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ABSTRACT
A major challenge in Cloud computing is resource provision-
ing for computational tasks. Not surprisingly, previous work
has established a number of solutions to provide Cloud re-
sources in an efficient manner. However, in order to realize a
holistic resource provisioning model, a prediction of the fu-
ture resource consumption of upcoming computational tasks
is necessary. Nevertheless, the topic of prediction of Cloud
resource utilization is still in its infancy stage.
In this paper, we present an approach for predicting Cloud

resource utilization on a per-task and per-resource level. For
this, we apply machine learning-based prediction models.
Based on extensive evaluation, we show that we can reduce
the prediction error by 20% in a typical case, and improve-
ments above 89% are among the best cases.

CCS Concepts
•Information systems → Computing platforms; En-
terprise information systems; •Computing methodolo-
gies → Neural networks;
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1. INTRODUCTION
Resource provisioning and resource management are vivid

fields of research in Cloud computing, resulting in a large
number of according solutions [32]. Very often, the focus of
resource management is on Quality of Service (QoS)-aware
provisioning under given cost constraints, or under another
set of rules [26]. Apart from a large number of general solu-
tions for the Software-as-a-Service (SaaS) [31], Platform-as-
a-Service (PaaS) [1], and Infrastructure-as-a-Service (IaaS)
[19] Cloud service models, more specific solutions exist, e.g.,
for the execution of scientific workflows [29], business pro-
cesses [14], or data processing [12] in the Cloud.
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Resource provisioning involves dynamic allocation by scal-
ing resources up and down depending on the current and fu-
ture demand. While the individual aims of Cloud resource
provisioning solutions differ quite a lot, e.g., taking into ac-
count QoS and Service Level Agreements (SLAs) [26], the
basic approach is rather homogeneous: The goal is to dis-
tribute task requests onto Cloud-based computational re-
sources, e.g., Virtual Machines (VMs) or containers [15].
Aside from deciding when to scale up or down, a common
challenge is to distribute computational tasks across avail-
able computational resources.
Resource provisioning approaches can be categorized into

predictive and reactive strategies [8]. Reactive approaches
measure a system’s state, e.g., the utilization of a VM, con-
sider current task requests, and take according actions. In
contrast, predictive approaches aim to predict the future
behavior of the system. For instance, based on the num-
ber of user requests or data packages to be processed, the
necessary amount of resources for a future period in time
is calculated. Subsequently, Cloud resources are leased (or
released) based on the predicted resource requirements, and
tasks are distributed among these resources. These predic-
tive approaches can lead to better resource efficiency and
overall response time for the system, since they are able to
adopt to system load in advance, instead of merely reacting
in an ad hoc manner [16].
Despite the varying goals of the different predictive re-

source provisioning strategies presented in the literature, one
common requirement of all of these approaches is a precise
prediction about how many resources are actually needed to
execute the computational tasks. Despite this fundamental
requirement, to the best of our knowledge, surprisingly lit-
tle research has been done so far in the field of prediction
mechanisms for Cloud resource utilization.
In order to address this challenge for efficient resource

provisioning, we present a generic approach to predict Cloud
resource utilization and task duration. We apply machine
learning approaches to predict these values on a per-task
level, based on historical task execution data.
To this end, the remainder of this paper is structured as

follows: In Section 2, we briefly discuss machine learning and
describe our approach to resource utilization prediction. In
Section 3, we present the experimental setup used to evalu-
ate the proposed methods. The results of the evaluation are
shown and discussed in Section 4. In Section 5, we discuss
the related work in the field of prediction of Cloud resource
utilization. Finally, we conclude our work in Section 6 and
give an outlook on future work.
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2. MACHINE LEARNING APPROACH
For predicting resource utilization in the Cloud, we pro-

pose the employment of techniques from the field of machine
learning. The intuition behind this is that tasks executed
on Cloud-based computational resources often do not scale
linearly with the cardinality of their input; therefore, the
application of simple linear regression models is not suffi-
cient. Furthermore, a task might take a vector of input
data instead of a single item, making it necessary to per-
form multiple linear regression. Therefore, we propose to
use machine learning in order to create prediction models
from historic data, i.e., past task executions, and extract a
model for obtaining future predictions.

2.1 Fundamentals of Machine Learning
Machine learning evolved from the study of pattern recog-

nition and aims at giving computers the ability to decide
problems without being explicitly programmed. Among the
most popular machine learning approaches are Artificial Neu-
ral Network (ANN) models, which are inspired by biological
neurons [4]. Such a network consists of artificial neurons,
which have a certain number of inputs and an activation
function. Its output can be used by other neurons as input.
While choosing a machine learning model, we took into

consideration the fair amount of research in the various ar-
eas. Compared to models suitable for classification like
Bayesian classification [4] or Fisher’s linear discriminant [2]
as well as regression models like Support Vector Machines,
feed-forward ANN models with error backpropagation are
well-suited for regression and provide efficient means of sta-
tistical pattern recognition [4, 11]. When the actual output
for the given input vector is known, an error between the
calculated and the actual output is calculated and used for
training the model. In our case, this happens through back-
propagation [11], which enables us to use compact models
with sufficient generalization performance [4].
Machine learning distinguishes between offline and online

learning: Offline learning occurs when all instances are pre-
sented simultaneously, while in the case of online learning,
problem instances are presented one at a time [18]. In our
instance, we perform offline learning, as training the ANN
model involves processing large amounts of data, thus re-
quiring a high amount of processing power. Furthermore,
we employ supervised learning, i.e., we assume that for each
instance of training data, the correct output is known and
can be used for backpropagation.

2.2 Generic Architecture
As outlined in Section 1, resource provisioning is a com-

mon issue when Cloud-based computational resources are
used. Usually, a task scheduler or provisioning agent is used
to perform the leasing or releasing of the resources.
In our architecture, a client, i.e., a consumer of Cloud ser-

vices posts a request for the execution of a task to the pro-
visioning agent. The provisioning agent is composed of the
scheduler, which is responsible for performing task schedul-
ing and provisioning, and the predictor, which supports the
scheduler by predicting resource utilization. This enables
the scheduler to optimize its decisions.
Upon receiving a task execution request from the client,

the provisioning agent must decide on how to provision Cloud
resources. In current approaches, this means finding a sched-
ule (time) and selecting computational resources (placement)

for the submitted task [13]. Such a decision requires knowl-
edge about the duration and resource consumption of the
task. For this, the scheduler queries the predictor to achieve
a prediction of those metrics.
Finally, after the execution, the Cloud infrastructure re-

ports the actual resource usage back to the predictor. Re-
corded traces of this data, i.e., a history of predicted and
actual resource utilization values, are then used by the pre-
dictor component to train its model.

2.3 System Model
In order to formalize our approach, we define the prob-

lem of predicting the resource usage for a given task to be
provisioned. We assume that the provisioning agent has the
following information about the task:

• The type of task to be provisioned (T )

• A vector (a, b, c, ..., z) of input data for task T

Furthermore, known a priori is a list of resources for which
utilization is to be predicted. These resources are denoted as
R1, R2, ..., Rn and can represent CPU time/cores, execution
duration (time), memory usage, storage, or any other form
of resource necessary to execute task T .
The result of a prediction is a vector (R̂1, R̂2, ..., R̂n),

where R̂i is the resource usage prediction for resource Ri.

2.4 Application to Resource Prediction
We propose to apply the presented machine learning ap-

proach to solve the resource utilization prediction problem

described in Section 1. To this end, a prediction model T̂ is
created for the resource usage of every task T that requires
such a prediction. The predicted resource usage then allows
for an optimized provisioning. As discussed in Section 2.1,
amongst machine learning methodologies, ANN models are
the best fit for this purpose.
Executions of a task T with an input vector (a, b, c, ..., z)

produce a measured resource usage (R1, R2, ..., Rn). This
actual resource usage is recorded and used as training data.
With an increasing amount of training data, the machine
learning model becomes more and more fit, and therefore
its predictions show increasing accuracy.
After training, the model is able to predict the resource

usage vector to a certain degree. In other words, the model
can then be presented with a task T and an input vec-
tor (a, b, c, ..., z), and produces a resulting prediction vec-

tor (R̂1, R̂2, ..., R̂n).

3. EXPERIMENTAL SETUP
As a proof of concept, the proposed machine learning ap-

proach has been thoroughly evaluated, based on an extensive
set of experiments. In our evaluation, we aim to predict the
duration of Cloud-based task executions as target variables.
In other words, we model the duration a task requires as the

resource (R), and create a predictor function R̂.
In the following subsections, we will introduce the applied

metrics as well as the baseline against which we evaluate
our prediction approach (Section 3.1), the test collection
used for the experimentation (Section 3.2), the evaluation
methodology (Section 3.3), the applied prediction approach
(Section 3.4), and finally its implementation (Section 3.5).
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3.1 Baseline & Metrics
In order to determine the degree to which machine learn-

ing improves the prediction of resource usage, we require a
suitable baseline. In the literature, various approaches to
predicting this usage exist, as we discuss in detail in Sec-
tion 5. To establish a proper common ground for compar-
ison, we have identified simple linear regression as a com-
mon element of these approaches. We have therefore imple-
mented a basic linear regression predictor and compare our
results against this baseline approach.
In order to evaluate the accuracy of the proposed predic-

tion model, it is necessary to observe differences between the

prediction R̂ and the actual task duration R. For this, we
apply the root-mean-square deviation (RMSD), a commonly
used metric for evaluating the quality of predictions [17].
For a prediction model M and a set of test data T , the

RMSD is defined as follows:

RMSD(M) =

√∑
t∈T (R(t)− R̂(t))2

|T | (1)

We designate the RMSD of the baseline as RMSDB and
the RMSD of our machine learning approach as RMSDML.
Following this, we observe the impact of our approach, and
define its error ratio as:

error ratio =
RMSDML

RMSDB
(2)

Therefore, an error ratio of 1.0 designates that the ma-
chine learning approach achieved the same result as the
baseline approach. Any error ratio > 1.0 indicates that the
machine learning approach performs worse than the base-
line, and a value < 1.0 indicates that the machine learning
approach yields a lower RMSD than the baseline, thus per-
forming better. We use this metric to be able to compare
deviations regardless of their magnitude and unit.

3.2 Evaluation Dataset
To evaluate the proposed prediction approach, we have

chosen an extensive dataset from Travis CI1 and GitHub2.
Travis CI is a publicly available continuous integration (CI)
service for projects hosted on GitHub. For instance, when
a developer pushes new code to GitHub, the CI server will
detect this change, and trigger a new build/test/package
cycle at Travis CI. For projects without a payment plan,
Travis CI provides information about this CI process openly
and without restriction. This data includes, amongst others,
the name of the project (repository) that has been built,
tested and packaged, the commit ID and the build duration.
We gathered the evaluation dataset by creating a crawler

based on the Travis CI API to collect data about project
builds (build process records). The crawler ran for a total
time of one week. We combined the data with the GitHub
commits’ file counts and total sizes in bytes. By using the
aforementioned API, we collected a raw dataset of over 3 mil-
lion Travis CI build process records from over 35,000 GitHub
repositories. Out of these, we removed repositories no longer
publicly available (most likely due to deletion). We further-
more did not analyze repositories which were larger than

1https://travis-ci.org/
2https://github.com/

200MB, since our analysis required actually checking out the
code, which was not practical above a certain size thresh-
old. The sanitized dataset consists of over 1.1 million build
process records from around 10,500 repositories.
Summarizing, the effective dataset we use for training of

our resource prediction approach consists of tuples with the
following structure:

< T = (Repository,Language), a = File Count,

b = Size, R = Duration > (3)

For training, the data is stripped of its actual duration R

(called label in machine learning), and the prediction R̂ is

calculated. The error between R and R̂ is then given to the
models as training input (backpropagation). For evaluation,

the prediction R̂ are compared to the actual value R, as
described in Section 3.1.

3.3 Methodology
We conducted different preliminary experiments in order

to assess the influence of different features on the prediction
accuracy. In particular, we evaluated if the programming
language of a repository alone would provide a sufficient level
of prediction performance. This way, new repositories could
be assessed using the existing machine learning model. This
would allow tasks which are not yet known to the estimator
to be handled without an initial learning phase.
However, our initial analysis showed that aggregating builds

per language, i.e., from many repositories, drastically re-
duces prediction accuracy. In our experiments, the median
error ratio was around 800, which means that the machine
learning approach had an error 800 times as large as the
baseline approach. We therefore conclude that using per-
language machine learning models is not feasible.
For our approach, we therefore split the dataset by repos-

itory. In other words, we train one machine learning model
per repository, instead of training one per language, or even
a global one. This seems intuitive provided that our initial
experiments have shown that individual repositories have
very different build strategies. When generalized away from
a CI task towards a generic Cloud computing platform, this
step corresponds to training one machine learning model per
scheduled task type, instead of training one global model.
Finally, we grouped the build process records by reposi-

tories and split them into training and testing sets, with a
split ratio of 70% and 30%, respectively.

3.4 Applied Prediction
As mentioned in the last section, we built one machine

learning model for each repository. We therefore regard the
repository as the task requiring execution (denoted as T
in Section 2.3). Furthermore, we identified two parameters
which might influence the build task: the amount of files in
the repository at the time of the build, as well as the total
repository size in bytes. Finally, the variable we want to
predict is the duration of the task.
We therefore formulate the following formal problem: For

each task, the input variables are the repository itself (T ),
as well as the file count (a) and the total size (b) of the
repository. The variable to predict is the task duration (R).
An overview of these variables is given in Table 1.
Although ANN models generally accept the entire set of

real numbers and thus the input domain of an ANN is not
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Table 1: Machine Learning Model Variables

Variable Class Type Example
T Repository Nominal In jlord/git-it

a File Count Numeral In 113 files
b Total Size Numeral In 82 kB
R Build Duration Numeral Out 32.8 s

limited, numbers around zero with a standard deviation of
one are commonly used [3]. This is due to the fact that
activation functions used in most ANN models operate in
this region. This process is called normalization and has
been shown to greatly improve prediction performance and
reduce training time [27]. We therefore perform normaliza-
tion by measuring the mean (μ) and standard deviation (σ)
of the input training set, and then use linear normalization
in the form of x−μ

σ
, in order to achieve this distribution.

3.5 Implementation and Configuration
For the ANN implementation, we chose the open-source

Java library Deeplearning4j (DL4J)3, which provides ma-
chine learning capabilities. DL4J provides, amongst others,
built-in support for multi-layer ANN models. We chose this
kind of network due to its universal applicability [24].
While conducting research in order to obtain a set of pa-

rameters for the ANN, we found that using an ANN with a
single hidden layer is suitable for most scenarios, including
curve fitting, which our use case represents [24]. We further-
more found that using Stochastic Gradient Descent (SGD) [5]
together with Nesterov’s Accelerated Gradient (NAG) [22,
23] is an established weight update method [28]. Further-
more, Glorot and Bengio [10] suggest using the Xavier weight
initialization algorithm together with the tanh activation
function. All of the selected algorithms are supported na-
tively by DL4J. Table 2 summarizes the configuration of our
ANN model.
In Figure 1, we show a graphical representation of the net-

work. An input vector is presented to the two input neurons,
which produce an output according to their weights. This
output is passed to 10 hidden layer neurons. The neurons
in the hidden layer process their input values according to
their weights, and their output is passed on to the output
layer neuron. The output generated by this neuron is then
accepted as the output of the network.
In the training phase, the predicted resource utilization

value obtained from the network output is compared to the
actual (known) resource utilization. The error is then used
to update the weights of the network according to the afore-
mentioned update methodology. In the validation phase,
the value obtained from the network output is also com-
pared to the actual resource utilization, but the network is
not updated, since it is already assumed to be trained. This
is used to judge the network’s performance according the
metrics described in Section 3.1.

4. PERFORMANCE ANALYSIS
Based on the setting discussed in Section 3, we are able to

perform evaluations of our prediction approach. We use the
error ratio shown in (2) as an overall performance metric.
To demonstrate the effects of machine learning, Figure 2

3http://deeplearning4j.org/
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Figure 1: ANN used for Evaluation

Table 2: ANN Model Parameters

Parameter Value
Input Layer Neurons 2
Hidden Layers 1
Hidden Layer Neurons 10 per output
Output Layer Neurons 2
Activation Function tanh
Learning Rate 0.01
Minimization Algorithm SGD [5]
Weight Initialization Xavier [10]
Weight Update NAG [22, 23]
Weight Update Momentum 0.9
Training Epochs 250
Iterations per Epoch 1

shows the prediction performance of an examplary reposi-
tory, which shows good training fit. The predicted duration
is shown over the file count for the repository. Even though
the fit is sometimes off by a constant value (biased), it per-
forms reasonably well.
Regarding the entire dataset, our main concern is natu-

rally the distribution of instances with good fit and instances
with bad fit in the results of our experiment. For this, we
aggregated the error ratio values of all runs for the test data.
We found that in the median case, the error ratio is 0.80 –
in other words, our approach yields a 20% decrease in pre-
diction error. Furthermore, the error ratio of 1.0 or lower
(i.e., the point until which our approach performs better
than the baseline approach) has been reached for 72% of all
cases. This can be seen in detail in Table 3, which shows a
summarizing view of the comparison of our approach against
the baseline.
We furthermore note that the performance in terms of

learning duration, i.e., how fast the model could be trained,
was not in the scope of this research. However, the results
were obtained in about 30 s, using commodity hardware.
While we used a particular test dataset for our experimen-

Table 3: Summary of Results

Approach (Percentile) RMSD Error Ratio

Baseline 10.4 s 1.00
Machine Learning (worst 5%) 23.9 s 2.30
Machine Learning (median) 8.3 s 0.80
Machine Learning (best 5%) 1.1 s 0.11
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Figure 2: Exemplary Training Results: Duration over File
Count (Error Ratio = 0.267)

tation and evaluation, we nevertheless argue that the eval-
uation results are generally applicable. The dataset stems
from a typical Cloud-based application, and the build pro-
cesses used as example tasks within this paper are typical
Cloud-based tasks – Cloud resources (in this case, time) are
served to clients in an ad hoc manner. Nevertheless, using
different test datasets, e.g., for stream processing, business
processes or container instantiation, would yield significant
results and are likely to confirm the applicability of our ap-
proach.
Limitations of our approach consist mainly in the fact

that in order to use a machine learning prediction model,
sufficient training data is necessary. While we achieved
satisfactory performance using even little training data, it
is naturally not possible to infer any estimation without
training. Furthermore, the computation power necessary to
train a machine learning prediction model is non-negligible.
When applying machine learning to applications with a large
amount of resource prediction variables, special care must
be taken not to cause too much prediction overhead. This
could potentially outweigh the cost savings stemming from
cost and time reduction of optimized resource provisioning
and scheduling algorithms.

5. RELATED WORK
Several approaches exist to predict or estimate the us-

age of resources for tasks to be provisioned using Cloud-
based computational resources, ranging from relatively sim-
ple mechanisms to complex ones. In this section, we present
and briefly discuss these approaches.
[9] uses a hybrid approach of predictive and reactive provi-

sioning, where the predictive approach works at coarse time
scales (hours) and the reactive approach handles short-term
peaks. [25] also uses historic data analysis, but employs a
clone detection technique to determine whether resource ac-
cess patterns have been encountered before. Similarly, [6]
uses time series analysis and proposes an auto-scaling algo-
rithm. However, for [6]. [9], and [25] no machine learning
approaches are used.
Similarly to the provisioning or placement problem, the

scaling decision problem is the research area of a lot of

research, especially in Cloud computing. [6], [7], and [21]
cover this subject, which is often done using machine learn-
ing techniques However, as argued in the introduction, the
scaling decision problem (leasing and releasing) alone is of-
ten not sufficient for efficient operation.
[30] is similar to our work in that it employs neuron-based

systems to predict resource utilization behavior, but focuses
on the clustering and load distribution of this prediction, in-
stead of the prediction of resource utilization of tasks them-
selves. The paper uses load traces from 1997 to evaluate the
approach.
Islam et al. [16] propose empirical prediction of resource

usage in the Cloud. For this, the authors apply ANN models
and linear regression and analyze TPC-W, a specification for
benchmarking e-commerce scalability and capacity planning
for non-Cloud e-commerce websites [20]. While we focus on
the prediction of per-task duration of different tasks, Islam
et al. restrict the prediction to the overall CPU utiliza-
tion. Thus, the results are more coarse-grained than in our
approach. Finally, our work uses real-world data records
instead of benchmarking for evaluation. Nevertheless, the
work by Islam et al. comes closest to the work at hand.

6. CONCLUSIONS
In Cloud computing, a predominant challenge is the pro-

visioning of resources. Cloud service providers face the com-
plex task of assigning client requests to their Cloud infras-
tructure. In current literature, the prediction of resource
usage required to refine the provisioning strategy is often
done using simple linear regression or fixed values. We pro-
pose using methods from the field of machine learning to
build prediction models from historic data. Using a real-
world dataset, we evaluate our approach and show that it
indeed increases accuracy, compared to a simple linear re-
gression approach. In the median case, our model predicted
the duration of Cloud tasks with an error ratio of 0.80 (i.e.,
20% less prediction error). In the best 5% of cases, an er-
ror ratio of 0.11 has been achieved (i.e., 89% less prediction
error).
The main aim of our future work is to refine the applied

prediction techniques. We expect improvement of the per-
formance by using more sophisticated models like recurrent
ANN. Furthermore, we would like to apply our approach
to online learning scenarios; the current approach lacks re-
normalization techniques to balance out the neuron weights
with new data. Finally, we currently only support fully su-
pervised learning, where the actual resource utilization is
known. Especially in initial stages of a learning model, us-
ability would drastically improve if we could employ semi-
supervised or non-supervised learning.
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