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Abstract—Fog computing provides a decentralized approach
to data processing and resource provisioning in the Internet
of Things (IoT). Particular challenges of adopting fog-based
computational resources are the adherence to geographical
distribution of IoT data sources, the delay sensitivity of IoT
services, and the potentially very large amounts of data emitted
and consumed by IoT devices.

Despite existing foundations, research on fog computing is
still at its very beginning. A major research question is how to
exploit the ubiquitous presence of small and cheap computing
devices at the edge of the network in order to successfully
execute IoT services. Therefore, in this paper, we study the
placement of IoT services on fog resources, taking into account
their QoS requirements. We show that our optimization model
prevents QoS violations and leads to 35% less cost of execution
if compared to a purely cloud-based approach.

1. Introduction
The integration of the Internet of Things (IoT) and infor-

mation systems which support various industrial and private
domains, e.g., in smart cities [1] or in smart factories [2],
creates new requirements for system infrastructures [3].
Currently, a vast amount of IoT data emitted by distributed
devices are sent to the cloud for centralized processing, and
afterwards are sent back from the cloud to data consumers,
which are very often located near the initial data sources.
This leads to high delays and considerable cost for the usage
of cloud-based computational resources [4]. To prevent this,
the decentralized processing of IoT data has been identified
as a promising approach [5].

As a matter of fact, IoT devices (e.g., gateways, sensors,
or embedded systems) offer computational, storage, and
networking resources [6]. The presence of these resources
allows to move the execution of IoT applications to the edge
of the network [7]. This approach is known as fog computing
(or edge computing) [4].

To enable fog computing and use available IoT-based
resources, those resources need to be virtualized. Also, it is
necessary to allow the distributed execution of applications
on different devices, networks, and domains, e.g., using
the Distributed Data Flow model [8]. Notably, applications
should be able to run in both the fog and the cloud. Espe-
cially in IoT scenarios, a sense-process-actuate application

model is needed [9]. This model describes IoT applications
where sensors emit data, which are then processed to acti-
vate actuators that perform necessary actions. Applications
following this model consist of a set of services, which
interact in a sequential way.

Existing conceptual approaches to realize fog computing
deal with basic fog architectures, Application Program-
ming Interfaces (APIs), and data communication [5], [7].
In contrast, the question of how to effectively distribute IoT
services (e.g., following the sense-process-actuate model)
among fog resources has gained very little attention so
far [7], [10]. Therefore, within this paper, we propose an
approach on how to optimally place IoT services on fog
resources.

For this purpose, we use the notion of fog colonies (see
Figure 1) [10], which act as micro data centers constructed
from an arbitrary number of fog cells. Fog cells are software
components running on IoT devices, which control and
monitor virtualized resources of these devices. Within a fog
colony, a control node performs resource provisioning by
orchestrating fog cells, and by communicating with other
colonies if additional resources are needed. Similarly to data
centers in the cloud, fog colonies share services between
their fog cells and between each other. Fog colonies are
connected to a fog computing management system that is a
middleware running in the cloud. Such a system provides
additional resources if needed, performs reconfigurations of
resources, and optimizes resources. We call an environment
that is made up from fog cells, fog colonies, and a fog
computing management system a fog landscape.

Based on this system model, we are able to establish an
approach for the optimal sharing of resources among IoT
services. We define a formal system model for fog land-
scapes. Afterwards, we present the Fog Service Placement
Problem (FSPP), which allows to place IoT services on
virtualized fog resources while taking into account Quality
of Service (QoS) constraints like deadlines on the execution
time of applications. Solutions to the FSPP describe exe-
cution plans in terms of resource provisioning and service
placement. We implement the FSPP as an Integer Linear
Programming problem, solve it using the CPLEX solver,
and evaluate the placement solutions in terms of the cost of
execution and QoS adherence.

The remainder of this paper is organized as follows:
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Figure 1. High-level View on Fog Computing Architecture

First, we elaborate on the problem statement and according
resource and application models in Section 2. Next, in
Section 3, we formalize the envisioned optimization model,
i.e., the FSPP. We evaluate the model extensively and discuss
results in Section 4. In Section 5 we elaborate on the state-
of-the-art work in the area of the fog computing and resource
provisioning. Finally, we conclude the paper and highlight
our future work.

2. Problem Statement

In order to determine QoS-aware fog service placement,
we need a suitable representation of the involved entities.
For this, we provide a model of an IoT application which
comprises the related set of IoT services, as well as QoS
requirements of the application in Section 2.1. Then, in
Section 2.2, we describe computational resources which col-
lectively compose the fog landscape and the communication
links between them. Finally, in Section 2.3, we formulate the
FSPP as a mapping between applications and resources that
takes into account QoS requirements. For the sake of clarity,
in Table 1 we summarize the notation used throughout the
paper.

2.1. Application Model

An IoT application consists of several services, which
run on virtualized IoT devices (i.e., fog cells) and inter-
act with each other to provide a well-defined function-
ality. Hence, an application is distributed in a fog land-
scape by placing the services onto particular fog cells. Let
A = ∪n

i=1Ai be a set of applications to be placed in a fog
landscape. Each application consists of a set of services.
A service a ∈ Ai is characterized by its demands for
computational resources, i.e., CPU cCa , RAM cMa , storage
cSa , and by a service type Ta. The type Ta specifies the
requirement of a service to be executed on a specific kind
of resource, e.g., which is equipped with a specific sensor.

Without loss of generality, we consider three types of ser-
vices: sensing, processing, and actuating services. A service
has an estimated makespan duration ma.

An application Ai is characterized by a user-defined
deadline DAi

which defines the maximum amount of time
allowed for the application execution. The parameter wAi

keeps record of the current deployment time for an applica-
tion Ai. The application response time rAi

, with Ai ∈ A,
depends on the makespans of its services a ∈ Ai, on
the communication delays among the services, and on the
deployment time. The deployment time wAi

, with Ai ∈ A,
comprises the time interval needed to compute and enact
the fog service placement.

2.2. Resource Model

A fog cell f is a virtualized single IoT device coor-
dinating a group of other IoT devices, i.e., sensors and
actuators. Fog cells run on IoT devices with computational,
network, and storage capacities, e.g., gateways or Cyber-
Physical Systems (CPS), while “pure” sensors and actu-
ators are IoT devices without such resources. A fog cell
is a software environment that provides access to, control
of, and monitoring of an underlying physical IoT device.
Computational resources of a fog cell are less powerful than
those provided by the cloud. A fog cell is characterized by
its capacities CPU CC

f , RAM CM
f , and storage CS

f . There
is no direct communication between fog cells, instead fog
cells communicate via the control node in the colony.

Fog cells are organized in a fog colony. Each colony is
identified and managed by its control node F . We denote
Res(F ) the set of fog cells which are managed by F . A
colony acts as a micro data center with resources scattered in
a certain geographical area, i.e., each fog cell belongs to the
resources of a colony f ∈ Res(F ). The communication link
between a fog cell f and a control node F is characterized
by a not negligible delay. Under the assumption of symmet-
ric links and considering that a fog cell f can communicate
only with the control node F of its own colony, we denote
df as the communication link delay between f and F with
f ∈ Res(F ). Colonies communicate with each other via
their control nodes.

A control node is a more powerful fog cell, but, unlike
a fog cell, it does not directly manage IoT devices (see
Figure 1). An example of such a control node can be a
proxy server or a gateway. Usually, a control node F is
supplemented with faster and more expensive computational
resources than resources of fog cells, however, at the same
time, slower and cheaper than cloud resources. F is charac-
terized by its capacities CPU CC

F , RAM CM
F , and storage

CS
F . Each control node has to perform resource provisioning

by exploiting the computational resources of the colony for
the placement of services. Apart from resource provisioning,
the purposes of control nodes are (i) to perform infrastruc-
tural changes in their fog colonies, (ii) to analyze resource
utilization in the colonies, and (iii) to monitor fog cells.

A cloud R has theoretically unlimited resources. The
interaction between control nodes of colonies and the cloud
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TABLE 1. PROBLEM NOTATION

Parameter Description

T
im

e t Current time
τ Interval between two solutions of the FSPP (in sec)

A
p
p
li

ca
ti

o
n
s

A Set of applications to be executed
Ai Application
DAi

Deadline for an application (in sec)
wAi

Current deployment time of an application (in sec)
rAi

Response time of an application (in sec)
a Service in an application

cCa CPU demand of a service (in MIPS)

cMa RAM demand of a service (in MB)

cSa Storage demand of a service (in MB)
ma Makespan of a service (in sec)
Ta Type of a service

F
o
g

L
an

d
sc

ap
e

R Cloud
F Control node
N Closest neighbor control node

CC
F CPU capacity of F (in MIPS)

CM
F RAM capacity of F (in MB)

CS
F Storage capacity of F (in MB)

Res(F ) Fog cells in a colony
f Fog cell

CC
f CPU capacity of f (in MIPS)

CM
f RAM capacity of f (in MB)

CS
f Storage capacity of f (in MB)

Resa(F ) Fog cells that can host a service a
df Link delay between F and f (in sec)
dR Link delay between F and R (in sec)
dN Link delay between F and N (in sec)

is performed via a fog computing management system. The
logical link between a control node F and the cloud R has
a not negligible delay dR. A fog computing management
system is a central unit that manages the execution of ser-
vices in the cloud and supports the underlying fog landscape.
Importantly, a fog computing management system is able to
overrule control nodes in fog colonies, but the latter may
also act autonomously in the case that no fog computing
management system is available.

2.3. Fog Service Placement Problem

The FSPP aims to determine an optimal mapping be-
tween IoT applications and computational resources with
the objective of optimizing the fog landscape utilization
while satisfying QoS requirements of applications. In the
FSPP, we consider a proactive scenario of service placement,
where the placement of services is calculated and applied
periodically. Such a proactive scenario fits the volatility
of the IoT (with regard to data to be processed and also
with regard to IoT devices leaving and entering the system)
better than static resource provisioning approaches [11]. To
account for QoS requirements of applications, i.e., dead-
lines, historical data about deployment time in fog colonies
has to be preserved. This data allows to receive an upper
bound (i.e., worst-case estimation) of the response time of
applications and to prioritize applications which are closer
to the deadline.

We define the FSPP as a decentralized optimization
problem, i.e., when an IoT application request is submitted

to a control node, the latter solves an instance of the FSPP
and performs the service placement. For that, every control
node considers a local view on the colony and accounts
for the closest neighbor colony and the cloud. The control
node F places the application services on the computational
resources available in its colony (i.e., fog cells, the control
node itself). If there are not enough resources, it sends the
services either to the closest neighbor colony, or to the cloud.
It is a matter of future work to find mechanisms not only to
choose the closest neighbor colony, but also to account for
the most effective colony among the neighbors. With respect
to the control node F , we denote N as the control node of
the closest neighbor colony and dN as the communication
link delay between F and N .

Specifically, the control node F manages fog cells which
are resources of the colony Res(F ). Recalling the applica-
tion model, we observe that a service a ∈ Ai cannot be
placed on every fog cell f ∈ Res(F ) because of its type Ta

that may require specific resources (e.g., sensors). Therefore,
for each a ∈ Ai we consider a subset of fog cells, where it
can be deployed, i.e., Resa(F ) ⊆ Res(F ).

To sum up, F determines the following subsets of place-
ments: (1) Which services have to be executed in its colony?
(2) Which services have to be executed locally on F ’s own
resources? (3) Which services have to be propagated to the
closest neighbor colony N? (4) Which services have to be
propagated to the cloud R? Afterwards, the control node is
able to perform placement of services on the identified fog
resources. The concrete model on how services are placed
on fog resources is presented in the next section.

3. Optimization Model

The FSPP is solved by the control node F periodically,
every τ time units, i.e., seconds. The application requests
submitted between t− τ and t are scheduled for placement
in t. We provide a formulation of the FSPP considering
t as the current time. After defining the preliminaries and
problem notation, we formulate the FSPP as an Integer
Linear Programming problem.

The variables of the optimization model are binary and
indicate a placement of a specific service on specific fog re-
sources. The binary variable xa,f indicates whether a service
a is placed on a fog cell f in the current colony. ya defines
that a service a is placed on the control node. The binary
variable za defines whether a service a is propagated to the
cloud, and na indicates whether a service a is propagated
to the closest neighbor colony. Variables xa,f implicitly
account for the types of services and types of IoT devices
through Resa(F ). Analogously, variables ya and na indicate
that the control node and the neighbor control node N can
host a service a.

The goal function of the optimization model is expressed
by (1) and maximizes the utilization of the fog landscape
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while satisfying application requirements.

max

A∑
Ai

( 1

DAi
− wAi

·

·
Ai∑
a

(Resa(F )∑
f

xa,f + ya + na

)) (1)

To account for deadlines, the goal function prioritizes those
applications which have a closer deadline. For that, we use
the coefficient 1

DAi
−wAi

which depends on the deadline

and the deployment time of an application. This coefficient
becomes more influential when the deadline is close or the
deployment time of the application is significant.

As a first constraint, each service a has to be placed
either in the fog or in the cloud:

Resa(F )∑
f

xa,f + ya + za + na = 1, ∀a ∈ Ai, ∀Ai ∈ A (2)

Second, placed services must not exceed the capacities
of CPU, RAM, and storage of a corresponding fog resource.
The equations (3)-(4) guarantee that the services placed on
fog cells or on the control node do not exceed a given
percentage μ of available resources.

Ai∑
a

cγa · xa,f ≤ μCγ
f , γ = {C,M, S}, ∀f ∈ Res(F ) (3)

Ai∑
a

cγa · ya ≤ μCγ
F , γ = {C,M, S} (4)

As a third constraint, we account for the response time
rAi of an application, so that it does not violate the appli-
cation deadline as in (5).

rAi
≤ DAi

, ∀Ai ∈ A (5)

The response time has to account for the time until the
next optimization period and for an average deployment time
of services in the closest neighbor colony. The calculation
of rAi

is done from the central point of view of the control
node in the colony. The application response time rAi

is
defined in (6) and depends on the overall makespan mAi

and the overall deployment time wAi
.

rAi = mAi + wAi , ∀Ai ∈ A (6)

The overall makespan mAi
accounts for the time needed to

transfer services to computational resources, execute them,
and retrieve the results, considering that the communications
are coordinated by the control node. The makespan mAi

depends on the execution time of each service according to
its placement as in (7)–(11). We define mAi

as:

mAi
=

Ai∑
a

(Resa(F )∑
f

d(a, f) · xa,f + d(a, F ) · ya+

+ d(a,R) · za + d(a,N) · na

) (7)

where d(a, f), d(a, F ), d(a,R), and d(a,N) represent the
makespan of a when it is executed on the fog cell f , the
control node F , the cloud R, and the neighbor colony N
respectively. These variables are defined in 8-11:

d(a, f) = 2 · df +ma, ∀a ∈ Ai, ∀f ∈ Resa(f) (8)

d(a, F ) = ma, ∀a ∈ Ai (9)

d(a,R) = 2 · dR +ma, ∀a ∈ Ai (10)

d(a,N) = 2 · dN +ma, ∀a ∈ Ai (11)

The overall deployment time wAi depends on the already
experienced deployment time at the time t − τ , and the
possibly additional time if any a ∈ Ai is propagated to
the closest neighbor colony for execution. We define wAi

in 12:

wAi
= wτ

Ai
+ τ · nAi

+ TwN
· nAi (12)

where the first term wτ
Ai

is an already experienced deploy-
ment time of Ai, the second term nAi

· τ considers that
if a service is propagated to the closest neighbor colony,
the placement will be performed in the next round of
the FSPP, i.e., the application has to wait at least τ time
units before its execution. The term TwN

· nAi
models the

additional deployment time spent in the closest neighbor
colony before the application execution. The calculation of
the real value of average deployment time in the closest
neighbor colony TwN

requires to look ahead in time. To
simplify the formulation, we rely on the estimation of TwN

based on historical data. To this end, we define TwN
as a

moving average of parameter α of TwN
, i.e., the sampled

deployment time per each service propagated to N :

TwN
= αTwN

+ (1− α)T
τ

wN
, α ∈ [0, 1] (13)

where T
τ

wN
is the average deployment time in the closest

neighbor colony in the previous round of FSPP.
Finally, we introduce variables nAi

that charge a supple-
mentary deployment time per application Ai if at least one
of its services a ∈ Ai is propagated to the closest neighbor
colony N given that |Ai| is the cardinality of Ai:

nAi
≤

Ai∑
a

na (14)

nAi ≥
∑Ai

a na

|Ai| (15)
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Equations (16)–(20) specify the domain definitions for

the optimization model:

xa,f ∈ {0, 1}, ∀a ∈ Ai, ∀Ai ∈ A, ∀f ∈ Resa(F ) (16)

ya ∈ {0, 1}, ∀a ∈ Ai, ∀Ai ∈ A (17)

za ∈ {0, 1}, ∀a ∈ Ai, ∀Ai ∈ A (18)

na ∈ {0, 1}, ∀a ∈ Ai, ∀Ai ∈ A (19)

nAi
∈ {0, 1}, ∀Ai ∈ A (20)

4. Evaluation

In the following evaluation, we show the benefits of
the FSPP in terms of processing cost, response times, and
deadline violations with respect to a baseline approach and
to the execution in the cloud. For this, we use and extend
iFogSim, which is a modeling and simulation toolkit for IoT
and fog computing environments [9].

4.1. Evaluation Environment

We extend iFogSim with the means to account for the
structure of the fog landscape introduced in Section 2. The
Application and AppModule classes are modified to account
for deadlines and deployment times of applications. The
FogDevice class is extended by FogLandscapeDevice to act
as a fog cell and a control node. The ModulePlacement-
Optimization API is defined to ease the implementation
of various resource provisioning approaches, to unify the
access to the simulation environment, and to interpret and
activate the obtained placement results. The baseline sce-
nario is represented by the ModulePlacementFirstFit class,
which implements the API and performs service placement
by searching a first fit fog resource [10].

The optimization model is implemented by means of
the IBM CPLEX solver1 and the open source Java ILP
library2. The implemented FogSolverCPLEX class performs
the mapping from Java ILP to IBM CPLEX. The Module-
PlacementExact class implements the API and solves the
model. It has to be noted that in order to use IBM CPLEX
to solve the described optimization problem, the constraints
are transformed to their canonical form.

1https://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/

2https://sourceforge.net/projects/javailp/

TABLE 2. APPLICATION DETAILS

Services cCa (MIPS) cMa (MB) ma (sec)
Application A1, DA1 = 300 sec, wA1 = 0 sec
SenseMotion 50 30 0.10

ProcessMotion1 100 10 0.10
ProcessMotion2 100 20 0.10
ProcessMotion3 200 30 0.08
ActuateMotion 50 20 0.80
Application A2, DA2 = 240 sec, wA2 = 60 sec

SenseVideo 50 30 0.90
ProcessVideo1 200 100 0.10
ProcessVideo2 200 20 0.10
ProcessVideo3 100 30 0.25
ActuateVideo 50 20 0.50

Application A3, DA3
= 360 sec, wA3

= 60 sec
SenseSound 50 30 0.40

ProcessSound1 100 10 0.10
ProcessSound2 200 20 0.07
ProcessSound3 200 30 0.35
ActuateSound 50 20 0.40
Application A4, DA4

= 360 sec, wA4
= 0 sec

SenseTemperature 50 30 0.40
ProcessTemperature1 200 10 0.70
ProcessTemperature2 200 20 0.10
ProcessTemperature3 200 30 0.90
ActuateTemperature 50 20 0.30

4.2. Experimental Setup

To evaluate the efficiency of the FSPP, we apply a
first fit placement (called the “Baseline” scenario) and the
optimization model of the FSPP as introduced in Section 3
(called the “Optimization” scenario) in the fog landscape.
Furthermore, we perform an execution of all applications
in the cloud for the case the fog landscape is not available
(called the “Cloud” scenario).

Four different sense-process-actuate application requests
are submitted for execution in the fog colony. Each fog
cell is connected to four different sensors and actuators
corresponding to each of the applications, i.e., motion,
video, sound, and temperature sensors and actuators. Each
application consists of several services. A summary of the
setup is provided in Table 2.

As a fog landscape, we consider several fog colonies.
One colony is the main colony, where service placements
are observed. From the remaining neighbor colonies, the
closest neighbor is identified according to the least com-
munication link delay (see Section 2). The control node
can host processing and actuating services. The neighbor
colony can host only processing services, and the cloud can
host all services. The communication link delay between
the control node and the cloud is set to 2 seconds. The
cost per processing in the cloud is set to $ 0.30 per Billing
Time Unit (BTU), i.e., one hour. The communication link
delay between the control node and the neighbor is set to 0.5
seconds. The average deployment time of applications in the
neighbor colony is set to 3 minutes, the average deployment
time of applications in the neighbor colony of the previous
optimization period is set to 2 minutes. A control node in a
colony has 500 MIPS of CPU power, 512 MB of RAM, and
8 GB of storage. 10 fog cells are connected to the control
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Figure 2. Deadline Distance

Figure 3. Service Placement

node. These fog cells are of less computational and storage
power than the control node, i.e., 250 MIPS of CPU power,
256 MB of RAM, and 4 GB of storage. These fog cells can
host sensing and actuating services. The communication link
delay between fog cells and the control node is set to 0.5
seconds.

4.3. Discussion

This experiment aims to show how the model behaves
depending on various deadlines and deployment times of the
given applications. In the Baseline scenario, for applications
A1, A3, and A4 sensing and actuating services are placed on
different fog cells, and processing services are propagated
to the closest neighbor colony. For application A2, two
processing services are placed on the control node, and one
processing service is propagated to the neighbor colony.
In the course of experiment, the Baseline scenario results
in deadline violations for A2 and A4 by 82.65 and 22.87
seconds respectively.

In the Optimization scenario, if it is not advantageous
for an application to wait for the deployment in the closest

TABLE 3. SCENARIO COMPARISON

Metrics Baseline Optimization Cloud
Application A1, DA1

= 300 sec, wA1
= 0 sec

Response time (sec) 262.66 262.66 120.31
Deadline distance (sec) -37.34 -37.34 -179.69

Application A2, DA2
= 240 sec, wA2

= 60 sec
Response time (sec) 322.65 185.82 180.31

Deadline distance (sec) 82.65 -54.18 -59.69
Application A3, DA3

= 360 sec, wA3
= 60 sec

Response time (sec) 322.90 322.66 180.31
Deadline distance (sec) -37.10 -37.34 -179.69

Application A4, DA4
= 360 sec, wA4

= 0 sec
Response time (sec) 262.87 126.24 120.31

Deadline distance (sec) 22.87 -113.76 -119.69
Service placement on resources, (% of all services)

Fog cells 40 35 00
Control node 10 15 00

Neighbor node 50 20 00
Cloud 00 30 100

Cost of execution ($) 0.000 0.069 0.107

neighbor colony because of the close deadline, the optimiza-
tion model places the services in the cloud. If the deadline
is not critically close, and the estimated response time of the
application conforms to the constraints of the optimization
model, the services are propagated to the closest neighbor
colony. For application A2, the optimization model places
the sensing service on the fog cell, two processing and one
actuating services onto the control node, and one processing
service in the cloud. The placement of any service from A2

to the closest neighbor colony would violate the deadline
because of the additional deployment time that appears in
the neighbor colony. In the case of A4, the sensing and
actuating services are placed on one fog cell and three
services are propagated to the cloud because the control
node is already busy with A2. For A1 and A3, sensing
and actuating services are placed on separate fog cells, and
processing services are propagated to the closest neighbor
colony. To summarize, the service placement in the Opti-
mization scenario depends on the time interval τ between
two subsequent FSPP optimizations in the system and on
the average deployment time TwN

in the closest neighbor
colony, and the solution of the FSPP of the Optimization
scenario circumvent deadline violations of the applications.
If τ and TwN

are small enough, the FSPP optimization
model propagates the services to the closest neighbor colony.
The deadline distances for the three scenarios are depicted
in Figure 2.

The utilization of the fog landscape in the three scenarios
is shown in Figure 3. In the Baseline scenario, services
are placed only on fog resources, i.e, 40% of services are
placed on fog cells, 10% of services are placed on the
control node itself, and 50% services are propagated to
the closest neighbor colony. In the Optimization scenario,
these percentages are respectively 35%, 15% and 20%, and
also 30% of all services are propagated to the cloud. As
a result, the cloud resource is utilized only by 30%. The
use of the control node’s own resources is performed more
efficiently in the Optimization scenario. More services with
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lesser resource demands are placed on the control node
rather than less services with bigger demands compared
to the Baseline scenario. Such behavior is provided by the
prioritization of applications in the goal function according
to the deadlines and deployment times, and strict adherence
to the deadlines in the constraints of the optimization model.

As discussed in Section 1, we assume ownership of the
fog, hence the cost of execution in the fog landscape can be
neglected. The cost of execution in the cloud is calculated
as the sum of cost per processing second in the cloud of
each service divided by the amount of seconds in 1 BTU.
In the Optimization scenario, services are propagated either
to the closest neighbor colony, or to the cloud, yet at the
same time satisfying deadlines of applications. Therefore,
execution cost accrue. These cost are around and it is around
35% less than the cost of execution in the Cloud scenario,
yet the Optimization scenario still satisfies the application
deadlines. A summary of all evaluation results is shown in
Table 3.

FSPP Computational Time Additionally, we conducted
another experiment to calculate the computational time of
producing a solution of the FSPP depending on the amount
of services to be placed. The amount of services affects
the amount of decision variables and constraints in the
model, and therefore, influences the computational time.
In Figure 4, the distribution of the computational time is
shown based on minimum and maximum values, first and
third quartiles, and the median of the computational times.
The individual outlying points of computational times are
displayed as unfilled circles in the first two boxes. The
measurements of computational time show that FSPP is
solved in less than a second even in the case of submitted
applications with large amounts of services.

5. Related Work

As a matter of fact, there are only few resource pro-
visioning approaches specifically aiming at fog computing.
However, there is some work in the area of resource provi-
sioning in distributed environments which needs to be dis-
cussed. Resource provisioning is an extensively researched
topic in distributed systems, e.g., for cloud computing [12],
[13] and mobile cloud computing [14], [15]. These works
describe resource provisioning approaches, yet cannot be
directly adopted for the usage in fog computing, since fog
landscapes are usually more volatile than cloud environ-
ments and the number of nodes necessary to provide a
particular service is usually larger.

Having in mind that storage, computational resources,
and network demands are volatile, a resource provisioning
approach for fog computing has to account for peak resource
demands and utilization gaps. The basis for such a smart
resource provisioning that eliminates over-provisioning lays
in the characteristic of the elasticity of the cloud, i.e.,
minimizing cost, latency and delays, while maximizing QoS.
Some work over the elasticity in the cloud has been in-
troduced [12], however, fog computing environments have
not been considered yet. Mobile cloud computing is mostly

Figure 4. Computational Time of FSPP

based on a rather simple network topology with direct com-
munication between mobile devices and the cloud. There-
fore, the according resource provisioning approaches offer
interesting insights and ideas, but cannot be directly applied
to fog computing.

In the field of fog computing, Aazam and Huh [16]
propose an approach for the prediction of future resource de-
mands by means of historical access data and pricing mod-
els. In another paper, the authors propose an improvement
of the theoretical resource management model in terms of
specifications of utilization and QoS in the context of multi-
media IoT devices [17]. However, the proposed approaches
are not reactive to dynamic changes in the fog landscape.
In the work by Hong et al. [18] a high level programming
model is presented, including APIs and a simple resource
provisioning approach based on utility thresholds of fog
resources. In the work of Saurez et al. [19] the approach
of Hong et al. is extended by implementing the envisioned
APIs and adding algorithms regarding the discovery, migra-
tion, and deployment of fog cells and services. Furthermore,
an experimental real-world fog landscape was set up using
docker containers deployed on several servers.

Urgaonkar et al. [20] present an approach on how to
distribute services between edge clouds, which resemble
our notion of fog colonies. The placement of services onto
resources is formulated as a Markov Decision Problem and
solved by means of a control algorithm based on Lyapunov
optimization, minimizing the cost of execution and account-
ing for delays and location in constraints. In contrast, in
our work, fog resource and application models are explicitly
formulated. The fog landscape is considered as an extension
of the cloud, and the optimization model takes into account
QoS metrics of applications.

In our former work, a simple optimization problem for
resource provisioning in fog landscape is introduced [10].
The optimization model maximizes the utilization of the
fog landscape and minimizes link delays. Compared to our
former work, in this current paper the optimization model is
now considerably enhanced. Apart from the maximization
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of the utilization of the fog landscape, we take into account
application QoS metrics, i.e., deadlines of applications.

6. Conclusions

Fog computing provides means to utilize available re-
sources close to the edge of the network. A particular
research challenge is the optimal resource provisioning and
service placement.

After having motivated our work, we provide a model
for an IoT application and a resource model for the fog land-
scape. Afterwards, the FSPP is described, and an according
optimization model is formalized. The experimental evalua-
tion has shown that the FSPP utilizes the fog landscape for
70% of services, thus reducing the execution cost by about
35% with respect to the execution in the cloud. The solution
of the FSPP does not violate deadlines of applications unlike
the solution of the baseline approach.

In our future work, we plan to improve the optimization
model by adding constraints about the availability of re-
sources, the reliability of services, and the cost of resources.
Another challenge is to not only find the closest neighbor
colony in a fog landscape for service propagation, but also
to find the most efficient neighbor colony. Last but not least,
it is necessary to obtain realistic network data, e.g., commu-
nication link delays, for service placement evaluations in a
fog landscape. For this, we currently develop a real-world
testbed.
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