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Abstract—The usage of Web or Cloud-based applications
on mobile devices suffers from varying link quality, which
causes user-perceivable delays and therefore reduces the Quality
of Experience (QoE). On the other hand, mobile devices are
increasingly feature-rich, allowing to make usage of context data
in order to predict network quality based on the user’s location.

In this paper, we propose a prefetch scheduling algorithm
based on network quality predictions, and evaluate it using
data collected from real-world field tests. We show that our
approach fulfills the expected gain in QoE. Using network quality
prediction to optimize data prefetching can improve the user-
perceived response time by up to 95 %.

Our results not only show the feasibility of the proposed
algorithm, but also motivate further research in the field of
mobility pattern creation, and undermine the importance of
location as a part of user context throughout the software stack.

Index Terms—Mobile networks, prefetching, location depen-
dent services, prediction, connectivity

I. INTRODUCTION

In mobile computing, one important parameter of the user-

perceived QoE is the round-trip-time between a sender and a

receiver [1]. In many mobile application scenarios, certain data

is required to be provided in a timely manner: Audio data from

a music streaming service will cause playback stutter when

the device-side buffer underruns; a turn-by-turn navigation

system must provide users with on-time, detailed graphical

instructions, possibly generated dynamically by a centralized

service in order to reduce computational load of the client

devices [2]; live traffic data can be provided to the client in

real-time in order to provide the user with dynamic re-routing

in case of traffic jams [3]. Also, an increase of applications

deployed on mobile devices but using Web- and Cloud-based

resources can be observed [1]. This shift towards mobile

computing calls for new ways to improve the QoE for mobile

users: Mobile devices are often connected to the Internet using

mobile data networks like 3G (UMTS, HSDPA/HSUPA) or

4G (LTE), which are by nature subject to fluctuations and

instabilities. Some of these variations are accountable to the

provider (e.g., caused by over-provisioning), but often it is

the location of the device which leads to low connection

quality, e.g., because the user is driving through a tunnel or

simply since the network coverage in rural areas is inferior

to urban environments [4]. Furthermore, it is noteworthy that

location influences connection quality not only because of

geographical features (hills, tunnels, remote areas), but also

because some locations might indirectly cause bad connection
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Fig. 1: Using prefetching to overcome periods of slow speed

or lack of connectivity

quality (a crowded stadium might have decreased mobile

network quality, despite being in an otherwise geographically

beneficial location, e.g., next to a mobile network base station).

Indeed, the adaptation of communication in order to increase

the Quality of Service (QoS) has been a major research

topic for many years [5], with recent works also addressing

QoE [6], [2]. One particular approach to enhancing the QoE

for mobile users is the prefetching of data [7]: Given a

user’s location, movement direction and possibly the planned

route, the network quality over time can be predicted to a

certain degree. This information can be used to prefetch data

which could be needed during times of poor or intermittent

connectivity. As shown in Figure 1, for requests due during

such periods, data is then prefetched earlier, when connection

quality is sufficient.

To the best of our knowledge, the effort put into developing

approaches of smart prefetching based on mobility pattern

is limited (see Section II). Hence, in this work, we lay the

mathematical foundations of prefetch scheduling, propose a

concrete algorithm for such scheduling of multiple requests

with known attributes (deadline, size), assuming a model of

predicted connection quality. Especially, we address mobility

scenarios, i.e., take into account that the location of the user

may change quickly and regularly, and therefore the network

quality may be subject to rapid changes.

Furthermore, we provide a reference implementation for this

algorithm and evaluate its performance using a testbed setup

and a real-world recorded data set. Afterwards, we perform

regression testing using various parameters.

The results of our work show that creating mobility patterns

for users poses a valuable source of information, not only

for high-level tasks like providing the user with, e.g., route

calculation suggestions, but also on transport-level layers, by
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mangling the fetching schedule for specific data blocks.

Summarizing, the contributions of our work are as follows:

• We formalize the notion of prefetching, its requirements

and implications, and provide a discussion of the appli-

cability in real-world situations.

• We formally derive a concrete algorithm for scheduling

data fetches under the assumption that certain context

knowledge is available.

• We evaluate the algorithm using data acquired in a real-

world measurement, and compare its results to both our

expectations and to results gained without using our

proposed prefetching algorithm. We not only show that

the algorithm yields the expected results, but also observe

that even inaccurate prediction, allows for increased over-

all QoE when employing prefetching.

• Examining our results, we motivate a more in-depth

research in the field of mobility pattern prediction, by

showing that increasing prediction accuracy allows for

improved QoE.

For this, the remainder of this paper is organized as follows:

First, we will comment on the related work on data prefetching

(Section II). Then, we state relevant preliminaries for our

work (Section III). Afterwards, we introduce an algorithm for

scheduling prefetching (Section IV). A reference implementa-

tion of this algorithm is evaluated using a testbed setup and a

real-world data set (Section V). Eventually, we conclude this

paper (Section VI).

II. RELATED WORK

Prefetching is a well-known approach to increase the per-

formance of an application. It is widely used in processors,

databases and file systems [7]. In the following paragraphs,

we will discuss according approaches in the field of wireless

network services and distributed computing.

A lot of attention in literature is given to video transmission,

or multimedia content in general, e.g., [8], [9], [10], [11].

Also, prefetching or caching of search results has gained some

attention, e.g., [12], [13], [14]. The same applies to the caching

or prefetching of generic Web content [15], [16]. None of

these approaches, however, takes into account prefetching for

mobile devices. Concepts related to prefetching in the context

of location-dependent data, which are related to, but not in the

focus of the work at hand, are targeted in [17].

We extend our former work, revisiting the notion of time
criticality of specific services, or using the difference between

required bandwidth and available bandwidth [18]. Riiser et

al. also discuss mobile users and prefetching of data based on

bandwidth prediction [9].

While we build on the fundamentals set by [18], [9], our

work is – to the best of our knowledge – the first to derive

the mathematical basis for prefetch scheduling using calculus,

and to formulate an actual algorithm for scheduling fetches.

We assume two major preconditions for our work, namely

mobility prediction and network quality (or bandwidth) predic-

tion (see Section III-B). Prediction of user mobility has been

researched extensively, e.g., [19], [20], [21]. Network quality

prediction has been the subject of research in [22], [23], [24].

A combination of mobility profile creation and network quality

prediction can be found in [18], [9], [25].

Reactions to predicted network quality, apart from prefetch-

ing as described here, can include offloading data transfers to

nearby WiFi stations, either by pushing data to hot-spots [26]

or delaying transfers until hot-spots are available [27], [28].

III. PRELIMINARIES

In the following subsections, we provide some background

by setting definitions regarding the data to be prefetched.

A. Data Suitability for Prefetching

Not all kinds of data are suitable for prefetching. While

we discussed certain types of data regarding suitability in our

previous work [29], we herein use a simplified definition: Data

is suitable for prefetching if it is cacheable; furthermore, data

is cacheable if it does not lose its value or meaning when

being fetched ahead of its usage. For instance, prefetching

a music song a few minutes ahead does not reduce its value.

Prefetching a live surveillance camera image even ten seconds

before displaying can render it useless.

B. Predictability

The proposed algorithm requires future network quality, as

well as data demand, to be predictable to some degree.

We estimate the future network quality by assuming certain

knowledge about the expected user position. As discussed in

Section II, for predicting user mobility, different approaches

exist. In general, any of these approaches could be used as

foundation for the work at hand. As discussed, using mobility

patterns for bandwidth prediction has been investigated and

applied in [18], [9], [25].

Since the predictability of future network quality can be

seen as a requirement which is hard to satisfy, we have con-

ducted extensive research regarding the impact of inaccurate

predictions. In fact, the results show that predictions do not

necessarily have to be exact in order to increase QoE. The

response time is reduced, compared to no location-dependent

prefetching, even with very rough (inaccurate) bandwidth

prediction. See Section V-B for further details.

The second major requirement is the predictability of the

future data demand. This is necessary for deciding when to

schedule data (pre-)fetches, and to account for bandwidth

required by other applications running on the same client.

Predicting data demand is highly application-specific. A

navigation system might have well-predictable fetches, music

playing from a playlist is also predictable (unless songs are

skipped quickly). On the other hand, demand for fetching

e-mail messages is generally not predictable at all. For the

purpose of our work, however, we assume that the data

items of interest are predictable to a degree that makes our

scheduling approach feasible.

We suggest an approach where applications provide demand

prediction through APIs. This, however, requires additional

engineering by application developers, since the demand must

be calculated in real-time.
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IV. SCHEDULING ALGORITHM

We seek to improve the aforementioned prefetching by tak-

ing into account the user context, mainly by predicting network

speed from the user’s location. In the following section, we

formulate a model for such a problem (Section IV-A1), define

target variables (Section IV-A2) and finally propose the actual

algorithm (Section IV-B and Section IV-C).

A. Model and Requirements

The following sections define the algorithm’s problem-

specific domain, along with its model and target variables.
1) Model: In our problem domain, the network quality is

represented by the network byte rate (speed), i.e., the rate at

which bytes can pass the link and arrive at the receiver. It is

important to note that other parameters, mainly the latency,

also impact QoE, however, for simplicity, we ignore them in

our model.

We base our model on the assumptions on the predictability

of future network quality and knowledge about future requests,

as discussed above:

1) The network byte rate Bnet is known (estimable) for a

future point in time t, denoted as Bnet(t).
2) A set of scheduled future requestsR is known. A request

R ∈ R is a tuple R = (τ,Dreq), where τ is the time at

which the data is required (the request’s deadline) and

Dreq is the amount of data requested.

We furthermore assume that our scheduling decision al-

gorithm is called whenever re-scheduling is necessary, i.e.,

whenever either the byte rate prediction or the set of scheduled

future requests change. Note that both are subject to change

whenever more precise data is available.

The outcome of the decision algorithm, for each request, is

a scheduling proposal. In other words, the algorithm decides

when the fetching of a certain data item should start in order to

maximize its utility (see Section IV-A2). We therefore define

the output of the algorithm as a set of tuples (R, λ) where λ
is the scheduled fetching time for R.

2) Target Variables: The decision algorithm primarily op-

timizes for a minimal user-perceived response time for each

request R. Given that the input consists of multiple requests,

we regard the minimal sum of waiting times as optimal. We

denote the user-perceived response time as RT , and formulate

the first requirement for our scheduling algorithm:

RT → min (1)

A trivial solution for (1) would be to fetch all requests at

t = 0 (i.e., the earliest possible point in time). This involves

caching all data for a potentially long time, yielding data that

is not fresh, i.e., is outdated. To avoid this, we minimize the

data age (DA) and formulate a second requirement:

DA → min (2)

Ultimately, we observe that a trivial solution for (1) and

(2) would be to start fetching all requests at t = 0 and re-

fetch them periodically, until the application layer actually

Bnet

ta tb t

B
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e
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tb∫

ta

Bnet dt

Fig. 2: Transmitting D data (the area under Bnet) in (tb − ta)
time, represented as an integral of Bnet

utilizes the data. This would cause continuous data transfer,

which unnecessarily increases cost and energy consumption.

We therefore introduce a third target variable, data volume,

i.e., the total amount of transferred data, denote it as DV , and

also minimize it. This yields our third requirement:

DV → min (3)

Concluding this section, we require data to not be fetched

too late (1), but also as late as possible (2), without unneces-

sarily repeating transfers (3).

B. Mode of Operation: One Request

The following section describes the mathematical idea be-

hind the proposed algorithm. We assume a transmission of a

defined amount of data, Dreq, in a time interval [ta, tb], with

the byte rate B. We also assume that the transmission uses

the entire available network byte rate, i.e., B = Bnet. We will

refine this notion later (see section IV-D1).

We note that the byte rate is the rate of transferred data per

time (B = D
t ). The momentary byte rate at t is the increase

of data transferred up to t. In other words, the byte rate is the

derivative of transferred data: B(t) = ΔD(t)
Δt .

We transform the derivative to an integral to describe the

transfer of our request (with Dreq data and Bnet byte rate):

Dreq =

∫ tb

ta

Bnet(t) dt (4)

Figure 2 exemplifies this: Dreq, the area under Bnet, repre-

sents the data transferred between ta and tb.

Since data transfer is not truly a continuous process as

suggested by this model, but rather a transfer of discrete

chunks, we re-formulate the integral as a sum:

Dreq =

tb∑
t=ta

Bnet(t)Δt (5)

Note that this model is an approximation, not accounting

for deviations from the predicted byte rate Bnet, or sharing of

the wireless connection between applications or devices using

the same network.

Since we ultimately seek to finish the fetch on time, i.e.,

to answer the question on when to start fetching, we need to
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find the lower boundary ta of the sum. We denote the resulting

point in time using the variable λ. Since we cannot solve for λ
without a numeric definition of Bnet, we require an extension

to our approach, described in the following.

We define the anti-derivative (integral) of Bnet and call it

Dnet(t) =
∑t

0 Bnet(t). In Figure 3, we show the relationship

between Bnet and Dnet. Since Dnet is monotonic and increas-

ing1, we are able to define an inverse function and call it

Dnet
−1, also shown in figure 3. Hence, for any data amount

D given, Dnet
−1(D) = t returns the smallest2 point in time t

so that Dnet(t) = D.

With Dnet
−1, we have now defined a function which, for a

given data amount D, returns a point in time at which D data

will be fetchable (starting from t = 0).

We return to our initial problem from Section IV-A1, i.e.,

for each given request R = (τ,Dreq), to fetch Dreq data and

finish fetching as close to the point in time τ (the deadline) as

possible, but not later. Therefore, if we know that at τ , Dnet(τ)
data will be fetchable (starting from t = 0), we know that we

seek to determine a point in time λ at which:

Dnet(λ)︸ ︷︷ ︸
Data fetchable until λ

+ Dreq︸︷︷︸
Request data

= Dnet(τ)︸ ︷︷ ︸
Data fetchable until τ

(6)

It follows from this that Dreq data is fetchable in the interval

[λ, τ ]. This fits our task of modeling the transfer of Dreq data.

1Dnet is strictly monotonic if and only if Bnet is always greater than zero,
which we cannot assume; we therefore assume Dnet is merely monotonic, not
strictly monotonic.

2Necessary because Dnet is not strictly monotonic.

We can now solve for λ using the introduced inverse function

Dnet
−1:

Dnet(λ) = Dnet(τ)−Dreq (7)

λ = Dnet
−1(Dnet(τ)−Dreq) (8)

Given our derivation, λ satisfies
∑τ

t=λ Bnet(t) = Dreq, i.e.,

the network can transfer Dreq data in the interval [λ, τ ]. Hence,

when starting the transfer of Dreq data at λ, it will be finished

at τ . This fits our requirements (1)–(3): First, since the transfer

finishes in time (at τ ), RT is zero. Since we select the latest

possible point in time λ, DA is minimal. We also transfer

data once, instead of re-transmitting it periodically, which

minimizes DV .

Summing up, in this section, we derived a solution to

determine an optimal fetching time λ for a single request and

formulated it in (8).

C. Mode of Operation: Multiple Requests

Our algorithm is required to schedule multiple requests. In

the last section, we have shown how to schedule the fetching

time for a single request. In this section, we describe how to

extend this functionality to scheduling multiple requests.

As an example, we assume five requests, R0 − R4, with

according deadlines τ0 − τ4. We work our way backwards,

and start by scheduling the last request, in our case R4.

By means described in Section IV-B, we find the time for

fetching R4 (named λ4). Figure 4 shows our example, where

λ4 has no overlap with deadline τ3. We therefore schedule R3

accordingly, obtaining the fetch time λ3.

However, we now see an overlap between the fetching of

R3 (taking place in the time interval [λ3, τ3], represented by

the blue area R3) and the next request in line (R2), since that

request’s deadline (τ2) now lies within the fetching time of

R3. We therefore have to start fetching R2 even earlier, and

compensate this by using the same procedure as before, but

instead of using τ2 as the target time, we select λ3.

In other words, fetching request R2 must be finished at τ2,

as we have already established, but since this point in time is

already known to be busy, we assume an even earlier deadline.

For this, we use λ3, i.e., the latest point in time, in which the

network is known not to be busy. Figure 5 shows the result,

with the same correction applied to request R1.

Summarizing, we need a new upper bound instead of τ
in (8), and introduce τ ′, removing overlaps. For a request Rn

with the subsequent request Rn+1, with a scheduled fetch start

λn+1, a new τ ′n is calculated as follows:

τ ′n = min( τn︸︷︷︸
No conflict

,

Next request’s fetch start︷ ︸︸ ︷
λn+1︸ ︷︷ ︸

Conflict with next request

) (9)

Replacing τ with τ ′ in (8) eliminates overlaps. This ensures

timely fetches of all requests, to the extent of the byte rate

prediction accuracy.
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D. Algorithm Parameters

During our preliminary evaluation, we found that certain

aspects of the algorithm require further adaption. We therefore

introduce two parameters for our algorithm.

1) Error-Correction Factor α: Since it is assumed that the

bandwidth is merely predicted – thus, imprecise – and also

mobile bandwidth is shared with other applications running

on the same device, as well as with other mobile devices,

a certain error margin has to be considered. To account for

this, we introduce α as a parameter, with α ∈ [0, 1]. α = 1.0
means that no error margin is considered by the algorithm (all

predicted available bandwidth is claimed in its scheduling),

α = 0.5 means that only half of the predicted bandwidth is

used. In an extreme case, α = 0.01 would cause the algorithm

to use only 1 % of the predicted available bandwidth.

2) Look-Ahead Time thorizon: The parameter thorizon de-

scribes the look-ahead time of the algorithm, i.e., how much

into the future the algorithm plans its fetches. This is done

for two reasons: First, from a practical point of view, mobile

devices are prone to having limited resources, especially

memory and processing power. Therefore, it can be assumed

that a certain limit has to be established in order to conserve

those resources. Second, from a simulation point of view,

prediction quality (of both future bandwidth and future data

fetches) decreases over time, as the likelihood of changing

circumstances increases. The parameter thorizon, by cutting off
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Fig. 6: The route used to record the test dataset, along with

the extracted speed information

any scheduling after the look-ahead time, makes the simulation

model more realistic.

V. EVALUATION

We evaluate the proposed algorithm in three steps. First,

we simulate the algorithm using a testbed consisting of virtual

machines running Linux. We employ network traffic shaping

using the tc command (provided by the dummynet project3),

which is a standard traffic shaping tool in the Linux operating

system.

Our use case for evaluation is a car driving along a route,

fetching data from a service in defined intervals (e.g., direc-

tions for turn-by-turn navigation). We aim to resemble this use

case, while maintaining the flexibility provided by a testbed.

We therefore perform test runs using a data trace recorded

while driving along a route in a car. The route contains periods

of poor reception due to hills, as well as around 70 s of

total connection outage in a tunnel (see Figure 6). Results

are presented in Section V-A.

Afterwards, we put our focus onto measuring the impact

of prediction accuracy on the results, since the predictability

of network speed is undoubtedly the strongest assumption. In

Section V-B, we describe our evaluation using simulations and

regression analysis, and show that even inaccurate predictions

improve the overall performance.

Finally, we analyze the impact of algorithm parameters of

the presented approach on the result. Specifically, we measure

the impact of the look-ahead-time (thorizon) and the error

correction factor (α). The results are shown in Section V-C.

3http://info.iet.unipi.it/∼luigi/dummynet/
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A. Evaluation Using Real-World Route

Our simulation consists of service calls with a varying

interval and size, which produce an average traffic of 150 kB/s.

The total size of the transmitted data is 24.75 MB, and the

transmission lasts for 165 s, if no interruption is encountered.

Our mobile client software consumes the data stream with

a constant byte rate, but builds an initial buffer of 450 kB

before starting consumption, and also after having encountered

a buffer underrun.

The route traveled is shown in Figure 6, along with the net-

work byte rate information extracted from this test drive. We

corrected the route after recording regarding GPS inaccuracies

inside the tunnel. Furthermore, we used a different time scale

(essentially accelerating the simulation) in order to achieve a

feasible simulation time in our testbed. Our simulation thus

has a duration of 1800 s (30 min), even though the real drive

lasted for over an hour.

In order to have a baseline result without employing our

location-aware prefetching approach, we employ a buffering

method consisting of prefetching independently of user lo-

cation (and thus, independent of predicted network speed).

This is a method commonly used in media transmission and

playback software [30]. As we can see in Figure 7, buffer

overruns occur during the first phase of bad reception (between

Server

Client

Client Code

Middleware

Scheduling Algorithm

Network Link

Fig. 9: Architecture setup of simulation environment used for

regression tests

350 s and 500 s), as well as while traveling through the tunnel

(between 1450 s and 1600 s).

We then employ our proposed prefetching algorithm. The

algorithm overcomes all periods of bad or lacking reception

by pre-buffering data (see Figure 8). We can also see that the

algorithm does not prefetch data unnecessarily: during times

of good reception (for instance, between 750 s and 1250 s),

no prefetching is performed. Before those periods of good

reception end, however, the algorithm starts prefetching again

– this effect is visible at 1300 s.

We recorded a total of three routes in the Vienna urban area

and its surroundings (one of which is shown here) and could

consistently verify our findings with all three of them. Further

details can be found online.4

B. Impact of Prediction Inaccuracy

Naturally, the strongest assumption in our work is the

availability of bandwidth prediction in the future. In Section II,

we have shown that the subject of creating mobility patterns of

users is of ongoing interest. Nevertheless, we want to measure

the impact of prediction inaccuracy on the performance of our

approach.

To this end, we developed an agent-based virtual-time simu-

lation environment. The environment consists of a client-server

setup, where the network link (see Figure 9) is manipulated, in

order to artificially induce network bandwidth limit and delay.

We used the simulation environment for regression testing.

Specifically, we performed a series of test runs, changing

various accuracy parameters. Each parameter constellation was

run repeatedly (n = 500) and all results of those runs were

aggregated.

For all runs, we used three different approaches: No

prefetching (A), which constitutes a very naive baseline;

location-independent prefetching (B), which represents a com-

monly used approach; and our proposed location-dependent

prefetching algorithm (C). We measure two parameters: re-

sponse time (RT ) and data age (DA).

We identified two major manifestations of bandwidth pre-

diction inaccuracies. Predictions can be either inaccurate re-

garding amplitude (i.e., an overly high or overly low predic-

tion), or regarding time (i.e., a change in bandwidth actually

happens earlier or later than predicted). Other possible inac-

curacies can be seen as a combination of those two factors.

4http://github.com/michael-borkowski/pf-sched
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Therefore, we performed regression analysis for two predic-

tion parameters: amplitude error and time error. In Figure 10,

we observe that negative amplitude inaccuracies (prediction is

less than actual bandwidth) cause lower response time (better),

while positive amplitude inaccuracies (prediction is more than

actual bandwidth) cause higher response time (worse). This

matches our expectation, where an overly optimistic prediction

causes worse results than when rather conservative (early)

fetching is employed. On the other hand, data age increases

drastically as prediction becomes more and more pessimistic,

which intuitively shows the drawback of overly pessimistic

predictions.

Regarding time inaccuracy, Figure 11 shows that response

time is impacted in both directions of inaccuracy, i.e., both pre-

mature and late predictions impact response time negatively,

albeit the patterns for those two directions differ (the graph for

RT C is asymmetric). We have not found a definite answer

to this phenomenon as of the time of writing, but can draw

a general conclusion stating that time inaccuracy negatively

affects prefetching performance, as expected.

Concluding the investigations regarding the impact of esti-

mation, we observe that while prediction inaccuracy naturally

affects the performance of our proposed algorithm, it does so

in an extent that justifies using prefetching even with partial

(inaccurate) prediction. Most notably, our approach is never

performing worse than the two presented baselines approaches;

in most cases, its results are significantly better with respect

to response time and data age.

C. Impact of Algorithm Parameters

In order to investigate the impact of the two algorithm

parameters introduced in Section IV-D, we performed regres-

sion analysis, similar to the method described in Section V-B.

Figure 12 shows the impact of thorizon on the performance.

Around 45 ms, response time stops decreasing, and data age

stops increasing. This matches the simulation setup used, with

data bursts requested at an interval of 45 ms on average. The

intuitive notion that the look-ahead time should be higher than

the excepted call interval is confirmed in this observation.

Figure 13 shows the impact of the α parameter. Similar to

Figure 10, a decrease of response time (better performance) is

related to an increase of data age (worse performance). This is

caused by the fact that a lower α results in a more conservative

(pessimistic) schedule decision, in the same way that those

results are caused by negative amplitude error in Figure 10.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed and shown the demand for

prefetching in mobile networks. We have described how using

network quality prediction can be used to optimize prefetching,

enhancing the user-perceived QoE.

We have derived and formulated a concrete algorithm for

prefetching, based on request deadlines and an approximate

connection speed prediction. This algorithm performs as envi-

sioned, which can be seen in our evaluation using real-world

data from actual connection speed recordings.

Even though our proposed approach requires assumptions

about the predictability of data demand and network quality,
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and these assumptions seem strong, we have shown that even

with imprecise prediction, our approach provides a decrease

in waiting time, leading to a significant increase of overall,

user-perceived QoE.

We therefore motivate research in mobility pattern recog-

nition and prediction. This, in conjunction with research

presented herein ultimately allows to optimize user experience

in context of current and projected location.

The main areas of further research are predictive elements

(gaining more precise knowledge about network quality and

data demand), as well as the algorithm itself: Predictions can

be improved, taking into account additional context (e.g., the

user’s calendar to gain knowledge about their future location).

Tailoring of the algorithm can yield further improvements

when taking into account factors like applications rivaling for

the mobile connection, i.e., running on the same client.

Furthermore, it is noteworthy that all prefetching ap-

proaches, deployed to mobile clients, bear the danger of cre-

ating ripple effects: a high amount of clients, prefetching data

during times of good network quality, actually decrease the

network quality during this time. Deploying such mechanisms

on large-scale networks requires appropriate mechanisms for

preventing such situations.
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