and controlling the ir-
rigation sluice

[128] DDS Reliable communication and middleware support Design of fully partitioned deployment
[129] XMPP delay-aware, interoperable, scalable and secure XMPP communication model improves the management of

reactive power requirement in microgrids

Sm
ar

tC
ity

an
d

Sm
ar

tH
om

e [130] CoAP Minimize resource usage, network overhead, and
time synchronization

CoAP performed data transmissions between sensor nodes
and the gateway.

[131] MQTT, DDS, &
CoAP

Tested latency and bandwidth Comparison of application layer protocols on Smart city ap-
plications

[132] CoAP, MQTT,
XMPP & WebSocket

Mean response time Comparison of application layer protocols on Smart parking
applications

[133] MQTT Latency-aware Event-based message communication
[134] MQTT Remote control and latency-aware Measure the voltage of AC and measure the usage of the cur-

rent at power sockets
[135] MQTT Reliable and cost effective Cost-effective home automated demand response for energy

efficiency.
[136] MQTT Efficient resource allocation, low-latency and com-

munication failure detection
Allowed the common storage facility in the neighborhood and
also shared energy between them.

[137] MQTT Low-latency, energy-efficiency, and cross platform
support

Fog computing based home automation using ZiFi

H
ea

lth
ca

re [138] MQTT Security and privacy, scalability, data management,
regulations, and interoperability.

This system provided living assistance, early warning sys-
tems, e-medicine, and implants

[139] CoAP Minimize handshake and data transmissions delay Efficient authentication mechanism incorporated in CoAP
[140] MQTT Low power and flow consumption, and low delay High concurrency control between the server and mobile plat-

form
[141] HTTP & MQTT Reliability and data analysis, interoperability with

minimal transmission delay
The HTTP and MQTT helped data transmissions between
the server and web platforms, and significantly alleviated the
cross-platform issue.

[142] AMQP Reliable communication, guarantee message deliv-
ery

AMQP improved the speed of the data transmissions between
cloud and client. This approach also performed data analyt-
ics.

M
ob

ili
ty

M
an

ag
em

en
t [143, 144] MQTT Interoperable, redundant and fault tolerant Reconfigurable connection management between sets of

nodes
[145] MQTT & MQTT-SN Reduce latency and improve the average PDR, and

energy efficiency
Works on Internet of Drone Things

[146] MQTT Latency-aware data transmissions Works on connected car, maintains in vehicular communica-
tion

[147] CoAP Minimizes the latency and packet loss The CoMP designed for mobility management for IoT
[148] CoAP, CoMP Message communication in unreliable transmis-

sions
Mobility management based on the CON message communi-
cation

[149] CoAP, CoMP-G Latency-aware, better in terms of total signalling Group mobility communication management
[150] CoAP Congestion management, transmission delay Proxy mobile IPv6-based mobility management for the sen-

sor nodes.

V
id

eo
Su

rv
ei

lla
nc

e [151] DDS Congestion-aware, limited and time-varying band-
width

Avoids visual errors or interruptions during the streaming and
maintain high quality

[152] WebSocket & HTTP Avoids latency, frame loss errors, and visual errors WebSocket acted as a gateway and maintained the bidirec-
tional communications

[153] WebSocket Minimum data transmission delay It avoided unnecessary data transmissions between the client
and proxy server under the same channel

W
eb

of
T

hi
ng

s

[154] HTTP & CoAP Efficient communication among devices and Inter-
operability

Proxy design for intercepts communications followed by
mapping between CoAP and HTTP

[155] CoAP & MQTT Optimized transmission delay, energy consump-
tion, RTT and throughput

Controlling and monitoring of various sensors and actuators

[156] AMQP Data transmissions over network failures Clients disconnected from the server get help from the other
subscribed clients.

[157] CoAP Minimal energy consumption, bandwidth utiliza-
tion, and efficient data aggregation

A multiple observation requests for data collection and noti-
fications at proxies

[158] CoAP Flexible and scalable services Extended CoAP for web-based applications without using
any proxies, gateway or application servers

[159] CoAP Security Supports only unicast messages
[160, 161] CoAP Detect high-level events from the data Support entensive semantic matchmaking through non-

standard inference services
[162] WebSocket Robust communication between the web and phys-

ical devices
WebSocket used here to react on disconnected nodes and also
help in session managements

[163] MQTT Data communications in the IoT Mobile and web applications are used to access the data from
the MySQL database

[111] MQTT Self-interaction with the IoT devices Archive the auto-configuration mechanism with self discov-
ery

[164] MQTT Reliable message transmissions Maintained the order between the work environment and
messages

[165] MQTT Security, Network optimization, reliable and flexi-
ble data communications

Optimized the distribution of the Wi-Fi network



14 P. K. Donta, et al.

MQTT protocol plays a major role in performing ef-
ficient data transmissions between vehicles. In this,
MQTT was able to function even if the vehicle net-
work was reorganized. Similarly, Mukherjee et al.
[145] used MQTT protocols in the Internet of Drone
Things to improve message delivery speed by reduc-
ing latency. Further, they used MQTT-SN to im-
prove the average packet delivery rate by approxi-
mately 30%, confirming an energy efficient approach.
In [146], Dhall et al. proposed a connected car main-
tenance approach based on the IoT. The authors used
MQTT for efficient data exchanges between cars to
help owners to schedule service, analyze traffic, and
receive vehicle crash data. Here, MQTT enabled faster
data transmissions with efficient usage of low-latency
bandwidth.

A CoAP-based Mobility Management Protocol
(CoMP) was introduced in [147] for the IoT. The
CoMP used a separate signaling flow and message for-
mat during data transmission. It kept track of sensor
node IP addresses in the network and efficiently han-
dled latency and packet losses in the IoT. An exten-
sion of this work was completed in [148] with reli-
able mobility management. In this, Chun et al. mod-
ified reliable CON message communication from un-
reliable transmissions. Another extension of CoMP
was achieved in [149], which performed group mobil-
ity communications called ”CoMP-G for IoT”. This
approach also performed better in terms of latency
and total signaling during data transmission. In [150],
proxy mobile IPv6-based mobility management ap-
proaches were proposed for sensors. These sensors
used CoAP for data transmission. The classifica-
tion of moving targets for WSNs was achieved using
range limited marginalization and parallel range lim-
ited marginalization algorithms [176]. This approach
achieved optimal decision fusion in various WSN sce-
narios.

3.5. Video Surveillance

Monitoring and tracking activities using video
surveillance generates a massive amount of data
through camera sensors [177]. This data has to be
communicated to servers using the application layer
protocols. IoT application layer protocols were tested
for the Internet of Video Things in [178] by using var-
ious QoS parameters (e.g., memory usage, bandwidth,
energy consumption, throughput, latency, packet, and
payload size). The protocols are needed to handle
low bandwidth and high latency communication chan-
nels when transmitting data between applications and
servers [179, 180]. In [181], Hilal et al. proposed IoT
acoustic surveillance using Linear Discriminate Anal-
ysis (LDA) and a Support Vector Machine (SVM). The
primary goal of this approach was to recognize human
screams or vocal stress, and it was tested at Waterloo
International Airport.

DDS middleware-based real-time video streaming

was analyzed in [151]. The performance of network
video transmission was tested with various QoS fea-
tures. DDS prevented visual errors or interruptions
during streaming and maintained acceptable quality.
A WebSocket-based video surveillance service archi-
tecture was developed in [152]. WebSocket acted as
a gateway for maintaining bidirectional communica-
tion. Compared with HTTP, WebSocket outperformed
in terms of latency, frame loss rate, and visual er-
rors. In [153], WebSocket subprotocols were used for
media data transmissions between clients and servers
without sending proxy server requests from the cur-
rent channel. Here, WebSocket minimized unneces-
sary data transmission delay between the proxy server
and same channel clients.

3.6. Web of Things

The WoT is defined as physical devices (e.g., IoT
devices) that can interact with the WWW, simply by
applying web technologies to the IoT [182]. The main
goals of the WoT are to hide the low-level designed,
self-configured network through decreased human in-
tervention, provide a platform for design and testing,
and manage multiple platforms and protocols simulta-
neously and transparently [183]. IoT application layer
protocols play a major role in the WoT, and most na-
tive WoT applications are summarized in Table 8.

A proxy design for an efficient intercept commu-
nication module was designed for a swarm IoT in
[154]. This proxy performed mapping between HTTP
messages and CoAP and vice versa. This mecha-
nism provided efficient communication with low la-
tency and also IoT interoperability. MQTT and CoAP
were tested for the WoT in [155] for tiny IoT appli-
cations. In this work, Prabhu et al. used an archi-
tecture to control and monitor sensor nodes and their
storage. This method produced minimal transmission
delay and power consumption while improving PDR
and throughput. However, network failure is possi-
ble and can cause data transmissions between servers
and clients to be lost. Transmitting data through
other clients during network failure was proposed with
AMQP in [156]. In this case, when a publisher discon-
nects from client, newly subscribed clients get status
updates without any delay. Multiple observation re-
quests for data collection and notifications at proxies
were proposed in [157] for CoAP. This approach min-
imized energy consumption and also utilized band-
width efficiently.

CoAP is fully designed for IoT devices and not for
web clients. Without intermediate application servers,
a gateway, and proxies, CoAP is unable to serve the
WoT appropriately. In this context, Castro et al. [158]
extended CoAP for web-based applications without
using any proxies, gateway, or application servers.
DTLS security-based algorithm was proposed in [159]
for CoAP using a less biased algorithm for WoT. This
approach supports multicast message distributions and



Recent Advances in IoT Application Layer Protocols & ML for Research Directions 15

performs encryption and decryption. A mobile agent
was designed in [160, 161] for a semantic WoT using
CoAP. In this work, sensor nodes collected data from
the field and extracted meaningful high-level events
from it. This approach also supports interoperabil-
ity between hybrid sensors. In [162], Williams et al.
used WebSocket protocol between physical devices
and web servers to push data transmissions. The Web-
Socket API maintaind the connection lifecycle, man-
aged sessions, and reacted to disconnections. Web-
Socket was also useful as middleware in twisted envi-
ronments.

The MQTT protocol was studied in [163] for effi-
cient data communication and collection from the IoT
environment. In this article, Atmoko et al. used the
MySQL database to store collected data for further
analysis. Further, mobile and web-based applications
were provided to access data from remote locations.
In [111], the authors designed an architecture that au-
toconfigured the MQTT protocol for auto interaction
with IoT devices using a semantic Web. This approach
successfully achieved the autoconfiguration of MQTT-
based devices with self-discovery mechanisms. Reli-
able message transmission using MQTT was studied
in [164] for maintaining ordering between a work en-
vironment and the messages. An order flag was used
along with the messages to maintain proper synchro-
nization of the situation and use the message flag to
process requests. In [165], Lie et al. proposed a dis-
tributed Wi-Fi network optimization method for the
IoT. In this optimized network, the MQTT protocol
was used for reliable and flexible data transmissions
between devices. This method also extended security
mechanisms over the system through the MQTT pro-
tocol.

3.7. Other Applications

A novel IoT honeypot (ThingPot) protocol was de-
veloped to provide denial-of-service attack security on
the IoT [184]. It used the basic proof of the XMPP
and REST API. Initially, it was developed for IoT
applications, but was then extended to the IoT plat-
form. Similarly, [185] implemented a reverse engi-
neering method on the message format of applica-
tion layer protocols to identify security vulnerabilities
in the IoT. This method identified change points and
divided them into segments according to their static
properties. These segments were then processed fur-
ther to determine the vulnerabilities. In [186], Da et
al. proposed MiddleBridge approach to act as middle-
ware for translating CoAP, MQTT, DDS, XMPP, and
WebSocket messages into HTTP. The MiddleBridge
erformed message configuration on the fly while ad-
dressing message size and transmission delays.

A classification model for intrusion detection sys-
tems was introduced in [187] to detect IoT system at-
tacks that used the MQTT protocol. In this model,
attacks were classified using deep learning and recur-

rent networks. In [188], La et al. enhanced the se-
curity features of the MQTT protocol. Subscribers
could dynamically control access to the data and data
streams over time. The authors of [189] implemented
a CoAP accelerator as a hardware module in a field
programmable gate array. This accelerator reduced la-
tency between IoT devices and improved other QoS
parameters, such as throughput and bandwidth.

4. Scope of Machine Learning for Further Re-
search

While there have been several advances in IoT ap-
plication layer protocols, as discussed in Section 2,
several challenges remain open and require further re-
search. Several survey articles have covered possible
open problems for these protocols. Even though there
is a broad scope of ML in this layer, authors have not
focused on adopting ML features. This section fills
this gap by providing possible open challenges for fur-
ther research to make the protocols intelligent and dy-
namic using ML.

4.1. Congestion Control

In CoAP, there is a need for dynamic RTO calcu-
lation to optimize the number of retransmissions and
efficient RTTs. ML provides dynamic RTO computa-
tional strategies using Reinforcement Learning (RL),
Bayesian, Regression, or SVM with minimal compu-
tational requirements [12]. From these, RL does not
require a predetermined dataset and can learn during
run-time. While Bayesian requires datasets, it also
provides accurate RTO for congestion management in
CoAP. Existing CoAP protocols use established RTTs
to compute RTOs, yet those RTTs can be noisy. Other
network features (e.g., retransmission counts, delays,
and throughput) can also be considered when deter-
mining an optimal RTO. However, existing methods
work once congestion is identified on a network, even
though they cannot avoid the congestion completely.
ML has the prediction capability to determine con-
gestion before it occurs, based on the previous trans-
missions and other network conditions. An ML-based
protocol can control unnecessary communications or
retransmissions to avoid congestion from these pre-
dictions. It can also choose an alternate routing path
to reduce traffic or drop the packets at a source to re-
duce energy consumption in extreme cases. In the
IoT, the logistic regression, Random Forest (RF), k-
Nearest Neighbors (k-NN) and Q-learning provide ef-
ficient predictions for avoiding congestion. Logistic
regression was used to control data flow and mitigate
IoT congestion [190]. However, using logistic regres-
sion at the protocol level can provide greater benefit
such as rapid classification, good accuracy, easy to im-
plement and efficient to train. The success of RF, k-
NN, and Q-learning for congestion control in WSNs



16 P. K. Donta, et al.

indicates that these algorithms can control the con-
gestion in the IoT [12]. Among these methods, RF
is useful only for applications that do not have mem-
ory constraints, as RF requires more memory space
[191, 192].

4.2. Energy-efficiency and Delay-Sensitive

Constrained IoT devices are equipped with a lim-
ited energy battery. The energy consumption of a de-
vice mainly depends on data transmissions. Increas-
ing the number of transmissions also increases en-
ergy consumption and vice versa. In this context, we
can perform dimensionality reduction on the data be-
fore it is transmitted to reduce transmission overheads
and memory overheads, as well as congestion and
other computational necessities. Transmission over-
heads minimize latency for delay-sensitive applica-
tions (such as IIoTs, intelligent transportation systems,
and healthcare applications). Computation overheads
also affect energy consumption. The Singular Value
Decomposition (SVD), Principal Component Anal-
ysis (PCA), and Independent Component Analysis
(ICA) are most suitable for dimensionality reduction
in most IoT protocols [193, 194]. Apart from dimen-
sionality reduction, eliminating outlier data, anoma-
lies, and digital garbage (garbage data generated by
sensor nodes) can also help reduce data transmis-
sion overheads, saving energy and conserving net-
work bandwidth [195, 196, 197]. The k-NN, k-means,
SVM, and density–based spatial clustering of applica-
tions with noise algorithms fulfill this necessity in IoT
application protocols.

Dimensionality reduction, outlier or anomaly de-
tection, and edge data prediction can be incorporated
into CoAP, WebSocket, XMPP, AMQP, MQTT, and
all their extended versions. While XMPP is partic-
ularly unsuited to large-scale IoT application due to
its high message redundancy, its performance can be
improved significantly through dimensionality reduc-
tion. ML is also useful for checking data redundancy
and preventing multiple retransmissions. The feature
selection process also reduces heavy data transmis-
sions in the network, providing beneficial support for
delay-sensitive applications [198, 199]. The feature
selection mechanism can also use for device classifi-
cation [200]. PCA, ICA, and SVD are more accessible
ML techniques for performing the feature extraction,
and these are also useful in IoT application layer pro-
tocols. Among these techniques, ICA requires more
computation, and making PCA and SVD preferable
for constrained devices. PCA was used in the IoT
for anomaly detection and dimensionality reduction in
[201, 202]. Adopting these features in protocols pro-
vides benefit during the data collection process. Sim-
ilarly, ICA also helps when addressing various issues
discussed in subsection 4.2 [203, 204, 205]. RL also
fulfills these task without requiring any training data
set.

4.3. Message Expiry

Message expiry indicates that messages sent by a
publisher or broker to the message queue will be dis-
carded after a while if there is no subscriber response.
In PubSub protocols, this is a fundamental parame-
ter that describes message queue management quality.
This option is included in recent versions of PubSub
protocols with a static message expiry. Calculating op-
timal and dynamic message expiry is essential setting
it too high will result in queues keeping unnecessary
messages while an excessively low setting can cause
messages to be discarded before a subscriber can re-
trieve them. A dynamic message expiry time can be
decided at run-time by using ML approaches [206].
RL approaches do not require prerecorded ddatasets
for system training, allowing adaptability to message
transmission situations and queue availability when
determining optimal message expiry times. Bayesian
and decision tree approaches can provide an accurate
message expiry that depends on the queue availability
and channel occupancy.

4.4. Resource Management

AMQP uses multiple message queues, and each
queue handles certain messages as per predefined con-
straints, making it static in nature. Additionally,
AMQP does not support priority queues, which may
be alleviated by large message expiry times (though
this can cause critical information to become stuck in a
queue). Message queue classification can be made dy-
namic in AMQP by using ML algorithms. In addition
to having a priority queue, dynamic message queue
management is an essential issue in AMQP. While
adding additional features into AMQP with ML may
increase the load a bit, rapid delivery can be achieved
with higher quality and reliability. RabbitMQ suf-
fers from redundant message broker communication,
which can be avoided with dimensionality reduction
mechanisms. This protocol can also enjoy enhanced
packet loss estimation with ML techniques. Packet
loss estimation can be predicted using the RL ap-
proaches on-the-fly, with no training [207].

Similarly, for PubSub models, deciding message
size, the required number of message queues, and the
number of clients able to access a queue simultane-
ously for a specific application can be very complex
without ML. Depending on traffic conditions, ML can
determine a dynamic message size or the simultaneous
access count for the message queues or brokers. In-
creasing or decreasing the number of message queues
dynamically on a network is not logically possible.
However, in heterogeneous networks, ML can resize
queues according to various applications traffic con-
ditions. ML algorithms will efficiently perform these
operations. Bayesian in particular can accurately ad-
just message queue sizes on-the-fly through training.



Recent Advances in IoT Application Layer Protocols & ML for Research Directions 17

5. Conclusions

In this survey, we have presented recent advances in
application layer protocols for the IoT followed by its
significance in real-time use cases and ML-related re-
search directions. Recently, several application layer
protocols have been published as modified versions of
conventional protocols that have not been covered by
existing surveys. In this article, we have studied the
enhancements and improvements of conventional ap-
plication layer protocols. We have also identified and
summarized the benefits and limitations of these pro-
tocols. In addition, we have discussed various mes-
sage queues and message brokers. The significance of
request-response and PubSub protocols in use cases
(such as IIoT, smart cities and homes, healthcare, mo-
bility management, video surveillance, and the WoT)
have been discussed. We have also highlighted bene-
fits achieved by the use cases through the application
layer protocols. However, traditional and improved
application layer protocols have not yet satisfied IoT
needs due to variations in the dynamic condition of the
applications. ML can make these protocols intelligent
and work dynamically according to application con-
ditions and without human intervention. This article
also extended the usage of ML for future research to
solve issues such as congestion, energy awareness, de-
lay sensitivity, message expiration, and resource man-
agement.

Acknowledgements

The authors would like to thank DST(SERB), Gov-
ernment of India for grant No. EEQ/2018/000888.
The work was also supported by the Archimedes
Foundation under the Dora plus Grant 11-
15/OO/11476. We also acknowledge financial
support to UoH-IoE by MHRD (F11/9/2019-U3(A)).

References

[1] Ciuonzo, Domenico and Gelli, Giacinto and Pescapé, An-
tonio and Verde, Francesco. Decision fusion rules in am-
bient backscatter wireless sensor networks. In: 2019 IEEE
30th Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC). IEEE; 2019.
p. 1–6.

[2] Niu, Ruixin and Varshney, Pramod K. Performance analy-
sis of distributed detection in a random sensor field. IEEE
Transactions on Signal Processing. 2007;56(1):339–349.

[3] Ciuonzo, Domenico and Salvo Rossi, P. Dechade: De-
tecting slight changes with hard decisions in wireless sen-
sor networks. International Journal of General Systems.
2018;47(5):535–548.

[4] Lin J, Yu W, Zhang N, Yang X, Zhang H, Zhao W. A sur-
vey on internet of things: Architecture, enabling technolo-
gies, security and privacy, and applications. IEEE Internet of
Things Journal. 2017;4(5):1125–1142.

[5] Li S, Da Xu L, Zhao S. The internet of things: a survey.
Information Systems Frontiers. 2015;17(2):243–259.

[6] Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M,
Ayyash M. Internet of things: A survey on enabling tech-
nologies, protocols, and applications. IEEE communications
surveys & tutorials. 2015;17(4):2347–2376.

[7] Sethi P, Sarangi SR. Internet of things: architectures, pro-
tocols, and applications. Journal of Electrical and Computer
Engineering. 2017;2017.

[8] Salman T, Jain R. A survey of protocols and standards for
internet of things. arXiv preprint arXiv:190311549. 2019.

[9] Marsland S. Machine learning: an algorithmic perspective.
Chapman and Hall/CRC; 2014.

[10] Michie D, Spiegelhalter DJ, Taylor C, et al. Machine learn-
ing. Neural and Statistical Classification. 1994;13(1994):1–
298.

[11] Alpaydin E. Introduction to machine learning. MIT press;
2014.

[12] Praveen Kumar D, Tarachand A, Rao ACS. Machine learning
algorithms for wireless sensor networks: A survey. Informa-
tion Fusion. 2019;49:1–25.

[13] Alinejad-Rokny H, Sadroddiny E, Scaria V. Machine learn-
ing and data mining techniques for medical complex data
analysis. Neurocomputing. 2018;276:1.

[14] Chen M, Hao Y, Hwang K, Wang L, Wang L. Disease pre-
diction by machine learning over big data from healthcare
communities. Ieee Access. 2017;5:8869–8879.

[15] Shan F, Liu J, Wang X, Liu W, Zhou B. A Smart Access
Control Method for Online Social Networks Based on Sup-
port Vector Machine. IEEE Access. 2020;8:11096–11103.

[16] Keyvanpour M, Zandian ZK, Heidarypanah M. OMLML:
a helpful opinion mining method based on lexicon and ma-
chine learning in social networks. Social Network Analysis
and Mining. 2020;10(1):1–17.

[17] da Costa KA, Papa JP, Lisboa CO, Munoz R, de Albuquerque
VHC. Internet of Things: A survey on machine learning-
based intrusion detection approaches. Computer Networks.
2019;151:147–157.

[18] Jagannath J, Polosky N, Jagannath A, Restuccia F, Melodia
T. Machine learning for wireless communications in the In-
ternet of things: a comprehensive survey. Ad Hoc Networks.
2019:101913.

[19] Mahdavinejad MS, Rezvan M, Barekatain M, Adibi P, Bar-
naghi P, Sheth AP. Machine learning for Internet of Things
data analysis: A survey. Digital Communications and Net-
works. 2018;4(3):161–175.

[20] Adi, Erwin and Anwar, Adnan and Baig, Zubair and
Zeadally, Sherali. Machine learning and data analyt-
ics for the IoT. Neural Computing and Applications.
2020;32:16205–16233.

[21] Özdemir V, Hekim N. Birth of industry 5.0: Making sense
of big data with artificial intelligence,“the internet of things”
and next-generation technology policy. Omics: a journal of
integrative biology. 2018;22(1):65–76.

[22] Zikria YB, Yu H, Afzal MK, Rehmani MH, Hahm O. Inter-
net of things (IoT): Operating system, applications and pro-
tocols design, and validation techniques. Future Generation
Computer Systems. 2018:699–706.

[23] Palattella MR, Accettura N, Vilajosana X, Watteyne T,
Grieco LA, Boggia G, et al. Standardized protocol stack for
the internet of (important) things. IEEE communications sur-
veys & tutorials. 2012;15(3):1389–1406.

[24] Collina M, Bartolucci M, Vanelli-Coralli A, Corazza GE. In-
ternet of Things application layer protocol analysis over error
and delay prone links. In: 2014 7th Advanced Satellite Mul-
timedia Systems Conference and the 13th Signal Processing
for Space Communications Workshop (ASMS/SPSC). IEEE;
2014. p. 398–404.

[25] Aijaz A, Aghvami AH. Cognitive machine-to-machine com-
munications for Internet-of-Things: A protocol stack per-
spective. IEEE Internet of Things Journal. 2015;2(2):103–
112.

[26] Granjal J, Monteiro E, Silva JS. Security for the inter-
net of things: A survey of existing protocols and open re-
search issues. IEEE Communications Surveys & Tutorials.
2015;17(3):1294–1312.

[27] Yassein MB, Shatnawi MQ, et al. Application layer protocols
for the Internet of Things: A survey. In: 2016 International
Conference on Engineering & MIS (ICEMIS). IEEE; 2016.



18 P. K. Donta, et al.

p. 1–4.
[28] Mijovic S, Shehu E, Buratti C. Comparing application layer

protocols for the Internet of Things via experimentation. In:
2016 IEEE 2nd International Forum on Research and Tech-
nologies for Society and Industry Leveraging a better tomor-
row (RTSI). IEEE; 2016. p. 1–5.

[29] Saritha S, Sarasvathi V. A study on application layer pro-
tocols used in IoT. In: 2017 International Conference on
Circuits, Controls, and Communications (CCUBE). IEEE;
2017. p. 155–159.

[30] Tayur VM, Suchithra R. Review of interoperability ap-
proaches in application layer of Internet of Things. In: 2017
International Conference on Innovative Mechanisms for In-
dustry Applications (ICIMIA). IEEE; 2017. p. 322–326.

[31] Safaei B, Monazzah AMH, Bafroei MB, Ejlali A. Reliability
side-effects in Internet of Things application layer protocols.
In: 2017 2nd International Conference on System Reliability
and Safety (ICSRS). IEEE; 2017. p. 207–212.

[32] Tandale U, Momin B, Seetharam DP. An empirical study of
application layer protocols for IoT. In: 2017 International
Conference on Energy, Communication, Data Analytics and
Soft Computing (ICECDS). IEEE; 2017. p. 2447–2451.

[33] Hedi I, Speh I, Sarabok A. IoT network protocols compar-
ison for the purpose of IoT constrained networks. In: 2017
40th International Convention on Information and Com-
munication Technology, Electronics and Microelectronics
(MIPRO); 2017. p. 501–505.

[34] Năstase L, Sandu IE, Popescu N. An experimental evalua-
tion of application layer protocols for the internet of things.
Studies in Informatics and Control. 2017;26(4):403–412.

[35] Pohl M, Kubela J, Bosse S, Turowski K. Performance Eval-
uation of Application Layer Protocols for the Internet-of-
Things. In: 2018 Sixth International Conference on Enter-
prise Systems (ES). IEEE; 2018. p. 180–187.

[36] Sandell M, Raza U. Application layer coding for IoT: bene-
fits, limitations, and implementation aspects. IEEE Systems
Journal. 2018;13(1):554–561.

[37] Chaudhary H, Vaishnav N, Tank B. Comparative Analysis
of Application Layer Internet of Things (IoT) Protocols. In:
Information and Communication Technology for Sustainable
Development. Springer; 2018. p. 173–180.

[38] Glaroudis, Dimitrios and Iossifides, Athanasios and Chatz-
imisios, Periklis. Survey, comparison and research chal-
lenges of IoT application protocols for smart farming. Com-
puter Networks. 2020;168:107037.

[39] Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach
P, et al.. Hypertext transfer protocol–HTTP/1.1. RFC 2616,
june; 1999.

[40] Naik N. Choice of effective messaging protocols for IoT sys-
tems: MQTT, CoAP, AMQP and HTTP. In: 2017 IEEE In-
ternational Systems Engineering Symposium (ISSE); 2017.
p. 1–7.

[41] Li, Yun and Ma, Hui and Wang, Lei and Mao, Shiwen and
Wang, Guoyin. Optimized Content Caching and User Asso-
ciation for Edge Computing in Densely Deployed Heteroge-
neous Networks. IEEE Transactions on Mobile Computing.
2020.

[42] Kille S. Lightweight Directory Access Protocol (LDAP)
Schema for Supporting the Extensible Messaging and Pres-
ence Protocol (XMPP). https://toolsietforg/html/rfc8284.
2017;RFC 8284.

[43] Wang H, Xiong D, Wang P, Liu Y. A lightweight XMPP pub-
lish/subscribe scheme for resource-constrained IoT devices.
IEEE Access. 2017;5:16393–16405.

[44] Millard P, Saint-Andre P, Meijer R. XEP-0060: publish-
subscribe. XMPP Standards Foundation. 2010;1:13.

[45] Khramtsov E. XMPP Over RELOAD (XOR). XMPP Stan-
dards Foundation; 2019.

[46] Hornsby A, Bail E. µXMPP: Lightweight implementation
for low power operating system Contiki. In: 2009 Interna-
tional Conference on Ultra Modern Telecommunications &
Workshops. IEEE; 2009. p. 1–5.

[47] Bormann C, Castellani AP, Shelby Z. CoAP: An application

protocol for billions of tiny internet nodes. IEEE Internet
Computing. 2012;16(2):62–67.

[48] Bormann C, Lemay S, Tschofenig H, Hartke K, Silverajan B,
Raymor B. CoAP (Constrained Application Protocol) over
TCP, TLS, and WebSockets. Internet Requests for Com-
ments, RFC Editor, RFC. 2018;8323.

[49] Donta PK, Amgoth T, Annavarapu CSR. Congestion-aware
Data Acquisition with Q-learning for Wireless Sensor Net-
works. In: 2020 IEEE International IOT, Electronics and
Mechatronics Conference (IEMTRONICS). IEEE; 2020. p.
1–6.

[50] Betzler A, Gomez C, Demirkol I, Paradells J. CoAP conges-
tion control for the Internet of Things. IEEE Communica-
tions Magazine. 2016;54(7):154–160.

[51] Betzler A, Isern J, Gomez C, Demirkol I, Paradells J. Exper-
imental evaluation of congestion control for CoAP commu-
nications without end-to-end reliability. Ad Hoc Networks.
2016;52:183–194.

[52] Betzler A, Gomez C, Demirkol I, Paradells J. CoCoA+: An
advanced congestion control mechanism for CoAP. Ad Hoc
Networks. 2015;33:126–139.

[53] Suwannapong C, Khunboa C. Congestion Control
in CoAP Observe Group Communication. Sensors.
2019;19(15):3433.

[54] Akpakwu GA, Hancke GP, Abu-Mahfouz AM. CACC:
Context-aware congestion control approach for lightweight
CoAP/UDP-based Internet of Things traffic. Transactions on
Emerging Telecommunications Technologies. 2019:e3822.

[55] Bolettieri S, Tanganelli G, Vallati C, Mingozzi E. pCoCoA:
A precise congestion control algorithm for CoAP. Ad Hoc
Networks. 2018;80:116–129.

[56] Rathod V, Jeppu N, Sastry S, Singala S, Tahiliani MP. Co-
CoA++: Delay gradient based congestion control for Inter-
net of Things. Future Generation Computer Systems. 2019.

[57] Mišić J, Mišić VB. Proxy cache maintenance using multicas-
ting in CoAP IoT domains. IEEE Internet of Things Journal.
2018;5(3):1967–1976.

[58] Manini M, Esquiagola J, Costa L, Zuffo M. CoEP: A se-
cure & lightweight application protocol for the Internet of
Things. In: 2018 IEEE XXV International Conference on
Electronics, Electrical Engineering and Computing (INTER-
CON). IEEE; 2018. p. 1–4.

[59] Randhawa RH, Hameed A, Mian AN. Energy efficient cross-
layer approach for object security of CoAP for IoT devices.
Ad Hoc Networks. 2019;92:101761.

[60] Park CS. Security Architecture for Secure Multicast
CoAP Applications. IEEE Internet of Things Journal.
2020;7(4):3441–3452.

[61] Roselin AG, Nanda P, Nepal S, He X, Wright J. Exploiting
the remote server access support of CoAP protocol. IEEE
Internet of Things Journal. 2019;6(6):9338–9349.

[62] Pérez S, Garcia-Carrillo D, Marı́n-López R, Hernández-
Ramos JL, Marı́n-Pérez R, Skarmeta AF. Architecture of
security association establishment based on bootstrapping
technologies for enabling secure IoT infrastructures. Future
Generation Computer Systems. 2019;95:570–585.

[63] Djamaa B, Yachir A, Richardson M. Hybrid CoAP-based re-
source discovery for the Internet of Things. Journal of Ambi-
ent Intelligence and Humanized Computing. 2017;8(3):357–
372.

[64] Herrero R. Dynamic CoAP mode control in real time
wireless IoT networks. IEEE Internet of Things Journal.
2018;6(1):801–807.

[65] Herrero R. Supervised classification for dynamic CoAP
mode selection in real time wireless IoT networks. Telecom-
munication Systems. 2020:1–12.

[66] Krawiec P, Sosnowski M, Batalla JM, Mavromoustakis
CX, Mastorakis G. DASCo: dynamic adaptive stream-
ing over CoAP. Multimedia Tools and Applications.
2018;77(4):4641–4660.

[67] Han, Yanyan and Seed, Dale and Wang, Chonggang and
Li, Xu and Ly, Quang and Chen, Zhuo. Delay-aware ap-
plication protocol for Internet of Things. IEEE Network.



Recent Advances in IoT Application Layer Protocols & ML for Research Directions 19

2018;33(1):120–127.
[68] Garcia-Carrillo D, Marin-Lopez R. Lightweight CoAP-

based bootstrapping service for the internet of things. Sen-
sors. 2016;16(3):358.

[69] Demir, Alper Kamil and Abut, Fatih. mlCoCoA: a machine
learning-based congestion control for CoAP. Turkish Journal
of electrical engineering & computer sciences. 2020;28(5).

[70] Ishaq I, Hoebeke J, Moerman I, Demeester P. Observing
CoAP groups efficiently. Ad Hoc Networks. 2016;37:368–
388.

[71] Larmo A, Ratilainen A, Saarinen J. Impact of CoAP
and MQTT on NB-IoT system performance. Sensors.
2019;19(1):7.

[72] Mišić J, Ali MZ, Mišić VB. Architecture for IoT domain
with CoAP observe feature. IEEE Internet of Things Journal.
2018;5(2):1196–1205.

[73] Raza S, Shafagh H, Hewage K, Hummen R, Voigt T. Lithe:
Lightweight secure CoAP for the internet of things. IEEE
Sensors Journal. 2013;13(10):3711–3720.

[74] Bhattacharyya A, Bose T, Bandyopadhyay S, Ukil A, Pal
A. LESS: Lightweight establishment of secure session: A
cross-layer approach using CoAP and DTLS-PSK channel
encryption. In: 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications Work-
shops. IEEE; 2015. p. 682–687.

[75] Khushu A, Zgonjanin D, Kim N. Generic Bootstrapping Ar-
chitecture (GBA) Based Security Over Constrained Applica-
tion Protocol (CoAP) for IoT Devices. Google Patents. 2019
Jan 31. US Patent App. 15/661,857.

[76] Wang C, Di Girolamo R, Rahman SA, Li X, Chen Z, Ly Q,
et al. Enhanced CoAP group communications with selective
responses. Google Patents. 2019 Jan 10. US Patent App.
15/752,459.

[77] Fette I, Melnikov A. The websocket protocol. URL
https://tools ietf org/html/rfc6455. 2016.

[78] Wong YT. Masterless websocket server system. Google
Patents. 2017 Feb 2. US Patent App. 14/815,882.

[79] Fallows JR, Atkinson SR. Extending WebSocket protocol.
Google Patents; 2016. US Patent 9,331,890.

[80] Yassein MB, Shatnawi MQ, Aljwarneh S, Al-Hatmi R. In-
ternet of Things: Survey and open issues of MQTT protocol.
In: 2017 International Conference on Engineering & MIS
(ICEMIS). IEEE; 2017. p. 1–6.

[81] Stanford-Clark A, Nipper A. MQTT; 2017.
[82] Stanford-Clark, Andy and Truong, Hong Linh. MQTT for

sensor networks (MQTT-SN) protocol specification. In-
ternational business machines (IBM) Corporation version.
2013;1(2).

[83] Roy DG, Mahato B, De D, Buyya R. Application-aware
end-to-end delay and message loss estimation in Internet
of Things (IoT)—MQTT-SN protocols. Future Generation
Computer Systems. 2018;89:300–316.

[84] Vaccari, Ivan and Chiola, Giovanni and Aiello, Maurizio and
Mongelli, Maurizio and Cambiaso, Enrico. MQTTset, a New
Dataset for Machine Learning Techniques on MQTT. Sen-
sors. 2020;20(22):6578.

[85] Hindy, Hanan and Bayne, Ethan and Bures, Miroslav and
Atkinson, Robert and Tachtatzis, Christos and Bellekens,
Xavier. Machine Learning Based IoT Intrusion Detec-
tion System: An MQTT Case Study (MQTT-IoT-IDS2020
Dataset). arXiv preprint arXiv:200615340. 2020.

[86] Bryce R, Shaw T, Srivastava G. MQTT-G: A pub-
lish/subscribe protocol with geolocation. In: 2018 41st In-
ternational Conference on Telecommunications and Signal
Processing. IEEE; 2018. p. 1–4.

[87] Park JH, Kim HS, Kim WT. DM-MQTT: An efficient MQTT
based on SDN multicast for massive IoT communications.
Sensors. 2018;18(9):3071.

[88] Longo E, Redondi AEC, Cesana M, Arcia-Moret A, Man-
zoni P. MQTT-ST: a Spanning Tree Protocol for Distributed
MQTT Brokers. arXiv preprint arXiv:191107622. 2019.

[89] Velez J, Trafford R, Pierce M, Thomson B, Jastrzebski E, Lau
B. IEEE 1451-1-6: Providing common network services over

MQTT. In: 2018 IEEE Sensors Applications Symposium
(SAS). IEEE; 2018. p. 1–6.

[90] Paho-MQTT E. MQTT-SN Software. Accessed: Mar; 2018.
[91] Light R. Mosquitto: server and client implementation of

the MQTT protocol. Journal of Open Source Software.
2017;2(13):265.

[92] Hwang K, Lee JM, Lee DH. Modification of Mosquitto Bro-
ker for Delivery of Urgent MQTT Message. In: 2019 IEEE
Eurasia Conference on IOT, Communication and Engineer-
ing (ECICE). IEEE; 2019. p. 166–167.

[93] Yue M, Ruiyang Y, Jianwei S, Kaifeng Y. A MQTT Protocol
Message Push Server Based on RocketMQ. In: 2017 10th
International Conference on Intelligent Computation Tech-
nology and Automation (ICICTA). IEEE; 2017. p. 295–298.

[94] HiveMQ Enterprise M. Broker. MQTT Essentials Part2:
Publish & Subscribe; 2016.

[95] VerneMQ A. VerneMQ-Messaging broker for MQTT. URL:
https://vernemqcom/intro/indexhtml. 2020.

[96] Kumar P, Dezfouli B. Implementation and analysis of QUIC
for MQTT. Computer Networks. 2019;150:28–45.

[97] Vinoski S. Advanced message queuing protocol. IEEE In-
ternet Computing. 2006;10(6):87–89.

[98] Gutierrez F. AMQP with Spring Boot. In: Spring Boot Mes-
saging. Springer; 2017. p. 59–80.

[99] Li, Yun and Xia, Shichao and Yang, Qianying and Wang,
Guoyin and Zhang, Weiyi. Lifetime-Priority-Driven Re-
source Allocation for WNV-Based Internet of Things. IEEE
Internet of Things Journal. 2021;8(6):4514–4525.

[100] Li, Yun and Liang, Yunjin and Liu, Qilie and Wang, Hong-
gang. Resources Allocation in Multicell D2D Communica-
tions for Internet of Things. IEEE Internet of Things Journal.
2018;5(5):4100–4108.

[101] RabbitMQ A. RabbitMQ-Messaging that just works. URL:
https://wwwrabbitmqcom. 2020.

[102] ActiveMQ; 2020. Accessed: September 21, 2021. https:

//activemq.apache.org/components/classic/.
[103] Christudas B. ActiveMQ. In: Practical Microservices Archi-

tectural Patterns. Springer; 2019. p. 861–867.
[104] ActiveMQ A. ActiveMQ: The Apache Software Foundation.

Retrieved; 2016.
[105] Johnsen FT. Using publish/subscribe for short-lived iot data.

In: 2018 Federated Conference on Computer Science and
Information Systems (FedCSIS). IEEE; 2018. p. 645–649.

[106] Karatas F, Korpeoglu I. Fog-based data distribution service
(F-DAD) for internet of things (IoT) applications. Future
Generation Computer Systems. 2019;93:156–169.

[107] Habib H, Habib NFK, Esfahani MM, Mohammed OA,
Brahma S. An Enhancement of Protection Strategy for Dis-
tribution Network using the Communication Protocols. IEEE
Transactions on Industry Applications. 2020.

[108] Meng Z, Wu Z, Muvianto C, Gray J. A data-oriented M2M
messaging mechanism for industrial IoT applications. IEEE
Internet of Things Journal. 2016;4(1):236–246.

[109] White R, Caiazza G, Jiang C, Ou X, Yang Z, Cortesi A,
et al. Network Reconnaissance and Vulnerability Excava-
tion of Secure DDS Systems. In: 2019 IEEE European Sym-
posium on Security and Privacy Workshops (EuroS&PW).
IEEE; 2019. p. 57–66.

[110] White T, Johnstone MN, Peacock M. An investigation into
some security issues in the DDS messaging protocol; 2018. .

[111] Kim G, Kang S, Park J, Chung K. An MQTT-Based Context-
Aware Autonomous System in oneM2M Architecture. IEEE
Internet of Things Journal. 2019;6(5):8519–8528.

[112] Fengping P, Jianzheng C. Distributed system based on Ze-
roMQ. Electronic Test. 2012;7(7):24–29.

[113] Horrell S. Microsoft Message Queue (MSMQ). Enterprise
Middleware. 1999:25–35.

[114] Redkar A, Rabold K, Costall R, Boyd S, Walzer C. Pro
MSMQ: Microsoft Message Queue Programming. Apress;
2004.

[115] AmazonMQ; 2021. Accessed: September
21, 2021. https://tutorialsdojo.com/

aws-cheat-sheet-amazon-mq/.



20 P. K. Donta, et al.

[116] Qpid A. QPID: An Open source AMQP messaging. 2013.
AMQP; 2018.

[117] Sihai GHL. Asynchronous Message Transfer with HornetQ.
Software Guide. 2010;1(12):16.

[118] Klein AF, Ştefãnescu M, Saied A, Swakhoven K. An ex-
perimental comparison of ActiveMQ and OpenMQ brokers
in asynchronous cloud environment. In: 2015 Fifth Inter-
national Conference on Digital Information Processing and
Communications (ICDIPC). IEEE; 2015. p. 24–30.

[119] Vinţe C, Solutions O. Upon a Trading System Architecture
based on OpenMQ Middleware. Open Source Science Jour-
nal. 2009;1(1).

[120] Sun X, Ansari N. Traffic load balancing among brokers at
the IoT application layer. IEEE Transactions on Network
and Service Management. 2017;15(1):489–502.

[121] Derhamy H, Eliasson J, Delsing J. IoT interoperability—On-
demand and low latency transparent multiprotocol translator.
IEEE Internet of Things Journal. 2017;4(5):1754–1763.

[122] Shin IJ, Song BK, Eom DS. International Electronical Com-
mittee (IEC) 61850 mapping with constrained application
protocol (CoAP) in smart grids based European telecommu-
nications standard institute Machine-to-Machine (M2M) en-
vironment. Energies. 2017;10(3):393.

[123] Iglesias-Urkia M, Casado-Mansilla D, Mayer S, Bilbao J,
Urbieta A. Integrating Electrical Substations Within the IoT
Using IEC 61850, CoAP, and CBOR. IEEE Internet of
Things Journal. 2019;6(5):7437–7449.

[124] Ferrari P, Sisinni E, Brandão D, Rocha M. Evaluation of
communication latency in industrial IoT applications. In:
2017 IEEE International Workshop on Measurement and
Networking (M&N). IEEE; 2017. p. 1–6.

[125] Mukherji SV, Sinha R, Basak S, Kar SP. Smart Agriculture
using Internet of Things and MQTT Protocol. In: 2019 Inter-
national Conference on Machine Learning, Big Data, Cloud
and Parallel Computing (COMITCon). IEEE; 2019. p. 14–
16.

[126] Li BC, Yu SZ. Keyword mining for private protocols
tunneled over websocket. IEEE Communications Letters.
2016;20(7):1337–1340.

[127] Sunardi S, Afif A, Noviyanto F. Real Time Monitoring and
Irrigation Control Using the Websocket Protocol. In: Pro-
ceedings of the 1st International Conference on Science and
Technology for an Internet of Things. European Alliance for
Innovation (EAI); 2018. p. 1–11.

[128] Garcı́a-Valls M, Domı́nguez-Poblete J, Touahria IE, Lu C.
Integration of Data Distribution Service and distributed
partitioned systems. Journal of Systems Architecture.
2018;83:23–31.

[129] Hussain SS, Aftab MA, Ali I. IEC 61850 modeling
of DSTATCOM and XMPP communication for reactive
power management in microgrids. IEEE Systems Journal.
2018;12(4):3215–3225.

[130] Son SC, Kim NW, Lee BT, Cho CH, Chong JW. A time
synchronization technique for CoAP-based home automa-
tion systems. IEEE Transactions on Consumer Electronics.
2016;62(1):10–16.

[131] Bansal S, Kumar D. IoT Application Layer Protocols: Per-
formance Analysis and Significance in Smart City. In: 2019
10th International Conference on Computing, Communica-
tion and Networking Technologies (ICCCNT). IEEE; 2019.
p. 1–6.

[132] Kayal P, Perros H. A comparison of IoT application layer
protocols through a smart parking implementation. In: 2017
20th Conference on Innovations in Clouds, Internet and Net-
works (ICIN). IEEE; 2017. p. 331–336.

[133] Jaloudi S. MQTT for IoT-based Applications in Smart
Cities. Palestinian Journal of Technology and Applied Sci-
ences (PJTAS). 2019;2.

[134] Cornel-Cristian A, Gabriel T, Arhip-Calin M, Zamfirescu A.
Smart home automation with MQTT. In: 2019 54th Interna-
tional Universities Power Engineering Conference (UPEC).
IEEE; 2019. p. 1–5.

[135] Jia K, Xiao J, Fan S, He G. A MQTT/MQTT-SN-based user

energy management system for automated residential de-
mand response: formal verification and cyber-physical per-
formance evaluation. Applied Sciences. 2018;8(7):1035.

[136] Jamborsalamati P, Fernandez E, Moghimi M, Hossain MJ,
Heidari A, Lu J. MQTT-Based Resource Allocation of
Smart Buildings for Grid Demand Reduction Considering
Unreliable Communication Links. IEEE Systems Journal.
2018;13(3):3304–3315.

[137] Froiz-Mı́guez I, Fernández-Caramés TM, Fraga-Lamas P,
Castedo L. Design, implementation and practical evaluation
of an IoT home automation system for fog computing ap-
plications based on MQTT and ZigBee-WiFi sensor nodes.
Sensors. 2018;18(8):2660.

[138] Farahani B, Firouzi F, Chang V, Badaroglu M, Constant N,
Mankodiya K. Towards fog-driven IoT eHealth: Promises
and challenges of IoT in medicine and healthcare. Future
Generation Computer Systems. 2018;78:659–676.

[139] Kumar PM, Gandhi UD. Enhanced DTLS with CoAP-based
authentication scheme for the internet of things in healthcare
application. The Journal of Supercomputing. 2017:1–21.

[140] Yi D, Binwen F, Xiaoming K, Qianqian M. Design and im-
plementation of mobile health monitoring system based on
MQTT protocol. In: 2016 IEEE Advanced Information Man-
agement, Communicates, Electronic and Automation Con-
trol Conference (IMCEC). IEEE; 2016. p. 1679–1682.

[141] Yang Z, Zhou Q, Lei L, Zheng K, Xiang W. An IoT-cloud
based wearable ECG monitoring system for smart health-
care. Journal of medical systems. 2016;40(12):286.

[142] Krishna C, Sasikala T. Healthcare Monitoring System Based
on IoT Using AMQP Protocol. In: International Conference
on Computer Networks and Communication Technologies.
Springer; 2019. p. 305–319.

[143] Schmitt A, Carlier F, Renault V. Dynamic bridge genera-
tion for IoT data exchange via the MQTT protocol. Procedia
computer science. 2018;130:90–97.

[144] Schmitt A, Carlier F, Renault V. Data Exchange with the
MQTT Protocol: Dynamic Bridge Approach. In: 2019 IEEE
89th Vehicular Technology Conference (VTC2019-Spring).
IEEE; 2019. p. 1–5.

[145] Mukherjee A, Dey N, De D. EdgeDrone: QoS aware
MQTT middleware for mobile edge computing in oppor-
tunistic internet of drone things. Computer Communications.
2020;152:93–108.

[146] Dhall R, Solanki V. An IoT Based Predictive Connected Car
Maintenance. International Journal of Interactive Multime-
dia & Artificial Intelligence. 2017;4(3).

[147] Chun S, Park J. Mobile CoAP for IoT mobility management.
In: 2015 12th Annual IEEE Consumer Communications and
Networking Conference (CCNC); 2015. p. 283–289.

[148] Chun SM, Park JT. A mechanism for reliable mobility
management for internet of things using CoAP. Sensors.
2017;17(1):136.

[149] Gohar M, Choi JG, Koh SJ. CoAP-based group mo-
bility management protocol for the Internet-of-Things in
WBAN environment. Future Generation Computer Systems.
2018;88:309–318.

[150] Choi S, Koh S. Use of Proxy Mobile IPv6 for Mobility Man-
agement in CoAP-Based Internet-of-Things Networks. IEEE
Communications Letters. 2016 Nov;20(11):2284–2287.

[151] Almadani B, Alsaeedi M, Al-Roubaiey A. QoS-aware scal-
able video streaming using data distribution service. Multi-
media Tools and Applications. 2016;75(10):5841–5870.

[152] Mandyam GD. Transferring media data using a websocket
subprotocol. Google Patents. 2016 Nov 17. US Patent App.
15/146,538.

[153] D’Angelo G, Rampone S. A NAT traversal mechanism
for cloud video surveillance applications using WebSocket.
Multimedia Tools and Applications. 2018;77(19):25861–
25888.

[154] Esquiagola J, Costa L, Calcina P, Zuffo M. Enabling CoAP
into the swarm: A transparent interception CoAP-HTTP
proxy for the Internet of Things. In: 2017 Global Internet
of Things Summit (GIoTS). IEEE; 2017. p. 1–6.



Recent Advances in IoT Application Layer Protocols & ML for Research Directions 21

[155] Prabhu Kumar P, Geetha G. Web-cloud architecture levels
and optimized MQTT and COAP protocol suites for web of
things. Concurrency and Computation: Practice and Experi-
ence. 2019;31(12):e4867.

[156] Bhimani P, Panchal G. Message delivery guarantee and sta-
tus update of clients based on IOT-AMQP. In: Intelligent
Communication and Computational Technologies. Springer;
2018. p. 15–22.

[157] Correia N, Sacramento D, Schütz G. Dynamic aggregation
and scheduling in CoAP/observe-based wireless sensor net-
works. IEEE Internet of Things Journal. 2016;3(6):923–936.

[158] Castro M, Jara AJ, Skarmeta AF. Enabling end-to-end
CoAP-based communications for the Web of Things. Journal
of network and computer applications. 2016;59:230–236.

[159] Singhal P, Sharma P, Hazela B. End-to-end message authen-
tication using CoAP over IoT. In: International Conference
on Innovative Computing and Communications. Springer;
2019. p. 279–288.

[160] Ruta M, Scioscia F, Pinto A, Gramegna F, Ieva S, Loseto G,
et al. A CoAP-based framework for collaborative sensing in
the Semantic Web of Things. Procedia Computer Science.
2017;109:1047–1052.

[161] Ruta M, Scioscia F, Pinto A, Gramegna F, Ieva S, Loseto
G, et al. CoAP-based collaborative sensor networks in the
semantic web of things. Journal of Ambient Intelligence and
Humanized Computing. 2019;10(7):2545–2562.

[162] Williams M, Benfield C, Warner B, Zadka M, Mitchell D,
Samuel K, et al. Push Data to Browsers and Micro-services
with WebSocket. In: Expert Twisted. Springer; 2019. p. 285–
304.

[163] Atmoko R, Riantini R, Hasin M. IoT real time data acquisi-
tion using MQTT protocol. In: Journal of Physics: Confer-
ence Series. vol. 853. IOP Publishing; 2017. p. 012003.

[164] Hwang HC, Park J, Shon JG. Design and implementa-
tion of a reliable message transmission system based on
MQTT protocol in IoT. Wireless Personal Communications.
2016;91(4):1765–1777.

[165] Liu X, Zhang T, Hu N, Zhang P, Zhang Y. The method of
Internet of Things access and network communication based
on MQTT. Computer Communications. 2020;153:169–176.

[166] Xu LD, He W, Li S. Internet of Things in Industries:
A Survey. IEEE Transactions on Industrial Informatics.
2014;10(4):2233–2243.

[167] Ahlgren B, Hidell M, Ngai ECH. Internet of things for smart
cities: Interoperability and open data. IEEE Internet Com-
puting. 2016;20(6):52–56.

[168] Kim Th, Ramos C, Mohammed S. Smart city and IoT. Future
Generation Computer Systems. 2017;76:159–162.

[169] Crooks A, Schechtner K, Dey AK, Hudson-Smith A. Creat-
ing smart buildings and cities. IEEE Pervasive Computing.
2017;16(2):23–25.

[170] Song T, Li R, Mei B, Yu J, Xing X, Cheng X. A pri-
vacy preserving communication protocol for IoT applica-
tions in smart homes. IEEE Internet of Things Journal.
2017;4(6):1844–1852.

[171] Zhou R, Xiong Y, Xing G, Sun L, Ma J. ZiFi: Wireless
LAN discovery via ZigBee interference signatures. In: Pro-
ceedings of the sixteenth annual international conference on
Mobile computing and networking; 2010. p. 49–60.

[172] Catarinucci L, de Donno D, Mainetti L, Palano L, Patrono L,
Stefanizzi ML, et al. An IoT-Aware Architecture for Smart
Healthcare Systems. IEEE Internet of Things Journal. 2015
Dec;2(6):515–526.

[173] Redondi A, Chirico M, Borsani L, Cesana M, Tagliasacchi
M. An integrated system based on wireless sensor networks
for patient monitoring, localization and tracking. Ad Hoc
Networks. 2013;11(1):39–53.

[174] Wang S, Xia M, Wu YC. Backscatter data collection with
unmanned ground vehicle: Mobility management and Power
allocation. IEEE Transactions on Wireless Communications.
2019;18(4):2314–2328.

[175] Alsaeedy AAR, Chong EKP. Mobility Management for
5G IoT Devices: Improving Power Consumption With

Lightweight Signaling Overhead. IEEE Internet of Things
Journal. 2019 Oct;6(5):8237–8247.

[176] Ciuonzo, Domenico and Buonanno, Aniello and D’Urso,
Michele and Palmieri, Francesco AN. Distributed classifica-
tion of multiple moving targets with binary wireless sensor
networks. In: 14th International Conference on Information
Fusion. IEEE; 2011. p. 1–8.

[177] Motlagh NH, Bagaa M, Taleb T. UAV-Based IoT Platform:
A Crowd Surveillance Use Case. IEEE Communications
Magazine. 2017;55(2):128–134.

[178] Sultana T, Wahid KA. Choice of application layer protocols
for next generation video surveillance using Internet of video
things. IEEE Access. 2019;7:41607–41624.

[179] Rego A, Canovas A, Jiménez JM, Lloret J. An Intelligent
System for Video Surveillance in IoT Environments. IEEE
Access. 2018;6:31580–31598.

[180] Alsmirat MA, Jararweh Y, Obaidat I, Gupta BB. Inter-
net of surveillance: a cloud supported large-scale wire-
less surveillance system. The Journal of Supercomputing.
2017;73(3):973–992.

[181] Hilal, Allaa R and Sayedelahl, Aya and Tabibiazar, Arash
and Kamel, Mohamed S and Basir, Otman A. A dis-
tributed sensor management for large-scale IoT indoor
acoustic surveillance. Future Generation Computer Systems.
2018;86:1170–1184.

[182] Tran NK, Sheng QZ, Babar MA, Yao L. Searching the web
of things: State of the art, challenges, and solutions. ACM
Computing Surveys (CSUR). 2017;50(4):1–34.

[183] Belli L, Cirani S, Davoli L, Gorrieri A, Mancin M, Picone M,
et al. Design and deployment of an IoT application-oriented
testbed. Computer. 2015;48(9):32–40.

[184] Wang M, Santillan J, Kuipers F. ThingPot: an in-
teractive Internet-of-Things honeypot. arXiv preprint
arXiv:180704114. 2018.

[185] Luo JZ, Shan C, Cai J, Liu Y. IoT Application-Layer Pro-
tocol Vulnerability Detection using Reverse Engineering.
Symmetry. 2018;10(11):561.

[186] da Cruz MA, Rodrigues JJ, Lorenz P, Solic P, Al-Muhtadi
J, Albuquerque VHC. A proposal for bridging application
layer protocols to HTTP on IoT solutions. Future Generation
Computer Systems. 2019;97:145–152.

[187] Alaiz-Moreton H, Aveleira-Mata J, Ondicol-Garcia J,
Muñoz-Castañeda AL, Garcı́a I, Benavides C. Multiclass
classification procedure for detecting attacks on MQTT-IoT
protocol. Complexity. 2019;2019.

[188] La Marra A, Martinelli F, Mori P, Rizos A, Saracino A. In-
troducing usage control in MQTT. In: Computer Security.
Springer; 2017. p. 35–43.

[189] R B Brasilino L, Swany M. Low-Latency CoAP Processing
in FPGA for the Internet of Things. In: 2019 International
Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cy-
ber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData); 2019. p. 1057–1064.

[190] Kim, Dae-Young and Kim, Seokhoon and Hassan, Houcine
and Park, Jong Hyuk. Adaptive data rate control in low
power wide area networks for long range IoT services. Jour-
nal of computational science. 2017;22:171–178.

[191] Alsouda Y, Pllana S, Kurti A. Iot-based urban noise identifi-
cation using machine learning: performance of SVM, KNN,
bagging, and random forest. In: Proceedings of the interna-
tional conference on omni-layer intelligent systems; 2019. p.
62–67.

[192] Lakshmanaprabu S, Shankar K, Ilayaraja M, Nasir AW, Vi-
jayakumar V, Chilamkurti N. Random forest for big data
classification in the internet of things using optimal features.
International journal of machine learning and cybernetics.
2019;10(10):2609–2618.

[193] Vizárraga J, Casas R, Marco Á, Buldain JD. Dimen-
sionality Reduction for Smart IoT Sensors. Electronics.
2020;9(12):2035.

[194] Alhowaide A, Alsmadi I, Tang J. PCA, Random-Forest
and Pearson Correlation for Dimensionality Reduction in



22 P. K. Donta, et al.

IoT IDS. In: 2020 IEEE International IOT, Electronics and
Mechatronics Conference (IEMTRONICS). IEEE; 2020. p.
1–6.

[195] Cinquegrana, Davide and Iuliano, Emiliano. Investigation of
adaptive design variables bounds in dimensionality reduction
for aerodynamic shape optimization. Computers & Fluids.
2018;174:89–109.

[196] Pour, Morteza Safaei and Bou-Harb, Elias and Varma, Kavita
and Neshenko, Nataliia and Pados, Dimitris A and Choo,
Kim-Kwang Raymond. Comprehending the IoT cyber threat
landscape: A data dimensionality reduction technique to in-
fer and characterize Internet-scale IoT probing campaigns.
Digital Investigation. 2019;28:S40–S49.

[197] Li, Yang and Bao, Yuanyuan and Chen, Wai. A Stable
Dimensionality-Reduction Method for Internet-of-Things
(IoT) Streaming Data. In: 2019 IEEE International Confer-
ence on Internet of Things and Intelligence System (IoTaIS).
IEEE; 2019. p. 231–237.

[198] Sun G, Li J, Dai J, Song Z, Lang F. Feature selection for IoT
based on maximal information coefficient. Future Generation
Computer Systems. 2018;89:606–616.

[199] Egea S, Mañez AR, Carro B, Sánchez-Esguevillas A, Lloret
J. Intelligent IoT traffic classification using novel search
strategy for fast-based-correlation feature selection in in-
dustrial environments. IEEE Internet of Things Journal.
2017;5(3):1616–1624.

[200] Chakraborty B, Divakaran DM, Nevat I, Peters GW, Gu-
rusamy M. Cost-aware Feature Selection for IoT Device
Classification. IEEE Internet of Things Journal. 2021.

[201] Hoang, Dang Hai and Nguyen, Ha Duong. A PCA-based
method for IoT network traffic anomaly detection. In: 2018
20th International Conference on Advanced Communication
Technology (ICACT). IEEE; 2018. p. 381–386.

[202] Kiran, MPR Sai and Rajalakshmi, Pachamuthu. Performance
analysis of CSMA/CA and PCA for time critical industrial
IoT applications. IEEE Transactions on Industrial Informat-
ics. 2018;14(5):2281–2293.

[203] Duan, Hanjun and Zhu, Xu and Jiang, Yufei and Wei,
Zhongxiang and Sun, Sumei. An Adaptive Self-Interference
Cancelation/Utilization and ICA-Assisted Semi-Blind Full-
Duplex Relay System for LLHR IoT. IEEE Internet of
Things Journal. 2019;7(3):2263–2276.

[204] Mayilvahanan, AL and Stalin, N and Sutha, S. Im-
proving Solar Power Generation and Defects Detection
Using a Smart IoT System for Sophisticated Distribu-
tion Control (SDC) and Independent Component Analy-
sis (ICA) Techniques. Wireless Personal Communications.
2018;102(4):2575–2595.

[205] Wan, Xin and Zhu, Xu and Jiang, Yufei and Liu, Yujie and
Zhao, Jiahe. An Interference Alignment and ICA Based
Semi-Blind Dual-User Downlink NOMA System for High-
Reliability Low-Latency IoT. IEEE Internet of Things Jour-
nal. 2020.

[206] Konda VR, Tsitsiklis JN. Actor-critic algorithms. In: Ad-
vances in neural information processing systems; 2000. p.
1008–1014.

[207] Hussain F, Hassan SA, Hussain R, Hossain E. Ma-
chine learning for resource management in cellular and
IoT networks: Potentials, current solutions, and open
challenges. IEEE Communications Surveys & Tutorials.
2020;22(2):1251–1275.


