
M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 1

Optimizing Elastic IoT Application Deployments
Michael Vögler, Johannes M. Schleicher, Christian Inzinger, and Schahram Dustdar, Fellow, IEEE

Abstract—Applications in the Internet of Things (IoT) domain need to integrate and manage large numbers of heterogenous devices.
Traditionally, such devices are treated as external dependencies that reside at the edge of the infrastructure and mainly transmit
sensed data or react to their environment. Recently however, a fundamental shift in the basic nature of these devices is taking place.
More and more IoT devices emerge that are not only simple sensors or transmitters, but provide limited execution environments. This
opens up an opportunity to utilize this previously untapped processing power in order to offload parts of the application logic directly to
these edge devices. To effectively exploit this new type of device, the design of IoT applications needs to change to explicitly consider
devices that are deployed in the edge of the infrastructure. This will not only increase the overall flexibility and robustness of IoT
applications, but also reduce costs by cutting down expensive communication overhead. Therefore, to allow the flexible provisioning of
applications whose deployment topology evolves over time, a clear separation of independently executable application components is
needed. In this paper, we present a framework for the dynamic generation of optimized deployment topologies for IoT cloud
applications that are tailored to the currently available physical infrastructure. Based on a declarative, constraint-based model of the
desired application deployment, our approach enables flexible provisioning of application components on edge devices deployed in the
field. Using our framework, applications can furthermore evolve their deployment topologies at runtime in order to react on
environmental changes, such as changing request loads. Our framework supports different IoT application topologies and we show
that our solution elastically provisions application deployment topologies using a cloud-based testbed.

Index Terms—Internet of Things, Cloud Computing, Application Deployment, Topology Optimization

F

1 INTRODUCTION

Internet of Things (IoT) applications are expected to manage
and integrate an ever-increasing number of heterogeneous
devices to sense and manipulate their environment. Increas-
ingly, such devices do not only serve as simple sensors or
actors, but also provide constrained execution environments
with limited processing, memory, and storage capabilities.
In the context of our work, we refer to such devices as IoT
gateways. By exploiting this accrued execution capabilities
offered by IoT gateways, applications can offload parts of
their business logic to the edge of the infrastructure to
reduce communication overhead and increase application
robustness [1]. This explicit consideration of edge devices in
IoT application design is especially important for applica-
tions deployed on cloud computing [2] infrastructure. The
cloud provides access to virtually unlimited resources that
can be programmatically provisioned with a pay-as-you-
go pricing model, enabling applications to elastically adjust
their deployment topology to match their current resource
usage and according cost to the actual request load.

In addition to the traditional design considerations for
cloud applications, IoT cloud applications must be designed
to cope with issues arising from geographic distribution
of edge devices, network latency and outages, as well as
regulatory requirements. We argue that edge devices must
be treated as first-class citizens when designing IoT cloud
applications and the traditional notion of cloud resource

• M. Vögler, J. M. Schleicher, and S. Dustdar are with the Distributed
Systems Group, TU Wien, Austria. Email: {voegler, schleicher, dust-
dar}@dsg.tuwien.ac.at.

• C. Inzinger is with the s.e.a.l. - software evolution & architecture lab,
University of Zurich, Switzerland. Email: inzinger@ifi.uzh.ch

Manuscript received December 27, 2015; revised August 7, 2016.

elasticity [3] needs to be extended to include such hetero-
geneous IoT gateways deployed at the infrastructure edge,
enabling interaction with the physical world. To allow for
the flexible provisioning of applications whose deployment
topology changes over time due to components being of-
floaded to IoT gateways, applications need to be com-
posed of clearly separated components that can be indepen-
dently deployed. The microservices architecture [4] recently
emerged as a pragmatic implementation of the service-
oriented architecture paradigm and provides a natural fit for
creating such IoT cloud applications. We argue that future
large-scale IoT systems will use this architectural style to
cope with their inherent complexities and allow for seamless
adaptation of their deployment topologies. Uptake of the
microservice architecture will furthermore allow for the cre-
ation of IoT application markets (e.g., [5]) for practitioners to
purchase and sell domain-specific application components.

IoT gateways can be considered an extension of the
available cloud infrastructure, but their constrained execu-
tion environments and the fact that they are deployed at
customer premises to integrate and connect to local sensors
and actors requires special consideration when provisioning
components on IoT gateways. By carefully deciding when
to deploy certain components on gateways or cloud infras-
tructure, IoT cloud applications can effectively manage the
inherent cost-benefit trade-off of using edge infrastructure,
leveraging cheap communication at the infrastructure edge
while minimizing expensive (and possibly slow or unreli-
able) communication to the cloud, while also considering
processing, memory, and storage capabilities of available
IoT gateways. It is important to note that changes in ap-
plication deployment topologies will not only be necessary
whenever a new application needs to be deployed, but can
also be caused by environmental changes, such as changing

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 2

request patterns, changes in the physical edge infrastructure
(e.g., adding/removing sensors or IoT gateways), evolu-
tionary changes in application business logic throughout its
lifecycle, or evolving non-functional requirements.

In this paper, we present DIANE, a framework for dy-
namically generating optimized deployment topologies for
IoT cloud applications tailored to the available physical in-
frastructure. Using a declarative, constraint-based model of
the desired application deployment, our approach enables
flexible provisioning of application components on both,
cloud infrastructure, as well as deployed IoT gateways.
DIANE is furthermore continuously monitoring the avail-
able edge infrastructure and can autonomously optimize
application deployment topologies in reaction to changes
in the application environment, such as significant changes
in request load, network partitions, or device failures.

A preliminary version of this approach was presented
in [6], where we introduce the fundamental concepts of
the DIANE framework, along with a mechanism for a
priori generation and subsequent provisioning of optimized
deployment topologies. In this work, we extend the frame-
work with a two-fold optimization mechanism that enables
the evolution of application deployment topologies at run-
time in reaction to changes in their execution environment.
Furthermore, we provide a detailed discussion of the proto-
type implementation and significantly extend the evaluation
of our framework.

The remainder of this paper is structured as follows: In
Section 2 we outline specific requirements that need to be
addressed. In Section 3 we introduce the DIANE framework
to dynamically create application deployment topologies for
large-scale IoT cloud systems, and present our approach
for optimizing deployments at runtime in Section 4. We
provide detailed evaluations in Section 5 and Section 6,
discuss relevant related research in Section 7, followed by
a conclusion and an outlook on future research in Section 8.

2 REQUIREMENTS

The emergence of the IoT in combination with the advent
and rapid adoption of the smart city paradigm give rise
to a domain of edge devices that are pervasively deployed
in large numbers around the globe. As outlined previously,
the convergence of cloud computing and IoT paradigms,
and especially the evolution of IoT gateways to include
constrained execution environments, allows for systems
with ever changing deployment topologies due to various
evolving factors. Specifically, vital aspects of the smart city
domain, like Building Management Systems (BMS) that
need to deal with billions of devices, or Traffic Control
Systems (TCS) that depend on optimal resource utilization
in order to handle large amounts of sensor data, need to be
able to optimize their deployment topologies both during
deployment and at runtime in order to enable optimal
resource utilization. To allow for dynamic generation of
optimal deployment topologies for such applications, a so-
lution must meet the following requirements: 1) It needs to
enable optimal utilization of edge devices with 2) the ability to
dynamically move application logic to these devices. 3) Further-
more, it shall allow for deployment topologies to evolve during

runtime and 4) needs to respect non-functional requirements
that arise in this context.

3 THE DIANE FRAMEWORK

In order to address the previously identified requirements,
we present DIANE, a framework for the dynamic gener-
ation of deployment topologies for IoT applications and
application components, and the respective provisioning of
these deployment topologies on edge devices in large-scale
IoT deployments. The overall architecture of our approach
is depicted in Figure 1 and consists of the following top-
level components: (i) DIANE, and (ii) LEONORE. In the
following, we describe these components in more detail and
discuss the design and implementation of IoT applications.

3.1 IoT Application Design and Implementation
To dynamically generate deployment topologies for IoT
applications, the design and implementation of such ap-
plications have to follow the microservices architecture ap-
proach [4], which enables developers to build flexible appli-
cations whose components can be independently evolved
and managed. Therefore, each component of an application
has to be self-contained, able to run separately, and facil-
itate loosely coupled communication for interacting with
other components. In addition to this application design
approach, we are using MADCAT [7] for describing the
overall application and its components. MADCAT allows
for the creation of applications by addressing the complete
application lifecycle, from architectural design to concrete
deployment topologies provisioned and executed on actual
infrastructure. For our approach, we focus on Technical
Units (TUs) and Deployment Units (DUs) to describe ap-
plications and their components.

Technical Units are used to describe application
components by considering abstract architectural concerns
and concrete deployment artifacts to capture technology
decisions that depend on the actual implementation. To
manage multiple possible TUs to realize a specific appli-
cation component, MADCAT employs decision trees that
assist developers of such applications in creating TUs. An
example of a TU can be seen in Listing 1. We are using the
JSON-LD1 format to store and transfer MADCAT units.

Listing 1: Technical Unit
{
"@context": "http://madcat.dsg.tuwien.ac.at/",
"@type": "TechnicalUnit",
"name": "BMS/Unit",
"artifact-uri": "...",
"language": "java",
"build": {
"assembly": {"file": "unit.jar"},
"steps": [{"step": 1, "tool": "maven", "cmd": "mvn

clean install"}]
},
"execute": [{"step": 1, "tool": "java", "cmd": "java -jar

@build.assembly.file"}],
"configuration": [{"key": "broker.url", "value": "@MGT.

broker.url"}],
"dependencies": [{"name": "MGT", "technicalUnit": {"name"

: "BMS/Management"}}],
"constraints": {"type": "...","framework": "Spring Boot",

"runtime": "JRE 1.7","memory": "..."}
}

1. http://json-ld.org

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://json-ld.org

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 3

LEONORE

Deployment

IoT Gateway 1_1 IoT Gateway 1_2 IoT Gateway 1_n

LEONORE node 1

Balancer

S
ervice A

P
I

R
epository A

P
I

Package
 Management

IoT Gateway
Management

Provisioning
Handler

Device API

DIANE
User API

Provisioner

Deployment Generator

Constraint Handler

Artifact Management

Registry API

Dependency
Management

Deployment Registry

D
eploym

ent H
andler

Fig. 1: DIANE and LEONORE – Overview

A TU starts with a context to specify the structure of
the information and a specific type. The name uniquely
identifies the TU and should refer to the application name
and the specific component that is described by the TU. The
artifact-uri defines the repository that stores the appli-
cation sources and artifacts. The language field describes
the used programming language and an optional version. In
order to create an executable, build specifies an assembly
that describes the location within a repository and the name
of the executable. Furthermore, build defines steps that
need to be executed to create the executable. Next, execute
defines the necessary steps for running the executable. In
addition to the execution steps, configuration stores a
possible runtime configuration (e.g., environment variables)
that is needed for execution. To allow configuration items
to map to other application components, dependencies
reference TUs of other application components. Finally, the
TU enables developers to provide relevant constraints
that help users of the application to decide on a suitable
deployment infrastructure.

For each TU an operations manager can create one or
more Deployment Units (DUs). In essence, a DU de-
scribes how an associated TU can be deployed on concrete
infrastructure. To create a specific DU the provider uses the
information contained in the TU and its knowledge about
the owned infrastructure. Listing 2 shows an example DU
created for the TU above.

Listing 2: Deployment Unit
{
"@context": "http://madcat.dsg.tuwien.ac.at/",
"@type": "DeploymentUnit",
"name": "BMS/Unit",
"technicalUnits": [{"name": "BMS/Unit"}],
"constraints": [{

"hardware": [{"type": "...", "os": "...", "
capabilities": [{"name": "JRE", "version": "1.7"}
], "memory": "..."}],

"software": [{"replication": [{"min": "all"}]}]
}],
"steps": [...]

}

Like a TU, a DU also has a context, type, and name.
Next, technicalUnits allow referencing TUs that are de-
ployed using this specific DU. Based on the information pro-
vided in the TU (e.g., constraints) the infrastructure provider
defines constraints for hardware and software that

are used to decide on suitable infrastructure resources for
executing an application component. Finally, steps list the
necessary deployment steps.

By using TUs and corresponding DUs it is possible to
completely describe an IoT application. To finally provision
an application deployment, DIANE uses TUs, DUs and
concrete infrastructure knowledge to generate Deployment
Instances (DIs). DIs represent concrete deployments on
actual machines of the infrastructure, by considering de-
fined software and hardware constraints. An example of a
DI using the DU and TU from above can be seen in Listing 3.

Listing 3: Deployment Instance
{
"@context": "http://madcat.dsg.tuwien.ac.at/",
"@type": "DeploymentInstance",
"name": "...",
"machine": {"id": "...", "ip": "..."},
"application": {"name": "BMS/Unit", "version": "1.0.0", "

environment": [{"key": "broker.url", "value": "
failover:tcp://10.99.0.40:61616"}]}

}

Again, a DI has a context, type, and name. The
machine field stores data about the concrete machine that
is provisioned with an application component. Runtime
information, needed for executing the application com-
ponent, is represented by the application attribute. It
contains the name and the version of the application
component. Finally, runtime configurations required by the
component are resolved by the framework and represented
in environment.

3.2 DIANE Framework

The framework that allows generating IoT application de-
ployment topologies and deals with the provisioning of
these deployments on edge devices in large-scale IoT de-
ployments is depicted on the left hand side of Figure 1.
DIANE is a scalable and flexible cloud-based framework
and its overall design follows the microservices architec-
ture principle. In the following, we introduce the main
components of DIANE and discuss the integration with
LEONORE [1] for provisioning edge devices. Finally, we
describe the concrete process of generating and provisioning
application deployment topologies.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 4

To keep track of deployments and their relation to TUs
and DUs, DIANE provides a Deployment Registry. The
registry stores units and deployments using a tree structure
that represents the relations among them. By managing
TUs and corresponding DUs, the framework can provide
application deployment provisioning at a finer granularity.
This means that it is possible with DIANE to provision
an application deployment topology in one batch, but also
provision each component separately.

In order to provision an IoT application deployment
topology with DIANE, the user of the framework has to
invoke the User API by providing the following required
information: (i) TUs, (ii) corresponding DUs, and (iii) op-
tional artifacts that are needed by the deployment (e.g.,
executables) but cannot be resolved automatically by the
framework, such as private repositories that are not publicly
accessible. Since the focus of our work is on generating and
provisioning DIs, a user of the framework is responsible
for creating the required MADCAT units and necessary
application artifacts. The Deployment Handler is respon-
sible for handling user interaction and finally triggers the
provisioning of application deployments.

In addition to the discussed units, the framework also
requires corresponding application artifacts. Therefore, the
Artifact Management component receives artifacts, re-
solves all references, and creates an artifact package that
is transferred to LEONORE. Each created artifact package
contains an executable, a version, and the commands to start
and stop the artifact.

To generate DIs, the Deployment Generator resolves
the dependencies among the provided TUs and DUs by us-
ing the Dependency Management. The management com-
ponent returns a tree structure that represents dependencies
among units. In addition, the generator handles possible
deployment constraints that are specified in the DUs by
invoking the Constraint Handler. The invoked handler
returns a list of infrastructure resources that comply with
the specified constraints. Before generating DIs, the gen-
erator needs to resolve application runtime configurations
(e.g., application properties) in the TUs. This is done by
delegating the configuration resolving process to the con-
straint handler, which provides a temporary configuration.
Finally, the generator creates the actual DIs by mapping DUs
to concrete machines and updating possible links in the
temporary configuration that correspond to infrastructure
properties (e.g., IP address of a machine).

Since units in our approach reference each other, the
Dependency Management is responsible for resolving
these dependencies. For representing the dependencies
among the units the management component creates a tree
structure. The process of dependency resolution first creates
for each TU a new root node. After creating the root nodes
it checks if a TU has a reference to another TU and if so
creates a new leaf node linking to the respective root node.
Next, it checks the provided DUs and appends them to the
respective TU node as a leaf. In case a reference cannot
be resolved based on the provided units, it queries the
Deployment Registry. The final product of this process
is a tree topology, where each root node represents a TU
and the leaves are the corresponding DUs or a reference to
another TU.

To find suitable machines for the deployment of appli-
cation components, DUs allow defining deployment con-
straints. In our approach we distinguish hardware and
software constraints. Hardware constraints deal with actual
infrastructure constraints (e.g., operating system or the in-
stalled capabilities of a machine). Whereas, software con-
straints define requirements that correspond to the appli-
cation component respectively its deployment (e.g., should
this component be replicated and if so on how many ma-
chines). In order to provide a list of suitable machines the
Constraint Handler retrieves a list of all known ma-
chines and their corresponding metadata from LEONORE.
Then, based on the defined constraints in the DU, it filters
out the ones that do not fit or are not needed in case software
constraints only demand for a certain number of machines.

For actually provisioning the final DIs the Provisioner
component is used. The component receives generated DIs
and the respective topology of TUs, DUs, and their depen-
dencies. The provisioner then traverses the topology and for
each TU and DU combination, it deploys the corresponding
DIs by invoking LEONORE, adds the DIs to the respective
DU as leaf node and updates the deployment registry.

3.3 LEONORE

LEONORE [1] is a service-oriented infrastructure and
toolset for provisioning application packages on edge de-
vices in large-scale IoT deployments. LEONORE creates
installable application packages, which are fully prepared
on the provisioning server and specifically catered to the
device platform to be provisioned. For our approach, we
will facilitate and extend LEONORE to provision IoT ap-
plication deployment topologies on edge devices managed
and provisioned by DIANE. A simplified architecture of
LEONORE and connected IoT deployments is depicted on
the right hand side of Figure 1. In the following, we describe
the most important components that are involved when
provisioning an IoT application.

The IoT Gateway is a generic representation of an IoT
device that especially considers the resource constrained
nature and limitations of these devices. The IoT gateway
uses a container for executing application packages, a pro-
filer to monitor the status of the system, and an agent
to communicate with LEONORE. To allow for the seam-
less integration of DIANE with LEONORE, we extend the
provided APIs and create a general Service API. This
interface allows (i) to query LEONORE for currently man-
aged devices and their corresponding metadata, (ii) to add
additional application artifacts that are needed for build-
ing application packages, and (iii) to provision application
deployment topologies represented as DIs. To provision
application components along with corresponding artifacts,
DIANE uses LEONORE’s service API to supplement these
artifacts with additional metadata (e.g., name, version, ex-
ecutables). The Package Management component stores
the provided information along with the artifacts in a repos-
itory. In order to keep track of connected IoT gateways,
LEONORE uses the following approach: During gateway
startup, the gateway’s local provisioning agent registers the
gateway with LEONORE by providing its device-specific
information. The IoT Gateway Management handles this

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 5

information by adding it to a repository and assigning a
handler that is responsible for managing and provisioning
the respective gateway. The Provisioning Handler is
responsible for the actual provisioning of application pack-
ages. The handler decides on an appropriate provisioning
strategy, triggers the building of gateway-specific packages
and executes the provisioning strategy. Since LEONORE
deals with large-scale IoT deployments that potentially
generate significant load, the framework elastically scales
using dynamically provisioned LEONORE nodes. These
nodes comprise all components that are required for man-
aging IoT gateways. To distribute the gateways evenly on
available nodes a Balancer is used to assign gateways to
available nodes that are then responsible for handling any
further interaction with the respective IoT gateways. This
requires an initial capacity planning step to determine the
number of devices that can be reliably provisioned using
one LEONORE node. The framework then commissions
an initial set of LEONORE nodes using a N + 1 strategy
with one active node and one hot standby. If all active
nodes are fully loaded, the balancer spins up a new node
and queues incoming requests. Similarly, the balancer will
decommission nodes when load decreases.

3.4 Provisioning of IoT Application Deployment
Topologies
The provisioning of IoT application deployment topolo-
gies is started when DIANE receives a request to deploy
a specific IoT application or application component. The
overall process comprises the following steps: (1) In order
to generate the deployment topology of an application or
application component with DIANE, the user provides an
optional list of artifacts and a mandatory list of MADCAT
units (i.e., TUs and DUs). Next, the deployment manager is
responsible for handling deployment requests and forward-
ing them to the artifact manager. (2) The artifact manager
resolves artifacts according to the provided information in
the TUs by either loading them from a specified reposi-
tory or using the provided artifacts. (3) After resolving the
artifacts, the artifact manager invokes the service API to
transfer the artifacts to LEONORE. (4) LEONORE receives
the artifacts to subsequently pack and store them in its
internal repository. (5) For each TU and DU the deployment
handler does the following: (6) Forward the list of TUs and
DUs to the dependency management component to resolve
dependencies and relations among the units. (7) Resolve
possible infrastructure constraints that are defined in the
DUs by using the constraint handler. (8) The constraint
handler gathers all managed machines and their corre-
sponding context (e.g., IP, name, runtime) from LEONORE.
(9) According to specified constraints the handler returns
a set of machines that are suitable for deploying a specific
DU. (10) Invoke the constraint handler again to generate
runtime configurations that are specified in the TU, and
generate DIs using the gathered suitable machines and
runtime configurations. (11) Finally, for each DI the handler
invokes the provisioner that stores the DI and correspond-
ing DUs and TU in the deployment registry, deploys the
DI by invoking the service API of LEONORE, which then
takes care of provisioning the application deployment on
the actual infrastructure.

4 APPLICATION DEPLOYMENT OPTIMIZATION

After presenting the overall approach and the respective
realization in the previous section, we now discuss an ex-
tension for optimizing the application deployment toplogy
at runtime. In the approach presented so far, we only con-
sider the initial deployment of application topologies and
its respective components. However, since IoT applications
have to deal with varying loads during operation, we need a
mechanism that allows for adapting application topologies
at runtime in order to provide the necessary performance
and flexibility. Furthermore, this would also enable appli-
cations to fully utilize the available processing power of
the edge infrastructure. To address these requirements, we
extend DIANE to add a two-fold optimization approach,
and apply the introduced notion of offloading business logic
to the infrastructure edge to DIANE itself.

4.1 Elastic Application Deployment

To allow for the optimization of application topologies
at runtime, we introduce the notion of an Elastic
Application Deployment. In contrast to our initial ap-
proach that only deploys application components on a
set of pre-defined edge devices, we now extend the pro-
visioning mechanism to allow operators to define a hot
pool of devices. On theses additional devices, application
components are provisioned, but remain idle until they get
started. Therefore, this hot pool will be used for optimizing
applications, e.g., by scaling application components up or
down depending on the application load. In essence, the
elastic application deployment consists of a set of devices,
which host deployed and running application components,
and an additional pool of devices that are provisioned with
redundant application components that are initially idle. To
manage this new form of deployment, we introduce DIANE
Optimizers that get provisioned by DIANE and are running
on actual edge devices.

4.2 MADCAT Unit Extensions

In order to enable DIANE to start adapting the topology
of a running application, we need an approach that allows
the acquisition of runtime information of this application.
This information should comprise both, details about the
facilitated deployment on the infrastructure (e.g., currently
used number of edge devices), as well as application-specific
performance metrics like current request load. Based on this
information, DIANE can then decide on the best optimiza-
tion strategy and how to apply the strategy appropriately.

Therefore, we extend our application description ap-
proach, which is based on the MADCAT methodology. First,
we introduce so called endpoint attributes in a DU. An
endpoint represents a URL where application-specific per-
formance metrics can be acquired. Since we want to provide
an extensible approach, the defined endpoint can either be
provided by the application itself or by an external moni-
toring tool. Furthermore, to support multiple performance
metrics, an application can have a list of endpoints that can
be used by DIANE for gathering runtime information. To
identify endpoints, each provided endpoint has a unique
name within a DU.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 6

LEO
N
O
R
E

Deployment

IoT Gateway 1_5

IoT Gateway 1_n

IoT Gateway 1_4

DIANE
User API

O
ptim

ization R
egistry

D
eploym

ent
O

ptim
izer

Elastic Application Deployment

IoT Gateway 1_2 IoT Gateway 1_3

IoT App IoT App

IoT Gateway 1_1

DIANE OptimizerM
onitoring

DIANE Base
Components

R
egistry A

P
I

(a) DIANE extended

DIANE Optimizer
Service API

Local OptimizerBootstrapper

Monitoring Topology Handler

Monitoring
Repository

Topology
Repository

(b) DIANE Optimizer

Fig. 2: DIANE extensions – Overview

Next, based on monitoring information, we need a mech-
anism to define certain criteria that allow for deciding if an
application topology needs to be adapted. Consequently, we
extend the overall MADCAT methodology to introduce Op-
timization Units. An Optimization Unit (OU) is used to
describe two types of rules that can be used for optimizing
an application deployment. First, application-rules
define criteria for application-specific performance metrics.
Second, infrastructure-rules define criteria that are
targeted towards the used deployment infrastructure. An
example of an OU can be seen in Listing 4.

Listing 4: Optimization Unit
{
"@context": "http://madcat.dsg.tuwien.ac.at/",
"@type": "OptimizationUnit",
"name": "BMS",
"technicalUnits": [{"name": "BMS/Control"}],
"application-rules": [

{"name": "response", "endpoint": "@BMS/Control.
endpoints.response", "contract": "UNDER", "value":
"3"}],

"infrastructure-rules": [
{"name": "cpu", "contract": "MIN"}],

"action-policies": [{"name": "ScalingPolicy"}]
}

Listing 4 describes an application rule that defines that
the response time that can be measured from the given
endpoint should be under 3 seconds. Next, an infrastructure
rule is defined that demands that the application deploy-
ment running on the infrastructure should keep the con-
sumed processing power minimal. The difference between
these two types of rules is that the former requires moni-
toring the application itself by using the defined endpoints,
whereas the latter requires in-depth knowledge about the
used infrastructure resources.

Next, an OU provides an action-policies attribute
that references either pre-defined or custom-built action
policies based on the MONINA language [8], [9]. These
policies define a set of actions to be used for optimizing the
application whenever any application rules are violated. For
example, an action policy can define that in order to react
to increased load, the application deployment needs to be
scaled up by using more available machines, or scale down
if performance metrics indicate that the current load can be
managed with a smaller deployment.

By using the described unit extensions, operators can
now define how a deployed application can be monitored

and under which circumstances its deployment should be
optimized.

4.3 Server-side Extension

To enable the optimization of deployed application topolo-
gies, we extend DIANE by adding several new components,
which are depicted in Figure 2a. In the following, we de-
scribe them in more detail.

We extend the User API to allow operators to upload
OUs that define criteria for triggering the optimization of
an application’s deployment. Next, operators can use the
user API to define custom action policies for describing
how an application can be optimized. Since we demand that
applications deployed with DIANE follow the microservice
architecture approach, optimizing the deployment of an
application is relatively easy by evolving the deployment
topology. For example, a simple approach to deal with
increased load that demands more processing power, is to
scale up the application deployment by using additional
resources. Uploaded OUs and defined action policies are
stored in the optimization registry.

We introduce a Monitoring component to collect run-
time measurements from deployed and running applica-
tions that usually reside in the same deployment infras-
tructure as our framework (e.g., cloud). Based on the de-
tails defined in an OU, the monitoring component creates
application-specific listeners for the given endpoints to ac-
quire performance measurements from the application in a
configurable interval. The collected data is then forwarded
to the deployment optimizer, which takes care of further
processing.

To optimize the deployment of an application based
on defined rules, we introduce a separate Deployment
Optimizer component. The optimizer receives collected
data from the monitoring component and then analyzes
the data based on the defined rules and thresholds in the
corresponding OU. When the optimizer detects that the
application no longer meets the defined criteria it provides
the following two optimization modes:

1) Blackbox Mode: In blackbox mode, DIANE optimizes
the application deployment by treating the deployment
infrastructure as black box, which means that the de-
ployment optimizer has no specific knowledge about
the used edge devices and their respective resources. In

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 7

this mode, the deployment optimizer can only optimize
for application-rules.

2) Whitebox Mode: In whitebox mode, the deployment
optimizer has full knowledge of the used deploy-
ment infrastructure and can therefore also optimize for
infrastructure-rules.

In order to enable these optimization modes, we present
the DIANE Optimizer, which can be deployed in the edge
infrastructure. The DIANE Optimizer monitors and controls
an elastic application deployment that allows for optimizing
the deployment topology of an application by either starting
currently idle application components, or stopping unneces-
sary components.

To allow DIANE to facilitate the DIANE Optimizer, the
optimizer needs to be associated with an application and
then deployed in the edge infrastructure. This is done using
the following approach: (i) When an OU is uploaded by
an operator via the service API, DIANE extracts which ap-
plication and respective components are affected. (ii) Next,
the respective DIs are analyzed to gather the used deploy-
ment in the infrastructure. (iii) To form an elastic appli-
cation deployment based on the defined action policies,
the deployment generator is used to generate a fresh set
of DIs that is provisioned, but not yet started to form a
pool of idle components to allow for the evolution of the
application topology. (iv) Then, the constraint handler is
used for finding a suitable machine for running the DIANE
Optimizer, and the provisioner is used for deploying the
optimizer on the selected machine. (v) Finally, once the
optimizer registers itself with DIANE, it is provided with
the deployment topology of the application, as well as the
provisioned but not yet started DIs that can be used for
optimizing the application deployment.

To keep track of uploaded OUs, corresponding action
policies, and deployed DIANE Optimizers, we add an
Optimization Registry. In this repository, for each
application that is handled by DIANE, we store defined
OUs and corresponding action polices. In addition, for
each DIANE Optimizer deployment, we store the ID of the
optimizer as well as the machine in the infrastructure that
is hosting the optimizer. The combination of optimizer ID,
and machine IP and ID allows DIANE to uniquely identify
the optimizer deployment.

4.4 DIANE Optimizer

The DIANE Optimizer enables the optimization of an ap-
plication topology by monitoring the actual deployment in-
frastructure, which provides valuable insights on the infras-
tructure performance. The DIANE Optimizer is specifically
catered to be lightweight in terms of memory consumption
and CPU usage, so that it can be executed on machines re-
siding in the edge infrastructure that only provide a fraction
of the processing power of cloud resources. The architecture
of the DIANE Optimizer is depicted in Figure 2b. In the
following, we outline the basic components of a DIANE
Optimizer.

Once a DIANE Optimizer is deployed in the edge infras-
tructure, the Bootstrapper component of the optimizer
is responsible for registering the deployment with DIANE.
Based on this information, the server-side framework can

keep track of deployed optimizers. Furthermore, during
the registration process the optimizer receives the list of
machines representing the current deployment of the appli-
cation, as well as a hot pool of machines where application
components are already provisioned, but not yet started.
These lists are then forwarded to the topology handler for
further processing.

To form an elastic application deployment the
Topology Handler first extracts the devices that rep-
resent the current application deployment based on the
provided information from the bootstrapper. This topol-
ogy representation is then enriched with the current hot
pool of application components and then updated in the
Topology Repository. Based on this stored topology,
the DIANE Optimizer knows which devices are currently
used by the application and is also able to optimize the
overall application topology by starting idle or stopping
running components.

To gather valuable insights from the used deploy-
ment infrastructure, the DIANE Optimizer uses a dedi-
cated Monitoring component. According to the stored
application topology, the monitoring extracts the respective
machines. In order to acquire performance measurements
from these machines, the DIANE Optimizer facilitates the
LEONORE profiler that is pre-installed on the machines
to extract performance data like used CPU and consumed
memory. Therefore, whenever the application topology is
updated (e.g., new machines are added) the monitoring
component contacts each machine of the deployment to
register an endpoint where the machines, respectively their
LEONORE profilers, publish the profiled monitoring infor-
mation in a configurable interval. The published perfor-
mance profiles of the machines are then grouped by ma-
chine and stored for later analysis in the local Monitoring
Repository. The repository is implemented as a local
cache using available RAM and/or disk resources if avail-
able, which allows for fast read and write access, while still
considering the resource-constrained nature of the under-
lying infrastructure. To save memory, the cache only keeps
the most recent profiles. Furthermore, since the collection
of data is happening in the edge infrastructure the overall
communication costs are considerably low.

In the current version, a DIANE Optimizer does not au-
tomatically decide when to optimize its corresponding elas-
tic application topology. Therefore, it provides a Service
API that allows DIANE to trigger a deployment evolution.
Whenever DIANE decides that based on a defined applica-
tion rule the application deployment has to be optimized,
it finds the responsible DIANE Optimizer and invokes the
service API by providing infrastructure rules and action
policies that need to be respected. Next, the request is
forwarded to the local optimizer, which is then responsible
for choosing suitable optimization actions and executing
them accordingly.

Once DIANE triggers an optimization by invoking the
DIANE Optimizer, the Local Optimizer performs the
following steps in order to process the request: (i) Analyze
the given application policy to identify a set of possible
deployments that need to be updated for optimizing the
application topology. (ii) If infrastructure rules are defined,
the set of possible deployments is filtered by using gathered

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 8

monitoring information. For example, if an application rule
describes that the used CPU of the deployment has to
be kept minimal, the optimizer will use the performance
profiles stored in the monitoring repository to choose a
small deployment that can deal with the load while only
consuming a fraction of the provided total resources. (iii) If
no application rules are defined, the set is reduced by pick-
ing deployments naı̈vely. (iv) After the set of deployments
that need to be updated is finalized, the application policy is
executed. This means that the application deployment topol-
ogy is optimized by either starting idle or stopping running
application components. (v) Finally, the topology handler is
notified to store the evolved application deployment in the
topology repository.

In case DIANE detects that a DIANE Optimizer is not
responding anymore, the server-side framework restarts or
redeploys the machine the optimizer is deployed on.

4.5 Optimizing an Elastic Application Deployment

The process of optimizing an elastic application deployment
is initiated by an operator that defines an OU and corre-
sponding action policies. To describe the overall process
let us consider that we want to scale up an application
deployment to a maximum of 20 machines (action policy)
whenever the response time of the application is over a
defined threshold (application rule). Furthermore, during
scale up the deployment should be kept minimal in terms
of used CPU (infrastructure rule). After describing these
requirements, the operator uploads the OU and the action
policy to DIANE. Based on the input, DIANE creates an
elastic application deployment and deploys a DIANE Op-
timizer. Next, the monitoring component starts collecting
response time measurements from the defined endpoints of
the application. Once DIANE detects that the response time
of the application violates the defined threshold in the OU,
it invokes the respective DIANE Optimizer by providing the
defined scale up action policy and infrastructure rule. Then,
the DIANE Optimizer decides that based on the provided
input and gathered performance profiles of the machines,
it is sufficient to scale up the application deployment by
only using 2 additional devices and queues further scale up
requests from DIANE until these devices are fully utilized.
In case no infrastructure rules are defined by the operator,
the overall approach follows the same steps as above, except
that no infrastructure information is used by the DIANE
Optimizer and the deployment is scaled up by using a naı̈ve
approach (e.g., 5 devices for each scale up request).

Using explicit infrastructure knowledge (whitebox
mode) allows the DIANE Optimizer to optimize the appli-
cation deployment topology more efficiently compared to
an approach that only uses pre-defined or naı̈ve adaptation
steps (blackbox mode).

5 EVALUATION – IOT APPLICATION DEPLOYMENT
AND EXECUTION

To evaluate our approach we implemented a demo IoT ap-
plication based on a case study conducted in our lab in coop-
eration with a business partner in the building management
domain. In this case study we identified the requirements

and basic components of commonly applied applications
in this domain. Based on this knowledge we developed an
IoT application for managing and controlling air handling
units in buildings, where the design and implementation
follows the microservices architecture approach. Next, we
created a test setup in the cloud using CoreOS2 to virtualize
edge devices as Docker3 containers. We reuse LEONORE’s
notion of IoT gateways as representation of edge device in
our experiments.

In the remainder of this section we give an overview of
the developed demo application and the created evaluation
setup, present different evaluation scenarios, and analyze
the gathered results.

5.1 BMS Demo Application

Currently, IoT applications are designed and implemented
as layered architectures [10]. This means that the bottom
layer consists of deployed IoT devices, a middleware that
provides a unified view of the deployed IoT infrastructure,
and an application layer that executes business logic [11].
According to this layered approach, business logic only runs
in the application layer and the IoT infrastructure is pro-
visioned with appropriate software, sends data, and reacts
on its environment [12]. However, in practice more and
more IoT devices provide constrained execution environ-
ments that can be used for offloading parts of the business
logic. To compare these two deployment approaches we
develop an application for a building management system
that consists of the following components: (1) An Air
Handling Unit (unit) is deployed on an IoT device, reads
data (e.g., temperature) from a sensor, transmits the data
to and reacts on control commands received from the up-
per layer. (2) A Temperature Management (management)
represents the processing component of the application and
gathers the status information of the units. It receives high
level directives from the upper layer and based on the
processed unit data and the received directives, forwards
appropriate control commands to the unit. (3) Finally, the
Building Controller (control) is the top level compo-
nent and decides for each handled management component
the directive it has to execute. In the traditional deployment
topology that follows the common IoT application deploy-
ment model, the unit component is deployed on devices in
the IoT infrastructure, and both the processing and control
components are executed on a platform in the cloud. We
refer to this deployment as traditional application topology.
In contrast, in a contemporary deployment topology, some
of the processing logic is offloaded onto devices in the
IoT infrastructure, which we refer to as evolved application
topology.

5.2 Setup

For the evaluation of our framework we create an IoT
testbed in our private OpenStack4 cloud. We reuse a Docker
image that was created for LEONORE to virtualize and
mimic a physical gateway in our cloud. To run several of

2. https://coreos.com
3. https://www.docker.com
4. http://www.openstack.org

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://coreos.com
https://www.docker.com
http://www.openstack.org

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 9

��

������

������

������

������

������

������

��� ��� ��� ��� ���

�
��
�

�
��
�
�

����������������������

�����������������������
�������������������������

�������������������
���������������������

(a) Application Deployment - Deployment Time

��

���

���

���

���

����

�� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�
���
��
�
���
�

�
��
�

��������

�����������������
�������������

��������������������
����������������

(b) Application Deployment - Device Utilization

��

����

�����

�����

�����

�����

��� ��� ��� ��� ���

�
�
�
�
�
��
��

�
��
�
�

����������������������

������������������������������
��������������������������

(c) Application Execution - Bandwidth

������

������

������

������

������

������

��� ��� ��� ��� ���

�
��
�

�
��
�
�

����������������������

�����������������������
�������������������������

�������������������
���������������������

(d) Application Execution - Time

Fig. 3: Evaluation Results – IoT Application Deployment & Execution

these virtualized gateways, we use CoreOS clusters and
fleet5, a distributed init system, for handling these clusters.
Based on fleet’s service unit files, we dynamically generate
according fleet unit files and use them to automatically
create, run, and stop virtualized gateways. As foundation of
our setup, an IoT Testbed consists of a CoreOS cluster of 5 vir-
tual machines, where each VM is based on CoreOS 607.0.0
and uses the m1.medium flavor (3750MB RAM, 2 VCPUs
and 40GB Disk space). The IoT gateway-specific framework
components of LEONORE are pre-installed in the contain-
ers. On top of the testbed, the LEONORE framework is
distributed over 2 VMs using Ubuntu 14.04. The first VM
hosts the balancer and uses the m1.medium flavor, whereas
the second VM uses the m2.medium flavor (5760MB Ram,
3 VCPUs and 40GB Disk space) and is deployed with a
LEONORE node. On top, DIANE is hosted in one VM
using Ubuntu 14.04 with the m1.medium flavor. Finally,
the platform components of the BMS demo application are
deployed on a separate VM using Ubuntu 14.04 and the
m1.small flavor (1920MB Ram, 1 VCPUs and 40GB Disk
space). In order to evaluate and compare the two presented
deployment topologies of the application, the BMS platform
initially comprises controller and management (traditional
application topology), and is then reduced to only host the
controller in the cloud, since the management component is
deployed on the devices (evolved application topology). In
both scenarios the unit component is deployed and running
on the devices in the IoT infrastructure.

5. https://github.com/coreos/fleet

5.3 IoT Application Deployment

In the first experiment we measure the time that is needed
for dynamically creating application deployments for the
two BMS IoT application deployment topologies and pro-
visioning of these deployments on IoT devices. In the sec-
ond experiment we compare the device resource utilization
when executing the provisioned application deployments.

5.3.1 Deployment Time

Figure 3a shows the overall time that is needed for cre-
ating and provisioning of application deployments on an
increasing number of devices. The time measurement begins
when DIANE is invoked and ends when DIANE reports
the successful deployment. To deal with possible outliers
and provide more accurate information we executed each
measurement 10 times and calculated both the average and
median time. In Figure 3a we see that for the traditional
application topology the framework provides a stable and
acceptable overall deployment time. In comparison, the
deployment of the evolved application topology takes in
total almost twice as long, but also provides a stable deploy-
ment time. Taking into account that the evolved applica-
tion topology requires deploying twice as many application
components and corresponding artifacts, however, we argue
that this increase is reasonable, since the limiting factor is
the actual provisioning of devices as we create application
packages that have more than doubled in size.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/coreos/fleet

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 10

5.3.2 Gateway Resource Utilization
Figure 3b depicts the CPU and memory utilization of
one device when provisioning and executing the two IoT
application deployment topologies. The figure shows that
initially there is no application component running on the
device. After 15 seconds we initiate the deployment via our
framework, which provisions the application deployments
and starts the execution. Then, the deployments run for 30
seconds. Afterwards, the framework stops the execution.
When provisioning the traditional application topology, we
clearly see that the CPU utilization has a short high peak due
to the startup of the deployment. However, after this high
peak the overall utilization of the device is low and leaves
room for using this untapped processing power to offload
business logic components on the device. To illustrate the
feasibility of this claim, we also provision and execute the
evolved application topology on the device. We see that in
comparison to the traditional application topology, the load
on the device has almost doubled, and except for the high
initial CPU load peak, the overall utilization of the device is
still acceptable and reasonable.

5.4 IoT Application Execution
In the second experiment we collect runtime information
from the BMS application to compare both deployment
topologies. In order to do that, we deploy both topologies
with our framework on an increasing number of devices.
However, now we measure bandwidth consumption and
execution time when invoking the application’s business
logic. The measurement begins by invoking the control
component of the application to specify a virtual set-point
temperature on each device, where each unit component
on the device has the same initial temperature reading.
To provide reliable results, we execute each measurement
10 times and freshly provision the devices after each mea-
surement with DIANE. Depending on the BMS application
deployment topology, the management component is either
executed in the platform (i.e., the cloud) or on each device.

5.4.1 Bandwidth Consumption
Figure 3c shows the average bandwidth consumption that
results from invoking the business logic of the two appli-
cation deployment topologies. We see that the traditional
application topology causes a significant amount of data
transmission between platform and IoT infrastructure. As
a result the transmitted data produces a high load on the
network and consumes a lot of bandwidth. This behavior
is obvious, since the complete business logic is executed on
the platform and devices are only sending measurements
and reacting to control messages. In contrast, the evolved
application topology produces less traffic and therefore con-
sumes on average only 13% of the bandwidth. This is due
to the offloading of the processing (management) compo-
nent to each device, which therefore drastically reduces the
transmitted data between platform and IoT infrastructure.

5.4.2 Execution Time
Figure 3d shows the time that is needed for executing
the previously described business operation of the BMS
application for the two application deployment topologies.

We see that for both topologies the application scales well
and provides reasonably fast results. However, we notice
that the offloading of the processing components on the
devices reduces the execution time by 7%, since application
component interaction within a device is faster than the
interaction between device and platform.

After presenting and evaluating the gathered experiment
results, we can deduce the following: DIANE is capable of
dealing with different application topologies and changes
in the IoT infrastructure. The framework scales well with
increasing size of application deployment topologies and
does not add additional overhead to the overall time that
is needed for provisioning the IoT infrastructure. Note that
for very large deployments the use of multiple coordinated
LEONORE nodes is required. Furthermore, depending on
the scenario, it is feasible to offload application components
from a cloud platform to devices in the IoT infrastructure.
Examples of such scenarios are applications that generate
a significant amount of traffic between the platform and
the IoT infrastructure and therefore justify the additional
deployment overhead.

6 EVALUATION – ELASTIC APPLICATION DEPLOY-
MENT

To evaluate our application deployment optimization mech-
anism we implemented a smart city demo application and
reused the test setup presented in Section 5.2. In the remain-
der of this section we give an overview of the developed
smart city demo application, discuss the concrete evaluation
setup, present different evaluation scenarios, and analyze
the gathered results.

6.1 Smart City Demo Application

For this experiments we use a demo application that im-
plements the concept of Autonomous Intersection Manage-
ment6, which enables autonomous cars in a smart city envi-
ronment. In our scenario we want to handle large numbers
of cars, which requires smart city operators to optimize the
deployment topology of such intelligent control systems by
using any kind of available processing power. To analyze
this approach, we develop a simple traffic control applica-
tion that manages incoming requests sent from autonomous
cars. The incoming requests need to be processed by the
application to calculate if a car’s intended path is valid (i.e.,
safe to use). Since the autonomous cars generate a huge
load, the application supports scaling the computational
logic across infrastructure boundaries. Therefore, the appli-
cation is separated into two components. A possibly repli-
cated processing component that provides the calculation
logic. On top, a central platform component that receives
requests by autonomous cars and forwards them to the un-
derlying processing components. Furthermore, to analyze
application performance, it provides specific endpoints to
acquire metrics like request load and response time.

6. http://www.cs.utexas.edu/∼aim/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.cs.utexas.edu/~aim/

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 11

���
���
���
���

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ����

��������

�������������

��

���

���

���
�����������

��

��

���

���
�������������������

�����

�����

������������������

(a) Blackbox

���
���
���
���

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ����

��������

�������������

��

���

���

���
�����������

��

��

���

���
�������������������

�����

�����

������������������

(b) Whitebox

Fig. 4: Evaluation Results – IoT Application Topology Optimization (Step Load Pattern)

6.2 Setup
In order to evaluate the introduced application deployment
optimization using the DIANE Optimizer, we reuse the
setup presented in Section 5.2. However, for this evaluation,
we exchange the VM hosting the components of the BMS
IoT application, with a new VM using Ubuntu 14.04 and the
m1.small flavor to host the platform component of the smart
city demo application. In order to evaluate and compare the
different optimization modes, the processing component of
the smart city demo application is deployed and executed
on the devices in the IoT infrastructure.

6.3 IoT Application Topology Optimization
In the following experiments we use DIANE to optimize the
deployment topology of the smart city demo application by
scaling it across the available IoT infrastructure. We create
an OU that defines the allowed threshold for the response
time of the application and that the used application deploy-
ment should keep the CPU usage across the infrastructure
to a minimum. Furthermore, we also define a policy for
scaling up the deployment when the response time is over
the defined threshold, as well as a policy for scaling down
the application by stopping unused infrastructure devices.
Additionally, for the experiments we assume that an elastic
application deployment was already formed by using a total
of 40 machines, plus one additional machine for hosting the
DIANE Optimizer.

Next, for comparing the two different optimization
modes (blackbox and whitebox) we use different patterns
for generating load on the application. In the first scenario,
we use a load pattern that simulates a stepwise increase
and decrease in requests. In the second scenario, we use a
pyramid-like load pattern for sending requests to the appli-
cation. For the blackbox optimization mode, the deployment
topology of the application is scaled without using the pro-
vided infrastructure rule, whereas for the whitebox mode
we facilitate gathered knowledge about the infrastructure
to provide an optimized scaling approach according to the
infrastructure rule.

6.3.1 Scenario 1: Step Load Pattern
Figure 4 illustrates the evaluation results for the first sce-
nario. The x-axis shows the temporal course of the evalu-
ation in seconds. In the ’requests per second’ section we

see that we begin the evaluation by sending 4 concurrent
requests per second to the application and increase the load
stepwise every 30 seconds to see if DIANE is able to scale
up the application. Finally, at 120 seconds we reduce the
load to 4 requests per second to see if DIANE is also able
to scale down the application. In the ’response time’ section
we see the response time for each incoming request. The
’deployment’ section illustrates the number of facilitated
edge devices by the deployment. Finally, the ’total CPU’
section represents how much of the total available CPU is
used by the application deployment at the given time.

By comparing Figure 4a, which represents the blackbox
optimization mode, and Figure 4b, which shows the result
for using the whitebox optimization mode, we notice that
for the first interval of requests the response time of the
application is almost constant for both approaches. At 30
seconds, when the request load doubles we notice that
in both cases the response time rises. For both modes,
at approximately 34 seconds DIANE starts scaling up the
application by invoking the DIANE Optimizer, since the re-
sponse time of the application violates the provided thresh-
old. However, by looking at the results, we notice several
differences during the deployment optimization process.
The blackbox mode uses a naı̈ve approach that scales up the
deployment until the response time is no longer violated.
This, in combination with a lot of queued up requests,
leads to the fact that the blackbox mode uses a lot of
infrastructure resources for a relatively long time before they
are released again. In comparison, in the whitebox mode the
DIANE Optimizer uses gathered monitoring information
from the deployment infrastructure and only scales up the
application when the currently used resources are fully
utilized. This allows the application to handle the queued
up requests with a smaller deployment in shorter time. For
the following two increases in requests per second at 60 and
90 seconds, we see that the framework is also able to detect
and analogously handle them. Finally, at 120 seconds, we
notice that the load drops, which is detected by the whitebox
mode almost immediately, due to the fact that DIANE
Optimizer constantly receives information about the used
resources. In comparison, the blackbox mode needs signifi-
cantly more time to detect the changed load by monitoring
the application and therefore uses resources for a longer

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 12

���
���
���
���

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ����

��������

�������������

��

���

���

���
�����������

��

��

���

���
�������������������

�����

�����

�����

����� ������������������

(a) Blackbox

���
���
���
���

����

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ���� ����

��������

�������������

��

���

���

���
�����������

��

��

���

���
�������������������

�����

�����

�����

����� ������������������

(b) Whitebox

Fig. 5: Evaluation Results – IoT Application Topology Optimization (Pyramid Load Pattern)

period. After comparing both modes using the stepwise
load pattern, we can conclude that both approaches allow
for optimizing the application deployment according to the
provided OU. However, by using gathered knowledge of
the infrastructure deployment, the whitebox mode is able to
evolve the application topology by using less resources and
therefore reduces the total overall CPU utilization by ap-
proximately 15%. In addition, we also notice that in total the
whitebox mode produces approximately 25% less response
time violations compared to the blackbox approach.

6.3.2 Scenario 2: Pyramid Load Pattern
Figure 5 illustrates the evaluation results for the second
scenario. We compare the blackbox optimization mode (Fig-
ure 5a) and the whitebox approach (Figure 5b) using a
pyramid-like load pattern. We notice that for the first 20
seconds the response time of the application for both modes
is stable. At 20 seconds the first pyramid load pattern starts
increasing the load on the application. We see that it takes
a considerable amount of time until DIANE triggers the
scale up of the application deployment. Compared to the
first scenario, we see that both optimization modes are
struggling with this type of load pattern and provide almost
identical results. However, by comparing both results, we
notice that for the first pyramid-like increase and drop in
load, the blackbox mode performs better in terms of vio-
lated response times compared to the whitebox approach.
This can be explained by the fact that the extremely fast
load change does not allow the whitebox mode to utilize
gathered infrastructure information. In addition, by looking
at the deployment size we see that the whitebox mode uses
a smaller deployment for a longer time, compared to the
blackbox mode. For the next load increase at 75 seconds
we see that the blackbox mode uses one small and one
big scale up, in terms of deployment size, to compensate
for the response time violations, which leads to a high
deployment utilization. In contrast, the whitebox mode is
able to use the infrastructure resources more efficiently by
using more machines for the first scale up, and an additional
scale up for a shorter period of time. Therefore, for the
second pyramid-like load change, the whitebox mode uses
in total less resources, but again generates more response
time violations. After comparing both modes when using
the pyramid-like load pattern, we can conclude that on the

one hand the whitebox mode in total uses approximately 5%
less resources in terms of utilized total CPU. However, on
the other hand the blackbox mode produces approximately
30% less response time violations.

To summarize the results, we see that both proposed
optimization approaches allow for evolving the application
deployment topology at runtime. However, by comparing
the results of both scenarios we see that choosing an optimal
optimization approach depends on various factors, such
as the expected load on the application, and the tradeoff
between application performance violations (i.e., response
time) and cost benefit by using less infrastructure resources.

7 RELATED WORK

In the literature the overall terminology of IoT is well-
defined [11], [12]. However, the characterization of IoT ap-
plications is not that clear. First, IoT applications can be de-
fined as applications that hide the underlying IoT infrastruc-
ture by introducing an abstraction layer [13], [14], [15] and
on top of that layer execute business logic in the cloud [16].
Second, there are distributed applications that consist of
an enterprise application for managing underlying devices,
and simple application parts that reside in components
that are deployed in the edge infrastructure and allow for
sensing as well as reacting to their environment [17], [18].
Both approaches have in common that devices, which are
deployed in the IoT infrastructure, are defined as external
dependencies. Hence, these devices are not considered as
an integral part when designing and developing an ap-
plication. In order to address this issue, recent approaches
explicitly respect IoT devices as part of the application that
require efficient management in order to provide scalable as
well as flexible IoT applications [19], [20]. However, none of
the approaches discussed so far consider provisioning and
deploying parts of the application on resource-constrained
devices that provide limited execution environments [21],
which would help facilitating this untapped processing
power for building robust and adaptable applications. For
the actual deployment of applications, there exists only a
limited amount of prior work (e.g., [22], [23], [24], [25]) in
the literature that deal with the location-aware placement of
cloud application components. In contrast to our approach,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 13

these approaches do not support placing application compo-
nents on constrained edge infrastructures in order to allow
for improving the deployment topology of an application.

Additionally, since our approach also allows for opti-
mizing an application deployment topology, we also have
to consider relevant work in this research topic. There is
a significant body of work on optimization algorithms for
adapting deployments of cloud applications. Among oth-
ers (e.g., [26], [27], [28]), Emeakaroha et al. [29] present a
scheduling heuristic for cloud applications that considers
several SLA objectives. The approach provides a mechanism
for load balancing the execution of an application across
available cloud resources, as well as a feature for automat-
ically leasing additional cloud resources on demand. Wada
et al. [30] propose an evolutionary deployment optimization
for cloud applications. By introducing a multi objective
genetic algorithm, the authors are able to optimize the appli-
cation deployment to satisfy SLAs under conflicting quality
of service objectives. Frey et al. [31] introduce CDOXplorer,
a simulation-based genetic algorithm for optimizing the
deployment architecture and corresponding runtime con-
figurations of cloud applications. By applying techniques
of the search-based software engineering field, CDOXplorer
analyzes the fitness of a simulated set of possible application
configurations, in order to allow for optimizing the overall
application. In contrast to our work, none of the approaches
presented so far, considers application topologies that are
deployed on edge devices, and therefore can be seen as
supplemental approaches to DIANE’s notion of IoT deploy-
ments.

Next to algorithms, several approaches emerged in the
literature that are specifically targeted at adapting appli-
cation deployments in the cloud. For example, Cloud-
Scale [32] is a middleware for building applications that
are deployed on and running in the cloud. By using a
transparent approach, CloudScale enables the development
of cloud applications like regular programs without the
need for explicitly dealing with the provisioning of cloud re-
sources. In order to scale applications, CloudScale provides
a declarative deployment model that enables operators to
define requirements and corresponding policies. Menasce et
al. [33] present Sassy, a framework that enables applications
to be self-adaptive and self-optimizing. Based on a self-
architecting approach, Sassy provides a near-optimal appli-
cation deployment by considering both quality of service
and functional requirements. Compared to our approach,
all these platforms have in common that they transparently
adapt the application topology by optimizing the under-
lying cloud deployment. However, by only focussing on
one specific type of infrastructure (i.e., the cloud), these
platforms do not provide a generic approach that can also
be used for optimizing application deployments on edge
infrastructures as proposed in this paper.

8 CONCLUSION

In order to sense and manipulate their environment, appli-
cations in the Internet of Things (IoT) are required to inte-
grate and manage a large number of heterogenous devices,
which traditionally serve as simple sensors and actuators.
Recently, however, devices emerged that in addition to basic

sensing and actuating features, also provide constrained
execution environments with limited processing, memory,
and storage capabilities. To exploit this untapped process-
ing power, applications can offload parts of their business
logic onto edge devices. This offloading of application com-
ponents not only increases the robustness of the overall
application deployment, but also allows for cutting down
costs by reducing expensive cloud to edge communication
overhead. The consideration of edge devices is especially
important for IoT applications that are deployed in the
cloud, as the cloud allows applications to react to changing
requirements by elastically adapting their overall deploy-
ment topology. Therefore, in addition to the traditional
design considerations for cloud applications, specific issues
like the geographical distribution of edge devices and the
resulting network latencies need to be explicitly considered
in the design of IoT cloud applications. Furthermore, appli-
cations need to be designed as clearly separated components
that can be deployed independently. This application design
approach enables the flexible provisioning of applications
whose deployment topology evolves by dynamically of-
floading components to edge devices. To support this, we
introduced DIANE, an approach that dynamically generates
optimized deployment topologies for IoT cloud applica-
tions, which are tailored to the currently available physical
infrastructure. DIANE uses a declarative, constraint-based
model of the desired application deployment to allow for
flexible provisioning of application components on both,
cloud infrastructure, as well as edge devices deployed in
the IoT infrastructure. In addition, DIANE provides an
optimization approach that allows for evolving application
deployment topologies at runtime to enable applications to
autonomously react to environmental changes (e.g., chang-
ing request patterns).

In our ongoing work, we plan to extend DIANE to
address further challenges. We plan to further adapt our
MADCAT unit methodology to allow for more detailed
descriptions of application topologies and enable local co-
ordination of topology changes among edge devices. We
will further investigate ideal intervals for data collection
as well as fault tolerance and mitigation strategies for all
DIANE components. Furthermore, we will integrate our
framework with our overall efforts in designing, deploy-
ing, and managing complex, large-scale IoT applications
to provide a comprehensive tool set for researchers and
practitioners [34].

REFERENCES

[1] M. Vögler, J. M. Schleicher, C. Inzinger, S. Nastic, S. Sehic, and
S. Dustdar, “LEONORE - Large-Scale Provisioning of Resource-
Constrained IoT Deployments,” in Proc. Int. Symp. Service-Oriented
System Engineering, ser. SOSE’15. IEEE, 2015, pp. 78–87.

[2] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D.
Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, and
A. Rabkin, “A view of cloud computing,” Comm. ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[3] S. Dustdar, Y. Guo, R. Han, B. Satzger, and H.-L. Truong, “Pro-
gramming Directives for Elastic Computing,” IEEE Internet Com-
puting, vol. 16, no. 6, pp. 72–77, 2012.

[4] S. Newman, Building Microservices. O’Reilly Media, Inc., 2015.
[5] M. Vögler, F. Li, M. Claeßens, J. M. Schleicher, S. Nastic, and

S. Sehic, “COLT Collaborative Delivery of lightweight IoT Appli-
cations,” in Proc. Int. Conf. IoT as a Service, ser. IoTaaS’14. Springer,
2014, p. to appear.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

M. VÖGLER, J. M. SCHLEICHER, C. INZINGER, AND S. DUSTDAR: OPTIMIZING ELASTIC IOT APPLICATION DEPLOYMENTS 14

[6] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “DIANE -
Dynamic IoT Application Deployment,” in Proc. Int. Conf. Mobile
Services, Special Track - Services for the Ubiquitous Web. IEEE, 2015,
pp. 298–305.

[7] C. Inzinger, S. Nastic, S. Sehic, M. Vögler, F. Li, and S. Dustdar,
“MADCAT - A Methodology for Architecture and Deployment of
Cloud Application Topologies,” in Proc. Int. Symp. Service-Oriented
System Engineering, ser. SOSE’14. IEEE, 2014, pp. 13–22.

[8] C. Inzinger, W. Hummer, B. Satzger, P. Leitner, and S. Dustdar,
“Generic event-based monitoring and adaptation methodology for
heterogeneous distributed systems,” Software: Practice and Experi-
ence, vol. 44, no. 7, pp. 805–822, 2014.

[9] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “Ahab:
A Cloud-based Distributed Big Data Analytics Framework for the
Internet of Things,” Software: Practice and Experience, p. to appear,
2016.

[10] D. Agrawal, S. Das, and A. El Abbadi, “Big data and cloud com-
puting: new wine or just new bottles?” Proc. VLDB Endowment,
vol. 3, no. 1-2, pp. 1647–1648, Sep. 2010.

[11] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,”
Information Systems Frontiers, pp. 1–17, Apr. 2014.

[12] L. Da Xu, W. He, and S. Li, “Internet of Things in Industries: A
Survey,” IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243,
2014.

[13] D. Guinard, I. Ion, and S. Mayer, “In Search of an Internet of
Things Service Architecture: REST or WS-*? A Developers Per-
spective,” in Mobile and Ubiquitous Systems: Computing, Networking,
and Services. Springer, 2012, vol. 104, pp. 326–337.

[14] P. Patel, A. Pathak, T. Teixeira, and V. Issarny, “Towards applica-
tion development for the internet of things,” in Proc. Middleware
Doctoral Symp., ser. MDS’11. ACM, 2011, pp. 5:1–5:6.

[15] H. Ning and Z. Wang, “Future Internet of Things Architecture:
Like Mankind Neural System or Social Organization Framework?”
IEEE Commun. Lett., vol. 15, no. 4, pp. 461–463, 2011.

[16] F. Li, M. Vögler, S. Sehic, S. Qanbari, S. Nastic, H.-L. truong, and
S. Dustdar, “Web-Scale Service Delivery for Smart Cities,” IEEE
Internet Comput., vol. 17, no. 4, pp. 78–83, 2013.

[17] W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and V. Dobrota,
“REST Enabled Wireless Sensor Networks for Seamless Integra-
tion with Web Applications,” in Proc. Int. Conf. Mobile Adhoc and
Sensor Systems, ser. MASS’11. IEEE, 2011, pp. 867–872.

[18] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT Gateway:
Bridging Wireless Sensor Networks into Internet of Things,” in
Proc. Int. Conf. Embedded and Ubiquitous Computing, ser. EUC’10,
2010, pp. 347–352.

[19] S. S. Yau and A. B. Buduru, “Intelligent Planning for Developing
Mobile IoT Applications Using Cloud Systems,” in Proc. Int. Conf.
Mobile Services, ser. MS’14, 2014, pp. 55–62.

[20] F. Li, M. Vögler, M. Claessens, and S. Dustdar, “Towards Auto-
mated IoT Application Deployment by a Cloud-Based Approach,”
in Proc. Int. Conf. Service-Oriented Computing and Applications, ser.
SOCA’13, 2013, pp. 61–68.

[21] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder, “Manage-
ment of resource constrained devices in the internet of things,”
IEEE Commun. Mag., vol. 50, no. 12, pp. 144–149, 2012.

[22] R. Buyya, R. N. Calheiros, and X. Li, “Autonomic Cloud com-
puting: Open challenges and architectural elements,” in Proc. Int.
Conf. Emerging Applications of Information Technology, ser. EAIT’12,
2012, pp. 3–10.

[23] S. Radovanovic, N. Nemet, M. Cetkovic, M. Z. Bjelica, and N. Tes-
lic, “Cloud-based framework for QoS monitoring and provision-
ing in consumer devices,” in Proc. Int. Conf. Consumer Electronics,
ser. ICCE’13, 2013, pp. 1–3.

[24] H. Qian and M. Rabinovich, “Application Placement and Demand
Distribution in a Global Elastic Cloud: A Unified Approach,” in
Proc. Int. Conf. Autonomic Computing, ser. ICAC’13. USENIX
Assoc., 2013, pp. 1–12.

[25] P. Mayer, J. Velasco, A. Klarl, R. Hennicker, M. Puviani, F. Tiezzi,
R. Pugliese, J. Keznikl, and T. Bureš, “The Autonomic Cloud,” in
Software Engineering for Collective Autonomic Systems. Springer,
2015, pp. 495–512.

[26] J. Z. W. Li, M. Woodside, J. Chinneck, and M. Litoiu, “CloudOpt:
Multi-goal optimization of application deployments across a
cloud,” in Proc. Int. Conf. Network and Service Management, ser.
CNSM’11. IFIP, 2011, pp. 1–9.

[27] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar,
“Cost-Efficient and Application SLA-Aware Client Side Request

Scheduling in an Infrastructure-as-a-Service Cloud,” in Proc. Int.
Conf. Cloud Computing, ser. CLOUD’12. IEEE, 2012, pp. 213–220.

[28] W. Yuan, H. Sun, X. Wang, and X. Liu, “Towards Efficient De-
ployment of Cloud Applications through Dynamic Reverse Proxy
Optimization,” in Proc. Int. Conf. High Performance Computing and
Communications & Int. Conf. Embedded and Ubiquitous Computing.
IEEE, 2013, pp. 651–658.

[29] V. C. Emeakaroha, I. Brandic, M. Maurer, and I. Breskovic,
“SLA-Aware Application Deployment and Resource Allocation
in Clouds,” in Proc. Computer Software and Applications Conference
Workshops, ser. COMPSACW’11. IEEE, 2011, pp. 298–303.

[30] H. Wada, J. Suzuki, Y. Yamano, and K. Oba, “Evolutionary de-
ployment optimization for service-oriented clouds,” Softw. Pract.
Exper., vol. 41, no. 5, pp. 469–493, 2011.

[31] S. Frey, F. Fittkau, and W. Hasselbring, “Search-based genetic
optimization for deployment and reconfiguration of software in
the cloud,” in Proc. Int. Conf. on Software Engineering, ser. ICSE’13,
2013, pp. 512–521.

[32] P. Leitner, B. Satzger, W. Hummer, C. Inzinger, and S. Dustdar,
“CloudScale - a Novel Middleware for Building Transparently
Scaling Cloud Applications,” in Proc. Symp. on Applied Computing,
ser. SAC’12. ACM, 2012, pp. 434–440.

[33] D. a. Menascé, H. Gomaa, S. Malek, and J. P. Sousa, “Sassy: A
framework for self-architecting service-oriented systems,” IEEE
Softw., vol. 28, no. 6, pp. 78–85, 2011.

[34] J. M. Schleicher, M. Vögler, C. Inzinger, and S. Dustdar, “Towards
the internet of cities: A research roadmap for next-generation
smart cities,” in Proc. Intl. Workshop on Understanding the City with
Urban Informatics. ACM, 2015, pp. 3–6.

Michael Vögler is a researcher at the Dis-
tributed System Group at TU Wien. His research
interests are cloud computing, service-oriented
architectures, distributed systems, and IoT.

Johannes M. Schleicher is a PhD student at the
Distributed System Group at TU Wien. His re-
search interests are cloud computing, distributed
systems and smart cities.

Christian Inzinger is a postdoctoral researcher
at the software evolution and architecture lab
(s.e.a.l.) at University of Zurich. His main re-
search focus is on helping developers write bet-
ter cloud applications and his work is mainly
concerned with architectures for cloud applica-
tions, software evolution, and fault management
in distributed elastic systems.

Schahram Dustdar is a full professor of com-
puter science with a focus on Internet technolo-
gies and heads the Distributed Systems Group
at TU Wien. He is an ACM Distinguished Scien-
tist and recipient of the IBM Faculty award. He is
an Associate Editor of IEEE Trans. on Services
Computing, ACM Trans. on the Web, and ACM
Trans. on Internet Technology and on the edito-
rial board of IEEE Internet Computing. He is the
Editor-in-Chief of Computing (Springer).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2016.2617327

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

