
Smart Prefetching for Mobile
Users under Volatile Network

Conditions

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Michael Borkowski, BSc
Matrikelnummer 0925853

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Prof. Dr. Schahram Dustdar
Mitwirkung: Dr.-Ing. Dipl.-Oec. Stefan Schulte, BSc

Wien, 1. August 2015
Michael Borkowski Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Smart Prefetching for Mobile
Users under Volatile Network

Conditions

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Michael Borkowski, BSc
Registration Number 0925853

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Prof. Dr. Schahram Dustdar
Assistance: Dr.-Ing. Dipl.-Oec. Stefan Schulte, BSc

Vienna, 1st August, 2015
Michael Borkowski Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Michael Borkowski, BSc
Auhofstraße 158/5
1130 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. August 2015
Michael Borkowski

v





Acknowledgements

I most thankfully acknowledge Dr.-Ing. Stefan Schulte from the Distributed Systems
Group of the Vienna University of Technology for advising and mentoring me in writing
my thesis; while providing a necessary framework of requirements, Dr. Schulte made
sure to give me freedom to find and pursue my path independently. For this trust, I am
truly grateful. Also, thanks to Dipl.-Ing. Philipp Hoenisch, who supervised me at my
previous project, I had the chance to immerse my acquaintanceship with Dr. Schulte.
Furthermore, I was happy to receive a refreshment of knowledge in statistics, which I
have gotten terribly out of practice with, by my fellow student Bianca.

Personally, I am deeply thankful to my parents, Irena and Tomasz, who not only
laid the foundations of my interest in computer science, but also provided me with an
incredible amount of resources, both material and intellectual, and allowed me to strive
after what I found was both a passion and a profession for me. My parents as well as my
sister Barbara stood by my side throughout my studies; where possible, they supported
my ideas and dreams, and in times of necessity, guided my way, providing me with a skill
set which paved the way for my work in this field.

The endeavour of study and research is one which along its way requires focus,
discipline and persistence. I could not have found energy and endurance without a superb
group of friends. I dedicate this work to Stefanie (who never failed to point out that this
thesis is, in its core, about navigation systems), a friend whose willpower I have never
seen matched, who is not only a marvellous discussion partner in a variety of matters, a
promising scientist and an excelling physicist in the near future, but also a delightful
companion for endless debates over coffee. Likewise, I was happily able to draw from the
friendship and support of Christian, who I would not want to do without; his company
on evenings after busy days allowed me to take a break from work where necessary;
Elisabeth, a charming friend, who stood by my side at all times, never failing to supply
me with witty gags and legal advice; Konrad, who was always in for a chess match and
a deep intellectual discourse. I received a lot of professional and personal input from
Manuel, with whom each and every discussion was enjoyable and thought-provoking, and
whose views I could cut off a slice or two. Marco and Pablo, I am thankful to have such
true friends who I can share both technical discussions and memorable adventures with.
My group of peers is, amongst others – who have helped me become the person I am
today – completed by trusted friends such as Manuela, Stefan, Lisa, Kathrin, Sophie,
Krisztina and Daniela, who I am truly happy to share a deep friendship with.

I have to thank T-Mobile Austria GmbH, A1 Telekom Austria AG and Hutchison Drei
Austria GmbH for the courtesy of providing me with the right to use their network coverage
maps in my work. I furthermore acknowledge the work of thousands of contributors in
the open source community – which I am proud to be a part of, and hope to contribute
more to in the future –, be it in software facilitating the development of my experiments,
support forums or other projects.

vii





Abstract

In the field of mobile distributed computing, the term prefetching is used to describe the
practice of retrieving data before its actual usage. Doing so results in several beneficial
effects for the user, ranging from reduced perceived delay, the possibility to handling
lower connection speeds to masking network outages completely.

This thesis proposes a prefetch scheduling algorithm. The described algorithm is
capable of scheduling requests so that, in a best-case scenario, the results are fetched
exactly on-time and no delay at all is experienced by the user (or client code).

After discussing some formal concepts necessary as a foundation for the proposed
algorithm, a basic idea on how to approach a scenario of volatile network connectivity
with a given context (predicted future network quality) is presented. The idea is first
stated as a problem of mathematical analysis, and subsequently transformed into a
concrete algorithm, of which a reference implementation stub in Java is shown.

The second main section of this thesis is a simulation environment capable of re-
producibly evaluating the prefetching scenarios by running simulations of mobile units
with fluctuating network quality. This thesis presents the architecture of this simulation
environment in detail. Following this description, a series of simulation configurations
is shown and the resulting simulation outcomes are presented. The results show that
the algorithm indeed increases the overall quality of user experience significantly, in the
typical use case modelled after a real-world situation by up to 70%, while maintaining
context constraints like limited energy usage.

Concluding, the algorithm is put into context of real-world applications and its
feasibility is discussed, alongside with possible future fields of research and concepts of
enhancement.
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CHAPTER 1
Introduction

When regarding software systems with spatially distributed components, it is often the
case that part of the software is located on a mobile device, while another part is deployed
on a server, running in a data processing centre. Often, the part interacting with the
user (the user interface, also called front end) running on the mobile device is frequently
being moved between different locations, as the user moves around, for example while
driving in a car. The front end is constantly communicating with a server system, also
called the back end. This kind of software systems is already very present in our lives
when regarding mobile phones; modern smart phones have penetrated our everyday lives
in a highly perceivable way; the amount of data accessible at the palm of our hands
would certainly have impressed, if not startled someone who lived a century ago.

1.1 Mobile Computing

The number of mobile subscribers globally has grown from just 580 million in 2002 to
3.5 billion in 2007, as described by [Chu+11]. The specific use of smart phones alone
has reached 32.2 million units in the second quarter of 2008, according to [Pal+10],
which demonstrates the massive number of used mobile devices capable of providing
more than the basic functionality of a mobile phone (voice calls and text messages).
[Ver06] presents that mobile device usage has evolved in a vastly different way from
usage of stationary devices. It is observable and discussed in [Bao+11] that mobile
devices are increasingly replacing traditional, non-mobile devices for certain tasks. Mail,
communication in general, or calendar management – these use cases only represent the
classic business-related tasks that smart phones are capable of performing. In addition
to the aforementioned activities, smart phones hold potential for entirely new use cases.

One notable example of a use case provided by smart phones is the kind of real-time,
ubiquitous, ever-reachable instant messaging we experience using mobile applications
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such as WeChat1, WhatsApp2, Facebook Messenger3, Line4 or Viber5. While the possibility
of asynchronous text-based messaging was already provided using text messages (Smart
Message Service, or SMS, which in some regions is used synonymously to the text messages
themselves), it was usually rather expensive to use and the feature set was limited mostly
to transmission of short text messages6; modern instant messengers, however, allow for a
media-rich experience, where the transmission of photos, videos, audio, location or other
media can be achieved with the same ease as sending a text message, which has led to a
rapid increase in popularity of instant messengers (see [Par+11], [Law+06] or [KL05]).

A transition from simple (dumb) phones to lightweight high-performance computation
devices such as smart phones observably opens up completely new use cases. What this
implies is that new technology should be regarded in a broader context, possibly not only
limited to the originally intended purpose, and that research in the field of mobile services
is not only auspicious, it is obligatory. While examining the name smart phones, one can
already observer the adjective smart in connection with an increasing number of everyday
objects; not only do we possess smart phones; smart cars promise to autonomously drive
us to our smart homes, which are all part of a smart city. The tendency to interconnect
and to integrate virtually all our surroundings can clearly be observed considering the
movement towards the what seems to be the great goal of current development, the
Internet of Things (IoT).

One particular instance of IoT is the development of increasingly integrated computers
in cars. While a car itself, a device useful for changing one’s location without employing
a significant amount of manual labour (at least in proportion to the distance travelled),
has a rather simple main use case, it is natural for us nowadays that a car excels this
purpose by a rich facet of differing capabilities, the most used one maybe being the car
radio (or, in recent years, CD or Line-In playback or perhaps Bluetooth capabilities). It
is intuitive and seems quite likely that cars in several years or decades will work in ways
that are not thought of at all today, or at least still under very juvenile development.

1.2 Connectivity of Varying Quality

This thesis stems from the development of a smart car system, where an on-board
computer is constantly connected to a central unit (server), for example via a 3G or 4G
mobile connection, and is integrated into a user’s life for his convenience. The personal
calendar could in such a scenario be synchronised with the car’s heating system to allow
for a comfortable temperature to develop shortly before the user needs to drive; other

1WeChat is a service developed by Tencent Holdings Ltd. in China; http://www.wechat.com/
2WhatsApp Inc., based in Mountain View, is a a startup founded 2009 by Jan Kourn and Brian

Acton; https://www.whatsapp.com/
3Facebook, Inc. was founded 2004 by Mark Zuckerberg, Eduardo Saverin, Andrew McCollum, Dustin

Moskovitz and Chris Hughes
4Line Corp. was founded 2000 in Japan
5Viber is a service developed by Rakuten, Inc. in Japan
6Vendor-specific extensions allow for transmission of other media as well.
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IoT devices such as a smart fridge could notify the user of chores like stocking up on milk
en-route; these are merely some examples provided in order to give the reader a broad
understanding of the possibilities which are currently subject of imagination and vision.

A smart car on-board computer with its constant connection to a central server, how-
ever, is, as an inherently mobile device, exposed to certain limitations which accompany
mobility, the main one being a network connection of fluctuating quality. This situation
is schematically shown in figure 1.1. Such a network connection might have periods of
time where metrics such as bandwidth or latency showing satisfactory quality, however,
at other times, the connection might have sub-par attributes like low speed, high latency
or frequent disruptions. While such disruptions are sometimes unpredictable, certain
assumptions can be made nevertheless, for example, if the user’s route is leading through
a tunnel – these structures are known to have rather poor mobile network reception,
leaving aside some cases where special measures have been taken to install equipment
providing reception inside the tunnel –, it is foreseeable that network quality during that
part of the journey will most likely be close to zero.
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Figure 1.1: Depiction of a mobile user moving through a network with zones of varying
quality

1.3 Prefetching

The described scenario of foreseeable network quality drops during some parts of, for
example, a journey, immediately yields a possible solution for the delay the user is going to
experience: data required in times of insufficient network connectivity can be transferred
during periods where the connection quality is ample. This process of transferring data
ahead of its requirement, in this case in order to have it available upon request despite
degraded network quality, is called prefetching.
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Our goal is to research, provided that certain limitations of the network connections
are known or can be predicted with fair probability, mechanisms enabling the user to
experience constant service. We therefore assume some degree of knowledge about future
network connection quality parameters and attempt to derive a mechanism – an algorithm
– for using that knowledge in mobile software systems.

1.4 Thesis Structure

Following these preliminary words in chapter 1, we present our research on existing
literature in the field of mobile computing in chapter 2, discussing briefly some ideas and
concepts (closely or remotely) related to the problem of prefetching.

On our journey of finding an algorithm, we first lay out some formal, theoretical
groundwork about data transmission, upon which we construct an idea how to schedule
data transfers in a manner aiming for proper reaction to changing network quality. Our
findings and assertions are presented in chapter 3, which gives an overview of background
information, including term definitions and a taxonomy of data unit types.

We elaborate on the necessary assumptions, restrictions, input and output data and
target variables of a prefetching algorithm in chapter 4, after which we show how the
formal background from the foregoing chapter can be used to derive an idea for a concrete
prefetching algorithm. We present such an algorithm and discuss its development as well
as its mode of operation.

The subsequent task we face is the one of analysing the performance of our algorithm
in the described situation. In order to rule on the algorithm’s efficiency, we develop an
environment for simulating situations resembling the real-world problems which initially
motivated our research, namely the scenario of a mobile computing unit fetching data
under varying network conditions. Chapter 5 provides information and discussion about
said simulation environment.

Finally, having implemented both algorithm and environment, we analyse and compare
results for various scenarios in chapter 6. We do so not only by changing parameters of
the simulation, but also by substituting our algorithm with surrogates, to compare its
performance to scenarios lacking our algorithm. We discuss how the results reflect the
improvement in certain key metrics provided by our algorithm.

Chapter 7 then concludes, reflects on lessons learnt and tries puts the results into
relation to real-world scenarios; we also identify possible future research paths in the
field of prefetching and mobile computing.
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CHAPTER 2
Related Work

Very different approaches to the problem of prefetching are present in current scientific
work. There are several aspects of the problem that are interesting and required research;
some of those aspects have been addressed more frequently than others. Most of the
related work covers aspects close to our problem. We have adopted some ideas and
concepts from the work, as stated in detail in section 4.1.

This chapter aims at providing a broad overview of existing literature in mobile and
distributed computing tackling in some way the problems of data caching, prefetching
or sparse mobile resources (energy, bandwidth, connectivity) and the maintenance of a
consistent user experience.

2.1 Prefetching Strategies by Hummer et al.

In “Context-Aware Data Prefetching in Mobile Service Environments” [Hum+14], Hum-
mer et al. propose a decision problem for optimising data prefetching and continuous
Quality of Experience and discuss different mechanisms for generating service requests
for prefetching. The presented mechanisms assume expected network quality to be
known, and only server-client communication is investigated (as opposed to end-to-end
communication).

The paper describes the relation of prefetching and caching; it shows that those two
concepts are often combined to achieve continuous Quality of Experience by storing
prefetched data in a transient cache. Also a part of discussion is the aspect that the
prefetching can not only be used to mask service or link interruptions, but also to reduce
user-perceived delay in general.

Two general types of prefetching are discussed: Periodic Prefetching and Context-
Aware Prefetching. Context-Aware Prefetching is analysed thoroughly and a classification
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of three request types is shown: Constant Requests (Polling), Template-Based Requests
and Complex Request Patterns.

A reference implementation is provided as well as a test setup for analysing its
performance. The results of the presented experiment are analysed and show that
context-based prefetching provides the best performance in terms of result age. Context-
based prefetching is also shown to outperform periodic prefetching regarding unused
prefetches.

One of the parameters of the proposed algorithms is tP , the look-ahead time; in
“Context-Aware Data Prefetching in Mobile Service Environments”, this parameter is
fixed for a given simulation run. See section 4.5.3 for a discussion of this parameter.

2.2 A Prefetch Model by Tuah et al.

In “Investigation of a Prefetch Model for Low Bandwidth Networks” [Tua+98], Tuah et al.
investigate speculative prefetching, assuming some knowledge about future accesses to
data sources and investigates the performance of a prefetcher that utilises this knowledge.
Under the assumption that prefetching is neither preempted nor aborted, the paper
derives a theoretical limit of improvement in access time due to prefetching and shows
an algorithm for prefetching one access ahead under the assumption that retrieval time
is uniform. For non-uniform retrieval time, the paper shows the two prefetch strategies
mainline (which fetches a single path of documents the user is predicted to select) and
branch (which selects multiple possible paths of advancements and fetches them based on
their probability) and discusses their behaviour.

2.3 Semantic Caching and LDD by Ren et al.

Given the context of Location Dependent Data (LDD), Ren and Dunham describe in
“Using Semantic Caching to Manage Location Dependent Data in Mobile Computing”
[RD00] semantic caching by showing its aspects of putting semantic attributes onto
previously non-semantic elements such as the user’s location. This allows for an efficient
cache management by taking into account the user’s position and speed and, based on
this data, optimising queries in many ways.

One use case for semantic caching is the situation where a user’s query is locally
overlapping with a previously-issued query, in which case the results for the overlapping
region can be read from the cache, allowing not only for reducing overall network traffic,
but also supplying the user with a preliminary, incomplete result until the rest of the
result is fetched.

Another advantage of semantic caching is the decision on a cache replacement can-
didate. The paper describes strategies for managing the results of location dependent
queries in a semantic cache. Basic methods of discarding cache entries are presented,
including Furthest Away Replacement (FAR), Least Recently Used (LRU) and Most Recently
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Used (MRU). FAR is the method proposed by the paper, which is also shown to outperform
MRU and LRU in experiments, exposing its strength by utilising the user’s position for
cache replacement decisions.

2.4 Caching Strategies by Tabassum et al.

In “A Location Dependent Semantic Cache Replacement Strategy in Mobile Environment”
[Tab+12], Tabassum et al. target Location Dependent Data (LDD), resulting from Location
Dependent Queries (LDQ). The authors improve upon known mechanisms such as Furthest
Away Replacement (FAR) by extending the model by the dimension of Segment Frequency
(Sf ). In the resulting mechanism, called RBF-FAR, Sf denotes the number of times the
semantic segment was accessed.

The paper concludes with experimental evidence that adding Sf into consideration
when deciding on cache eviction candidates does increase cache hit rates.

2.5 GreedyDual Least Utility by Shen et al.

In “Energy-efficient Data Caching and Prefetching for Mobile Devices Based on Utility”
[She+05], Shen et al. propose an energy and bandwidth efficient data caching mechanism,
called GreedyDual Least Utility (GD-LU). A utility function is used to assess the necessity
of each data item. The utility function assigns to each data item in the cache a value
which determines how much value this data item has with respect to the necessary energy
cost involved in fetching the item as well as the probability of the item being needed.

The mechanism uses this utility function for two major decisions. Firstly, cache
replacement, i.e. discarding existing cache items in favour of a new data item, requires
some sort of prioritisation amongst the data items. In GD-LU, the data items are sorted
by their utility, and the least utile data items are being discarded.

Furthermore, GD-LU describes a passive prefetching methodology, where a variant of
utility, relative utility, is used to decide whether to keep in cache data items that have
been received via a broadcast channel without having been explicitly requested (thus
passive). This relative utility, however, can easily be used for active prefetching as well,
where clients using unicast channels can actively and speculatively prefetch data items
which are likely to be used by client code in the future.

“Energy-efficient Data Caching and Prefetching for Mobile Devices Based on Utility”
also describes important aspects about prefetching and caching in general, such as the
relation between the two, general aspects of cache invalidation and cache replacement,
the difference in uplink communication cost versus downlink communication cost and
the related gradient of efficiency versus energy consumption.
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2.6 Value-Based Adaptive Prefetch by Yin et al.

Similar to Shen et al. in “Energy-efficient Data Caching and Prefetching for Mobile
Devices Based on Utility” [She+05], Yin et al. describe in “Power-aware prefetch in
mobile environments” [Yin+02] a function assigning a value to each data item. This
value is derived from parameters such as the item access probability, the size, the retrieval
delay and so on, making it a very customisable algorithm. The scheme, called Value-
Based Adaptive Prefetch (VAP) uses this value to actively prefetch data items. VAP uses
information about the current energy status of the device to determine how many of the
data items with the highest assigned value are prefetched.

2.7 Caching Strategies by Barbará et al.

In “Sleepers and workaholics: Caching strategies in mobile environments (Extended
version)” [BI95], Barbará et al. provide a classification of mobile clients in a broadcast
scenario, where the clients are regarded either as sleepers or as workaholics – which
means that they are classified depending on their ratio of online time to offline time. If
this ratio is above a certain threshold, meaning that the client is online most of the time,
that client is treated differently with respect to cache invalidation strategies than if the
ratio is below this threshold, meaning that is is usually offline.

Barbará and Imieliński use Invalidation Report (IR) messages as the base strategy for
cache management, and discuss several specific strategies for the usage of IR messages.
The strategies are Broadcasting Timestamps, where the IR contains the timestamps of
the changed data items’ modification, Amnesic Terminals, where the mobile unit rebuilds
the cache from scratch upon start up, and Signatures, where hash sums of data items are
sent along with the IR.

Finally, “Sleepers and workaholics: Caching strategies in mobile environments (Ex-
tended version)” shows that for sleepers, the Signatures method is the most effective,
where the periods of disconnection are long and difficult to predict. In contrast, for
workaholics, Amnestic Terminals has proved to be the best method.

2.8 Cache Management with Invalidation Reports by Cao

In “Proactive power-aware cache management for mobile computing systems” [Cao02],
Cao discusses an approach to prefetching in broadcast communication. It is based on
the idea of Invalidation Report messages being sent by the server, and further develops
the concept. For instance, Updated Invalidation Report (UIR) messages are proposed,
containing only identifiers of data items changed since the last IR was transmitted,
posing a delta, allowing clients to have shorter tune-in intervals while maintaining data
consistency.
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“Proactive power-aware cache management for mobile computing systems” also
discusses a mechanism to selectively decide on prefetching data from a broadcast channel
based on whether this item has been changed since the last IR. Subsequently, Cao shows
how to use such an approach for adaptive prefetching by introducing the Prefetch-Access
Ratio (PAR) as the number of prefetched divided by the number of accesses. This ratio
can then be used as a relative indicator of the necessity for prefetching an item (or,
in a different taxonomy, its utility); the paper also discusses how the threshold value
of a prefetching decision can be dynamically adapted, either manually by the user or
automatically based on attributes of the application context, such as the computer’s
current power level.

2.9 Fuzzy Adaptive Buffering by Bagchi

In “A Fuzzy Algorithm for Dynamically Adaptive Multimedia Streaming” [Bag11], Bagchi
discusses an algorithm for buffer management at mobile client side in order to establish a
good Quality of Experience by avoiding buffer overflow and underflow, while optimising
energy consumption in order to save battery power. The algorithm is called Fuzzy
Adaptive Buffering (FAB) and aims at the situation of a media playback by one client
from a (streaming) server. The media is allowed to have a varying playback rate and the
algorithm tolerates varying network latency (induced by a change in the overall network
quality).

The proposed algorithm is based on the client-pull model and essentially constantly
yields an answer to the two following decision problems:

(1) How much data has to be prefetched.
(2) How much time to sleep until the next prefetch should be performed.

The presented algorithm has several properties:

• It is logically located purely on the client side, while still being general in nature –
the algorithm is a feedback loop with input received from the current buffer level
and playback module.

• It is fuzzy and adaptive in nature, effectively tracking the bandwidth and playback
rate while prefetching data blocks from the server.

• No a priori knowledge about the network (regarding performance parameters such
as latency and bandwidth) or the media (regarding its playback rate) is required.

• Total sleeping time (with respect to CPU cycles) is maximised to enhance the
saving of battery power.
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2.10 Prefetching Heuristics by Gitzenis et al.

Gitzenis and Bambos model the data items and access probabilities as Markov Chains in
“Power-controlled data prefetching/caching in wireless packet networks” [GB02]. After
defining a thorough theoretical basis for the applied model, several heuristics for on-line
look-ahead prefetching decisions are proposed:

• No Prefetching: A simple heuristic where data is fetched when it is required and
not found in the local buffer.

• Neighbor Prefetching: A heuristic where items can be prefetched before they are
requested, based on the Markov model and using a depth of one.

• Deeper Horizon Look-Ahead and On-Line Algorithms: The authors argue that a deeper
search for prefetch candidates imposes higher computational complexity, however
even a small search can already yield results leading to significant performance gain.
Note that this heuristic class is merely a generalisation of Neighbor Prefetching.

The heuristics provides an on-line (continuous) solution to the following decision
problems:

(1) What data should be prefetched into the cache.
(2) What data must be discarded from the cache.
(3) What power level should be used during the item transmission.

“Power-controlled data prefetching/caching in wireless packet networks” regards the
decision problems as a trade-off between performance (in terms of transmission speed),
which relates to problem (1), and power (in terms of transmission strength), which relates
to problem (3).

2.11 Piggybacking Prefetch Data by Schreiber et al.

In “Reducing User Perceived Latency with a Proactive Prefetching Middleware for Mobile
SOA Access” [Sch+11], Schreiber et al. present a method of prefetching data: additional
data is being piggybacked onto regular responses, which reduces the overhead of creating
a separate connection or protocol state transition for the prefetching process. This implies
that the server is responsible for the prefetching decision. Subsequently, the prefetching
decision can only rely on context transmitted explicitly (and a priori) by the client. Any
data-rich context can not trivially be taken into account by the prediction mechanism,
since transferring the context would outweigh the performance gain of prefetching.

Schreiber et al. show that prefetching and caching reduce user perceived latency, thus
improving the Quality of Experience. Figures are provided for typical scenarios, such as
using mobile data connections (GPRS, EDGE, UMTS, HSDPA) and local connections.
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2.12 Dual Caching System by Han et al.

“A Semantic-Based Dual Caching System for Nomadic Web Service” [Han+13] proposes a
dual caching architecture and development method of web services for mobile devices. The
setup consists of two cache systems, a Client Side Cache (CSC) and a Provider Side Cache
(PSC). Han et al. describe the cacheability of different types of data (permanent, stable,
random) under different types of consistency constraints (strong consistency, eventual
consistency, unconstrained consistency). Based on this classification, “A Semantic-
Based Dual Caching System for Nomadic Web Service” proposes a caching strategy
for both cache layers (CSC and PSC) and evaluates this strategy in an experimental
implementation.

The paper concludes by stating that such dual caching approach overcomes problems
arising from temporary loss of connectivity and fluctuations in bandwidth. Figures
indicate that such dual caching improves loading time over a non-caching strategy.

2.13 Latency Reduction Strategies by Jayasudha et al.

In “Latency Reduction in Mobile Environment” [JV12], Jayasudha et al. propose a
model for bandwidth usage reduction by prefetching URLs based on access probabilities.
Uniquely to this paper, these probabilities do not depend on an individual user, but are
global weights given to URLs.

For its prefetching decision, the algorithm assumes the bandwidth as well as the users
of the network connection to be known. For deciding how many pages to prefetch, the
pages are assumed to have an upper bound which is the only element of size used in the
calculations (which is equivalent to the assumptions of all data items being the same
size).

2.14 Advanced Loading Strategies by Zagarese et al.

Zagarese et al. introduce Dynamic Offloading into web service calls. In “Enabling
Advanced Loading Strategies for Data Intensive Web Services” [Zag+12], the authors
describe a mechanism which transparently offloads data chunk transmission in web service
calls, postponing the actual transmission to the point in time when the data is actually
needed (which is then lazily loaded).

The paper’s goal is to predict access patterns in such a way that data unlikely to be
used is not transmitted in the original message, reducing the overall amount of sent data,
provided that the predicted accesses have indeed happened. Technically, this offloading
happens transparently, meaning that the actual user code receives stub objects (for
example by using proxy objects) and offloaded parameters or values are lazily loaded
upon request.
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Such offloading is used equally for IN and OUT parameters, in other words, for method
arguments and return values. “Enabling Advanced Loading Strategies for Data Intensive
Web Services” proposes a concrete middleware architecture, including client and server
components.

The paper concludes that a simple learning technique, as well as random strategy,
can still outperform pure-eager or pure-lazy loading, indicating that a lot of optimisa-
tion depends on the actual decision algorithm, all of which poses possible future work
originating from these findings.
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CHAPTER 3
Background

In order to lay down a basic understanding of our problem’s notion, we present some
background information gathered during our research. We start by defining some possibly
ambiguous terms in section 3.1, and provide a taxonomy of data items in section 3.2
in which we discuss the various types of data sources possibly being a candidate for
prefetching. Section 3.3 provides an overview of quantities and units used throughout
this thesis to prevent disconcertment caused by differing ideas of units.

3.1 Term Definitions

Data Ageing Prefetching data immediately leads to the fact that data that has been
fetched before its actual usage is in some way old at the time of use. In some
cases data ageing poses a problem – data ageing issues are discussed throughout
section 3.2.

Data Chunk Data items are not always transferred as a whole, but sometimes split
into parts, which we call data chunks.

Data Item In generic terms, a data item is data originating from some kind of source
(a service); such data can be fetched by a mobile unit. Data items have a variety of
types, which classify their size, their fetching mechanisms and strategies, amongst
other aspects – see section 3.2 for a summary of the most relevant types of data
items.

Mobile Unit For our purposes, devices which are part of a distributed system and
capable of being moved over longer distances are called mobile units. They are
usually connected to the distributed system via some type of mobile connectivity, e.g.
3G or 4G wireless network. The main properties of mobile units besides mobility are
fluctuating network connection quality, limited bandwidth, high network latency,
as well as frequent usage of battery power, thus aiming to conserve as much energy
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as possible to enable long battery running times. This is an enhancement of the
notion of mobile units introduced in [BI95].

Quality of Experience While the experience of a user performing an action using a
system can be quantified by variables such as delay, stretch, power usage and so
on, we use the term Quality of Experience (QoE) described in [Jai04] and [BH10]
to denote in a rather generic and informal manner the way a user is experiencing a
system. QoE is different from Quality of Service (QoS) in the way that it is not
measured using objective methods, but tries to subjectively quantify the user’s
satisfaction with the service. For instance, a high delay (or stretch) and rather
poor QoS – irrelevant content, unsuitable media formats, and so forth – constitute
poor QoE, while a short delay (possibly due to prefetching) together with good
QoS can be seen as a good overall QoE. This distinction of the two related terms
QoE and QoS is further explained in [Mok+11].

3.2 Taxonomy of Data Items

For this work, we classify types of data items in order to describe their behaviour in
the context of prefetching and caching. Such a distinction is inspired by [Hum+14] (see
Table 1 in said paper), where services are also classified, using aspects such as Importance
(a fuzzy rating used for prioritising amongst concurring requests), Time Criticality (an
indicator of the impact of data ageing on the service quality), an Access Pattern (from
which we derived our types of data items) and the resulting (Pre-)Fetching Strategy
(determining the strategy used for the handling of requests for the given service).

Our classification is closely related to the one given in [Hum+14], and specifies the
main properties of each type of data items. In the respective sections, we also discuss
three main attributes of each class:

Bandwidth Specifies how bandwidth-intensive the data item is. This usually correlates
with the size of the data item in bytes.

Timing Specifies whether the data item has timing constraints. Such constraints can
either consist of strict real-time requirements, such as maximum latency, maximum
jitter or loose specifications like the ageing of data items and the represented
information becoming outdated over time.

Suitability for Prefetching Specifies whether the data item is suitable for prefetching
and what constraints have to be taken into account when choosing a prefetching
scheme for such data items.

3.2.1 Streaming Data

We classify data items consisting of a continuous stream of data as Streaming Data. We
identify such data items using the following indications:
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(1) The data item is not supposed to be stored in the mobile unit’s memory, either
because its total size exceeds the memory resource, or because doing so is not
feasible, for instance because it is a live media stream and mainly not intended to
be stored. A permanent storing of the received data can be seen as a recording of
the stream.

(2) Even though the data item is transmitted in chunks, it is generally seen as one
coherent chain of data. Chunking is only employed to allow for partial transmission
and simultaneous playback, but the chunks are not independent of each other by
design. This means that the loss of one chunk is generally not tolerable for a stream
receiver, even though established streaming techniques usually circumvent this by
using formats which tolerate transmission gaps, for example MPEG, where I-Frames
are inserted, which can be decoded independently of other frames and constitute
a point of re-start in case of loss of data chunks. The point where a chunk split
is performed is completely arbitrary with respect to the stream content and the
decision of splitting is made solely with regards to transmission control.

(3) The data item is consumed simultaneously to its fetching, often with a buffering
mechanism to avoid underruns, ensuring a constant Quality of Experience.

(4) The consumption (playback) of data items has a minimum required bit rate of
arriving data – in other words, playback rate is not adjustable, which means that
buffer underruns cannot be amortised by lower playback. Instead, in case of an
underrun, playback must be paused until enough data is available again. The
minimum required bit rate is not necessarily constant, and can in some cases be
actively adapted to network conditions – see (2) and (3) under the discussion of
bandwidth.

(5) Once the stream transmission starts, chunks of the data stream are transmitted
by the sender without explicit request by the receiver. This does not exclude
transmission control mechanisms such as buffer overrun prevention or Adaptive Bit
Rate – see (3) under the discussion of bandwidth.

(6) The stream takes up a certain amount of bandwidth continuously throughout the
duration of transmission – the data link can be seen as mainly busy.

Examples of Streaming Data include VoIP calls transmitted to the mobile unit
(possibly with an additional video feed, making it a video call), a movie being played
back from a Video on Demand provider, or music played back from a personal music
cloud provider. [Bab+02] provides financial applications, network monitoring, security,
telecommunications data management, web applications, manufacturing, sensor networks,
and others as examples for data streams.

Note that we differentiate between this traditional intuition of streams and Periodic
Updates, which could also be argued to be a special case of Streaming Data. For our
requirements, however, we do not use this classification – see section 3.2.2 for further
information about the differentiation used in our work.

Discussing Streaming Data in terms of the presented taxonomy, we define the following
attribute properties:
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Bandwidth While we classify Streaming Data as rather high-bandwidth applications,
the actual used bandwidth may vary from case to case. Not only will a video
call have a higher bandwidth requirement than its audio-only variant, in case of
audio and video streams, different formats used for encoding (produced by different
codecs) can significantly change the amount of data required.
There are several variants of Streaming Data behaviour in terms of bandwidth:

(1) Streams having a static bit rate are classified as Constant Bit Rate (CBR)
streams [LT98]. Such a property facilitates the prediction of data usage at
any point in time, but also significantly reduces the adaptability to changing
network environments.

(2) Multimedia streams often have the ability to adapt the effective bit rate to
changing stream properties. Such streams are usually classified as streams
with Variable Bit Rate (VBR) [LT98]. The main property of of VBR streams
is that the bit rate depends on the complexity of the stream; for example,
large amounts of movement in video frames cause a higher bit rate than a
steady shot. Often, VBR is an effect of compression, where repeating patterns
are compressed either using lossless or lossy compression.

(3) In network streaming, the term Adaptive Bit Rate (ABR1) refers to stream
providers which allow clients to selectively decide what bit rate they consume.
[Zha+13] states that using ABR, content is "transcoded into a set of media files
with diverse playback rates, and appropriate files will be dynamically chosen
in response to channel conditions and outlet forms". This choice is usually
automatically made by the client software monitoring network performance, to
use the highest possible bit rate while avoiding network congestion. Naturally,
since the client chooses the bit rate independently of the original stream’s bit
rate, the only way of satisfying this choice is by employing data compression,
leading to lower quality when a lower bit rate is chosen.

Timing Timing is often a critical aspect of Streaming Data. There are several types of
timing constraints to streams:

Minimal Jitter For a continuous and fluent consumption (playback) of a data
stream in real-time applications, it is necessary to have minimal jitter.2 High-
jitter network transmission leads to frequent buffer overrun and underrun,
both of which cause interruptions and degrade Quality of Experience.

Minimal Delay Streams containing real-time data, often used for bidirectional
communication such as VoIP calls or video conferences, require an upper bound
for end-to-end transmission delay3 to allow for a fluent communication without

1Not to be confused with Available Bit Rate, for which the abbreviation ABR is also used.
2In this context, jitter refers to delay jitter, i.e. the variability over time of the delay between a

packet’s sending and receiving time.
3The precise formulation of the requirement is an upper bound for the delay between the media

content being generated by the sender, e.g. spoken, and being consumed by the receiver, e.g. heard.
However, since encoding and decoding performance is not in the scope of this work, we assume that time
required for encoding and decoding is negligible and focus on transmission time.
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generating silences between two parties’ statements generally perceived as
awkward.
There are stream types where Minimal Delay is not as crucial as Minimal
Jitter, such as unidirectional communication (broadcasts) – in this case, a
much higher upper bound is put on delay – or playback of stored media, where
the delay is almost irrelevant.

Data ageing is usually not an explicit issue for Streaming Data, since the requirements
of minimal delay limit the data age to a very short amount of time. In cases where
minimal delay is not required, for example unidirectional communication, data
ageing can be crucial.

Suitability for Prefetching Streaming Data can be prefetched and stored under some
circumstances. In real-time applications such as communication, prefetching is not
possible by nature, however, if the sender uses prerecorded (or generated) data as
a source, prefetching can actually be realised by requesting chunks which otherwise
would be transferred at a later point in time (future data).
Apart from this issue, Streaming Data can be prefetched with respect to available
resource. Since we argued that streams often have a rather high bandwidth
requirement, prefetching them results in a high usage of memory on the client side.

Streaming Data is generally not classified as either push or pull, since it contains
elements of both strategies. The initial request for a stream usually follows the pull
scheme, with the client explicitly requesting the stream transmission, but the following
chunks are sent by the server without explicit subsequent requests – see also (5) –, which
follows the push scheme.

3.2.2 Periodic Updates

Data items where the server pushes chunks of data in a periodic manner, updating data
on the client side, are classified in our taxonomy as Periodic Updates. In contrast to
Streaming Data (section 3.2.1), data from items using Periodic Updates is not constant,
i.e. does not constitute an uninterrupted chain of data segments or stream. Hence, the
key difference between Streaming Data and Periodic Updates is that the former requires a
buffer, which should always be non-empty, to allow proper consumption of the data, while
the latter does not require buffering, since data chunks can be processed immediately
upon reception. It is also worth noting that Periodic Updates usually has significantly
more time in which the data link is idle, while streams cause the data link to be mainly
busy.

The properties we use to classify data items as Periodic Updates are as follows:

(1) The size of one data chunk is small enough to be stored in the mobile unit’s memory
and processed immediately (even though it can also be saved for later processing).
This is in contrast to Streaming Data properties (1) and (3).
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(2) The data chunks are structurally independent of each other. This property can
manifest itself in the way that the loss of one data chunk does not cause the complete
transmission to be corrupted. This is in contrast to Streaming Data property (2).

(3) Once the transmission starts, chunks of data are transmitted by the sender without
explicit request by the receiver. This does not prohibit transmission control mecha-
nisms such as buffer overrun prevention; this property is analogous to Streaming
Data property (5).

(4) The data link is only used whenever an update chunk is transmitted, but it is idle
most of the time; this property is in contrast to Streaming Data property (6).

Examples of Periodic Updates are a road service providing the client with traffic
information en-route, allowing the client software to dynamically re-route the driver in
case of heavy traffic. Another example is a periodic status update of the user’s smart
home, consisting of the home lock status, temperature, movement detection status, a
camera snapshot or similar. One can also implement electronic mail delivery in such a
way, as it is the case with the Internet Message Access Protocol (IMAP).4

Discussing Periodic Updates in terms of the presented taxonomy, we define the following
attribute properties:

Bandwidth By its nature of being small enough to be stored and processed in the
unit’s memory – see property (1) –, Periodic Updates data usually shows rather low
bandwidth usage, especially when observed for a longer time and averaged, since
most of the data time, the data link is idle – see property (4).

Timing While Periodic Updates data items tend to have loose timing constraints com-
pared to streams, there are cases where even requirements similar to real-time
applications can be observed. One example of such an situation is a media server
communicating the current status to a front end client, including the seek position
in the current song. This position is under constant change (provided that the
song is playing), which means that a delay of one or two seconds invalidates the
information. However, it is arguable that most cases of Periodic Updates are rather
tolerant of delays; notification of an incoming e-mail can indeed have a delay of a
few seconds without degrading user experience, as it is also the case with traffic
updates.
Similar to Streaming Data, avoiding data ageing of fetched items can be a require-
ment, depending on the application. In some cases (e.g. traffic information) a delay
of a few minutes is acceptable, while in other cases (e.g. movement detection status)
the excess of sub-second durations in data ageing greatly affects user experience.

Suitability for Prefetching Data originating from Periodic Updates is subject to the
same restrictions as Streaming Data regarding the ability to be prefetched only

4IMAP only uses a push-like mechanism for notification of new messages, the client has to fetch the
messages on its own, which is not an example of Periodic Updates in the classic sense anymore since it
contradicts property (3).
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when the data is actually available to the system at a sooner point in time than it
would originally be fetched (non-real-time data); this is a design issue.
Apart from this restriction, there is generally no reason for data items to be
unsuitable for prefetching, especially since we argued that Periodic Update data
items are generally less bandwidth-intensive, and thus need less memory to be
prefetched on the client side. Furthermore, Periodic Update shows a repeating
pattern or periodicity, which eases the prediction of future accesses.

3.2.3 Intermittent Pull

We classify data items which can be requested by the client on-demand in a pull manner,
and do not follow a periodic pattern, as Intermittent Pull. The term pull designates the
notion that the requests happen either upon immediate user action, or because change in
the application context dictates so.

Note that Intermittent Pull can overlap with Streaming Data in the way that a
request for starting a stream transmission is classifiable as an Intermittent Pull request;
nevertheless, we differentiate Intermittent Pull from Streaming Data using the following
differentiation properties.

The properties used for identifying Intermittent Pull in our taxonomy are as follows:

(1) The size of the data item is small enough to be stored in the mobile unit’s memory
and processed upon reception (even though it can also be saved for later processing).
This is analogous to Periodic Updates property (1).

(2) The fetching of a data item is generally perceived as an event, not a process. It
takes a relatively short amount of time, the major reason for delay is the end-to-end
network delay, the server-side processing (generation) time for data items and the
computation time needed for initiating the transmission, not the actual transfer
itself.

(3) The data item is structurally coherent and constitutes a single unit of data (although
it can be of any complex type). There is no periodicity involved. In general,
subsequent fetches of the same data unit can yield the same result (e.g. requests for
a static web page) or different results (e.g. requests for traffic information). If the
information changes, it is generally independent of the requests themselves. This
relates to Periodic Updates property (2).

(4) The data items are transferred only using a pull scheme, i.e. the client side explicitly
requests the data item, and after complete transfer, not further data transmission
occurs. This is in contrast to to Streaming Data and Periodic Updates properties (5)
and (3), respectively.

(5) The data link is only used whenever a data item is transmitted, and is idle the rest
of the time; this property is similar to Streaming Data property (4).

Intermittent Pull includes all kinds of requests made from the client side to the server
side, including websites, map services, e-mail fetching requests and similar.
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Discussing Intermittent Pull in terms of the presented taxonomy, we define the following
attribute properties:

Bandwidth Since Intermittent Pull denotes the fetching of a data item for on-demand
usage, and we have established that the difference between Intermittent Pull and
Streaming Data is the fact that the latter is seen as a long-lasting process while the
former is seen as an event – see properties (1) and (2) –, Intermittent Pull by logic
only describes data items where fetching takes a rather short time. This leads to
the conclusion that bandwidth usage for fetching Intermittent Pull data items is
rather small.

Timing As discussed in property (2), the transmission time for Intermittent Pull data
items is negligible. This means that the experienced delay for fetching a data item is
solely caused by the delay induced by initiating data transfer. Timing constraints for
Intermittent Pull data items are usually bound to Quality of Experience requirements,
where opening a web page, scrolling over a map or fetching an e-mail is expected
to happen with minimal or no delay, and any delay is perceived as disruptive.
Data ageing is, similar to Periodic Updates, heavily dependent on the type of data
transmitted. Acceptable ages of fetches can range from fractions of a second (e.g.
camera snapshots) to months (e.g. map chunks).

Suitability for Prefetching Data items following the Intermittent Pull scheme are
usually easy to prefetch (in the sense of implementation), since the request can
simply be sent ahead of the actually necessity for data, caching the response and
answering the later (actual) request with the response from cache (this assumes
that data ageing is taken into consideration). However, as simple as implementing
prefetching is, the prediction of actual demands of data is significantly harder than
with Streaming Data and Periodic Updates, since no pattern is involved. Depending
on the application, a prefetching mechanism has to predict user actions or context
changes. In some cases this is a matter of applying methods from the field of
Artificial Intelligence, in other cases this may be easier, for example when the route
of the user is known, map chunks needed alongside the route can be prefetched.

3.2.4 Summary

To summarise the types of data items, Table 3.1 shows our taxonomy of data item types
and their main properties. We use the terms described in this section to roughly describe
data items during our discussion in the subsequent sections, as well as in our simulation
environment.

Table 3.1: Summary of the data item type taxonomy

Item Type Bandwidth Timing Constraints Suitability for Prefetching
Streaming Data high min. jitter, delay only non-real-time; RAM intensive
Periodic Updates low mostly loose well suitable (periodicity)
Intermittent Pull low mostly strict hard to predict

22



Table 3.2: Unit of data: multiples of bits

Long Short Meaning
1 bit 1 b base unit bit
1 kbit 1 kb 103 bit
1Mbit 1Mb 106 bit
1Gbit 1Gb 109 bit

3.3 Quantities and Units

For the purpose of this work, we establish three main quantities and describe some of
their properties. The quantities are described using their name, their symbol and their
unit.

3.3.1 Time

Time in our context relates to points in real time or durations thereof. For those real
time quantities, we use the symbol t and the SI unit second (1 s) as the unit of time for
the sake of simplicity, familiarity and easy applicability to common scenarios. Where
applicable, we use the commonly accepted everyday units for time, minute (60 s) and
hour (3600 s).

However, any strictly ordered dimension is sufficient for our purposes; for example,
the concept can easily be applied to any continuous dimension independent of real time,
such as simulated time or time slots. Where applicable, we abstract from real time and
use the auxiliary unit tick (1T).

3.3.2 Data

In our context, data5 is a quantity for the amount of payload that is being fetched or
prefetched. We use the symbol D and the bit (1 bit or 1 b6) as the unit of data. As
prefixes, we strictly use the SI prefixes kilo (one thousand), mega (one million) and so on.
We do not use prefixes of binary multiples – steps of 1024, for instance kibi- (1024) or
mebi- (10242) – in our work; see table 3.2.

Where necessary or practicable, we use byte (1B) as an alternative unit, where
naturally 1 B = 8 bit. Analogous to bits, we strictly use SI prefixes for bytes; see
table 3.3.

5Data, as as opposed to information, is not parsed; however, we use the unit of information as a unit
of data for our purposes, since the distinction between data and information is irrelevant.

6The use of 1 bit is less ambiguous since 1 b can be mistaken for byte, but 1 b is sometimes used in
figures for the sake of shortness.
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Table 3.3: Auxiliary unit of data: multiples of bytes

Short Meaning
1B base unit byte
1 kB 103 B
1MB 106 B
1GB 109 B

3.3.3 Bandwidth

Transmission of data takes time, and the quantity describing the speed of transmission
of data used in this thesis is bandwidth or byte rate; the following paragraphs provide
detailed differentiation of these two terms.

In our context, bandwidth is the rate of (transmitting) data per time:

B = D

t
(3.1)

Alternatively, Bandwidth can be seen as the momentary speed of (the transfer of)
data over time. Since data is not continuous but discrete in nature, the infinitesimal
notation is only for illustration purposes and does not reflect reality.

B = d
dtD B = ∆D

∆t (3.2)

We use the symbol B and the derived unit bits per second (1 bit/s) for bandwidth.
Analogous to data, we use bytes where necessary or practicable for bandwidth (1 B/s).
Following from our definition of using bits and bytes as units of data, we strictly use SI
prefixes (multiples of 1000) rather than binary multiples (multiples of 1024).

Throughout this thesis, the terms bandwidth and byte rate appear side by side. While,
at least in the context of digital transmissions, they seem to often be used synonymously,
we try to distinguish the meaning and use the term bandwidth whenever the abstract
idea of (infinitesimal) speed of data is used, and the term byte rate whenever an actual
(integer) amount of bytes in an (exact) time span is described.

While bandwidth may sometimes refer to available speed of data transfer, or to the
property of a transmission channel, and byte rate refers to the amount of data actually
transferred over such channel, we do not use this differentiation, and instead use terms
such as available byte rate for that purpose. We furthermore do not consider aspects of
bandwidth in analog contexts or contexts of signal processing, where bandwidth is the
difference between the bounds in a continuous band of frequencies.
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3.3.4 Percentage Points

When using quantities provided in percent (1%), it is in certain cases necessary to refer
to percentage points. In particular, this is necessary when denoting changes in quantities –
for example, a change of link usage from 50% to 60% is a change of 10 percentage points,
rather than 10 percent. Another example is the standard deviation σ of random variables
with the original unit 1%. When describing σ, we need to use the correct unit percentage
points.

To explicitly denote percentage points in cases where typesetting does not allow the
usage of the full term percentage points, we use the abbreviation %p. In our previous
example, the link usage has changed from 50% to 60%, which is a change of 10%p.
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CHAPTER 4
Proposed Algorithm

In this chapter, we discuss all necessary information to create a solution for prefetching
data on a mobile unit to enhance the Quality of Experience. In order to achieve this, we
develop an algorithm for prefetching data chunks. More specifically, our algorithm solves
the decision problem of finding a time for fetching data items, given a set of requested
data items and those requests’ properties.

The first section of this chapter, section 4.1, discusses briefly the present approaches
and models in existing related literature; the goal is to describe how our model and
algorithm are related to and inspired by present work. Section 4.2 describes said model
and its variables and dimensions, as well as the input variables for our algorithm stemming
from the described model. Section 4.3 discusses in depth what our target variables, the
quantities we are aiming to influence, are.

After discussing the groundwork, we elaborate on the requirements imposed onto the
algorithm in section 4.4, which allows us to finally present the idea and realisation of our
proposed algorithm in section 4.5. A reference implementation written in Java is briefly
shown in section 4.6.

4.1 Discussion of Existing Approaches

We generalise the idea of prefetched data vs. non-prefetched data and simplify the two
decisions of whether and when to prefetch Ri to the single decision of when to fetch Ri.
The result of this decision is a point in time at which fetching is scheduled to be started
and is referred to as λi throughout this work. The schedule set (set of resulting schedule
times for all requests) is defined as S with one schedule S ∈ S defined as S = (R, λ).

This is in contrast to [Hum+14] – see equations (1) and (2) in that paper –, where a
boolean condition determines whether the available quality qa is sufficient for the required
quality qr, for example in the following condition: qa(cx) > qr(rx,mx, cx) – this condition
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is true if the available network quality is greater than the required network quality for
the given request rx for a certain mobile service consumer mx and its context cx.

A notion we adopted from [Hum+14] is the look-ahead time, which denotes how
long into the future a prefetching decision is made – the paper has a fixed parameter
for this, tp; we discuss this parameter and the possibilities of its variation over time in
section 4.5.3.

[Hum+14] uses a set of services (S) to describe the used cloud services. Services
have certain properties which are comparable to our notion of requests (requests do also
have an own model term, R, in [Hum+14]). Additionally, we have adopted the notion of
an a priori known network quality, qa, which is comparable to our function Blink; both
map a point in time to the corresponding network quality, and both are used to create
prefetching decisions.

[Tua+98] follows a document-centred, cost-based approach; the authors discuss prefetch-
ing of documents within the viewing time of other documents. A similar approach is found
in [Han+13]. For our purposes, this approach is too specific to be suitable; while the
notion of documents can be transferred into our notion of data items, we do not introduce
the quantity of viewing time into our model because not all data items have applicable
concepts. For example, a background data service periodically fetching electronic mail
from a remote server and displaying a notification upon arrival of mail would not have
any viewing time, while a navigation system loading map tiles on-the-go would have
virtually perpetual viewing time.

In [She+05], the authors follow yet another approach; the access of items is assumed
to be recurring, and the decision problem is whether to keep items in cache, and which
items to evict from cache upon arrival of new data to be cached. This model is partly
overlapping with our model; a recurring request can be modelled in our approach as
multiple requests to the same data item source, while a single request from our model
would correspond to an item from [She+05] which has a low hit rate. The authors of
[She+05] describe a utility function to decide which items to evict from cache. A similar
approach is found in [Yin+02], [GB02], [JV12].

Since we do not handle the case of actually caching results beyond their required time,
our approach does not require such utility function or eviction strategy. A downside of
this approach is that multiple accesses to the same resource, which might be cached for
future access, are re-scheduled and re-fetched in our model. This is a possible field for
future work and is discussed in section 7.2.

[Cao02] and [BI95] cover strategies for distributed cache invalidation, where a server
is broadcasting Invalidation Report (IR) messages. An IR contains the timestamps
of changed data items’ modification and allows clients to update or flush their caches
accordingly. For our purpose, this model is not applicable for several reasons:

(1) A broadcast channel is assumed, which is not generally true for packet-switched
networks such as 3G networks in our case. Some providers of 3G networks (or
internet service providers in general) might not forward broadcast and multicast
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packets, so a broadcast channel would be hard to realise without explicitly sending
data to each client; such an approach would defy the purpose of using broadcast
channels to reduce traffic duplication.

(2) Data items in our approach are dynamic and individual in nature, and, as such, are
generally not shared amongst clients. While some requests might yield the same
result for each client, we handle each request independently. Note that this is not a
general assumption but a simplification, and provides some ground for future work,
by optimising the algorithm presented here for situations where broadcast is indeed
available.

(3) Caching is not performed beyond the data item’s usage in client code, as described
in the previous paragraphs. We only cache data for the time until its request is
served, after which it is evicted from cache. This, in fact, satisfies one of our target
variables – see section 4.3.2.

[Bag11] in turn regards the case of a constant data stream, and focuses on the buffering
mechanism of the playback (consumption) of such a data stream. An algorithm called
Fuzzy Adaptive Buffering (FAB) is developed, which aims to provide a solution to the
decision problem of how much data to buffer, and when (in other words, how much time
to sleep until the next fetching decision is due). The algorithm presented by [Bag11] is
suitable for a constant playback, and our notion of Streaming Data (see section 3.2.1)
could be combined with FAB for further optimisation of energy usage on the client device.
Since energy usage is not a goal in the scope of our work, we reserve this potential for
future work (see section 7.2).

[Zag+12] uses an interesting approach for intelligent prefetching, albeit on a different
layer, thus not directly applicable to our problem: the paper presents a way to predict
access patterns in web services, so data which is unlikely to be used is not transmitted in
the original message (request or response). The overall amount of transmitted data is
reduced, leading to a more responsive service. The offloading is realised transparently for
the higher software layers, meaning that objects returned by the middleware responsible
for this offloading are proxy objects which lazily load the offloaded data upon request.
While this approach is very interesting, we could not apply it in our case since we treat
data as a byte stream without any further semantics; a deeper inspection of the higher-
level protocol (or a definition thereof) would enable a combination of our prefetching
algorithm and [Zag+12]’s offloading mechanism.

[Sch+11] presents an novel idea on reducing latency; piggybacking data onto regular
responses. Specifically, a server, given a request to resource A, analyses this resource
and determines predictions on the likelihood of other resources B being subsequently
accessed by the client requesting A. The server then appends the content of resource
B to the original response to request A. Similarly to [Zag+12], we can not directly use
this approach because we have no knowledge about the inner structure of the data we
transmit as payload.

Altogether we have decided to generalise our approach by assuming a unicast (point-
to-point) scenario, neglect the evidence that data might be recurring and re-usable among
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subsequent requests and abstract the request to payload data, not taking into account
the internal structure of the data being transmitted. While this allows us to cope with a
wider range of requests, it has to be noted that certain optimisations, as the ones stated
in the last paragraphs, become unavailable.

4.2 Model

The top-level goal of the algorithm is that for each request R ∈ R a scheduling decision is
to be made – as such, this goal led us to the creation of the following model to describe
the required properties and describe the proposed algorithm.

A request R is defined as R = (τ, β, δ), where τ is the request deadline (specifying
at which point of time a data chunk must be available in local memory), β specifies
the maximum bandwidth provided by the data source, and δ is the amount of data
(designating how much data is required to be transmitted with the given bandwidth
to fetch the data chunk). The algorithm also takes as input a bandwidth prediction
function Blink : t→ B, which assigns to each point in time an estimate (a prediction) of
the available bandwidth.

Note that the request variable R as well as its attributes (τ , β, δ, λ) are used with
the index i in situations where the distinction to other requests (Ri, not Rj) or the
explicit association of an attribute with its request (τi is explicitly the deadline of Ri) is
necessary. In other cases, where no distinction is necessary and the semantics are clear,
the variables are used without an index for better readability (τ , when referring to any
request’s deadline).

Summarising, the following symbols are used for attributes of a request object Ri and
constitute the input parameters for our algorithm:

τi . . . . . . . . . . . deadline of Ri
βi . . . . . . . . . . maximum bandwidth of Ri
δi . . . . . . . . . . . data volume of Ri
Blink(t) . . . . . predicted available bandwidth at time t

The following symbols are used to designate values derivable from the symbols
described in the preceding list, as well as λ, our algorithm’s outcome:

Ti . . . . expected duration of transmitting δi bytes at bandwidth βi.1
Li . . . . expected time of completion, if fetching starts at λi.2
λi . . . . scheduled time of fetching for Ri (this is the outcome of our algorithm)
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We see that the data chunks will be available upon request if and only if the reception
of the data item (Li) is before the request’s deadline (τi). On the other hand, upon
receiving the data, the prefetched content must be stored (cached) in memory until the
data is requested. Thus, the cache duration is Li − λi.

4.3 Target Variables

In this section, we identify the specific values that we seek to optimise, i.e. the target
variables of an algorithm suitable for our problem. For each variable, we denote the
target condition as optimisation formulae. Furthermore, for each target variable, the
respective variable in the model (section 4.2) and the relation between the target variable
and the algorithm variable is discussed. The target variables discussed here furthermore
relate to the metrics recorded in our simulation, which are described in chapter 5 (see
section 5.6 for a listing of those metrics).

4.3.1 Perceived Response Time

Perhaps the most important variable is the perceived response time RT, which is the
duration that the user has to wait after (explicitly or implicitly) requesting a certain
data item – for example by selecting it from a menu – until the data is usable. Note that
this may also be an indirect (implicit) process, where a running process is constantly
requesting data (see section 3.2) and the user is not explicitly opening files. In this case,
we define the perceived response time as the time from the application’s request to the
middleware (which is using the scheduling algorithm) until the actual disposition of the
data to the process.

In the description of our proposed algorithm, we denote the deadline of a certain
request as τ – this already assumes that there is the notion of a foreseeable plan as
opposed to a non-predicted request –; the algorithm then schedules a time of fetching (λ),
which results in a time of completion L. Therefore, the perceived response time which is
to be minimised by the scheduling algorithm is RT = max(0, L − τ). If the algorithm
manages to schedule the fetching in time, i.e. in a way that allows the complete data
item to be fetched before its request, L− τ becomes negative and RT is zero.

We therefore aim to minimise the RT of all requests. We do not differentiate between
requests – no prioritisation is taken into consideration – and therefore establish that the
goal of the algorithm is to minimise the average perceived response time of all requests,
RT, which yields our first-order condition, (4.1).

1The value of Ti is derivable from δi and βi by the following formula: Ti = δi
βi

– this follows from
equations (3.1) and (3.2).

2The value of Li is derivable from λi and Blink(t) and all other scheduled fetches. In our further work,
we limit ourselves to fetching one chunk at a time and avoid simultaneous fetching of data, which eases
the calculation of Li.
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4.3.2 Data Age

A trivial solution after specifying (4.2) is to fetch data items as early as possible, so the
corresponding trivial scheduling algorithm yields λ = t0. This would lead to data ageing
(see section 3.1) and high memory usage (because all items necessary at any time need
to be kept in cache). For some data item types, low data ageing (or data freshness is a
functional requirement – for an example, see section 3.2.2 –, and reducing memory usage
is in any case an effort towards increasing Quality of Experience, as free memory allows
for more concurrent applications to be run by the user.

We therefore denote the data item age as DA. DA can be regarded in context of our
proposed algorithm as the time span between the prefetching of the data item (denoted by
λ3) and the actual usage by the application (the deadline, denoted by τ). The resulting
age to be minimised by the algorithm is DA = τ − λ.

Similarly to RT, we achieve DA→ min by minimising the average of the data age
of all requests. Our second-order condition follows in (4.2), which means that assuming
condition (4.1) is satisfied, the latest possible λ must be used.

4.3.3 Data Volume

An aspect not considered so far is the amount of transmitted data. Since fetches may
be repeated, the amount of data transferred is variable; indeed, there is another trivial
solution available, which would be to fetch all data items for which the deadline lies in the
future, with some constant interleaving time ∆ employed to allow for some interleaving
between two fetches. Each fetch overwrites the result of the preceding fetch for the data
item.

λ = {t0, t0 + ∆, . . . , τi}

The advantage of such a solution is that RT is zero4 since regardless of any network
conditions, no delay is experienced by the user.

Meanwhile, DA is kept at the absolute possible minimum and is only bounded by:

(1) The fetch interval, which is the sum of the interleaving time and the transmission
duration: ∆ + T

(2) The last time a successful data fetch was possible possible at all, due to network
conditions: τ − tlastSuccessfulFetch

3We use λ instead of L because we assume that data ageing starts at the start of the transmission,
since this is the latest possible point in time for the server to update its readings of values.

4Assuming that the data item can be fetched at all, otherwise RT is not defined since no successful
fetch is possible.
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RT → min, where RT = max(0, L− τ) (4.1)
DA → min, where DA = τ − λ (4.2)
DV → min, where DV = |λ| δ (4.3)

Figure 4.1: Target variables as optimisation formulae

[Hum+14] uses a strategy similar to this solution: periodic prefetches of data are
employed to cache values in case the actual fetch – which is still performed, regardless of
the presence of cached data, which is in contrast to our solution – fails.

However, the downside of such a solution is that the data item is transmitted multiple
times, and, depending on the network quality, the amount of transmissions might be
highly excessive. This has several disadvantages:

• High network usage, which itself prevents other applications from using the available
bandwidth, and might lead to costs for the user.

• Increased Power consumption, which is crucial with mobile units.

Therefore, we denote the transferred data volume as DV and aim to minimise it.
For this purpose, we introduce a third-order condition in (4.3), which forces the amount
of data transferred to be minimal. DV is defined as |λ| δ since the data amount δ has
to be transferred as many times as a fetch is scheduled, which we denote as |λ|. Note
that in the proposed algorithm, DV→ min is trivially satisfied since only one scheduled
fetch time is returned by the algorithm (the last possible one). This, however, increases
the risk of a fetch not being successful due to the network conditions being worse than
expected; this risk is amortised by several strategies, as explained in section 4.5.3.

4.4 Requirements

The outcome of the scheduling algorithm underlies two key requirements, derived from
the set of target variables in section 4.3. On one hand, the expected time of completion
must be before the deadline,5 which is expressed in condition (4.4); on the other hand,
the time of the data chunk stored in memory must be minimised to prevent data ageing
and prevent unnecessary resource usage. This is formally stated in condition (4.5).

Li < τi (4.4)

τi − Li → min (4.5)
5Even though strictly speaking, the relation between the time of completion and the deadline is of

less-than-or-equals nature, since time is in this context expressed as a continuous dimension, we use a
strictly-less-than relationship for simplicity.
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These two conditions correlate with the target variables (section 4.3). Condition
equation (4.4) causes the data item to be fully fetched before the deadline, which leads
to the item being present in cache upon request. It follows that the perceived response
time resulting from this condition is zero: RT = 0 – this trivially satisfies target variable
condition (4.1).

Condition (4.5) is derived from condition (4.2) and causes the data age to be minimal
(DA→ min). Otherwise, the trivial solution would be to schedule all fetches at λi = t0,
which would cause high memory usage and high data ageing effects (see section 4.3.2).

Note that condition (4.3) (minimal transferred volume) is trivially satisfied since
our algorithm only returns one fetch time decision per request, which means that no
repeating fetches of a single data item occur.

4.5 Scheduling Algorithm

As described in section 4.2, the scheduling algorithm takes as input a set of requests R
with R ∈ S and R = (τ, β, δ), as well as a function Blink : t→ B specifying the predicted
available bandwidth at any point in time. The expected output is a schedule set S, where
S ∈ S and S = (R, λ). R is the request in question and λ is the time at which the fetching
of the result data should be started in order for the deadline (τ) to be met.

4.5.1 Core Idea

The idea behind the algorithm is that diminishing link quality also lowers the transmission
bandwidth of data fetches, and in order to ensure finishing the fetch in a timely manner,
it must start earlier, according to the lower transmission bandwidth.

We assume that data volumes can be described as integrals of data rates (this
assumption is based on the notions described in section 3.3.3 and explained in further
detail in section 4.5.2). Following this assumption, we think of data volume as the area
below the data rate in the diagram. In figure 4.2, the areas are represented as red and
green rectangles starting at λi and ending at τi, having a height of βi – this means
that we assume the data transfer to take place in the time span [λi, τi] and consume a
bandwidth of βi6. This assumption is obviously correct for requests where the source
bandwidth βi is lower than the available link bandwidth Blink – we refer to these requests
as non-violating requests – but does not hold for the violating requests, marked red in
the figure.

In the initial state as depicted in figure 4.2, the fetches have been scheduled by ignoring
Blink and simply calculating the required fetch time using βi. While this approach works
well for requests R0, R1 and R4, requests R2 and R3 cannot be finished on time and cause
a cache miss, violating condition (4.1) in figure 4.1 by imposing unnecessary response
time (RT).

6For the sake of simplicity, this bandwidth is equal for all requests in this example.
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Figure 4.2: Original Situation: Requests R2 and R3 cannot be finished according to
their deadlines τ2 and τ3, respectively

In order to resolve violating requests, we reschedule R3 by moving λ3 to an earlier
time. Since we still aim to transfer the same amount of data, the area below the line
representing Blink must be equal to the previously-red rectangle below βi. To achieve
this, we use integrals (this approach is further explained in section 4.5.2) and solve for
their lower boundary.

We perform this procedure for the violating request with the latest deadline, R3, since
its rescheduling might affect preceding requests (as it does with R2). We determine the
optimal fetching time λ2. See figure 4.3 for a graphical representation.

We have successfully solved the deadline issue for R3. However, we also observe that
the newly scheduled λ3 is in conflict with the schedule for R2, which is additionally also
not scheduled correctly, since it would – even by itself – result in a deadline violation.
Furthermore, the early fetching of R3 would further increase fetching time for R2, and this
situation would lead to a subsequent delay for R3. To resolve this, we again reschedule
R2, this time by adjusting both the upper and lower boundary of the area integral for
R2. The upper boundary (the new deadline) becomes λ3, because fetching R2 must be
finished at the point in time where the scheduled fetching of R3 is supposed to start. We
again use integrals while keeping the area under Blink equal to the bytes to be transmitted,
solve for the lower boundary and obtain a new fetch schedule for R2, λ2.

This schedule resolves the conflict for R2 without influencing R3. Since R1 is also
not restricted in any way by the new schedule, we have resolved all issues and found
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Figure 4.3: Resolved violation of R3, R2 is now in conflict with both its deadline and
scheduled fetch of R3
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Figure 4.4: Issues resolved for all requests
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a schedule for each request, which, under optimal conditions, will cause all requests to
be fetched just in time for their required deadline. Figure 4.4 shows the resulting fetch
schedule; it is clearly visible that all requests have their deadlines satisfied.

It should be noted that this is a simplification of a real-world scenario; in the
latter, additional factors such as non-perfect prediction or sharing of the link with other
applications play a role, which requires additional steps to be taken to compensate for
the possible interferences. These measures are discussed in section 4.5.3.

4.5.2 Formal Concepts

For a basic understanding of our scheduling algorithm, we revisit the relationship between
bandwidth, time and data, as described in section 3.3.3:

B = d
dtD (4.6)

Obviously, this assumes continuous properties for B, t and D. While this might
be true for t (time can indeed be treated as continuous), data (D) is certainly discrete
because there is an integer unit of data that we use (bytes), and even though we often
transmit parts of this unit (bits) one after each other (even though this is not always
the case), those parts are themselves integer; one can split information into a smallest
(atomic) unit. For our purposes, the atomic unit is the byte. From this it follows that B
can also not be truly continuous.

However, we ignore the discrete nature of data for the purpose of this section and
assume continuous properties in order to present the fundamental principle of our
algorithm. We will later see that the idea can – and even requires to – be adapted for
discrete values in an analogous way.

Expressing Data as an Integral of Bandwidth

We examine equation (4.6) and transform it by indefinite integration (antidifferentiation)
of D, using t as the parameter variable. This yields the following equation:

D =
∫
B dt (4.7)

This is intuitive since the transmitted data is the sum of all transmittable data at each
point in time. This infinitesimal statement is subject to three simplifying assumptions:

(1) The quantities D and B are continuous.
(2) The denoted bandwidth (B) will be used exclusively for transmission of the examined

data chunk.
(3) The denoted bandwidth is always less than the bandwidth of the data source, i.e.

the limiting factor is always B.
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These assumptions are obviously merely an approximation of reality, and we will
account for this approximation in the later parts of the discussion of the scheduling
algorithm.

We see that the integral in equation (4.7) is indefinite, in other words, it has no
boundaries (no interval [a, b]). The boundaries of this integral, however, represent the
start and finish of the transmission of data in time.

We observe that the goal of our algorithm is for the transmission to and at τ (the
deadline of the request), hence, we set the upper boundary of the integral to τ . The lower
boundary is not yet defined – we denote it as a and will discuss it in the following steps.

Finding Integral Boundaries

When looking at equation (4.7) and taking into consideration our context, we observe
that D is constant (the data required by a request does not change over time), but B
is dependent on t. Furthermore, we are given a function of t, namely Blink(t), which
provides us with the (predicted) available bandwidth for any given time t:

B = Blink(t) (4.8)

This allows us to use Blink(t) as a substitution for B; yielding the following equation
(note that the boundaries a and τ have also been inserted into the equation):

D =
∫ τ

a
Blink(t) dt (4.9)

Following this equation, we see that the data, D, is provided with each request
R = (τ, β, δ), namely with the variable δ. We substitute δ – the data volume required by
the request – for D in the equation:

D = δ (4.10)

Substituting D with δ leaves the lower bound a of the integral as the last unbound
variable in the equation.

We now examine the resulting equation:

δ =
∫ τ

a
Blink(t) dt (4.11)

It is visible that all variables except for a are provided as input for the algorithm.
The equation represents the transmission of δ bytes until the time τ , given that the
bandwidth at each point in time t is specified by Blink(t) – the transmission here starts
at a. Given that a is the point in time at which the transmission starts, it becomes
evident that this is the result we require our algorithm to provide. We therefore replace
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Figure 4.5: The notion of
∫
Blink to represent data transmission

the symbol a for the lower boundary of the integral with λ, which denotes the scheduled
fetching time for the request:

δ =
∫ τ

λ
Blink(t) dt (4.12)

A graphical representation is provided in figure 4.5; it is evident that the boundaries
denote the start and end of transmission (λ and τ).

In order to solve for λ, one needs the antiderivative of Blink. We define this antideriva-
tive as Dlink(t) =

∫
Blink(t) dt. This allows us to rewrite equation (4.12):

δ =
∫ τ

λ
Blink(t) dt

δ = Dlink(τ)−Dlink(λ)
Dlink(λ) = Dlink(τ)− δ

λ = Dlink
−1(Dlink(τ)− δ) (4.13)

To continue solving for λ, we need to inspect Dlink more closely, since to express
λ from equation (4.13), the inverse function of Dlink is required. We now encounter a
boundary where no further solving is possible without deeper insight into the nature of
Dlink.
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Translation into Discrete Quantities

We recall that Dlink =
∫
Blink(t) dt under the aspect of finding the inverse function for

Dlink and establish that we need to inspect Blink. At this point, we need to relax an
assumption we made (see section 4.5.2), namely the continuous nature of data (D) –
assumption (1) –, and subsequently of bandwidth (Blink). We need to translate our
continuous, infinitesimal model into a discrete context, and we do so by dividing the time
t into slices. The bandwidth then is changed from B = d

dtD to B = ∆D
∆t – see equations

(3.2) and (4.6) – and denotes the transmission of a discrete amount of data (e.g. bytes)
per discrete time span.

We then examine equations (4.7), (4.11) and (4.12) and their development, and
translate them into a discrete context using analogous transformations, yielding the
following equations:

D =
∑
t

B

δ ≤
∑
t

B

δ ≤
τ∑
t=λ

Blink(t) (4.14)

Note that we have replaced the equality relation (=) with a not-greater relation (≤),
since the required data volume might not exactly align with the available bandwidth of a
slice. The sum of the transmittable bytes (the right-hand side of the equation) must not
be lower than the required amount of bytes (the left-hand side of the equation). This
equation is satisfied by any point in time before λ, since going back in time allows for
more transmission of bytes (the right-hand side increases in magnitude). We implicitly
only regard the greatest value for λ as the solution; we will make this assumption explicit
in the following.

Figure 4.6 demonstrates equation (4.14) graphically; it is visible that δ is the actually
required data (area printed in green), and

∑τ
λBlink is the data capacity of all time slices

required for transmitting the actual data (area printed in fuchsia). Since we use discrete
time slices, we have to round up, and reserve more than the necessary δ for transmission.
It is also evident from the figure that the inequality in (4.14) holds (δ ≤

∑τ
λBlink), and

that we implicitly assume the latest (greatest) possible value for λ (since any point in
time before the λ in the figure would satisfy the inequality).

We continue by expanding in an integral-similar way, i.e. similar to
∫ b
a f = F (b)−F (a),

by subtracting the sum using the lower boundary (λ) from the sum using the upper
boundary (τ):
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δ ≤
τ∑
t=λ

Blink(t) (4.14)

δ ≤
τ∑

t=t0
Blink(t)−

λ∑
t=t0

Blink(t)

λ∑
t=t0

Blink(t) ≤
τ∑

t=t0
Blink(t)− δ (4.15)

As mentioned before, we implicitly assume the largest λ as the desired outcome,
which we now make explicit. This results in our final equation:

λ = arg max
a

a∑
t=t0

Blink(t) ≤
τ∑

t=t0
Blink(t)− δ︸ ︷︷ ︸

Constant for R

(4.16)

Note that while this is a rather complex equation when using mathematical notation,
its implementation is significantly simpler, as we will see in the next section. Furthermore,
it is crucial to bear in mind that this is an approximation, which works under optimal
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circumstances, especially under the assumption that bandwidth prediction is exact,
and that the available bandwidth is available exclusively for fetching the single request
– assumption (2) in section 4.5.2. We elaborate on the realistic evaluation of these
assumptions in the next section.

4.5.3 Use Case Application of Formal Concept

We have shown how to calculate the scheduled fetching time λ for one request R = (τ, β, δ)
under certain assumptions. We now extend the use case towards the actual scenario our
algorithm will work on by loosening constraints and introducing additional assumptions:

(1) The data source for R may have a lower bandwidth β than Blink – as opposed to
assumption (3) in section 4.5.2 –, and this bandwidth is specified as βR. There are
several possible reasons for this case, including:
• Servers providing data for R have a slow uplink, possibly because of high load,

and are thus limited to βR.
• The data for R is produced on-demand, and the producer of the data has a

certain maximum bandwidth βR.
• The nature of the data item for R prevents it from being generated at band-
widths higher than βR.

(2) The prediction Blink is not perfect, i.e. it has an error margin (new assumption).
(3) The available bandwidth is shared amongst other processes – as opposed to as-

sumption (2) in section 4.5.2.
(4) We calculate scheduled item fetching for multiple requests R1, R2, . . . , Rn instead

of just one request R (new assumption).
(5) Our knowledge about the future, regarding the predicted link bandwidth Blink as

well as the requests R only exist, or are only feasible until a certain point in time;
the duration from the current time until this point in time is called look-ahead time
(new assumption).

The following sections provide information about our proposal of handling those new
constraints.

Data Source with Lower β than Blink

As described in assumption (1), the available bandwidth is not only dependent on the
bandwidth of the network link, which was denoted as Blink so far, but also on the
bandwidth of the data provider, β. This bandwidth might be significantly lower or higher
than Blink. For data providers with a significantly higher bandwidth than the network
link bandwidth (β � Blink), the described strategy of using Blink in calculations does
not cause any issues; however, for network sources with similar or lower bandwidth
than Blink (β . Blink), the algorithm must use the lower of the two for its calculations.
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Figure 4.7: Limiting the effective bandwidth taken into account by the available
bandwidth of the data producer β: Beff = min(β,Blink)

For a complete resulting formula, see the next section, where the correction factor α is
introduced and the resulting expression of Beff – equation (4.17) – is shown.

Correction for Blink

In order to take an error of Blink – assumptions (2) and (3) – into account, we use a
fairly simple approach; the value of Blink is simply multiplied with a constant correction
factor α. The correction has to account for both prediction errors of Blink compared to
the actual available network quality, as well as other applications consuming bandwidth
in parallel to our algorithm. The former aspect has the possibility of being defined
in a more precise way, for example by measuring the actual available bandwidth and
using learning algorithms to correct future predictions, or by using heuristics such as the
fact that shared Internet access links may be more overloaded at certain times of day.
The latter aspect, sharing bandwidth with other applications, can also be detected by
monitoring the device’s running services, also in conjunction with machine learning. All
of this, however, goes beyond the scope of our work, which is why we have settled on
using a constant factor. For a graphical representation, see figure 4.8.

We therefore use the effective available bandwidth Beff in our algorithm and define it
as shown in equation (4.17). For a graphical representation, see figure 4.7.
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Figure 4.8: In addition to limiting the effective bandwidth by taking into account by
the available bandwidth of the data producer β, an error margin is added, indicated
by the gray area (α = 0.8): Beff = αmin(β,Blink)

Beff = αmin(β,Blink) (4.17)

Too high values for α will generate fetches behind schedule, since the algorithm will
use an overly optimistic prediction to base its calculations on. This violates condition
(4.1) in figure 4.1. Too small values for α, on the other hand, will trigger fetches at a too
early time, which leads to the results staying in cache for longer than necessary. This
violates the condition for data ageing – condition (4.2) in figure 4.1.

During our simulation, we have used a factor of α = 0.90, which results in 10% of
tolerable error in Blink – however, we were also in control of the influencing factors, which
means that we were able to proactively set α to a well-performing value. See chapter 6
for an analysis of the impact of various factors on the results, including the value of α.

Handling Multiple Requests

Until now, we only examined a single request’s fetch scheduling. In a real-world scenario,
however, a high number of requests might require scheduling. We react to this by
scheduling the request with the highest (latest) deadline τ – denoted as Rn – first. We
then have to take into account that all ticks from this request’s scheduled fetch start λ
until the deadline τ are in use by Rn and cannot be used for any preceding requests. To
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achieve this, we use a marking mechanism which stores the ticks used for the scheduled
request as used. We then cease from using the marked ticks from scheduling of Rn−1,
mark those we did use, and continue in the same way with Rn−2 and so on.

The mechanism works as follows. A mark for a time slice is denoted as Mark(t).
Initially, all marks are set to zero, indicating that they can be used for fetching:

∀t : Mark(t) = 0 (4.18)

After a request Ri has been processed and the resulting fetching time λi is known, all
ticks from λi to τi are marked as used:

∀t ∈ [λi, τi] : Mark(t) = 1 (4.19)

For all subsequent requests, the mark is used in calculating the effective bandwidth
Beff as an additional factor:

Beff(t) = (1−Mark(t)) αmin(β,Blink(t)) (4.20)

As we can see from this resulting equation for Beff, a mark of 1 will result in a Beff of
zero for the given t, which will make the time slice unusable for all subsequent requests,
which is the behaviour we require.

Look-Ahead Time

For the purpose of realism, we define a look-ahead time thorizon, which describes how long
into the future our algorithm can access its input. In other words, thorizon specifies how
much time before the actual fetch the middleware receives notice of the planned request.

Intuitively, if thorizon is significantly higher than the average time needed to fetch a
request’s data, it is not determinable whether there is a look-ahead time at all. However, it
has to be noted that an increased look-ahead time is not only less realistic (future requests
might simply be unknown to the client software yet), it also increases computational
power required to schedule fetches – power, which, in the context of mobile units, is
regarded as valuable. Since recalculation must occur whenever a new request is added
to the list of planned requests, conserving computational power can be seen as a soft
requirement.

On the other hand, if thorizon is too small, the algorithm might not take into account
an upcoming data-intensive (and, as such, time-intensive) fetch or a prolonged time
of degraded network quality and fail to prefetch data, even though it could have been
possible to do so.

While the look-ahead time might seem like an inherent property of the algorithm
itself, we separate those two matters and define the look-ahead time as a limitation of
the environment in which the algorithm operates. The look-ahead time is a limitation
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of the middleware and client code, and the algorithm is merely provided with a limited
view of predicted future events.

We analyse the impact of thorizon on the target variables in chapter 6.

4.6 Reference Implementation

We have implemented the algorithm in Java; to be precise, we implemented a simulation
environment (discussed in chapter 5), of which the algorithm is a part (in a way that
makes our algorithm easily replaceable with other implementations or algorithms). In
this section, we provide a rough sketch of the algorithm’s mode of operation.

4.6.1 Signature

The input parameters of our algorithm follow those discussed in section 4.2, and consist
of the following elements.

• A collection of requests, with the following parameters per request:

– A deadline, i.e. at which point in time the data is required.
– The amount of data to be transferred.
– The byte rate at which the data is supplied by the data source.

• A function (Blink : t→ B) supplying the algorithm with predictions for byte rates
throughout the simulation time.

We have implemented the collection of requests as a simple Java Collection of
objects of the Request class – a class which is a part of our simulation environment
implementation. Following the service-oriented architecture of our simulation (a member
of the simulation can obtain references to services), we have implemented Blink as a rate
prediction service, which provides the algorithm with means of evaluating Blink for any t.

In return, the algorithm generates a scheduling function mapping each request to
a point in time (S : R → t), denoting when the fetching of a request should start in
order for the deadline to be satisfied (given the prediction). The function is, in Java,
implemented using a Map object. The map assigns each request with the scheduled
fetching time.

As data types in our simulation, we use long values for points in time and int
values for the data size. We thus derive the surrounding environment – or context –
of the algorithm and the algorithm’s signature itself and display it in listing 4.1 and
listing 4.2, respectively.
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Listing 4.1: Context (input) of a prefetch scheduling algorithm
public class Request {

private final long deadline;
private final int data;
private final int availableByterate;

/* ... getters ... */
}

public interface RatePredictionService {
Integer predict(long tick);

}

Listing 4.2: Signature of a prefetch scheduling algorithm
public interface PrefetchAlgorithm {

Map<Request, Long> schedule(Collection<Request> requests, RatePredictionService
ratePredictionService);

}

4.6.2 Implementation

The implementation itself follows the idea discussed throughout section 4.5, using some
optimisations or simplifications stemming from platform specifics. In this section, we
show a version of our scheduling algorithm lacking any correction for Blink, as it is
discussed in section 4.5.3.

The first part of the algorithm sorts the requests in descending order by deadline,
which yields the last requests first. This is necessary to properly handle the situation
depicted in figure 4.3, where the later request overlaps with its predecessor. This can only
be resolved by handling the requests starting at the last one, without having to re-iterate
over the requests and resolve overlapping requests using subsequent passes. Thus, we
handle the latest requests first and are able to use a single-pass approach. We use the
Java-inherent Comparator pattern together with Collections.sort for sorting the
requests. The details of the sorting algorithm are not covered in our work.

We then define a variable, previousStart, which holds the value of the scheduled
fetch start (λ) of the last processed request. It is required to resolve the overlapping
discussed in the last paragraph. The variable is initialised with the maximum long value
at the beginning, to avoid having to handle the first processed request in a special way.
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long previousStart = Long.MAX_VALUE;

The implementation then iterates over the requests in a for-each loop and assigns
to each request a scheduled starting time (λ, called start in the code). The starting
time is calculated using the previousStart variable, the request deadline and the rate
prediction service. After having calculated and stored the scheduled starting time, it
updates the previousStart variable to start and continues with the next iteration.

HashMap<Request, Long> ret = new HashMap<>();
for (Request req : sortedByDeadline) {

long start = getStart(previousStart, req, ratePredictionService);
ret.put(req, start);
previousStart = start;

}
return ret;

/* ... */

private long getStart(long busyUntil, Request req, RatePredictionService
ratePredictionService);

We now inspect the implementation of getStart, the method responsible for
scheduling a starting time for a particular request. As discussed before, there is a
point in time until which the link is known to be busy – this is passed as a parameter to
getStart, namely the first formal parameter, busyUntil. The parameter is assigned
from the outer loop’s variable previousStart.

The method starts by setting tick, an internal pointer, to 1 less than the request
deadline, or the busyUntil parameter, whichever is earlier in time. This initial tick
setting describes the latest point in time at which data can be received. Additionally,
the method keeps track of how much data is to be fetched until the time tick, and it
does so using the variable data.

long data = req.getData();
long tick = Math.min(busyUntil, req.getDeadline()) - 1;

We can see that the initial state of the method is that until tick (which points to
the last point in time where data can be fetched before the request’s deadline), data
(which is the amount of data of the request) must be fetched.

After this initialisation, the method goes back tick by tick, assuming that the prediction
service correctly indicates how much data can be transferred during that tick (again, this
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variant of our algorithm performs no correction for Blink, as discussed in section 4.5.3).
Given this prediction and the upper bound of data transfer, namely the request’s data
source byte rate, the algorithm determines the planned amount of data fetched from the
source. This amount of data is subtracted from the still-to-be-transferred amount of data.
The loop iterates until either the first tick (t0) is reached (since no request can be fetched
before that tick), or all necessary data has been scheduled for transfer. The resulting
tick is either zero or the tick at which fetching should start for the deadline to be met.

while (data > 0 && tick >= 0) {
Integer prediction = ratePredictionService.predict(tick);
data -= Math.min(req.getAvailableByterate(), prediction);
tick--;

}
return tick;

Note that this algorithm represents the iterative evaluation of the lower bound of the
sum operator from equation (4.14). The complete implementation is shown in listing 4.3.
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Listing 4.3: Implementation of our prefetch scheduling algorithm
public Map<Request, Long> schedule(Collection<Request> requests, RatePredictionService

ratePredictionService) {
HashMap<Request, Long> ret = new HashMap<>();

List<Request> sortedByDeadline = sortByDeadline(requests);

for (Request req : sortedByDeadline) {
long start = getStart(previousStart, req, ratePredictionService);
ret.put(req, start);
previousStart = start;

}

return ret;
}

private long getStart(long busyUntil, Request req, RatePredictionService
ratePredictionService) {
long data = req.getData();
long tick = Math.min(busyUntil, req.getDeadline()) - 1;

while (data > 0 && tick >= 0) {
Integer prediction = ratePredictionService.predict(tick);
data -= Math.min(req.getAvailableByterate(), prediction);
tick--;

}

return tick;
}
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CHAPTER 5
Simulation Environment

In order to run the proposed prefetching algorithm and measure the resulting metrics,
we have designed a simulation environment. It is capable of simulating scenarios where
a mobile unit transitions through varying network quality while communicating with a
server. This way, we can implement a prefetching algorithm, simulate fluctuating network
quality and directly and reliably measure our key target variables.

This chapter describes the genesis and architecture of this simulation environment.
The high-level structure is depicted in figure 5.1; the two main components are the Client
and the Server, which are connected over a network link, which – in our case – is shaped
(in other words, it imposes certain quality properties such as limited bandwidth and
increased delay).

Server

Client

Client Code

Middleware

Scheduling Algorithm

Network Link

Figure 5.1: Conceptual view of a prefetching scenario

The client consists of the Client Code, the Middleware and the Scheduling Algorithm.
The client code is providing the middleware with requests to which responses will be
required at certain points (as described in section 4.2). The middleware then uses the
scheduling algorithm to determine points in time at which the responses to those requests
should be fetched, and does so independently of the client code. At a later point in time,
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the client code actually requests data from the middleware. In the best-case scenario,
the middleware was able to prefetch all responses and all requests to data made by the
client software can be satisfied by the middleware with almost zero delay.

In this chapter, we discuss our implementation of a setup capable of simulating
this scenario. We start by stating key requirements to the simulation environment in
section 5.1, after which we briefly discuss our selection of tooling in section 5.2. We
then present our implementation of a shaper for the network link in section 5.3 and
a simulation environment in section 5.4. After having established the prerequisites,
we present our top-level elements of the simulation in section 5.5, which represent the
implementation of the components presented in figure 5.1. Finally, in order to analyse
and discuss the results, we record performance metrics during our simulation, which we
discuss in section 5.6.

5.1 Definition of Requirements

Key to our scenario is the simulation of fluctuating network quality. We identified the
following core functionality conditions that must be met in order to approximate a
prefetching scenario:

(1) Intercepting a communication stream between client and server software, transpar-
ently for the client and server application. Here, transparently refers to the fact
that no code modification is necessary on neither client nor server code in order to
employ network shaping1; the only permitted exception is that the client changes
the endpoint of its connection from the original server to a (shaping) proxy server.
Furthermore, we speculate that limiting our simulation to stream communication
(for example TCP) is justifiable by assuming that specifics of Layer 4 protocols are
not relevant for our research; any application employing non-stream communication
by using UDP or any other Layer 4 protocol will have to employ some form of
transmission control, which has a high likelihood of resulting in similar results for
our purposes.

(2) Simulate real network conditions as close as possible, by employing limits to the
traffic, namely limited bandwidth, increased delay and jitter in both attributes.

(3) The shaping parameters (bandwidth and delay) must support parametrisation and
be dynamic, i.e. allow for change throughout the simulation.

(4) The simulation must be reproducible, meaning that even though pseudo-random
events such as jitter in delay and bandwidth are allowed, the simulation itself must
be purely deterministic and anyone with sufficient knowledge of the setup must
be able to reproduce the exact outcome. The goal is to obtain the possibility of

1In our work, we define network shaping as the purposeful modification of a communication link’s
properties. This definition includes the creating of an artificial delay in the communication link or the
limiting of its transmission speed.
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documenting the setup of our experiments in enough detail to allow for reliable
future reproduction of our results.

(5) The simulation should be as easy to set up and platform independent as possible.

5.2 Selection of Tooling

In search for a solution to realise this functionality in our simulation runs, we had to
tackle two main problems, namely the shaping of traffic with regards to bandwidth and
delay, as well as the simulation of a setup with multiple components and recording metrics
heavily dependent on time.

In order to achieve the former functionality – shaping traffic – we evaluated several
setups and describe their architecture as well as the foreseen advantages and disadvantages
of such a solution in the following.

Network Simulation Tools There are several tools with focus on network simulation.
ns-3 [Hen+08] is an open source network simulator with a rich set of features, which
is developed in C++ with Python bindings, and offers a large amount of extendability.
However, its rather complex architecture is a downside, since our simulation would
only require a small subset of functionality. Reproducing simulations is enabled in
ns-3 by using a fixed random number seed. ns-3 is supported on Linux, FreeBSD
and Mac OS X platforms. Other alternatives include OPNET [Cha99] and NetSim 2,
both of which are proprietary software. The setup using this software would include
setting up a simulated network, implementing a client and server which use a simple
protocol on top of, for example, TCP, and using the simulated network to impose
quality setbacks to the communication. This process is rather time-consuming and
prone to non-repeatability.

Network Shaping via Platform-Specific Mechanisms The Linux kernel, starting
at version 2.6, provides the module netem, which exposes all the required shaping
functionality. Its downsides are the dependency on the Linux kernel of at least
version 2.6, and the lack of possibilities of reproducing the result. Similarly to the
previous setup, the client and server would be implemented using a simple protocol
on top of a network protocol such as TCP, and the platform-specific tool (in this
case, netem) would be used to simulate low-quality network properties.

Creating a Testbed Using a testbed, preferably consisting of several virtual machines
and employing network shaping tools poses a lot of effort in both setup and
operation, which in turn vastly increases the effort necessary to ensure repeatability
or even reproducibility. Our initial research has shown that issues arising from
this approach, including the mechanisms required to reliably set up and tear down
virtual machines while maintaining consistent state, as well as having to synchronise
the machines’ hardware clocks in order to reliably measure values, and the relatively

2See http://www.boson.com/netsim-cisco-network-simulator.
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heavy resource usage when running such a simulation do not outweigh the fact that
this setup is factually very close to a real use case.

Creating an Integrated Simulation Environment Designing and implementing a
simulation environment for our purpose has the disadvantage of having to write
and test additional code; however, it offers the ability to control the simulation
process entirely down to the last detail. This includes fine-grained implementation
specifics such as the exact way of processing data in the traffic shaper, or the way
the network parameters (bandwidth and latency) are subject to jitter.

The closest match not involving the implementation of a custom tool, which was
using a network simulator such as ns-3, was rather complex to set up and imposes a
limitation to executing platforms. We therefore decided for the last solution described
in the foregoing listing (creating an integrated simulation environment) and built a
software framework in Java which suits our needs, enabling the execution of repeatable
experiments on a wide variety of platforms, named scovilleJ. The detailed architecture
and functionality of this framework is discussed in section 5.4.

Moreover, to provide traffic shaping functionality in scovilleJ simulations, we developed
a library for this purpose, which can be used for both shaping of live traffic as well
as shaping of traffic in a scovilleJ simulation. This tool is subject of discussion in the
following section.

5.3 Traffic Shaping Using spiceJ

As described in section 5.1, our simulation requires a way of shaping traffic, in other
words, imposing certain effects of degraded network quality in a simulation environment.
For reasons described in section 5.2, we commenced developing such a tool in the process
of developing a simulation environment for prefetching scenarios.

5.3.1 Traffic Shaper Design

The implemented traffic shaper – spiceJ3 – is a generic tool capable of shaping traffic,
not only in the context of our prefetch scenario. It covers two use cases:

(1) The interception of arbitrary TCP streams, where the traffic shaper works as a
Layer 4 proxy accepting socket connections from hosts, initiating socket connections
to the actual server and employing traffic shaping using this situation of being a
proxy in the communication.

(2) The shaping of Java streams, where a (proxy) Stream object is calling methods of
the actual Stream object, while employing traffic shaping. This can be useful if the

3Information, source code and documentation for spiceJ is available at https://github.com/
michael-borkowski/spiceJ or http://www.borkowski.at/spiceJ. The version of spiceJ used
in our analysis was 0.0.10.
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algorithm under test is required to have the same source of simulation time as the
traffic shaping module, which is necessary for condition (4) of the simulation in
section 5.1.

Since scenario (1) can be realised using an implementation for scenario (2), we
developed a stream implementation capable of repeatably employing bandwidth limits
and add delay to transmissions using Java streams. We then developed a wrapper for
this implementation which accepts and initiates socket connections as needed, and also
simulates connection resets if the connection is simulated as stalled for an excessive
amount of time. This wrapper binds the repeatable traffic shaping of scenario (2), to
real time, which prohibits repeatability (preserving reproducibility); however, since we
will not need this functionality for our simulation, this does not violate our precondition
of repeatability, precondition (4) in section 5.1.

Our solution provides implementations of the Java stream classes, InputStream
and OutputStream. The two core functions, limiting bandwidth and imposing a delay,
are both implemented for input and output streams alike.

5.3.2 Traffic Shaper Implementation

All classes work by dividing the temporal dimension into slices, so-called ticks, where
a tick may be triggered by an arbitrary event. Classes triggering tick events are called
tick sources. Two implementation of tick sources are included in spiceJ: the classes
RealTimeTickSource and SimulationTickSource. The former class provides
a way of binding tick events to real time – in other words, it allows to fire a tick
event periodically, with a certain interval. While the exact boundaries depend on the
executing platform, we have found that events can be fired at intervals as low as 40 ns,
which facilitates the generation of high-throughput rate-limited streams. The second
implementation – SimulationTickSource – is more generic and can be used to fire
tick events by calling a method, which is especially useful in the type of simulation we
require for analysis of our algorithm’s performance.

Rate Limiting

The rate limiting classes work by only allowing a certain amount of bytes to pass between
two tick events. They are configured with two parameters, both of which can dynamically
change during run time: byte rate and prescale. The byte rate specifies how many bytes
are allowed to pass in between two tick events. The prescale allows to ignore each tick
except for each nth tick. In other words, a prescale of one means that each incoming tick
event is considered for byte rate limitation, a prescale of two ignores every other tick
event, a prescale of three ignores two out of three tick events, and so on. This mechanism
is useful for creating byte streams with a low byte rate compared to the tick frequency.
For example, given a tick source of 1Hz, setting the byte rate to 1B and the prescale to
4 results in a byte stream with a throughput of 0.25 B/s.
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The input version of the rate limiting stream class works by implementing the stream’s
read methods in a way that only returns the amount of bytes which permitted by the
settings. The stream can be configured to either block upon the first request of a byte
where the tick’s byte count has been exhausted or throw an exception. The rate-limited
output stream simply blocks if more bytes have been passed for writing in the particular
tick than allowed by the settings, and waits until the tick passes before continuing to
write any further bytes. The Java output stream API does contain a non-blocking method
for sending data and thus no other solution is possible.

Note that the input stream class can be used in a single-threaded, synchronous
application while the output stream requires a separate thread to generate tick events,
for the write method might block and wait for subsequent tick events.

Delay

The delay-imposing classes are configured with only one parameter: the imposed delay
in ticks. The delay may be any non-negative real number and denotes how many ticks of
delay have to be added to the byte stream. For input streams, this means that data is
being read into a buffer upon each tick event, and read calls to the stream are working
on that buffer, respecting the required delay. Our implementation keeps track of the
ticks at which the buffered data actually becomes available to client code. The output
version has a similar design; data is being written into an internal buffer with recorded
time stamps, and at each tick event, parts of the buffer which may already be written
(according to the configured delay) are sent to the underlying stream.

In contrast to the rate limiting streams, both the input and output version of delay-
imposing streams can be used in single-threaded, synchronous applications.

Network Proxy

The core functionality of spiceJ consists of the presented stream implementations. Fur-
thermore, as mentioned before, we have implemented a simple command-line program
using these classes in order to provide a way of shaping actual live network traffic, a
proxy. The proxy uses the RealTimeTickSource class in order to shape the traffic in
a manner of rate limits in bytes per second and delays of seconds or fractions thereof.

Listing 5.1 shows an example of code using spiceJ. An input stream (input) and a
tick source (ticks) are provided. A byte rate of 8 B/tick and a prescale of 2 are defined
(this only serves the purpose of demonstration; the code might just as well use a byte
rate of 4 B/tick and a prescale of 1 with a similar effect4). From the original input stream,
a rate-limited version of the stream is created by using the RateLimitInputStream
class, which is provided by spiceJ. The resulting input stream, rateLimited is then

4Obviously, while the overall duration of the read loop would remain the same, using 8 B/tick and 2
instead of 4 B/tick and 1 as parameters for byte rate and prescale, respectively, results in reads with twice
as many ticks in between, but yielding twice as many bytes per read, resulting in an equal net byte rate.
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Listing 5.1: Example of Code using the rate limiting functionality of spiceJ
// provided: an input stream and a tick source providing tick events
InputStream input = new ByteArrayInputStream(new byte[1000]);
TickSource ticks = createRunningTickSource();

int byteRate = 8;
int prescale = 2;

// byte rate of 8 and prescale of 2 results in an effective throughput of 4 bytes per tick

// result: a rate-limited version of the original input stream
RateLimitInputStream rateLimited = new RateLimitInputStream(input, ticks, byteRate, prescale

);

byte[] result = new byte[1000];
int done = 0;

// the following loop takes 1000 / 4 = 250 ticks from tickSource to finish
while(done < result.length)

done += rateLimited.read(result, done, result.length - done);

read in a read loop until the total amount of bytes has been stored. This read loop of
1000 bytes with a byte rate of 8 B/tick and prescale of 2 (net byte rate of 4 B/tick) takes
250 ticks from the tick source to finish. If the rate limiting input stream is driven by a
real-time tick source with an interval of 1ms, the read loop takes 250ms to finish.

In listing 5.2, the usage of spiceJ as a transparent TCP proxy is shown. All traffic
towards a local port (in this example port 4001) is redirected towards a remote host
(192.168.1.50 at port 4005) and traffic shaping in terms of limited bandwidth and increased
delay is introduced. It is evident that the proxy implementation allows for asymmetric
traffic shaping.

5.4 Repeatable Simulations Using scovilleJ

After having established a solution for traffic shaping (section 5.3), our commencing effort
continued by designing a framework for simulating a distributed system, where a client
and a server are communicating over a network link, the client repeatedly requests data
from the server, and the server responds; all of this happens while relevant metrics are
recorded for later analysis.
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Listing 5.2: Example of using spiceJ to create a transparent TCP proxy
int localPort = 4001;

String remoteHost = "192.168.1.50";
int remotePort = 4005;

float rateSend = 48.2F;
float rateReceive = 128.0F;

float delaySend = 0.101F;
float delayReceive = 0.022F;

SocketProxy proxy = new SocketProxy(localPort, remoteHost, remotePort, rateSend, rateReceive
, delayReceive, delaySend);

proxy.run();

// upon calling .run(), all TCP connections to the local port 4001 are
// forwarded to 192.168.1.50:4005, and underlie the following shaping:
//
// - upstream traffic (towards the remote host) is rate-limited to
// 48.2 bytes per second
// - downstream traffic (from the remote host) is rate-limited to
// 128.8 bytes per second
// - upstream traffic is subject to an additional delay of
// 101 milliseconds
// - downstream traffic is subject to an additional delay of
// 22 milliseconds
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Figure 5.2: Conceptual view of a scovilleJ simulation

We developed a simulation and profiling framework and environment supporting this,
scovilleJ.5 Our framework enables several agent (members) to interact with each other
while maintaining a consistent and repeatable notion of time. The latter is realised in a
similar way as in spiceJ, namely using the notion of ticks to simulate temporal activity
independently of real time. Using this strategy in combination with the deterministic
nature of spiceJ, exactly repeatable results have been achieved.

Figure 5.2 depicts a simplified graphical representation of the architecture of a
simulation in our implementation. A simulation contains an arbitrary number of members
and services. The services, together with the current state of the simulation (out of which
the main element is the number of the current tick and current phase, a concept we will
discuss in the next section) are what is designated as simulation context. The simulation
context is what each member is provided with for executing its business logic during each
tick.

Members are each called once per tick6 and may perform an arbitrary amount of
business logic during such tick. The notion of what is appropriate or allowed per tick
is heavily dependent on the exact, domain-specific kind of processes that are being
simulated. Since for our purposes we only focus on the transmission time of data and
disregard the computation time, we do not impose any limits on executed commands
during one phase in our simulations. During each call, the members are provided with
the simulation context, which, as described, contains the state of the simulation and
serves as a way of obtaining references to services. A service is a special kind of member,
which exposes an interface to other members to be called directly; it can be compared to
a library. One example in our scenario is the communication service (which is defined

5Information, source code and documentation for scovilleJ is available at https://github.com/
michael-borkowski/scovilleJ or http://www.borkowski.at/scovilleJ. The version of scov-
illeJ used in our analysis was 0.0.7.

6In fact, they are called once per phase, but for the sake of simplicity this is omitted in this preliminary
explanation.

59

https://github.com/michael-borkowski/scovilleJ
https://github.com/michael-borkowski/scovilleJ
http://www.borkowski.at/scovilleJ


Tick 1

Phase A

Phase B

Phase C

Tick 2

Phase A

Phase B

Phase C

. . .

Figure 5.3: Sequence of ticks and phases

in the CommunicationService interface), which exposes a socket-like interface to
members.

5.4.1 Simulation Framework Design

The core process is realised by the simulation members processing their business logic in
so-called tick handlers (more precisely, as we will later see, phase handlers). As an initial
constraint, operations within one tick, i.e. the actions (business logic) performed by the
simulation members during the handling of a tick, must not interact with or affect other
members. This leads to two desired effects:

(1) The order of calls to the handlers is not relevant for the outcome.
(2) Handlers for each member can also be called simultaneously (in multiple threads,

or even on multiple machines).

This strict rule, however, greatly hinders simulation interaction between simulation
members, since measures to avoid communicating inside one tick would have to be taken
by communication services. For this reason, we divide the ticks into smaller time slices,
so-called phases. While a tick is represented as a sequential number in our implementation,
a phase is represented by a unique name.

Introducing phases for each tick, we change the restriction of interaction inside a tick
to the restriction of interaction inside a phase. In other words, members are allowed to
communicate with each other, as long as the sending and receiving of information is not
taking place in the same phase. This way, the two properties (irrelevant ordering and the
possibility of parallel execution) still hold for the simulation. Since members do not have
the possibility to interact with each other directly (without regard to ways of bypassing
the simulation process entirely, for example by using static classes or class members,
sockets, files or other means of inter-process communication), it is the responsibility of
services, especially those dedicated to providing communication between members, to
ensure that this communication happens only across phase boundaries.

The sequence of ticks and phases as we have implemented it in scovilleJ is graphically
represented in figures 5.3 and 5.4.
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Figure 5.4: Chronology of ticks and phases

5.4.2 Simulation Framework Implementation

A simulation is structured by specifying a certain amount of ticks as the duration of
simulation, and each tick is divided into an arbitrary number of phases. Furthermore, a
set of members (participants) is specified for the simulation. Finally a set of services is
defined – services are interfaces which may be acquired and called by simulation members.

Members are allowed to communicate with each other, as long as communication is
forced to cross the phase boundary (see section 5.4.1 for an explanation). For example, a
service may be defined to send messages between members by saving them to receive
queues. An implementation following the limiting restriction would have buffers which
are actually flushed at the final phase of each tick, to make the messages available to the
receiving member at the beginning of the next tick. In fact, we use such a mechanism for
our implementation of the communication service.

Simulation Procedure

The simulation is performed by the simulation supervisor. The supervisor sequentially
executes each tick, where a tick is in turn split into the execution of each of its phases.
Each member is notified (called) at the beginning of each phase, and the phase is finished
when all members have finished their handling procedure. Only then, the next phase is
started.

Service

As described in section 5.4.1, a service is an entity providing an interface for other
members to call. Since such an entity contains business logic on its own that must be
executed throughout the simulation, we derive services from regular members, making
them a subclass of members. This also allows services to use other services in the same
way that a regular member would.

We have implemented two major kinds of services. Firstly, the communication service,
as already mentioned, allows members to employ socket-like communication with each
other in a controlled manner, possible to shape. Secondly, we provide a profiling service,
which serves as a central point of collecting recorded metric and allows for easy aggregation
into statistical quantities.
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In addition to those two services, we have some auxiliary service implementations, for
example the rate prediction service, which allows algorithms that are bandwidth-aware
to predict future available link qualities (thus evaluate values of Blink).

Profiling and Analysis

During the simulation, members may report values (measurement series) to the simulation
framework. These values are aggregated and can be used by the calling process, which
allows for analysis or output of simulation results.

5.4.3 Software Architecture

The implementation consists of a number of Java classes aiding the simulation of prefetch-
ing scenarios. No enterprise aspects such as persistence, clustering, session handling or
similar are required: the simulation is configured with the required components, then
run partly or completely, after which the recorded profiling data can be extracted by the
using software.

Core Components

The core of scovilleJ consists of a few interfaces, to which implementations are given.
The core interface is Simulation. A simulation can be queried for its phases (property
List<String> phases), the tick it is currently in (long currentTick) as well
as the total number of ticks (long totalTicks).7 The user of Simulation can use
execute... methods to partially or completely run the simulation – examples are
executeToEnd() and executeCurrentTick().

A Simulation is provided with certain child objects upon creation. These child
objects are instances of the SimulationMember interface; in general, these objects
are in some way influencing the simulation process. Members can consist of zero or
more PhaseHandler implementations and zero or more SimulationEvent imple-
mentations. PhaseHandler objects are responsible for processing the tick phases of
the simulation; in other words, they represent the actual behaviour or business logic
of the simulation members. PhaseHandler classes are called for each phase of each
tick.8 Furthermore, the simulation member’s SimulationEvent objects represent
single-point-in-time events that happen at a certain tick. This scheduled tick is known a
priori, before the simulation starts, and is as such part of the simulation configuration.
Simulation events cannot be dynamically created throughout the simulation. Since

7Note that the actual implementation allows for a fine-grained control of the tick processing mechanism:
the Simulation interface differentiates between the state of being about to process a certain tick, and
having processed the tick. This description is a simplification to ease the understanding of the class
structure.

8For performance reasons, a phase-subscription mechanism has been implemented, allowing phase
handlers to only be called for certain phases – this reduces overhead.
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Figure 5.5: Conceptual UML view of scovilleJ’s core interfaces

the SimulationEvent interface extends PhaseHandler, it is clear that events are a
special form of phase handlers, namely handlers that will only be called for the scheduled
tick.
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A SimulationMember implementation can use any combination of PhaseHandler
and SimulationEvent objects to achieve its business logic goal.

Furthermore, to allow for actual measurable (inter-)action of simulation members,
the notion of services has been introduced; the simulation is configured with a certain
set of services, which are identified by a Java class or interface. A service is provided
by a ServiceProvider object and can be requested by a phase handler from the
SimulationContext it is given during its execution.

Built-In Services

As mentioned in section 5.4.2, one of the main services we have implemented is the
communication service, which provides a socket-like interface for members to communicate
with each other. One member can start a listener with a given name, and any other
member can open a connection to this name. The listening member can decide whether
multiple clients are accepted by calling the accept() method once or multiple times.
We use this communication in connection with the previously-described traffic shaper
spiceJ (see section 5.3) component to simulate the communication between a mobile
unit and its server.

The described profiling service is simply implemented as a store of measurements
with an addition of aggregation functionality yielding statistical results such as mean,
average, minimum and maximum values and so on.

To summarise the implementation overview of scovilleJ, figure 5.5 provides a view of
the UML structure, showing the most important classes.9

5.5 Simulation of Prefetching Scenarios

Prefetching is simulated on top of scovilleJ. No real-time components of spiceJ are used,
which makes the entire simulation synchronous. Currently, we have implemented a single
server component and one client component as simulation members. However, the scenario
is easily extendable to multiple clients10 and multiple servers. We restricted our simulation
to this point-to-point simulation since the results can easily be applied to multiple users,
provided that each user is provided with an equivalent communication channel with the
server. The source code and documentation for the prefetch simulation framework is avail-
able at https://github.com/michael-borkowski/prefetch-simulation or
http://www.borkowski.at/prefetch-simulation. The version of the project
prefetch-simulation used in our analysis was 0.0.2.

9Note that this is a simplified view; simplifications include the notation of attributes instead of getter
methods, or the omission of the <<interface>> stereotype as well as some less relevant methods.

10In fact, the server component is already capable of handling multiple, simultaneous clients.
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5.5.1 Prefetch Simulation Setup

The simulation setup is done in two steps. The first set of parameters to a simulation is
called a configuration. This configuration consists of a fixed-size set of parameters and
can be serialised (i.e. stored for later recall). A configuration can, in a subsequent step,
be converted to a genesis – a genesis describes in detail the time line of a simulation.
While the configuration contains dimensions which require randomisation, a genesis is a
complete, deterministic specification of a simulation run. Figure 5.6 demonstrates the
process graphically.

The genesis of a simulation can also be serialised, albeit requiring more (asymptotically
increasing) storage space than the fixed-size configuration, because it lists all simulated
events and their corresponding ticks explicitly. The gain of such an explicit description
is, as already mentioned, the lack of non-determinism.

Configuration

total ticks: 5000
max bandwidth: 15B/t
absolute jitter: 3B/t
relative jitter: 0.8

recurring requests: {. . . }
network uptime: 0.95

prediction accuracy: 0.8
look-ahead time: 2000

Seed

Materialisation Genesis

Beff at t0: 11B/t
Prediction at t0: 9B/t
Beff at t10: 9B/t
Beff at t22: 8B/t

Request at t26: R = (. . . )
Beff at t30: 12B/t
Beff at t40: 11B/t
Beff at t50: 10B/t

Request at t53: R = (. . . )
Beff at t60: 12B/t

...
End of simulation at t5000

Simulation Result

Request t26 fetched at t25
Request t53 fetched at t56

...

Deterministic Process

Figure 5.6: Simplified view of the simulation setup and execution process

As an example, a configuration contains the parameter relative jitter, which we will
discuss in detail in the next section. Relative jitter specifies by how much of the available
byte rate the actual simulated available byte rate varies throughout time. Given an
exemplary byte rate of 10 bytes/tick, a jitter parameter of 0 would imply that the byte rate
is completely stable (10 bytes/tick at each point in the simulation). A jitter of 0.4 causes
the byte rate throughout the simulation time to vary between 6 bytes/tick and 14 bytes/tick
(since 0.4 ∗ 10 = 4) instead of being fixed at 10 bytes/tick. The materialised, deterministic
genesis variant of such a scenario would be the following sequence of ticks:
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Table 5.1: Example: Materialised byte rate

Tick Byte Rate
130 6
140 13
150 5
160 14
170 11
180 13
190 8
200 7
220 14
230 7
240 14
250 12

It is clearly visible that the element of non-determinism has been eliminated by
explicitly stating the values of variables underlying non-deterministic influence. We call
this process materialisation.

Simulation Configuration

The parameters constituting the configuration of a prefetch simulation are top-level in
the sense that they describe human-readable and human-writable aspects such as the
number of services running on a mobile unit, the fluctuation properties of the network
link, the overall maximum available byte rate or the total number of ticks.

The time line of the simulation is split into so-called slots of varying length. Each slot
has its own net available byte rate, where the actually simulated byte rate is enriched
by an amount of jitter. Slots have a certain probability of having a byte rate of zero,
in which case the jitter has no practical effect (the byte rate remains zero). Figure 5.7
shows a graphical representation of the slots with their designated byte rates.

The jitter is calculated for tick intervals smaller than the slot length; for each of
these ticks, the actual value for the available bandwidth is calculated using the following
formula:

Beff = a+ b Blink (5.1)

In this context, a denotes the absolute jitter amplitude and b is the relative jitter
coefficient. Figure 5.8 shows a graphical representation of slots including the described
jitter.

Additionally, for each slot, the prediction function (a function which maps a tick
to a predicted or estimated byte rate) represents the non-jitter-subject version of the
available byte rate, where two kinds of errors are introduced in the simulation for realism:
firstly, an amplitude error is introduced, so the prediction function can randomly over-
or under-estimate the actual bandwidth. Furthermore, a temporal error is added, which
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Figure 5.7: Slots with designated byte rates
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Figure 5.8: Slots with introduced byte rate jitter
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Figure 5.9: Types of error introduced to byte rate prediction

shifts the time stamps of the changes in the prediction function randomly to either
direction. This means that the changes in bandwidth can happen before or after the
corresponding change in the prediction function. Figure 5.9 depicts these two kinds of
errors introduced.

Furthermore, the simulation configuration contains a list of recurring and a list of
intermittent requests. The former describes a series of requests by specifying the interval
in ticks of recurring events, the start and end times in ticks, as well as the data size and
byte rate, which are already well-known parameters for requests, described in chapter 4.
The latter describes a single request in time by specifying the request parameters of
deadline, data size and byte rate. Finally the algorithm and look-ahead time used for
scheduling request fetches is specified.

Summarising, the complete list of parameters of a simulation configuration is as
follows. Distribution as a part of this configuration means that a configuration defines
how a variable is randomly distributed. Available distributions are: exact (all draws from
the random variable have the same value), uniform (values are evenly distributed between
a minimum and a maximum value) and normal (values follow a gaussian distribution
curve around a given mean with a given standard deviation).

• The total duration in the situation, in ticks.
• The distribution of byte rates per slot.
• The distribution of lengths of a slot of available byte rate, in ticks.
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• Network uptime – i.e. the probability of a slot showing a non-zero byte rate,
expressed as a ratio.

• Relative jitter, as a ratio, and absolute jitter values, in ticks.
• Accuracy of prediction (amount of temporal and amplitudinal error in prediction):

– Accuracy in time, as a distribution of relative (as a ratio) and absolute (in
ticks) measurements

– Accuracy in byte rate, as a distribution of relative (as a ratio) and absolute
(in ticks) measurements

• A list of recurring requests.
• A list of intermittent requests.
• The type (Java class) of scheduling algorithm to use.
• The look-ahead time thorizon of the fetch scheduling.

In our implementation, we use a text-based format for storing this information in a
file, in order to allow for persisting configuration used for our experiments.

Simulation Genesis

As shown in the last section, the simulation configuration must be converted to a
simulation genesis in order to be run. This conversion (or materialisation) removes any
dependency on non-deterministic variables.

In our initial implementation, we used the Java implementation of a Random Number
Generator (RNG), which uses a linear congruential generator11. However, since we aim
to reduce the dependency on the underlying Java run time12, we stripped the Java RNG
of all features not required by our code. Hence, we use a custom implementation of a
random number generator, which is derived from the Java reference implementation by
Oracle, which in turn is essentially an implementation of Knuth’s Linear Congruential
Method with the parameter setm = Long.MAX_VALUE, a = (5DEECE66D)16, c = 11 and the
seed X0. This way, the only further variable to precisely describe the simulation and
make the outcome repeatable is the seed of the RNG used to materialise the genesis.

The resulting genesis is of variable size (growing with the total number of ticks, the
number of recurring and intermittent requests as well as the frequency of change in byte
rate, which is derived from the duration of byte rate slots) and contains a list of entries,
most of which are events happening during the processing of a specified tick.

11The official Java documentation refers to Section 3.2.1 of [Knu97], which in detail explains the Linear
Congruential Method – Knuth discusses several variations and possibilities of using LCG to generate
numbers of reasonably long periods; see the following paragraphs for the resulting implementation of
RNG used in our experiments.

12Even though the Java documentation requires the use of LCG and targets the absolute portability
of Java code, we failed to locate the explicit specification meeting this requirement and describing the
exact type of LCG (the parameters) to use and decided to further strengthen the repeatability of results
by essentially forking the reference implementation of Java’s Random class into our code base.
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The following list shows all the information contained in a simulation genesis:

• The class name of the algorithm used for scheduling fetches.
• The look-ahead time of the fetch scheduling.
• For each tick where the actual byte rate changes:

– The tick number at which the change happens.
– The byte rate valid from this point in time until the next byte rate change.

• For each tick where the predicted byte rate changes:
– The tick number at which the change happens.
– The byte rate valid from this point in time until the next predicted byte rate

change.
• For each request (regardless of whether the request is part of a recurring request

series or an intermittent one):
– The tick number designating the deadline of this request.
– The amount of data required for fetching.
– The byte rate at which this request is provided by the data source.

Similarly to the simulation configuration, we designed a text-based format for storing
this information in a file. This allows us to store the materialised version of simulations.

5.6 Profiling Metrics

In the decision process of which variables we measure during our simulations (in other
words: what the result of the simulation is), we followed the target variables discussed in
section 4.3. We revisit these variables and note that out of the three discussed values, RT,
DA and DV, only the former two variables are truly relevant; DV will in our scenarios
always be minimal since we fetch each request at most one time (see also the discussion
in section 4.3.3). However, since we will also simulate scenarios where our algorithm is
replaced by different substitutes, we also record DV as a result metric.

In addition to the three variables described in the foregoing paragraph, we are
interested in the hit count and miss count of the cache, to learn how many requests could
be completely prefetched before their deadlines. To be able to compare results across
different absolute numbers of requests, we add the hit ratio to the list of metrics, and
define it as the ratio between the hit count and the total number of requests. Hence, we
identified the following metrics in need for profiling.

(1) The perceived response time, RT, which is the time span between the request’s
deadline as given by the client software, and the point in time at which the data
becomes available for the client software’s disposition. In a best-case scenario,
the prefetching algorithm correctly schedules the fetches and all requests can be
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prefetched on time; in this case, RT = 0 holds for all requests. We record the
minimum, maximum, average and median of RT for all requests.

(2) The data age, DA, which is the time span between the data being fetched from the
server and it becoming available to the client software. As discussed in section 4.3.2,
this is relevant as a metric of the freshness of data, since some services require the
data not to exceed a certain age. We record the minimum, maximum, average and
median of DA for all requests.

(3) The amount of transferred data volume, DV, as discussed in section 4.3.3, since this
metric implies both energy usage and possibly induced costs for the user. Again,
we record the minimum, maximum, average and median of DV for all requests.

(4) The hit count, defined as the ratio of the cache hits (the number of requests served
entirely from the cache, after being prefetched) and the total number of requests.
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CHAPTER 6
Testing and Analysis

In this chapter, we evaluate the algorithm described in chapter 4 using the simulation
environment discussed in chapter 5 and evaluate its results. We start by defining three
strategies which we will use to simulate and evaluate – this definition can be found
in section 6.1. Initially, in section 6.2, we present an exemplary simulation, discuss
each of its configuration’s aspects (section 6.2.1) and run the simulation for each of the
three different strategies. We then thoroughly interpret the results and discuss their
implications (sections 6.2.2, 6.2.3 and 6.2.4) and summarise the strategies’ performance
in section 6.2.5.

After having an in-detail presentation and discussion of the performance on the
exemplary simulation, we commence by stating our hypothesis in section 6.3. To verify
this hypothesis, we perform experiments in which we define dependent and independent
variables, run simulations and record the behaviour of our target variables. The experi-
ments are described in section 6.4 and their results shown in section 6.5. A discussion
and summary of the results can be found in section 6.6.

A detailed, step-by-step description of how to repeat our experiments and reproduce
the results can be found appendix A.

6.1 Pre-Selection of Strategies

We use three strategies for comparison of performance:

(Strategy A) The no prefetching strategy, which means that data is fetched starting the
time of their request. We use the deadline for this time, which corresponds
to the classical situation of an application issuing a request at the point
in time where data is required. The class implementing this scheduling
strategy is NullAlgorithm.
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(Strategy B) The strategy of scheduling fetches ahead of their deadline, however, without
regarding the predicted network quality – also called the prediction-ignoring
prefetching strategy. This means that for each request, the scheduled
fetching time is calculated only by the amount of data required and the a
priori known available byte rate of the data source, but not the available
link byte rate.1 The base formula used for this strategy is λ = τ − δ

β – in
other words, the required amount of data (δ) divided by the byte rate of
the data source (β) is subtracted from the deadline (τ). In addition to
this calculation, a proportional error margin is added to β, as described
in section 4.5.3. Hence, the resulting formula is λ = τ − δ

αβ . Moreover,
the implementation prevents over-scheduling by selecting a lower (earlier)
τ if a λ of a later request would overlap with the current request (this
mechanism is described in greater detail in section 4.5.1, especially in
figure 4.3 and figure 4.4). This strategy is implemented in the Java class
IgnoreRatePredictionAlgorithm.

(Strategy C) The presented algorithm (section 4.5) with all its additions described in
section 4.5.3: data sources with an available byte rate β lower than Blink,
the correction margin for Blink (α; also used in strategy B), as well as the
ability to handle multiple requests (also used in strategy B). Our algorithm
is implemented in the class RespectRatePredictionAlgorithm.

6.2 Exemplary Simulation

We inspect in detail one specific simulation instance, with a duration of 3600T and five
planned requests. The available link byte rate ranges from around 1000 B/T (around the
first few hundreds of ticks of the simulation) up to around 4300 B/T (1400T throughout
2000T). There is a slot of a link outage (no transferable data) around 1100T..1300T,
between the first and the second planned request. Details on the repeating of this
simulation and reproduce its results can be found in section A.2.

Our hypothesis for this section is that given this exemplary simulation configuration,
strategy A will perform the worst and strategy C the best, with respect to the RT target
variable, as specified in section 4.3. We formulate this hypothesis and analyse in-depth
the behaviour of the three strategies. We derive this hypothesis from the overall purpose
of our proposed algorithm (strategy C) to perform better than a no-prefetching approach
(strategy A) in means of the aforementioned target variables, and use strategy B as an
intermediate measurement step, to determine whether knowledge about the link quality
increases the performance.

1This can also be seen as a case of the scheduling algorithm being provided with infinity as the
predicted byte rate.
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6.2.1 Discussion of the Simulation’s Configuration

The base configuration of the simulation is shown in listing 6.1. Line 1 sets the seed to
the value used throughout this analysis (26031991001). Line 3 sets the number of ticks
to 3600, line 4 determines the byte rate for a slot to be uniformly distributed between
1000 B/T and 5000 B/T. In line 5, we see that the slot length has been fixed to 180T and in
line 6 the link availability is set to be 0.9, which means that in average, 10% of the slots
will have a byte rate of zero (in fact, the seventh slot and the last slot are such slots, as
it can be seen in the figure). The jitter is set to zero (disabled) in lines 7 and 8, and lines
9 through 12 set the prediction to be very accurate, with only a minimal amount of error
(a relative amplitude error normally distributed around 0% with a standard deviation of
1%p, and an absolute time error, also normally distributed, with a mean of 0T and a
standard deviation of 10T). The look-ahead value (thorizon) is set to 3600T, allowing the
algorithm to completely calculate the entire simulation from the beginning. In line 15,
the α value of 0.9 determines that a margin of 10% is applied to the predicted link byte
rate to compensate for a prediction error. Finally, lines 17 and 18 define planned requests,
line 17 representing a request series with an interval uniformly distributed between 400T
and 600T, a size normally distributed with a mean of 500 kB/T and a standard deviation
of 60 kB/T; line 18 defines a single request at 3400T with the data source having a byte
rate of 3600 B/T and requiring a transfer volume of 480 kB.

Note that this configuration lacks the specification of a scheduling algorithm; we
will use a different algorithm for each of the strategies (A, B and C) simulated, and a
corresponding line is implicitly added to the respective simulation configuration.

We inspect the graphical representation of this configuration2 in figure 6.1. The figure
shows the five scheduled requests (named 000 through 004). The right border of the
grey boxes represents the deadline, the height designated the available bandwidth, and
the array is the amount of data for this request; this results in the left border of the
rectangle being positioned at the point in time where fetching should start, neglecting any
limited link quality. For example, request 000 has a deadline at 1000T, requires 560520B
of data and its data source is defined to provide a byte rate of 3696 B/T. By calculating
560520
3696 , we obtain a duration of around 151.7T, so the request’s box is positioned with its
left border starting at tick 1000− 151 = 849T. Using this representation, we can easily
judge the amount and speed of data to be transferred as well as its deadline.

As for the link quality, we can see that it starts off at 3080 B/T at 0T, and then
increases before making an abrupt jump towards 2310 B/T at 360T. At 1080T, the byte
rate drops to zero, signalling the non-availability of the network link. This outage persists
until 1260T, where the link seems to be re-established and the byte rate reaches a value of
3949 B/T. At 1620T, the link reaches its overall maximum speed of 4384 B/T. Furthermore,
it is clear that no jitter applied (steady blue line); also, predicted link byte rate, as
described in this section, is clearly very close to the actual byte rate.

2The graphical representation is created by the visualiser component, which is a part of the
provided code base; this tool creates a TEX file which visually represents the genesis resulting from our
configuration, which, since the seed is provided, is derivable in a deterministic manner.
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Listing 6.1: Configuration of the exemplary simulation
1 seed 26031991001
2
3 ticks 3600
4 byterate u/1000/5000
5 slot-length 180
6 network-uptime 0.90
7 relative-jitter 0
8 absolute-jitter 0
9 relative-prediction-time-error 0

10 relative-prediction-amplitude-error ~/0/0.01
11 absolute-prediction-time-error ~/0/10
12 absolute-prediction-amplitude-error 0
13 look-ahead 3600
14
15 algorithm-parameter alpha 0.9
16
17 request-series interval u/400/600 size ~/500000/60000 byterate ~/3800/100 start 1000 end

3000
18 request tick 3400 byterate 3600 data 480000
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Figure 6.1: A graphical representation of the exemplary simulation’s genesis
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Figure 6.2: Exemplary simulation with strategy A (no prefetching)

6.2.2 Strategy A: No Prefetching

After having presented our exemplary simulation, we use the first prefetching strategy,
namely strategy A. As stated above, this strategy is implemented in the NullAlgorithm
class. A graphical representation of the resulting simulation is shown in figure 6.2. The
representation of the results differs only slightly from that of a simulation’s genesis, as one
can see by comparing figure 6.1 with figure 6.2. The grey boxes determine at which times
the actual fetching of a request took place, while the × marks symbolise the deadlines.
The colour of the × marks indicates whether the deadline has been met (green), missed
(yellow) or the request has not been finished during the simulation at all (red).

The nature of the strategy – namely, no prefetching, in other words, the fetches start
only at the deadlines of the respective requests – can be easily seen by the fact that the
grey boxes start at the time of the deadline (of the × mark) and end afterwards, resulting
in all deadlines being marked as missed (yellow × marks); the last request – named 004
– is even unfinished because the connection is lost (byte rate of zero) towards the end of
the simulation, leaving no time to finish fetching the request, which is signalled by the ×
mark being red.

Fetching of request 000 is started at its deadline, 1000T, and is clearly interrupted
(suspended) during the period of non-functional communication link, indicated by the
blue line showing a byte rate of zero. This makes request 000 the request with the

77



Table 6.1: Result metrics for exemplary simulation with strategy A

Metric min max mean median
RT 115.00T 372.00T 194.00T 144.50T
DA 115.00T 372.00T 194.00T 144.50T
DV 411404.00B 560520.00B 489338.75B 492715.50B
Hit Ratio 0.00% (0 / 5)

highest RT, 372T. Altogether, the numeric results of the measured metrics are displayed
in figure 6.1. We see that the statistical metrics of RT and DA both have the same values,
as expected, since in this scenario the data ageing and the response time correspond to
the same time spans (data only ages during transmission, not in any prefetch cache).

We will compare the results from this strategy to other strategies in the summary of
this section (see section 6.2.5).

6.2.3 Strategy B: Prediction-Ignoring Prefetching

The next strategy – strategy B – consists, as described, of the prefetching of data before
its deadline, but regardless of the predicted link byte rate. Intuitively, this leads to good
results in times when the link byte rate is high enough to accommodate the request (in
other words, higher than the data source’s bandwidth β).

Figure 6.3 shows the graphical representation of the results when applying strategy
B. It is visible that request 001 has been served with its deadline being met (signalled
by the green × mark); all the other requests still have unsatisfied deadlines because of
the actual link byte rate being insufficient. In the figure, this becomes clear from the fact
that the blue line indicating the byte rate is lower than the requests’ byte rates, indicated
by the Y position of the × marks. Clearly, the requests with unsatisfied deadlines – those
with yellow × marks – are rated above link byte rate, while the satisfied request – 001 –
is rated within the available link speed (underneath the blue line).

In figure 6.2, which shows the numerical results for strategy B, it is visible that
strategy B is already an improvement compared to strategy A, since even though times
of sub-par link quality cause deadline misses, there is an increased hit ratio (20.0%
instead of 0.00%) and a significantly lower response time (an average of 23.00T instead
of 194.00T). Interestingly, the data age, DA, has actually decreased, even though
prefetching is facilitated. While this might seem counter-intuitive at first (we assumed
any form of prefetching to increase data age since data is fetched ahead of its usage and
stored somewhere), upon analysing the result, we see that the cause of the decreasing
of DA is request 000, which now takes a significant amount less time. In this instance,
this stems from the fact that using strategy A, the fetching for 000 was started shortly
before a period of no connectivity (zero byte rate), while strategy B dictated that fetching
should start earlier – thus, strategy B avoids transferring the request during the time of
outage, which reduces fetching speed, which in turn reduces data age.
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Figure 6.3: Exemplary simulation with strategy B (simple prefetching)

Table 6.2: Result metrics for exemplary simulation with strategy B

Metric min max mean median
RT 0.00T 51.00T 23.00T 20.50T
DA 128.00T 225.00T 174.50T 172.50T
DV 411404.00B 560520.00B 489338.75B 492715.50B
Hit Ratio 20.00% (1 / 5)

6.2.4 Strategy C: Prediction-Ignoring Prefetching

Finally, we apply strategy C to our exemplary simulation, which consists of using our
proposed prefetching algorithm including all its optimisations and features. The algorithm
respects the (predicted) link byte rate and reacts accordingly, effectively minimising RT.

Figure 6.4 shows the result of applying the algorithm; we can see that all requests
have their deadlines met (green × marks), and one can observe how the algorithm worked
its way around times of reduced link quality by starting the fetching sufficiently early.

The results as shown in figure 6.3 indicate that the prefetching algorithm has served
its intended purpose. RT has been minimised (it is zero for all requests) while keeping
DA to a low (we omit formal proof by stating that it is clear from figure 6.4 that the
fetch could not have been issued significantly later, further minimising data ageing).
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Figure 6.4: Exemplary simulation with strategy C (advanced prefetching)

Table 6.3: Result metrics for exemplary simulation with strategy C

Metric min max mean median
RT 0.00T 0.00T 0.00T 0.00T
DA 117.00T 215.00T 185.80T 203.00T
DV 411404.00B 560520.00B 487471.00B 485850.00B
Hit Ratio 100.00% (5 / 5)

Also notable is the decreased average of DV, which is caused by the fact that using
strategy A and strategy B, fetching of the last request – 004 – could not be finished at
all, so no DV value was recorded for this request, changing (increasing) the overall mean
of DV.

6.2.5 Summary of Exemplary Simulation

The exemplary simulation allows for an in-depth inspection of the mode of operation of
the three strategies. We can clearly see that strategy A – using no prefetching – performs
the worst with regard to response time (RT), and we can actually observe the fact that
fetching starts only at the deadlines of the requests in figure 6.2. Meanwhile, strategy B
performs slightly better by taking into account the fact that requests require time to be
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fetched, but disregarding the link quality prediction. In figure 6.3 we can see that requests
in times of sub-par link quality are not being served on time – they are, however, being
served in a substantially more timely manner than using strategy A. Finally, strategy C
uses the algorithm we have described in chapter 4, and, as figure 6.4 shows us, it meets
our expectations: all requests, regardless of the current link quality, are being served on
time.

This analysis allows us to formulate our hypothesis and perform multiple test series
to verify our algorithm’s performance under different conditions. We perform these test
series using experiments and describe our work and findings in the following sections.

6.3 Main Hypothesis

We formulate our main hypothesis: Strategy C will perform better than strategy A and
strategy B in terms of Response Time RT. This makes RT our dependent variable while
there exists a number of independent variables (see the parameters of a simulation
configuration in section 5.5.1. Our overall goal is to determine under which conditions
(regarding the independent variable) our hypothesis holds.

In our first step, we examine each of our independent variables and decide on whether
and how to perform a regression analysis on this independent variable. We then perform
these regression analyses to determine for each independent variable a range of values in
which our hypothesis may hold. For our regression analyses, we use a fixed set of values
for the control variables and perform a series of simulation runs with changing values
for the independent variable (parameter sweep). We identify ranges for the independent
variable where our hypothesis holds by performing t-tests. The alpha level used in our
t-tests was 0.05 (5%).

During our experiments, we not only record RT as our primary target variable, but
also DA as well as the hit ratio (the amount of requests being served instantly from
the cache instead of having to wait for network transmission to finish). We discuss our
results for each of our regression analysis runs.

6.4 Discussion of Independent Variables

For each of our variables, we need to define whether it is fixed (control variable) or
sweeping (independent variable) in our regression analyses. In each analysis, we select one
independent variable and run the simulation while only changing this variable, recording
the results for each value of this variable (hence the term sweeping).

In the following sections, we discuss the values of our variables in both the fixed
and the sweeping role. In other words, we define ranges for sweeping, and the value the
variable has in situations where it is a control variable, with unchanged value.
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For a summary of the variables as well as a presentation of the regression analyses
results, see section 6.5.

6.4.1 Simulation Duration, Available Byte Rate and Slot Parameters

We regard the simulation duration (number of ticks) and the mean available byte rate and
observe that the product of these two numbers results in a value which determines the
overall number of bytes transferable over the simulated link throughout the simulation
(we call it the capacity of the simulation in question). In order to reduce the number of
necessary regression analyses, we fix the simulation duration, the available byte rate and
the way slots are generated during the creation of the simulation genesis. We use the
following values in all our regression analysis experiments:

• Simulation Duration: 36000T (representing 10 hours in ticks of seconds).
• Byte Rate: uniform distribution between 30 kB/T and 200 kB/T.
• Slot Length: normal distribution with µ = 120T and σ = 30T.
• Network Availability: 0.95 (5% chance of a slot having zero byte rate).

This results in the following mean simulation capacity, which is fixed throughout all
our experiments:

capacityµ = 36000× 30000 + 200000
2 × 0.95 = 393300000

This means that the link of an average simulation is capable of transferring around
393.3MB. For requests, we use a request size of 1967 kB and an interval of 1530T, which
results in a load of around 0.1 = 10 % of the link capacity. The available byte rate of the
requests is uniformly distributed between 30 B/T and 200 B/T.

6.4.2 Network Jitter

Our a priori assumption is that while network jitter is influencing the simulation by
adding entropy, it is not influencing the simulation in a way that would favour any of
the three presented strategies. To confirm this assumption, we perform a regression
analysis on the relative jitter3 using values from 0.0 to 4.0 with steps of 0.04. We keep
the absolute jitter at zero.

For regression analyses of other variables, where network jitter is a control variable
and needs to have a fixed value, we use 0.05 (5%).

3We operate based on the assumption that modifying the absolute jitter yields the same effect as
modifying the relative jitter, as both result in a numerically absolute deviation from the nominal byte
rate.
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6.4.3 Prediction Amplitude and Time Error

The prediction errors influence only strategy C, we thus want to analyse in which ranges
the errors significantly decrease performance of strategy C, compared to our control
group, strategy A. Strategy B should also be completely uninfluenced by the prediction
error.

Regarding time errors, we perform two series of regression analyses; one for the
standard deviation σ and one for the mean µ error. During our initial experiments, we
found that varying the standard deviation σ of the error did not produce noticeable
differences in RT (see the discussion in section 6.5.2 for further details), and thus
introduced the mean as an additional sweep variable. We sweep σ with values from 0.0
to 4.0 using steps of 0.05, and µ with values from −0.72 to +1.00 using steps of 0.04.

Similarly, for amplitude errors, we perform the same two regression analyses. We
sweep the values for σ from 0.0 to 4.0 with steps of 0.05, and µ with values from −1.0 to
+1.0 using steps of 0.04.

For regression analyses of other variables, where the prediction error is a control
variable and needs to have a fixed value, we use means of 0% and standard deviations of
0.01 (5%).

6.4.4 Look-Ahead Time

The look-ahead time influences both strategy B and strategy C. Since we fixed the
simulation duration to 36000T (see section 6.4.1), possible look-ahead values lie between
0T and 36000T. Initial experiments showed that with our current selection of variables,
values between 250T and 36000T yield no significant change; stemming from this
observation, we decided to change the testing interval; we perform a sweep between 0T
and 250T with a stepping of 5T (resulting in 50 simulation runs).

For regression analyses of other variables, where the look-ahead time is a control
variable and needs to have a fixed value, we use 18000T.

6.4.5 Error Correction Factor α

The parameter α is described in detail in section 4.5.3. It reduces the estimation used by
the algorithm by a constant factor, to compensate for unforeseen jitter. We perform a
sweep between 0.24 and 1.00 with steps of 0.02.

For regression analyses of other variables, where α is a control variable and needs to
have a fixed value, we use 0.9, which results in a usage of 90% of the predicted byte rate
for scheduled prefetches.
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6.5 Regression Analysis Experiments

In this section, we summarise the variables used for our simulations; subsequently, we
perform the discussed regression analyses and show our results. Our variables consist of
four fixed variables, which have the same value throughout all simulation runs – they are
called F1 through F5. Furthermore, there are eight independent variables which we run
tests for, S1 through S84. Figure 6.4 gives an overview of our analysis variables.

Table 6.4: Specification of independent variables for regression analysis

# Variable Type Control Sweep (from; step; to) Unit
F1 Capacity (see section 6.4.1) fixed 393.3 MB
F2 Request Load (see section 6.4.1) fixed 10 %
F3 Abs. Jitter fixed 0 B/s
F4 Abs. Prediction Amplitude Error fixed 0 B/s
F5 Abs. Prediction Time Error fixed 0 T

S1 Rel. Jitter σ (µ = 0) sweep 0.05 (0.0; 0.04; 4.0) ratio
S2 Rel. Prediction Amplitude Error σ sweep 0.10 (0.0; 0.05; 4.0) ratio
S3 Rel. Prediction Time Error σ sweep 0.05 (0.0; 0.02; 1.0) ratio
S4 Look-Ahead Time sweep 18000 (0; 5; 250) T

S5 Error Correction Factor α sweep 0.90 (0.24; 0.02; 1.00) ratio
S7 Rel. Prediction Amplitude Error µ sweep 0.00 (−0.72; 0.20; +2.00) ratio
S8 Rel. Prediction Time Error µ sweep 0.00 (−1.00; 0.04; +1.00) ratio

Furthermore, for each variable combination, we actually perform 500 single simulation
runs, each with an identical configuration, but a different seed, to increase the results’
approximation towards a statistical mean value. The single simulations always use the
seeds 199100 through 199699. For each single run, we use each one of our three strategies
(A, B and C)

For our dependent variables (the measured values), we choose the three variables
measuring the performance of our algorithm, namely the response time (RT), the data
age (DA) and the hit rate (hit). For both values, we use the mean of mean results from
the 500 simulation runs using a specific input variable vector.

Table 6.5: Specification of dependent variables for regression analysis

# Variable Unit
D1 Mean Response Time (RT) T

D2 Mean Data Age (DA) T

D3 Mean Hit Rate (hit) ratio

In the following, we display the results of the regression analyses. For detailed
numerical results, see appendix B.

4An unused independent variable has been removed after the design of the experiments, thus there is
no variable named S6.
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6.5.1 Relative Jitter

We performed a regression analysis for the independent variable Relative Jitter (S1);
more specifically, we varied the standard deviation σ for the relative jitter. All other
variables remained according to figure 6.4. Results are listed in section B.1 as well as
depicted in figure 6.5 and figure 6.6.
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Figure 6.5: Response time over jitter
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Figure 6.6: Data age over jitter

From the result it is clear that strategy C provides a better result regarding RT across
the entire domain It is worth noting that strategy B performs only slightly worse than
strategy C, in other words, taking the link byte rate into account provides an advantage
smaller than the advantage of prefetching at all.

Data age is, as expected for prefetching, always higher than if no prefetching is
involved, however, it is noteworthy that strategy B shows results rather close to those of
strategy A. However, the difference between DAB and DAC is around 2T for a jitter
between 0.0 and 0.2, and even smaller (1T) across the remaining testing domain, which
is a relatively small setback compared to a fetching time of 20..30T. We argue that
a possible reason for the increased data age is the fact that strategy C tends to move
fetching to times with lower byte rates, which increases fetching time and thus data age.
Analysing this hypothesis is part of our planned future work.

Lower jitter values are naturally better, regardless of what fetching strategy is being
used. However, strategy C outperforms its competitors across all jitter values. We
tested jitter values of up to 4 (400%), which should cover practically all real-world link
connection scenarios.

t-tests performed on the results indicate that RT is always best when using strategy
C. When regarding DA, strategy C is always performing worst, however, starting at a
jitter value of just above 3, the t-test consistently reports that results from strategy C
and strategy B are statistically indifferent (in other words, starting at a jitter value of 3,
they yield results similar enough to be considered equivalent).
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6.5.2 Prediction Amplitude Error Deviation σ

We performed a regression analysis for the independent variable Relative Prediction
Amplitude Error σ (S2); thus, we varied the standard deviation σ for the relative
prediction amplitude error. All other variables remained according to figure 6.4. Results
are listed in section B.2 as well as depicted in figure 6.7 and figure 6.8.
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Figure 6.7: Response time over prediction
amplitude error σ
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Figure 6.8: Data age over prediction am-
plitude error σ

Interestingly, the standard deviation σ of the prediction amplitude error influences the
response time only very slightly. We observe that an increased deviation of predictions
barely influences response time, while data age is increased. While this contradicted
our intuitions, upon analysing the results, we concluded that an increased standard
deviation of prediction error can (asymptotically) cause two scenarios for a particular
request: extreme over-estimation of data link quality, and extreme under-estimation of
data link quality. While over-estimation generally leads to bad results (which led us to
expect a higher increase in RT for higher σ values), another effect is responsible for RT
staying rather low: requests themselves have a maximum byte rate β, which bounds their
transmission speed (and is also respected by the scheduling algorithm). If an extreme
over-estimation occurs, it is higher than the request byte rate, causing the algorithm to
disregard the seemingly high link byte rate and take into account only the (relatively
low) request byte rate for its calculations.

On the other hand, if a heavy under-estimation occurs, the effect is that the algorithm
tries to schedule requests for a very early time, to compensate for the low link quality.
This, however, results in an increase of data age DA, as it is clearly visible in figure 6.7.

We observe that while RT is robust against prediction amplitude errors, the error
deviation should be between 0.00 and around 0.30 to avoid an unreasonable increase in
DA. t-tests show that both RT and DA are always statistically different enough to be
considered non-equivalent. Strategy C has the best RT and the worst DA across the
entire domain.
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6.5.3 Prediction Amplitude Error Mean µ

We performed a regression analysis for the independent variable Relative Prediction
Amplitude Error µ (S7); thus, we varied the mean µ for the relative prediction amplitude
error. All other variables remained according to figure 6.4. Results are listed in section B.6
as well as depicted in figure 6.9 and figure 6.10.
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Figure 6.9: Response time over prediction
amplitude error µ

−0.5 0 0.5 1 1.5 2

40

60

80

prediction amplitude error µ [100%]

DAA [T]
DAB [T]
DAC [T]

Figure 6.10: Data age over prediction am-
plitude error µ

The prediction amplitude error µ has two main value domains; values below zero
determine that prediction is under-estimating the link. For these values, naturally, RT is
low (for very low values for µ it is zero). This is caused by the algorithm under-estimating
the link and expecting the fetch to take longer than it does – this reflects in an increase
in DA, as is clearly visible in figure 6.10.

Starting from zero, increasing µ causes the prediction to over-estimate, which reflects
in an increased RT since the algorithm expects fetching to take to little time. The
increase is not steep; this is caused by a similar phenomenon as described in section 6.5.2:
the maximum byte rate of a request predominates the seemingly (predicted) high link
byte rate, moderating the effect of the algorithm over-estimating the actual link speed.

We see that in order to have a reasonable DA (in this case, reasonable means that
the mean of the DAC is within the bounds of the standard deviation σ of DAA or
DAB), the prediction error amplitude µ should not be lower than 0.1; in other words,
under-estimating the link leads to a drastic increase in DA. On the other hand, increasing
µ above zero, while causing the algorithm to perform worse in terms of RT, the impact
of positive µ on RT was not as severe as the impact of negative µ on DA. This is a
consideration necessary when designing a prediction algorithm.
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t-tests performed on the results indicate that strategy C is always outperforming
both its competitors without a reasonable statistical probability of chance with respect
to RT; DA, however, is worse for strategy C at the beginning (negative µ) but becomes
better with increasing µ. During the transition (around values for µ of 12..16%), the
t-test indicates a statistical comparability of DA using strategy B and strategy C.

6.5.4 Prediction Time Error Deviation σ

We performed a regression analysis for the independent variable Relative Prediction
Time Error σ (S3); thus, we varied the standard deviation σ for the relative prediction
time error. All other variables remained according to figure 6.4. Results are listed in
section B.3 as well as depicted in figure 6.11 and figure 6.12.
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Figure 6.11: Response time over prediction
time error σ
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Figure 6.12: Data age over prediction time
error σ

The relative prediction time error changes the temporal behaviour of the prediction
function (see figure 5.9 and section 5.5.1 for more details). It is noticeable that while
the impact of an increased prediction time error deviation is higher than an increased
prediction amplitude error deviation (see section 6.5.2), it is still rather low, and outper-
forming strategy B throughout the entire test domain. We tested values up until 100%,
which leads to a standard deviation of 100% (relative to the duration of a slot).

t-tests performed on the results indicate that both RT and DA are always statistically
different enough to be considered non-equivalent. As mentioned, strategy C has the best
RT and the worst DA across the entire domain.

6.5.5 Prediction Time Error Deviation µ

We performed a regression analysis for the independent variable Relative Prediction Time
Error µ (S8); thus, we varied the mean µ for the relative prediction time error. All other

88



variables remained according to figure 6.4. Results are listed in section B.7 as well as
depicted in figure 6.13 and figure 6.14.
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Figure 6.13: Response time over prediction
time error µ
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Figure 6.14: Data age over prediction time
error µ

The prediction time error mean specifies by how much the temporal aspect of byte
rate prediction is biased; in other words, a negative value causes a prediction of byte rate
change ahead of time on average, while a positive value causes the prediction to be late
compared to actual changes. Naturally, for best results, the prediction should be as close
as possible to zero. However, we see that there is a difference in performance between the
negative and the positive changes of µ: negative values of µ cause less increase in RT than
positive values. The reason for this symptom is that negative values of µ essentially shift
the predicted time line of the link quality back in time (predictions happen before actual
changes in link quality), while positive values shift the predicted time line forward in
time (predictions happen after actual changes). Hence, negative values give the algorithm
more time to schedule.

t-tests performed on the results indicate that both RT and DA are always statistically
different enough to be considered non-equivalent. As mentioned, strategy C has the best
RT and the worst DA across the entire domain.

6.5.6 Look-Ahead Time thorizon

We performed a regression analysis for the independent variable Look-Ahead Time (S4).
While we performed a sweep of the look-ahead time parameter thorizon, all other variables
remained according to figure 6.4. Results are listed in section B.4 as well as depicted in
figure 6.15 and figure 6.16.
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Figure 6.15: Response time over thorizon
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Figure 6.16: Data age over thorizon

As the look-ahead time decides to what extent the scheduling algorithm is provided
with future requests, it is clear that an increased value provides better results. More
specifically, there is a threshold above which results are optimal (and thus identical);
for our simulation, the threshold above which RT is more or less constant around 120T.
Our request interval is 1530T, and the mean time of fetching a request without any
prefetching or caching is 28.5T (see section B.4). We see that RT is decreasing fast with
the increase if thorizon up to the point of around 55T, which is roughly twice the fetching
time. RTB does not change at all with a thorizon of 80T or higher. It can be concluded
that a thorizon of roughly 2-3 times of the average fetching time is sufficient to make a
reasonable fetching prediction.

Data age is actually rising until a thorizon value of around 45T, which is caused by the
fact that with small look-ahead values, the algorithm effectively performs no prefetching,
resulting in a low DA value. This, however, comes at the cost of a high RT.

Results for thorizon = 0T yield the same result for all strategies used, which is obvious
since a look-ahead time of zero effectively disarms any scheduling algorithm. t-tests
performed on the results for RT show that results for strategy B and strategy C are
similar enough to be considered equivalent until a look-ahead time of around 25T is
reached (t = 3.51). From the graph it is visible that they both diverge quickly from
results of strategy A.

Regarding DA, we see that all strategies yield comparable results for the first few
iterations; this is confirmed by the results of t-tests performed, which indicate that until
thorizon = 30T is reached, results from all strategies yield statistically similar results.

6.5.7 Error Correction Factor α

We performed a regression analysis for the independent variable Error Correction Factor
α (S5). While we performed a sweep of α, all other variables remained according to
figure 6.4. Results are listed in section B.5 as well as depicted in figure 6.17 and figure 6.18.
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Figure 6.17: Response time over α
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Figure 6.18: Data age over α

As described in section 4.5.3, the error correction factor α decides how much of the
predicted byte rate the algorithm actually uses. The goal of this factor is to provide a
counter-measure for network jitter and unpredicted periods of low byte rate (or network
outages). Our simulations were controlled by our input parameters, and as such, the
results of the regression analysis for α have little meaning for real-world applications,
since our experiment setup is merely an approximation of actual link behaviour. As such,
the analysis for α should be re-run on a real-world test setup – this we plan to do in the
future.

In our analysis, we can see that the more α is moved from 1 to 0, the lower RT

becomes – which is intuitive, since the scheduling algorithm reserves more link capacity.
Note that the decrease of RT is rather low, while the increase of DA – which is caused
by the algorithm scheduling fetches earlier with decreasing α – is drastic. In situations
where data age is playing a major role, thus, α should be kept high, maybe even at 1
(disabling the prediction error amortisation feature completely).

Performing t-tests on the resulting numbers shows that even though the DA results
for strategy B and strategy C seem similar, they are statistically different enough to not
be considered equivalent. It is, again, safe to say that strategy C outperforms all other
strategies regarding RT and performs the worst regarding DA; these statements hold
across the entire domain.

6.6 Result Analysis

In order to summarise the results of our regression analysis experiments, we deduced the
following statements from our experiments given the described test setup as the testing
environment, and propose these guidelines for optimising the performance of strategy C:

Jitter Jitter influences A, B and C equally; above a relative jitter of 3.0, B and C show
statistically similar results.
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For best results of strategy C, jitter should be as close to zero as possible. Worst
results of strategy C occur at high levels of jitter (influencing both RT and DA).

Relative Prediction Amplitude Error Mean (µ) RT is mostly robust with respect
to changes of µ; DA increases when µ becomes negative. For best results of strategy
C, µ should be between 0.0 and 0.3, negative µ should be avoided if DA is an issue.
Worst results of strategy C occur at very negative values for µ.

Relative Prediction Amplitude Error Deviation (σ) RT is mostly robust against
changes in σ; DA increases with higher σ.
For best results of strategy C, σ should be as close to zero as possible. Worst results
of strategy C occur at high values for σ.

Relative Prediction Time Error Mean (µ) RT is mostly robust against changes in
µ; DA increases for higher absolute values of µ, however, not drastically.
For best results of strategy C, µ should be as close to zero as possible; slightly
negative values perform better than slightly positive values. Worst results of strategy
C occur at high values for µ.

Relative Prediction Time Error Deviation (σ) RT and DA are mostly robust and
show barely any significant increase.
For best results of strategy C, σ should be as close to zero as possible. Worst results
of strategy C occur at high values for σ.

Look-Ahead Time (thorizon) Low values of thorizon cause an increase of RT; values
above around 50T – close to twice the duration of a request fetch in the presented
simulation – show stable results in our setup.
For best results of strategy C, thorizon should be as high as possible in general. Since
this is not always feasible, we propose to keep thorizon at least above the minimum
fetch time plus the average request interval. Worst results of strategy C occur at
thorizon = 0T.

Error Correction Factor (α) Low values of α cause a drastic increase of RT; values
around 1.0 show the best results.
For best results of strategy C, α should be as close as possible to 1.0.5 Worst results
of strategy C occur at α ∼ 0.

5Note that there might be an increase of RT around α = 1.0 if the network jitter is particularly high.
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CHAPTER 7
Conclusion

7.1 Findings

We presented the problem of a mobile unit with a connection link to a data source, where
the link is of variable quality (volatile network condition). In our work, we discussed that
knowledge of the underlying link and its quality – especially the change of its bandwidth,
or effective byte rate, over time – can be used to enhance the Quality of Experience
as perceived by the user. The main aspect of this improvement is the fetching of data
ahead of time (prefetching) in situations where a substantial degradation of link quality
is expected or predicted.

Our main presupposition is that for each point in time in the future, information
about the amount of data transmittable per given time span is known to some degree.
While this assumption is a rather strong one – it is difficult enough to measure the current
link bandwidth, and predicting it depending on time and location can certainly not be
regarded as an easier task –, it is generally possible to predict rough tendencies stemming
from types of network coverage (2G versus 3G or 4G); furthermore, in our experiments
analysing the exact behaviour of the improvement provided by prefetching for different
degrees of prediction accuracy, we learned that even with inexact prediction, prefetching
provides an improvement of Quality of Experience by reducing the average user response
time (RT) – see sections 6.5.2 through 6.5.5.

We therefore state that it is possible to improve user experience even with rough
knowledge of network quality. To do so, one needs to employ prefetching as an inherent
characteristic of the data service application. This is possible only by establishing
another presupposition, namely that service requests are known in advance. While this
is generally easier to manage, since applications can register scheduled requests ahead
of time (for example through a prefetching middleware API), one still has to take into
account possibilities of unplanned requests, for instance when the user requests data
intermittently, but also when the context changes, be it because the user has diverged
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from the planned route and a new route has been calculated. Still it can be established
that at least some of the data can be fetched ahead of time given knowledge of its
schedule.

Assuming that knowledge about the link quality and future requests is available, we
proposed an algorithm for scheduling fetches of request-based data; in other words, a
strategy for reaching prefetching decisions based on the assumed knowledge. The core
idea of the algorithm is based on function integration and is discussed in section 4.5.1.
We then describe how to apply this concept in our scenario in section 4.5.3 and present a
reference Java implementation of our algorithm in section 4.6.

We defined performance criteria (target variables) for a scheduling strategy and
built a framework for simulating certain scenarios in order to evaluate performance
strategies. The framework allows for representing two communication parties and a link
with controllable, varying byte rate, and is discussed in sections 5.4 and 5.5.

Subsequently, we performed testing and analysis by selecting three candidate strate-
gies (section 6.1) and discussing an exemplary simulation using these three strategies
section 6.2). We then presented our main hypothesis (namely that prefetching with
regards to the context, in other words, the available link speed, enhances user experience;
see section 6.3) regarding algorithm performance and ran multiple regression tests using
different variables (section 6.5). Our results show that even under sub-par network
conditions (high jitter, imprecise prediction), the presented algorithm performs well and
provides the lowest response time compared to the other strategies (one of which is the
strategy of performing no prefetching at all, in other words, fetch on demand). We
have seen that while using a no-prefetching strategy in our exemplary use cases almost
consistently yielded a user-perceived waiting time of 35T, employing prefetching caused
the waiting time to generally stay well below 10T, which is a reduction of around 70%.

It can therefore be stated that fetching data ahead of time is generally a very
promising way of enhancing user experience by reducing waiting times. Prefetching
without knowledge of link quality is by itself providing good performance (significantly
better than no prefetching, at rather low costs1), and given knowledge about the predicted
link quality allows for further optimisation of the fetching schedule.

7.2 Outlook, Future Work

We have established a basic understanding of how prefetching is applicable in the context
of mobile users, and how certain prefetching mechanisms influence the outcome variables.
In this section, we discuss the outlook derived from our results and identify fields of
possible future work.

1Costs in this context are increased data age and the need to cache data between the fetch and the
actual usage.
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7.2.1 Real-World Evaluation

Despite attempts of designing the setup as realistically as possible, our described scenario
is still merely a theoretical model, an approximation of a certain situation. Transferring
knowledge gained from this model and its simulations towards applications in the real
world, in other words, using the prefetching strategy in actual network service applications,
is a challenge that is still to be undertaken. We have identified several challenges to this
task, which we will discuss in this section.

Predicting Link Quality

Probably the most challenging task in applying the described model in the real world is
the matter of predicting link quality (in other words, providing Blink to the algorithm).
We propose to further research several methods of doing so:

Network Coverage Maps Many mobile service operators provide maps of service
coverage, often differentiating between mobile network standards (2G, 3G or 4G)
or even between transfer rates available in different areas. While these maps are
often rough and only accurate to some degree, they provide a valuable source of
information for link quality prediction. Such maps usually stem from computer
models, which calculate from a topographical map and positions and attributes of
broadcast transmitters an approximated map of reception, determining whether
network coverage is likely at a given point and what network quality is to be
expected. Examples of such maps are shown in figure 7.1.

Empirical Measurement Determining the link speed empirically, for instance, by
driving along roads and measuring network speed, is more precise than using
network coverage maps, yet requires an order of magnitude more work to achieve.
Advantages include the fact that the actual network speed is measured, regardless
of the network standard (2G, 3G or 4G) used, as the fact that 4G is available
at a certain location does not necessarily imply any certain byte rate. Such
measurements, however, would have to be repeated periodically to be precise, since
network coverage not only changes with varying conditions (weather, network load
caused by events gathering many users, etc.) but also over time, when providers
extend or modify their infrastructure. A downside, apart from the effort necessary
to drive along roads, is the fact that in order to measure network speed, a certain
amount of data must be transferred.2

Crowdsourcing An approach similar to empirical measurement would be to employ
crowdsourcing to aggregate network reception information. This can be done
either passively, by monitoring the network standard type and reception quality
and sending periodic reports together with the current location, or actively, by
employing the same methods as described in empirical measurement to determine

2See [JD02] for an approach of measuring the available link speed with minimal intrusive methods.
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(a) T-Mobile (source: [T-M15b]) (b) A1 (source: [A1 15])

(c) Drei (source: [Hut15]) (d) tele.ring (source: [T-M15a])

Figure 7.1: Coverage maps of different Austrian mobile network providers, showing
the available degree of granularity and bandwidth description (Details of the Viennese
urban region)

the exact byte rate and report it. This is similar to what Google Inc. is using to
provide live traffic information (see [Bar09]).

Predicting Future Requests

As a second kind of prediction necessary to plan prefetching, knowledge about future
requests is necessary. While this kind of prediction is intuitively easier to make, one still
requires to take into account this requirement.

To construct a method of satisfying this requirement, we propose to employ an
API between the user code (software containing the business logic) and the middleware
responsible for prefetching. This interface enables the user code to register planned
requests ahead of time, similar to how this is achieved in our simulation: The code would
notify the middleware of the deadline, amount of data and available resource bandwidth.
In a real-world use case scenario, the user code could, for example, register a callback
method (or interface) for perform the actual fetch. The middleware, in return, would
schedule planned prefetch times, and invoke those callback methods at the respective
time.

96



7.2.2 Cross-Relationships of Influencing Variables

We have performed regression experiments for our influencing variables in section 6.5,
however, it is possible (and likely) for inter-variable relationships to exist; these correla-
tions might have a significant impact on the algorithm performance. One possible domain
of future work is to establish these relations and analyse their impact.

7.2.3 Fine-Grained Network Quality Evaluation

For simplicity, we have only taken into account the byte rate (data speed) of the
communication link and analysed its impact on network services; we have stated that the
impact of delay and jitter is ultimately comparable to a reduced bandwidth. This aspect
is one which allows for deep subsequent research; factors influencing the transmission
quality include:

• Latency
• Bandwidth
• Frequency of Disconnections
• Jitter in Latency and Bandwidth

7.2.4 Optimisation using Self-Learning Algorithms

In our current implementation, we use a constant factor (α) as a mean of correcting
inexact predictions. One way of enhancing this implementation would be to employ a
self-learning algorithm instead of a constant factor (possibly coupled to the crowdsourcing
approach described in section 7.2.1); the algorithm could then adapt to the scale of
precision of the link bandwidth estimation.

7.2.5 Optimisation for Data Streams

The model presented in our work is heavily request-oriented; a request for data is a
rather short-term transmission of data with a given data amount and bandwidth. This
means that streams of data are modelled in our domain as several small requests, with no
semantic connection between them. It could help the scheduling algorithm to take into
account the fact that those requests pose coherent streams of data – the Fuzzy Adaptive
Buffering algorithm (FAB) presented in [Bag11] could for example be the subject of
investigating further optimisation possibilities.
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APPENDIX A
Analysis Experiment

Reproduction

All references to files or directories, unless otherwise noted, relates to the code base of the
prefetch simulation environment; this source code, information and documentation is avail-
able at https://github.com/michael-borkowski/prefetch-simulation or
http://www.borkowski.at/prefetch-simulation. The version of the project
prefetch-simulation used in our analysis was 0.0.2.

The prerequisites for all of the processes described in this appendix are a UNIX-like
environment1, a Java 8 run-time environment installation as well as Apache Maven 3.0.4
or later, which we use as a build tool, and a working Internet connection. Furthermore,
in order for the running scripts to generate PDF files from the generated TEX sources, a
TEX installation is required on the target system.

For processing our simulations, we use two bash scripts: perform and perform_abc.
While perform is responsible for running a single simulation configuration, the script
perform_abc is used to process a single configuration using three strategies (A, B and
C, as described in section 6.1).

1Execution on other platforms should be possible in a similar way due to the platform-independent
nature of Java; however, the exact syntax of the steps may differ from the ones described here.
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A.1 Environment Preparation

To perform simulations, we need to prepare the environment by cloning the git repository
containing the simulation source code and checking out the version used in this thesis:

~ $ git clone git@github.com:michael-borkowski/prefetch-simulation.git
~ $ cd prefetch-simulation
~/prefetch-simulation $ git checkout 0.0.2

This provides us with the code base used to derive the results presented in our work.
We now compile and package the simulation software using Apache Maven:

~/prefetch-simulation $ cd prefetch-simulation
~/prefetch-simulation/prefetch-simulation $ mvn package

Note that the presented command fetches the entire dependency tree, which may
take some time, depending on the Internet connection speed. Ultimately, the output of
the mvn command should show a success message:

~/prefetch-simulation/prefetch-simulation $ mvn package
(... output left out ...)
[INFO] Reactor Summary:
[INFO]
[INFO] Prefetch Simulation ................................ SUCCESS [ 0.005 s]
[INFO] Prefetch Simulation Components ..................... SUCCESS [ 28.521 s]
[INFO] Configuration Materialiser ......................... SUCCESS [ 12.050 s]
[INFO] Simulation Runner .................................. SUCCESS [ 0.553 s]
[INFO] Visualiser Components .............................. SUCCESS [ 0.831 s]
[INFO] Regression Runner .................................. SUCCESS [ 0.627 s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 42.741 s
[INFO] Finished at: 2015-04-27T18:08:26+02:00
[INFO] Final Memory: 32M/231M
[INFO] ------------------------------------------------------------------------
~/prefetch-simulation/prefetch-simulation $
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We can verify that runnable JAR files have been created:

~/prefetch-simulation/prefetch-simulation $ find . -name "*dependencies.jar"
./regression/target/regression-0.0.2-jar-with-dependencies.jar
./runner/target/runner-0.0.2-jar-with-dependencies.jar
./materialiser/target/materialiser-0.0.2-jar-with-dependencies.jar
./visualiser/target/visualiser-0.0.2-jar-with-dependencies.jar

With the environment set up and the framework built, our experiments can be run.

A.2 Exemplary Simulation

To run the exemplary simulation, the simulation framework must be set up and compiled
according to section A.1. The simulation, which is in detail presented in section 6.2 is
defined in the file simulations/01_detail/configuration:

seed 26031991001

ticks 3600
byterate u/1000/5000
slot-length 180
network-uptime 0.90
relative-jitter 0
absolute-jitter 0
relative-prediction-time-error 0
relative-prediction-amplitude-error ~/0/0.01
absolute-prediction-time-error ~/0/10
absolute-prediction-amplitude-error 0
look-ahead 3600

algorithm-parameter alpha 0.9

request-series interval u/400/600 size ~/500000/60000 byterate ~/3800/100 start 1000 end
3000

request tick 3400 byterate 3600 data 480000
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To execute the simulation using the three strategies (A, B and C, as described in
section 6.1), we use the script perform_abc, as shown in the following:

~/prefetch-simulation $ cd simulations
~/prefetch-simulation/simulations $ ./perform_abc 01_detail
RT: count 3 range [ 115.00 .. 340.00] avg 200.67 median 147.00
DA: count 3 range [ 115.00 .. 340.00] avg 200.67 median 147.00
DV: count 3 range [ 411404.00 .. 560520.00] avg 485924.67 median 485850.00
Hit Rate: 0 / 4 (0.0)
RT: count 4 range [ 0.00 .. 0.00] avg 0.00 median 0.00
DA: count 4 range [ 128.00 .. 174.00] avg 151.50 median 152.00
DV: count 4 range [ 411404.00 .. 560520.00] avg 484443.50 median 482925.00
Hit Rate: 4 / 4 (100.0)
RT: count 4 range [ 0.00 .. 0.00] avg 0.00 median 0.00
DA: count 4 range [ 117.00 .. 173.00] avg 146.25 median 147.50
DV: count 4 range [ 411404.00 .. 560520.00] avg 484443.50 median 482925.00
Hit Rate: 4 / 4 (100.0)

The directory 01_detail now contains several files, instead of only the configuration
file. Firstly, genesis files have been created for all three strategies, called genesis_A,
genesis_B and genesis_C. In addition, a genesis PDF file has been created2, along
with the source TEX file, showing the graphical representation of the genesis. Furthermore,
the results of the three strategies’ simulations are stored in result-summary_*.txt
files, where the asterisk (*) is either A, B or C. The contents of these files is exactly
the same as what is printed to the console during the simulation. Finally, the graphical
representation of the results is saved to result-timeline_*.pdf, also along with
the corresponding TEX source file.

Upon inspection, all of these files can be found to be the exact same results as
presented in section 6.2. Also, see appendix C for a listing of checksum fixities to verify
the integrity of the results.

A.3 Regression Simulations

The regression simulations can be run using the regression executable JAR, found
in regression/target/regression-0.0.2-jar-with-dependencies.jar in
the prefetch-simulation directory. The executable accepts zero or one parameters;
if none are specified, all regression simulation experiments are run according to section 6.5.
If a parameter is specified, it is used as the descriptor of the simulation to run (for example,
the parameter s1 will run the regression simulation for the variable S1 – the relative
jitter.

2Since the only difference in genesis for the three strategies is the scheduling algorithm, which is not
visible in the graphical representation, only one PDF file is created.
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Note that executing a regression simulation experiment takes a rather large amount of
time since a large amount of single simulations is performed. In the current implementation
as of writing of this thesis, no multi-threading is performed.

An example for invoking a regression experiment is shown in the following, where the
variable S4 – the look-ahead time thorizon – is tested:

~/prefetch-simulation $ java -jar prefetch-simulation/regression/target/regression-0.0.2-
jar-with-dependencies.jar s4 | tee s4.out

This command performs the experiments for variable S4 and saves them in the file
s4.out. The file contains the results in CSV (comma-separated value) format, exactly
the way they were used for this thesis. Furthermore, the results are listed numerically in
appendix B, and in appendix C a listing of checksum fixities is provided to verify the
integrity of the results.
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APPENDIX B
Regression Analysis Results

This appendix shows the numeric results of our regression analysis simulations. Decimal
numbers are rounded for typesetting purposes. Units for all RT, and DA variables as well
as thorizon are T, HR variables are ratios (their standard deviations being ratio points, in
other words, their units are 100 percentage points). The measured hit rate for Strategy
A (HRA) and its standard deviation are not listed since those values are always zero by
design (Strategy A performs no prefetching and thus cannot yield any cache hits).

The following tables show the results for each iteration of the sweep (independent)
variable. Note that as described in section 6.5, for each variable value, 500 different
iterations (with different seeds) have been performed and the mean values are shown in
the tables below. The results include the basic metrics (RT and DA as well as the hit
rate HR) for each strategy (A, B and C); their mean value and standard deviation (σ)
are provided.

The last four columns, tRTAC , tRTBC , tDAAC and tDABC show the t-test result value
for RT and for DA, when comparing the results of Strategy A with Strategy C, and
those of Strategy B with Strategy C. The value determines whether there is a statistically
significant difference between those values; the critical value for our simulation setup is
1.9621 – in all rows where the t-test result value is lower than this critical value, the
respective values show no significant difference. In other words, values lower than the
critical value determine that the two algorithms yield comparable performance.

For example, in section B.4, the thirds row shows the results for thorizon = 10T. RT
shows values of 35.2T, 26.3T and 26.3T, for A, B and C, respectively. The column tRTAC
displays a value of 24.12 (higher than the critical value), indicating that Strategy A and
Strategy C did not perform in a comparable manner regarding RT (Strategy C performed
significantly better since its RT is lower). tDAAC , however, only has a value of 0.15,
indicating that regarding DA, Strategy A and Strategy C were comparable. Looking

1Assuming α = 0.05 and df = 8 with n = 500.
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down the table, we see that in this case, the t values increase, thus the algorithms’
performance diverges.

B.1 Relative Jitter (S1)

S1 RTA σ RTB σ RTC σ DAA σ DAB σ DAC σ HRB σ HRC σ tRTAC
tRTBC

tDAAC
tDABC

0.00 35.1 5.8 7.0 4.9 0.6 1.7 28.4 3.1 30.0 3.3 31.9 3.2 0.604 0.11 0.984 0.03 128.16 27.68 17.87 9.10
0.04 35.2 5.8 7.1 4.9 0.6 1.7 28.5 3.1 30.1 3.4 31.9 3.2 0.598 0.11 0.983 0.03 128.39 27.94 17.03 8.44
0.08 35.2 5.8 7.2 4.9 0.6 1.7 28.6 3.2 30.2 3.4 31.9 3.2 0.595 0.11 0.982 0.03 128.95 28.23 16.54 8.04
0.12 35.4 5.7 7.2 4.9 0.6 1.8 28.7 3.1 30.3 3.4 31.9 3.2 0.589 0.11 0.973 0.04 129.21 28.26 16.05 7.62
0.16 35.5 5.7 7.3 4.9 0.7 1.9 28.9 3.2 30.4 3.4 32.0 3.2 0.584 0.11 0.953 0.05 128.53 27.87 15.48 7.41
0.20 35.7 5.8 7.4 4.9 0.8 1.9 29.1 3.2 30.6 3.4 32.1 3.2 0.575 0.12 0.923 0.06 128.53 27.84 14.55 7.14
0.24 35.9 5.8 7.6 4.9 1.0 2.0 29.4 3.2 30.8 3.4 32.3 3.2 0.561 0.11 0.885 0.07 128.04 27.51 14.10 7.08
0.28 36.2 5.8 7.8 5.0 1.3 2.1 29.7 3.3 31.0 3.4 32.5 3.3 0.546 0.12 0.846 0.08 126.83 26.75 13.44 7.03
0.32 36.6 5.8 8.1 5.0 1.7 2.2 30.1 3.3 31.3 3.5 32.8 3.3 0.528 0.12 0.803 0.09 126.06 26.21 12.75 6.83
0.36 37.0 5.9 8.4 5.0 2.1 2.4 30.5 3.4 31.7 3.6 33.1 3.4 0.506 0.11 0.762 0.10 123.76 25.37 12.12 6.36
0.40 37.4 5.9 8.7 5.1 2.5 2.5 31.0 3.6 32.1 3.7 33.5 3.5 0.486 0.12 0.724 0.10 121.86 24.29 11.42 6.04
0.44 37.9 6.0 9.1 5.2 3.1 2.7 31.4 3.7 32.6 3.9 34.0 3.6 0.466 0.11 0.686 0.10 119.15 23.16 11.13 5.98
0.48 38.5 6.0 9.5 5.3 3.6 2.8 31.9 3.7 33.0 3.9 34.4 3.6 0.445 0.11 0.654 0.11 116.97 22.20 10.78 6.01
0.52 39.0 6.1 10.0 5.3 4.1 3.0 32.4 3.8 33.4 4.1 34.8 3.7 0.427 0.11 0.622 0.11 115.04 21.41 10.32 5.87
0.56 39.5 6.1 10.5 5.4 4.7 3.2 32.9 4.0 33.8 4.2 35.3 3.7 0.409 0.11 0.596 0.11 112.73 20.45 9.75 5.68
0.60 40.1 6.2 10.9 5.4 5.3 3.3 33.4 4.2 34.3 4.4 35.7 3.9 0.391 0.11 0.573 0.11 110.05 19.78 8.96 5.38
0.64 40.6 6.3 11.4 5.5 6.0 3.6 33.9 4.3 34.7 4.5 36.1 4.0 0.377 0.11 0.552 0.11 106.75 18.65 8.55 5.37
0.68 41.2 6.4 11.9 5.5 6.6 3.8 34.3 4.5 35.1 4.6 36.5 4.1 0.363 0.11 0.532 0.11 104.52 17.89 8.06 5.35
0.72 41.7 6.5 12.4 5.6 7.2 3.9 34.8 4.8 35.5 4.7 36.9 4.2 0.351 0.11 0.515 0.11 102.03 17.08 7.44 5.16
0.76 42.2 6.6 12.8 5.6 7.7 4.0 35.2 4.9 35.9 4.8 37.3 4.3 0.341 0.11 0.499 0.11 100.48 16.77 7.11 4.88
0.80 42.6 6.6 13.3 5.7 8.2 4.0 35.6 4.9 36.2 4.9 37.6 4.4 0.330 0.11 0.485 0.11 99.26 16.33 6.87 4.66
0.84 43.1 6.7 13.7 5.7 8.6 4.1 36.0 5.1 36.6 5.0 37.9 4.5 0.321 0.11 0.473 0.11 98.27 16.01 6.44 4.50
0.88 43.6 6.8 14.1 5.8 9.1 4.2 36.3 5.2 36.8 5.1 38.2 4.5 0.313 0.10 0.460 0.11 96.84 15.75 6.26 4.47
0.92 44.0 6.8 14.5 5.8 9.6 4.4 36.6 5.3 37.1 5.2 38.6 4.7 0.306 0.10 0.449 0.11 94.86 15.04 6.31 4.79
0.96 44.5 6.9 15.0 5.9 10.1 4.5 36.9 5.4 37.4 5.3 38.9 4.8 0.299 0.10 0.439 0.11 93.63 14.78 6.19 4.76
1.00 44.9 7.0 15.4 6.0 10.5 4.5 37.3 5.5 37.7 5.3 39.2 4.9 0.292 0.10 0.431 0.11 92.96 14.73 5.94 4.76
1.04 45.3 7.0 15.8 6.0 10.9 4.6 37.6 5.6 38.0 5.5 39.6 5.0 0.287 0.10 0.426 0.11 91.40 14.40 5.81 4.62
1.08 45.7 7.1 16.2 6.1 11.3 4.7 37.9 5.7 38.3 5.5 39.8 5.1 0.281 0.10 0.419 0.11 90.27 14.14 5.68 4.52
1.12 46.1 7.2 16.5 6.2 11.7 4.7 38.1 5.8 38.6 5.6 40.1 5.2 0.275 0.10 0.410 0.10 89.04 14.00 5.61 4.46
1.16 46.4 7.3 16.9 6.3 12.0 4.8 38.4 5.9 38.8 5.7 40.3 5.3 0.269 0.10 0.405 0.11 88.20 13.77 5.42 4.19
1.20 46.7 7.3 17.2 6.3 12.4 4.9 38.6 6.0 39.1 5.8 40.5 5.3 0.266 0.10 0.399 0.11 87.53 13.51 5.26 4.10
1.24 47.1 7.4 17.5 6.4 12.7 4.9 38.9 6.1 39.3 5.9 40.7 5.4 0.262 0.09 0.395 0.10 86.71 13.43 5.12 4.07
1.28 47.4 7.4 17.8 6.5 13.0 5.0 39.1 6.2 39.6 6.0 41.0 5.5 0.258 0.09 0.390 0.10 85.76 13.29 5.04 3.83
1.32 47.7 7.5 18.1 6.5 13.3 5.1 39.4 6.2 39.8 6.1 41.2 5.5 0.254 0.09 0.385 0.10 84.96 13.09 4.84 3.67
1.36 48.0 7.6 18.4 6.5 13.6 5.1 39.6 6.4 40.1 6.1 41.4 5.5 0.251 0.09 0.381 0.10 84.23 12.96 4.82 3.52
1.40 48.2 7.6 18.7 6.6 13.9 5.2 39.8 6.5 40.3 6.2 41.7 5.6 0.249 0.09 0.377 0.10 83.39 12.77 4.72 3.55
1.44 48.5 7.6 18.9 6.6 14.2 5.2 40.1 6.6 40.5 6.1 41.8 5.7 0.247 0.09 0.374 0.10 82.91 12.60 4.62 3.53
1.48 48.7 7.7 19.2 6.7 14.4 5.3 40.3 6.7 40.8 6.2 42.0 5.7 0.244 0.09 0.371 0.10 82.24 12.53 4.44 3.39
1.52 49.0 7.7 19.4 6.7 14.7 5.3 40.5 6.7 40.9 6.3 42.2 5.8 0.242 0.09 0.368 0.10 81.71 12.41 4.42 3.41
1.56 49.2 7.8 19.6 6.8 14.9 5.4 40.7 6.7 41.2 6.3 42.4 5.9 0.241 0.09 0.365 0.10 81.18 12.25 4.34 3.34
1.60 49.5 7.8 19.9 6.8 15.2 5.4 40.9 6.9 41.3 6.4 42.7 6.0 0.240 0.09 0.361 0.10 80.60 12.12 4.22 3.39
1.64 49.7 7.8 20.1 6.9 15.4 5.5 41.1 7.0 41.5 6.5 42.9 6.1 0.238 0.09 0.358 0.10 80.35 12.03 4.18 3.35
1.68 49.9 7.9 20.4 6.9 15.7 5.6 41.4 7.0 41.8 6.6 43.1 6.1 0.236 0.09 0.355 0.10 79.47 11.88 4.10 3.21
1.72 50.1 7.9 20.6 6.9 15.9 5.6 41.5 7.1 42.0 6.7 43.2 6.2 0.234 0.09 0.353 0.10 79.11 11.87 4.07 3.10
1.76 50.3 8.0 20.8 6.9 16.1 5.6 41.7 7.1 42.1 6.7 43.4 6.3 0.233 0.09 0.350 0.10 78.48 11.84 3.93 3.00
1.80 50.5 8.0 21.0 7.0 16.3 5.7 41.9 7.2 42.3 6.8 43.5 6.3 0.231 0.09 0.347 0.10 77.94 11.75 3.83 2.90
1.84 50.7 8.1 21.2 7.0 16.5 5.7 42.1 7.3 42.5 6.9 43.7 6.4 0.229 0.09 0.344 0.10 77.62 11.70 3.79 2.85
1.88 50.9 8.1 21.4 7.0 16.7 5.7 42.2 7.3 42.7 7.0 43.8 6.4 0.228 0.09 0.342 0.10 77.17 11.62 3.71 2.78
1.92 51.1 8.1 21.6 7.1 16.8 5.8 42.4 7.4 42.8 7.0 44.0 6.4 0.226 0.09 0.339 0.10 76.88 11.52 3.70 2.81
1.96 51.3 8.1 21.7 7.1 17.0 5.8 42.4 7.4 42.9 7.1 44.1 6.5 0.225 0.09 0.337 0.10 76.87 11.47 3.75 2.82
2.00 51.4 8.2 21.9 7.1 17.2 5.8 42.6 7.5 43.0 7.1 44.2 6.5 0.224 0.09 0.335 0.10 76.07 11.20 3.67 2.85
2.04 51.6 8.2 22.0 7.2 17.4 5.9 42.7 7.5 43.1 7.1 44.3 6.5 0.222 0.09 0.334 0.10 75.88 11.12 3.59 2.79
2.08 51.8 8.2 22.2 7.2 17.6 5.9 42.9 7.5 43.2 7.2 44.4 6.6 0.221 0.09 0.332 0.10 75.24 10.95 3.49 2.71
2.12 51.9 8.3 22.4 7.3 17.8 6.0 43.0 7.6 43.4 7.2 44.5 6.6 0.221 0.09 0.330 0.10 74.75 10.93 3.36 2.61
2.16 52.1 8.3 22.6 7.3 17.9 6.0 43.2 7.7 43.5 7.2 44.6 6.7 0.219 0.09 0.329 0.10 74.50 10.92 3.20 2.57
2.20 52.3 8.3 22.7 7.3 18.1 6.0 43.3 7.7 43.6 7.3 44.7 6.8 0.219 0.09 0.327 0.10 74.32 10.88 3.21 2.60
2.24 52.4 8.4 22.8 7.3 18.2 6.1 43.4 7.7 43.7 7.3 44.9 6.8 0.218 0.09 0.326 0.10 74.06 10.80 3.25 2.64
2.28 52.6 8.5 23.0 7.3 18.4 6.1 43.4 7.7 43.8 7.4 45.0 6.8 0.217 0.09 0.325 0.10 73.38 10.73 3.31 2.61
2.32 52.7 8.5 23.1 7.3 18.5 6.1 43.6 7.7 43.9 7.4 45.1 6.9 0.216 0.09 0.323 0.10 73.13 10.70 3.21 2.53
2.36 52.9 8.5 23.2 7.4 18.7 6.1 43.7 7.7 44.0 7.4 45.1 6.9 0.215 0.09 0.321 0.10 72.94 10.72 3.19 2.47
2.40 53.0 8.5 23.4 7.4 18.8 6.1 43.8 7.8 44.1 7.5 45.2 6.9 0.213 0.09 0.320 0.10 72.93 10.68 3.11 2.41
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2.44 53.2 8.6 23.5 7.4 18.9 6.1 43.9 7.8 44.2 7.5 45.3 6.9 0.212 0.09 0.319 0.10 72.76 10.72 3.09 2.38
2.48 53.3 8.6 23.6 7.4 19.0 6.2 43.9 7.8 44.3 7.6 45.4 7.0 0.211 0.09 0.317 0.10 72.61 10.70 3.08 2.33
2.52 53.4 8.6 23.7 7.4 19.1 6.2 44.1 7.8 44.4 7.6 45.5 7.0 0.211 0.09 0.316 0.10 72.46 10.64 3.02 2.34
2.56 53.5 8.6 23.9 7.5 19.3 6.2 44.2 7.8 44.5 7.6 45.5 7.0 0.210 0.09 0.316 0.10 72.16 10.55 2.90 2.32
2.60 53.6 8.6 24.0 7.5 19.4 6.2 44.3 7.9 44.6 7.7 45.6 7.0 0.209 0.09 0.315 0.10 72.08 10.55 2.90 2.15
2.64 53.8 8.6 24.1 7.5 19.5 6.2 44.4 7.9 44.7 7.7 45.7 7.1 0.209 0.09 0.314 0.10 71.86 10.53 2.78 2.09
2.68 53.9 8.7 24.2 7.5 19.6 6.2 44.5 7.9 44.8 7.8 45.8 7.1 0.209 0.09 0.313 0.10 71.60 10.50 2.80 2.13
2.72 54.0 8.7 24.3 7.5 19.8 6.2 44.6 7.9 44.9 7.8 45.8 7.1 0.208 0.09 0.313 0.10 71.40 10.52 2.68 1.99
2.76 54.1 8.7 24.5 7.5 19.9 6.3 44.7 8.0 45.0 7.8 45.9 7.1 0.208 0.09 0.312 0.10 71.18 10.48 2.52 1.87
2.80 54.2 8.7 24.6 7.5 20.0 6.3 44.8 8.0 45.1 7.8 46.0 7.2 0.208 0.09 0.311 0.10 70.92 10.43 2.59 1.89
2.84 54.3 8.8 24.6 7.5 20.1 6.4 44.8 8.0 45.2 7.9 46.1 7.2 0.207 0.09 0.310 0.10 70.66 10.30 2.58 1.79
2.88 54.4 8.8 24.7 7.5 20.2 6.4 44.9 8.0 45.3 7.9 46.2 7.2 0.206 0.09 0.310 0.10 70.30 10.26 2.66 1.89
2.92 54.5 8.8 24.8 7.5 20.3 6.4 45.0 8.0 45.3 7.9 46.3 7.3 0.206 0.09 0.309 0.10 70.22 10.27 2.63 1.98
2.96 54.6 8.8 24.9 7.5 20.4 6.4 45.1 8.1 45.4 8.0 46.3 7.2 0.205 0.09 0.309 0.10 70.07 10.22 2.57 2.00
3.00 54.7 8.8 25.0 7.5 20.5 6.5 45.2 8.0 45.4 7.9 46.4 7.3 0.204 0.09 0.307 0.10 69.88 10.11 2.66 2.06
3.04 54.8 8.9 25.1 7.6 20.6 6.5 45.2 8.1 45.6 8.0 46.5 7.3 0.204 0.09 0.306 0.10 69.40 10.06 2.70 1.95
3.08 54.9 8.9 25.2 7.6 20.7 6.5 45.3 8.1 45.6 8.0 46.6 7.3 0.204 0.09 0.306 0.10 69.28 10.04 2.67 1.93
3.12 55.0 8.9 25.3 7.6 20.8 6.6 45.3 8.1 45.7 8.0 46.6 7.3 0.203 0.09 0.305 0.10 69.13 10.03 2.65 1.82
3.16 55.0 8.9 25.3 7.6 20.8 6.6 45.4 8.2 45.8 8.1 46.7 7.3 0.203 0.09 0.305 0.10 69.04 10.03 2.59 1.89
3.20 55.1 8.9 25.4 7.6 20.9 6.6 45.5 8.2 45.8 8.1 46.7 7.3 0.203 0.09 0.305 0.10 68.81 9.94 2.59 1.82
3.24 55.2 8.9 25.5 7.6 21.0 6.6 45.5 8.2 45.9 8.1 46.8 7.3 0.203 0.09 0.304 0.10 68.55 9.94 2.61 1.83
3.28 55.3 8.9 25.6 7.6 21.1 6.7 45.6 8.2 46.0 8.1 46.8 7.3 0.202 0.09 0.303 0.10 68.49 9.90 2.58 1.81
3.32 55.3 9.0 25.7 7.7 21.2 6.7 45.6 8.2 46.0 8.1 46.9 7.3 0.202 0.09 0.303 0.10 68.38 9.92 2.65 1.82
3.36 55.4 9.0 25.8 7.7 21.3 6.7 45.6 8.2 46.1 8.1 47.0 7.3 0.202 0.09 0.302 0.10 68.24 9.90 2.70 1.83
3.40 55.5 9.0 25.9 7.7 21.3 6.7 45.7 8.2 46.1 8.1 47.0 7.3 0.202 0.09 0.302 0.10 68.24 9.92 2.59 1.86
3.44 55.6 8.9 25.9 7.7 21.4 6.7 45.7 8.2 46.1 8.1 47.0 7.3 0.202 0.09 0.301 0.10 68.34 9.93 2.56 1.78
3.48 55.6 8.9 26.0 7.7 21.5 6.7 45.8 8.3 46.2 8.1 47.1 7.4 0.202 0.09 0.301 0.10 68.37 9.90 2.57 1.83
3.52 55.7 9.0 26.1 7.7 21.5 6.7 45.8 8.3 46.2 8.1 47.1 7.4 0.202 0.09 0.300 0.10 68.13 9.87 2.60 1.89
3.56 55.8 9.0 26.1 7.7 21.6 6.8 45.9 8.4 46.3 8.2 47.2 7.4 0.202 0.09 0.299 0.10 67.74 9.78 2.57 1.92
3.60 55.8 9.0 26.2 7.7 21.7 6.8 46.0 8.4 46.3 8.2 47.2 7.4 0.202 0.09 0.299 0.10 67.67 9.79 2.51 1.89
3.64 55.9 9.0 26.2 7.7 21.8 6.8 46.0 8.4 46.3 8.2 47.2 7.4 0.201 0.09 0.298 0.10 67.40 9.72 2.45 1.86
3.68 56.0 9.0 26.3 7.7 21.8 6.8 46.1 8.4 46.4 8.2 47.3 7.4 0.201 0.09 0.298 0.10 67.53 9.74 2.46 1.83
3.72 56.0 9.0 26.3 7.7 21.9 6.8 46.1 8.4 46.4 8.2 47.3 7.4 0.201 0.09 0.297 0.10 67.57 9.72 2.54 1.82
3.76 56.1 9.0 26.4 7.7 21.9 6.8 46.1 8.4 46.5 8.2 47.4 7.4 0.200 0.09 0.296 0.10 67.46 9.71 2.48 1.79
3.80 56.2 9.1 26.5 7.7 22.0 6.8 46.2 8.4 46.5 8.2 47.4 7.5 0.200 0.09 0.296 0.10 67.34 9.69 2.50 1.78
3.84 56.2 9.1 26.5 7.7 22.0 6.8 46.2 8.4 46.6 8.2 47.4 7.5 0.200 0.09 0.296 0.10 67.36 9.72 2.48 1.71
3.88 56.3 9.1 26.6 7.7 22.1 6.9 46.2 8.4 46.6 8.2 47.5 7.5 0.200 0.09 0.295 0.10 67.27 9.76 2.46 1.67
3.92 56.4 9.1 26.7 7.7 22.1 6.9 46.2 8.4 46.7 8.2 47.5 7.5 0.199 0.09 0.294 0.10 67.20 9.75 2.54 1.72
3.96 56.4 9.1 26.7 7.7 22.2 6.9 46.3 8.4 46.7 8.3 47.6 7.5 0.199 0.09 0.294 0.10 67.02 9.72 2.57 1.65
4.00 56.5 9.1 26.8 7.7 22.3 6.9 46.3 8.4 46.8 8.4 47.6 7.5 0.199 0.09 0.293 0.10 66.95 9.67 2.52 1.63

B.2 Prediction Amplitude Error Deviation σ (S2)

S2 RTA σ RTB σ RTC σ DAA σ DAB σ DAC σ HRB σ HRC σ tRTAC
tRTBC

tDAAC
tDABC

0.00 35.2 5.8 7.1 4.9 0.6 1.8 28.5 3.1 30.2 3.4 31.7 3.2 0.596 0.11 0.983 0.03 128.22 27.91 16.25 7.58
0.05 35.2 5.8 7.1 4.9 0.6 1.7 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.983 0.03 128.44 28.00 16.95 8.31
0.10 35.2 5.8 7.1 4.9 0.6 1.7 28.5 3.1 30.2 3.4 32.1 3.3 0.596 0.11 0.978 0.03 128.38 27.94 17.89 9.32
0.15 35.2 5.8 7.1 4.9 0.7 1.7 28.5 3.1 30.2 3.4 32.5 3.4 0.596 0.11 0.961 0.04 128.07 27.69 19.13 10.70
0.20 35.2 5.8 7.1 4.9 0.7 1.8 28.5 3.1 30.2 3.4 32.9 3.6 0.596 0.11 0.941 0.05 127.42 27.21 20.86 12.58
0.25 35.2 5.8 7.1 4.9 0.8 1.8 28.5 3.1 30.2 3.4 33.5 3.8 0.596 0.11 0.923 0.06 127.02 26.84 22.71 14.70
0.30 35.2 5.8 7.1 4.9 0.9 1.9 28.5 3.1 30.2 3.4 34.1 4.0 0.596 0.11 0.912 0.06 126.26 26.31 24.88 17.02
0.35 35.2 5.8 7.1 4.9 1.0 2.0 28.5 3.1 30.2 3.4 34.9 4.3 0.596 0.11 0.901 0.06 125.33 25.82 26.71 19.20
0.40 35.2 5.8 7.1 4.9 1.1 2.0 28.5 3.1 30.2 3.4 35.6 4.6 0.596 0.11 0.892 0.07 124.77 25.37 28.57 21.32
0.45 35.2 5.8 7.1 4.9 1.1 2.0 28.5 3.1 30.2 3.4 36.2 4.8 0.596 0.11 0.884 0.07 125.01 25.37 29.91 22.90
0.50 35.2 5.8 7.1 4.9 1.2 2.0 28.5 3.1 30.2 3.4 36.8 5.1 0.596 0.11 0.879 0.07 124.68 25.10 31.08 24.31
0.55 35.2 5.8 7.1 4.9 1.2 2.0 28.5 3.1 30.2 3.4 37.5 5.5 0.596 0.11 0.873 0.07 124.48 24.90 31.79 25.41
0.60 35.2 5.8 7.1 4.9 1.3 2.0 28.5 3.1 30.2 3.4 38.1 5.8 0.596 0.11 0.868 0.07 124.16 24.64 32.58 26.45
0.65 35.2 5.8 7.1 4.9 1.3 2.0 28.5 3.1 30.2 3.4 38.7 6.1 0.596 0.11 0.864 0.07 124.09 24.52 33.21 27.34
0.70 35.2 5.8 7.1 4.9 1.3 2.0 28.5 3.1 30.2 3.4 39.4 6.5 0.596 0.11 0.860 0.07 123.94 24.38 33.81 28.22
0.75 35.2 5.8 7.1 4.9 1.4 2.0 28.5 3.1 30.2 3.4 40.0 6.9 0.596 0.11 0.857 0.07 123.80 24.23 33.99 28.69
0.80 35.2 5.8 7.1 4.9 1.4 2.0 28.5 3.1 30.2 3.4 40.6 7.3 0.596 0.11 0.855 0.07 123.58 24.08 34.14 29.08
0.85 35.2 5.8 7.1 4.9 1.4 2.0 28.5 3.1 30.2 3.4 41.3 7.8 0.596 0.11 0.852 0.07 123.47 23.97 33.83 29.10
0.90 35.2 5.8 7.1 4.9 1.4 2.0 28.5 3.1 30.2 3.4 41.9 8.3 0.596 0.11 0.850 0.08 123.26 23.81 33.57 29.10
0.95 35.2 5.8 7.1 4.9 1.5 2.1 28.5 3.1 30.2 3.4 42.5 8.8 0.596 0.11 0.848 0.08 123.09 23.68 33.37 29.13
1.00 35.2 5.8 7.1 4.9 1.5 2.1 28.5 3.1 30.2 3.4 43.0 9.3 0.596 0.11 0.846 0.08 122.93 23.55 33.24 29.19
1.05 35.2 5.8 7.1 4.9 1.5 2.1 28.5 3.1 30.2 3.4 43.6 9.7 0.596 0.11 0.845 0.08 122.83 23.45 33.24 29.37
1.10 35.2 5.8 7.1 4.9 1.5 2.1 28.5 3.1 30.2 3.4 44.2 10.0 0.596 0.11 0.843 0.08 122.72 23.36 33.43 29.67
1.15 35.2 5.8 7.1 4.9 1.6 2.1 28.5 3.1 30.2 3.4 44.7 10.4 0.596 0.11 0.841 0.08 122.64 23.27 33.47 29.85
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1.20 35.2 5.8 7.1 4.9 1.6 2.1 28.5 3.1 30.2 3.4 45.3 10.9 0.596 0.11 0.841 0.08 122.56 23.20 33.29 29.81
1.25 35.2 5.8 7.1 4.9 1.6 2.1 28.5 3.1 30.2 3.4 45.9 11.4 0.596 0.11 0.838 0.08 122.47 23.12 33.04 29.72
1.30 35.2 5.8 7.1 4.9 1.6 2.1 28.5 3.1 30.2 3.4 46.4 11.7 0.596 0.11 0.837 0.08 122.37 23.04 33.04 29.81
1.35 35.2 5.8 7.1 4.9 1.6 2.1 28.5 3.1 30.2 3.4 47.0 12.3 0.596 0.11 0.837 0.08 122.19 22.91 32.56 29.49
1.40 35.2 5.8 7.1 4.9 1.7 2.1 28.5 3.1 30.2 3.4 47.5 12.7 0.596 0.11 0.836 0.08 122.08 22.83 32.52 29.53
1.45 35.2 5.8 7.1 4.9 1.7 2.1 28.5 3.1 30.2 3.4 47.9 13.1 0.596 0.11 0.835 0.08 122.03 22.78 32.27 29.37
1.50 35.2 5.8 7.1 4.9 1.7 2.1 28.5 3.1 30.2 3.4 48.3 13.4 0.596 0.11 0.834 0.08 121.97 22.73 32.19 29.36
1.55 35.2 5.8 7.1 4.9 1.7 2.1 28.5 3.1 30.2 3.4 48.7 13.8 0.596 0.11 0.834 0.08 121.91 22.67 31.91 29.16
1.60 35.2 5.8 7.1 4.9 1.7 2.1 28.5 3.1 30.2 3.4 49.1 14.1 0.596 0.11 0.833 0.08 121.83 22.61 31.79 29.11
1.65 35.2 5.8 7.1 4.9 1.7 2.1 28.5 3.1 30.2 3.4 49.6 14.5 0.596 0.11 0.832 0.08 121.78 22.56 31.65 29.04
1.70 35.2 5.8 7.1 4.9 1.7 2.1 28.5 3.1 30.2 3.4 50.0 14.8 0.596 0.11 0.831 0.08 121.74 22.52 31.64 29.08
1.75 35.2 5.8 7.1 4.9 1.7 2.1 28.5 3.1 30.2 3.4 50.4 15.1 0.596 0.11 0.830 0.08 121.71 22.49 31.64 29.13
1.80 35.2 5.8 7.1 4.9 1.7 2.1 28.5 3.1 30.2 3.4 50.8 15.5 0.596 0.11 0.830 0.08 121.65 22.45 31.53 29.08
1.85 35.2 5.8 7.1 4.9 1.7 2.1 28.5 3.1 30.2 3.4 51.2 15.9 0.596 0.11 0.830 0.08 121.61 22.41 31.33 28.94
1.90 35.2 5.8 7.1 4.9 1.8 2.1 28.5 3.1 30.2 3.4 51.6 16.3 0.596 0.11 0.830 0.08 121.56 22.37 31.03 28.71
1.95 35.2 5.8 7.1 4.9 1.8 2.1 28.5 3.1 30.2 3.4 52.0 16.8 0.596 0.11 0.829 0.08 121.54 22.35 30.70 28.44
2.00 35.2 5.8 7.1 4.9 1.8 2.1 28.5 3.1 30.2 3.4 52.5 17.7 0.596 0.11 0.828 0.08 121.39 22.23 29.92 27.78
2.05 35.2 5.8 7.1 4.9 1.8 2.1 28.5 3.1 30.2 3.4 53.0 18.2 0.596 0.11 0.828 0.08 121.28 22.15 29.63 27.55
2.10 35.2 5.8 7.1 4.9 1.8 2.1 28.5 3.1 30.2 3.4 53.4 18.5 0.596 0.11 0.828 0.08 121.26 22.12 29.67 27.62
2.15 35.2 5.8 7.1 4.9 1.8 2.1 28.5 3.1 30.2 3.4 53.8 18.8 0.596 0.11 0.827 0.08 121.20 22.09 29.64 27.62
2.20 35.2 5.8 7.1 4.9 1.8 2.1 28.5 3.1 30.2 3.4 54.2 19.4 0.596 0.11 0.827 0.08 121.18 22.07 29.25 27.29
2.25 35.2 5.8 7.1 4.9 1.8 2.1 28.5 3.1 30.2 3.4 54.6 19.7 0.596 0.11 0.826 0.08 121.16 22.05 29.31 27.38
2.30 35.2 5.8 7.1 4.9 1.8 2.2 28.5 3.1 30.2 3.4 55.0 19.9 0.596 0.11 0.826 0.08 121.12 22.02 29.32 27.42
2.35 35.2 5.8 7.1 4.9 1.8 2.2 28.5 3.1 30.2 3.4 55.3 20.2 0.596 0.11 0.825 0.08 121.09 21.99 29.37 27.49
2.40 35.2 5.8 7.1 4.9 1.8 2.2 28.5 3.1 30.2 3.4 55.7 20.5 0.596 0.11 0.825 0.08 121.06 21.97 29.30 27.44
2.45 35.2 5.8 7.1 4.9 1.8 2.2 28.5 3.1 30.2 3.4 56.1 21.1 0.596 0.11 0.824 0.08 121.04 21.95 28.89 27.09
2.50 35.2 5.8 7.1 4.9 1.8 2.2 28.5 3.1 30.2 3.4 56.5 21.4 0.596 0.11 0.824 0.08 121.00 21.92 28.87 27.10
2.55 35.2 5.8 7.1 4.9 1.9 2.2 28.5 3.1 30.2 3.4 56.8 21.8 0.596 0.11 0.823 0.08 120.98 21.90 28.70 26.96
2.60 35.2 5.8 7.1 4.9 1.9 2.2 28.5 3.1 30.2 3.4 57.3 22.4 0.596 0.11 0.823 0.08 120.96 21.88 28.45 26.75
2.65 35.2 5.8 7.1 4.9 1.9 2.2 28.5 3.1 30.2 3.4 57.6 22.9 0.596 0.11 0.823 0.08 120.94 21.87 28.23 26.57
2.70 35.2 5.8 7.1 4.9 1.9 2.2 28.5 3.1 30.2 3.4 58.0 23.4 0.596 0.11 0.823 0.08 120.92 21.85 27.98 26.35
2.75 35.2 5.8 7.1 4.9 1.9 2.2 28.5 3.1 30.2 3.4 58.3 23.7 0.596 0.11 0.822 0.08 120.90 21.83 27.89 26.29
2.80 35.2 5.8 7.1 4.9 1.9 2.2 28.5 3.1 30.2 3.4 58.6 24.0 0.596 0.11 0.822 0.08 120.87 21.81 27.84 26.26
2.85 35.2 5.8 7.1 4.9 1.9 2.2 28.5 3.1 30.2 3.4 58.8 24.1 0.596 0.11 0.822 0.08 120.86 21.79 27.89 26.31
2.90 35.2 5.8 7.1 4.9 1.9 2.2 28.5 3.1 30.2 3.4 59.1 24.4 0.596 0.11 0.821 0.08 120.82 21.77 27.85 26.29
2.95 35.2 5.8 7.1 4.9 1.9 2.0 28.5 3.1 30.2 3.4 59.3 24.5 0.596 0.11 0.821 0.08 121.94 22.11 27.91 26.36
3.00 35.2 5.8 7.1 4.9 1.9 2.0 28.5 3.1 30.2 3.4 59.5 24.6 0.596 0.11 0.821 0.08 121.92 22.10 27.89 26.35
3.05 35.2 5.8 7.1 4.9 1.9 2.0 28.5 3.1 30.2 3.4 59.7 24.8 0.596 0.11 0.821 0.08 121.91 22.09 27.91 26.38
3.10 35.2 5.8 7.1 4.9 1.9 2.0 28.5 3.1 30.2 3.4 59.9 24.9 0.596 0.11 0.821 0.08 121.90 22.07 27.92 26.40
3.15 35.2 5.8 7.1 4.9 1.9 2.0 28.5 3.1 30.2 3.4 60.1 25.0 0.596 0.11 0.821 0.08 121.88 22.06 27.96 26.45
3.20 35.2 5.8 7.1 4.9 1.9 2.0 28.5 3.1 30.2 3.4 60.4 25.2 0.596 0.11 0.821 0.08 121.84 22.02 28.00 26.50
3.25 35.2 5.8 7.1 4.9 1.9 2.0 28.5 3.1 30.2 3.4 60.6 25.4 0.596 0.11 0.820 0.08 121.73 21.95 28.04 26.55
3.30 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 60.9 25.7 0.596 0.11 0.820 0.08 121.44 21.82 27.92 26.45
3.35 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 61.0 25.9 0.596 0.11 0.820 0.08 121.42 21.81 27.92 26.46
3.40 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 61.3 26.1 0.596 0.11 0.820 0.08 121.42 21.80 27.83 26.38
3.45 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 61.5 26.3 0.596 0.11 0.819 0.08 121.44 21.82 27.79 26.35
3.50 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 61.7 26.5 0.596 0.11 0.819 0.08 121.27 21.74 27.80 26.38
3.55 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 62.0 27.1 0.596 0.11 0.819 0.08 121.25 21.72 27.50 26.10
3.60 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 62.2 27.2 0.596 0.11 0.819 0.08 121.24 21.71 27.51 26.12
3.65 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 62.4 27.4 0.596 0.11 0.818 0.08 121.23 21.70 27.51 26.13
3.70 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 62.5 27.4 0.596 0.11 0.818 0.08 121.21 21.68 27.57 26.19
3.75 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 62.7 27.5 0.596 0.11 0.818 0.08 121.20 21.67 27.61 26.23
3.80 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 63.0 27.8 0.596 0.11 0.818 0.08 121.19 21.67 27.53 26.17
3.85 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 63.1 27.9 0.596 0.11 0.818 0.08 121.18 21.66 27.57 26.21
3.90 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 63.3 28.0 0.596 0.11 0.818 0.08 121.18 21.65 27.59 26.24
3.95 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 63.5 28.1 0.596 0.11 0.818 0.08 121.16 21.64 27.67 26.32
4.00 35.2 5.8 7.1 4.9 1.9 2.1 28.5 3.1 30.2 3.4 63.7 28.2 0.596 0.11 0.818 0.08 121.15 21.63 27.75 26.40

B.3 Prediction Time Error Deviation σ (S3)

S3 RTA σ RTB σ RTC σ DAA σ DAB σ DAC σ HRB σ HRC σ tRTAC
tRTBC

tDAAC
tDABC

0.00 35.2 5.8 7.1 4.9 0.2 0.8 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.992 0.02 134.29 31.17 16.78 8.11
0.02 35.2 5.8 7.1 4.9 0.2 1.0 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.992 0.02 133.44 30.74 16.84 8.22
0.04 35.2 5.8 7.1 4.9 0.5 1.6 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.986 0.03 129.83 28.79 16.91 8.27
0.06 35.2 5.8 7.1 4.9 0.7 1.9 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.981 0.03 127.09 27.24 17.05 8.41
0.08 35.2 5.8 7.1 4.9 0.9 2.0 28.5 3.1 30.2 3.4 32.0 3.2 0.596 0.11 0.976 0.04 125.50 26.30 17.23 8.61
0.10 35.2 5.8 7.1 4.9 1.0 2.2 28.5 3.1 30.2 3.4 32.0 3.2 0.596 0.11 0.972 0.04 123.78 25.29 17.32 8.70
0.12 35.2 5.8 7.1 4.9 1.1 2.3 28.5 3.1 30.2 3.4 32.0 3.3 0.596 0.11 0.967 0.04 122.22 24.50 17.37 8.79
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0.14 35.2 5.8 7.1 4.9 1.2 2.4 28.5 3.1 30.2 3.4 32.1 3.3 0.596 0.11 0.963 0.04 121.19 23.92 17.50 8.94
0.16 35.2 5.8 7.1 4.9 1.4 2.5 28.5 3.1 30.2 3.4 32.1 3.3 0.596 0.11 0.959 0.04 120.05 23.29 17.55 9.03
0.18 35.2 5.8 7.1 4.9 1.5 2.6 28.5 3.1 30.2 3.4 32.1 3.3 0.596 0.11 0.955 0.05 119.07 22.68 17.73 9.19
0.20 35.2 5.8 7.1 4.9 1.5 2.6 28.5 3.1 30.2 3.4 32.2 3.3 0.596 0.11 0.952 0.05 118.67 22.43 17.93 9.41
0.22 35.2 5.8 7.1 4.9 1.6 2.7 28.5 3.1 30.2 3.4 32.2 3.3 0.596 0.11 0.949 0.05 118.13 22.11 18.20 9.66
0.24 35.2 5.8 7.1 4.9 1.6 2.7 28.5 3.1 30.2 3.4 32.2 3.3 0.596 0.11 0.945 0.05 117.81 21.90 18.30 9.78
0.26 35.2 5.8 7.1 4.9 1.7 2.8 28.5 3.1 30.2 3.4 32.3 3.3 0.596 0.11 0.940 0.05 116.95 21.40 18.49 9.97
0.28 35.2 5.8 7.1 4.9 1.8 2.8 28.5 3.1 30.2 3.4 32.3 3.3 0.596 0.11 0.936 0.05 116.49 21.09 18.73 10.21
0.30 35.2 5.8 7.1 4.9 1.9 2.9 28.5 3.1 30.2 3.4 32.4 3.4 0.596 0.11 0.933 0.05 115.80 20.69 18.87 10.38
0.32 35.2 5.8 7.1 4.9 1.9 2.9 28.5 3.1 30.2 3.4 32.5 3.3 0.596 0.11 0.929 0.06 115.26 20.33 19.26 10.74
0.34 35.2 5.8 7.1 4.9 2.0 3.0 28.5 3.1 30.2 3.4 32.5 3.3 0.596 0.11 0.926 0.06 114.21 19.84 19.45 10.91
0.36 35.2 5.8 7.1 4.9 2.1 3.1 28.5 3.1 30.2 3.4 32.5 3.3 0.596 0.11 0.922 0.06 113.40 19.46 19.58 11.00
0.38 35.2 5.8 7.1 4.9 2.1 3.1 28.5 3.1 30.2 3.4 32.5 3.3 0.596 0.11 0.920 0.06 113.28 19.36 19.79 11.18
0.40 35.2 5.8 7.1 4.9 2.2 3.1 28.5 3.1 30.2 3.4 32.6 3.3 0.596 0.11 0.917 0.06 112.84 19.03 20.15 11.57
0.42 35.2 5.8 7.1 4.9 2.2 3.2 28.5 3.1 30.2 3.4 32.7 3.3 0.596 0.11 0.914 0.06 112.00 18.61 20.40 11.80
0.44 35.2 5.8 7.1 4.9 2.3 3.2 28.5 3.1 30.2 3.4 32.7 3.3 0.596 0.11 0.911 0.06 111.43 18.25 20.56 11.96
0.46 35.2 5.8 7.1 4.9 2.4 3.2 28.5 3.1 30.2 3.4 32.7 3.4 0.596 0.11 0.908 0.06 111.24 18.12 20.58 12.06
0.48 35.2 5.8 7.1 4.9 2.4 3.2 28.5 3.1 30.2 3.4 32.8 3.4 0.596 0.11 0.905 0.06 110.88 17.87 20.70 12.23
0.50 35.2 5.8 7.1 4.9 2.5 3.2 28.5 3.1 30.2 3.4 32.8 3.4 0.596 0.11 0.903 0.06 110.75 17.72 20.95 12.46
0.52 35.2 5.8 7.1 4.9 2.6 3.3 28.5 3.1 30.2 3.4 32.9 3.4 0.596 0.11 0.900 0.07 109.55 17.17 21.10 12.60
0.54 35.2 5.8 7.1 4.9 2.6 3.3 28.5 3.1 30.2 3.4 33.0 3.5 0.596 0.11 0.898 0.07 109.40 17.04 21.32 12.89
0.56 35.2 5.8 7.1 4.9 2.6 3.4 28.5 3.1 30.2 3.4 33.0 3.5 0.596 0.11 0.898 0.07 109.02 16.81 21.39 12.98
0.58 35.2 5.8 7.1 4.9 2.7 3.4 28.5 3.1 30.2 3.4 33.0 3.5 0.596 0.11 0.895 0.07 108.28 16.43 21.47 13.05
0.60 35.2 5.8 7.1 4.9 2.8 3.5 28.5 3.1 30.2 3.4 33.0 3.5 0.596 0.11 0.892 0.07 107.73 16.07 21.67 13.27
0.62 35.2 5.8 7.1 4.9 2.8 3.5 28.5 3.1 30.2 3.4 33.1 3.5 0.596 0.11 0.891 0.07 107.47 15.89 21.80 13.35
0.64 35.2 5.8 7.1 4.9 2.8 3.5 28.5 3.1 30.2 3.4 33.1 3.5 0.596 0.11 0.888 0.07 107.19 15.80 21.83 13.42
0.66 35.2 5.8 7.1 4.9 2.9 3.5 28.5 3.1 30.2 3.4 33.1 3.5 0.596 0.11 0.887 0.07 106.69 15.61 22.05 13.65
0.68 35.2 5.8 7.1 4.9 2.9 3.6 28.5 3.1 30.2 3.4 33.2 3.5 0.596 0.11 0.885 0.07 106.14 15.36 22.56 14.13
0.70 35.2 5.8 7.1 4.9 3.0 3.6 28.5 3.1 30.2 3.4 33.3 3.5 0.596 0.11 0.882 0.07 105.84 15.12 22.89 14.47
0.72 35.2 5.8 7.1 4.9 3.1 3.6 28.5 3.1 30.2 3.4 33.3 3.5 0.596 0.11 0.879 0.07 105.34 14.80 22.91 14.45
0.74 35.2 5.8 7.1 4.9 3.1 3.6 28.5 3.1 30.2 3.4 33.3 3.5 0.596 0.11 0.877 0.07 105.20 14.62 23.01 14.61
0.76 35.2 5.8 7.1 4.9 3.2 3.7 28.5 3.1 30.2 3.4 33.4 3.6 0.596 0.11 0.875 0.07 104.79 14.37 23.24 14.90
0.78 35.2 5.8 7.1 4.9 3.2 3.7 28.5 3.1 30.2 3.4 33.4 3.5 0.596 0.11 0.873 0.08 104.50 14.26 23.24 14.87
0.80 35.2 5.8 7.1 4.9 3.2 3.7 28.5 3.1 30.2 3.4 33.5 3.5 0.596 0.11 0.872 0.08 104.04 14.06 23.45 15.06
0.82 35.2 5.8 7.1 4.9 3.3 3.7 28.5 3.1 30.2 3.4 33.5 3.5 0.596 0.11 0.871 0.08 104.17 14.01 23.57 15.20
0.84 35.2 5.8 7.1 4.9 3.3 3.7 28.5 3.1 30.2 3.4 33.5 3.6 0.596 0.11 0.868 0.08 104.17 13.99 23.67 15.30
0.86 35.2 5.8 7.1 4.9 3.3 3.7 28.5 3.1 30.2 3.4 33.5 3.6 0.596 0.11 0.867 0.08 103.92 13.78 23.63 15.26
0.88 35.2 5.8 7.1 4.9 3.3 3.8 28.5 3.1 30.2 3.4 33.6 3.6 0.596 0.11 0.865 0.08 103.42 13.61 23.90 15.53
0.90 35.2 5.8 7.1 4.9 3.4 3.8 28.5 3.1 30.2 3.4 33.6 3.6 0.596 0.11 0.864 0.08 103.13 13.48 23.98 15.62
0.92 35.2 5.8 7.1 4.9 3.4 3.8 28.5 3.1 30.2 3.4 33.6 3.6 0.596 0.11 0.863 0.08 102.51 13.31 23.99 15.66
0.94 35.2 5.8 7.1 4.9 3.4 3.8 28.5 3.1 30.2 3.4 33.6 3.6 0.596 0.11 0.861 0.08 102.49 13.21 23.97 15.63
0.96 35.2 5.8 7.1 4.9 3.5 3.8 28.5 3.1 30.2 3.4 33.6 3.6 0.596 0.11 0.859 0.08 102.39 13.11 24.08 15.74
0.98 35.2 5.8 7.1 4.9 3.5 3.9 28.5 3.1 30.2 3.4 33.6 3.6 0.596 0.11 0.858 0.08 101.88 12.95 24.05 15.74
1.00 35.2 5.8 7.1 4.9 3.5 3.9 28.5 3.1 30.2 3.4 33.7 3.6 0.596 0.11 0.857 0.08 101.80 12.81 24.23 15.91

B.4 Look-Ahead Time thorizon (S4)

S4 RTA σ RTB σ RTC σ DAA σ DAB σ DAC σ HRB σ HRC σ tRTAC
tRTBC

tDAAC
tDABC

0 35.2 5.8 35.2 5.8 35.2 5.8 28.5 3.1 28.5 3.1 28.5 3.1 0.000 0.00 0.000 0.00 0.00 0.00 0.00 0.00
5 35.2 5.8 31.2 5.8 31.2 5.8 28.5 3.1 28.5 3.1 28.5 3.1 0.000 0.00 0.000 0.00 10.91 0.00 0.08 0.00

10 35.2 5.8 26.3 5.9 26.3 5.9 28.5 3.1 28.5 3.1 28.5 3.1 0.000 0.00 0.000 0.00 24.12 0.00 0.15 0.00
15 35.2 5.8 21.3 5.8 21.3 5.8 28.5 3.1 28.5 3.1 28.5 3.1 0.000 0.00 0.000 0.00 37.97 0.00 0.15 0.00
20 35.2 5.8 16.6 5.8 16.3 5.8 28.5 3.1 28.4 3.1 28.4 3.1 0.098 0.07 0.123 0.07 51.67 0.73 0.32 0.01
25 35.2 5.8 13.6 5.6 12.4 5.5 28.5 3.1 28.5 3.0 28.5 3.0 0.229 0.09 0.357 0.10 63.84 3.51 0.10 0.03
30 35.2 5.8 11.7 5.5 9.6 5.4 28.5 3.1 29.2 2.6 29.7 2.1 0.325 0.10 0.548 0.10 72.60 6.12 7.17 3.39
35 35.2 5.8 10.3 5.3 7.6 5.1 28.5 3.1 30.0 3.0 31.4 2.5 0.394 0.11 0.680 0.10 80.41 8.22 16.34 8.37
40 35.2 5.8 9.3 5.2 6.2 4.9 28.5 3.1 30.2 3.3 31.9 3.1 0.442 0.11 0.762 0.09 85.72 9.70 17.01 8.35
45 35.2 5.8 8.5 5.1 5.2 4.6 28.5 3.1 30.2 3.4 31.9 3.2 0.482 0.11 0.819 0.09 90.89 10.91 16.95 8.31
50 35.2 5.8 8.0 5.0 4.5 4.4 28.5 3.1 30.2 3.4 31.9 3.2 0.516 0.11 0.862 0.08 94.66 11.85 16.95 8.31
55 35.2 5.8 7.6 5.0 3.8 4.1 28.5 3.1 30.2 3.4 31.9 3.2 0.538 0.11 0.888 0.07 98.83 13.08 16.95 8.31
60 35.2 5.8 7.3 4.9 3.5 4.0 28.5 3.1 30.2 3.4 31.9 3.2 0.561 0.11 0.912 0.07 100.99 13.63 16.95 8.31
65 35.2 5.8 7.2 4.9 3.1 3.8 28.5 3.1 30.2 3.4 31.9 3.2 0.580 0.11 0.933 0.06 103.59 14.55 16.95 8.31
70 35.2 5.8 7.1 4.9 2.9 3.7 28.5 3.1 30.2 3.4 31.9 3.2 0.591 0.11 0.946 0.05 105.16 15.33 16.95 8.31
75 35.2 5.8 7.1 4.9 2.7 3.5 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.953 0.05 107.62 16.41 16.95 8.31
80 35.2 5.8 7.1 4.9 2.5 3.3 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.955 0.05 109.86 17.47 16.95 8.31
85 35.2 5.8 7.1 4.9 2.3 3.1 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.956 0.04 112.14 18.39 16.95 8.31
90 35.2 5.8 7.1 4.9 2.2 3.0 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.957 0.04 113.56 19.17 16.95 8.31
95 35.2 5.8 7.1 4.9 2.0 2.8 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.959 0.04 115.47 20.10 16.95 8.31
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100 35.2 5.8 7.1 4.9 1.9 2.7 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.960 0.04 116.45 20.68 16.95 8.31
105 35.2 5.8 7.1 4.9 1.8 2.6 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.961 0.04 117.62 21.31 16.95 8.31
110 35.2 5.8 7.1 4.9 1.7 2.5 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.963 0.04 118.81 21.99 16.95 8.31
115 35.2 5.8 7.1 4.9 1.5 2.5 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.965 0.04 119.80 22.62 16.95 8.31
120 35.2 5.8 7.1 4.9 1.4 2.4 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.966 0.04 120.60 23.14 16.95 8.31
125 35.2 5.8 7.1 4.9 1.4 2.4 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.967 0.04 121.30 23.58 16.95 8.31
130 35.2 5.8 7.1 4.9 1.3 2.3 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.969 0.04 122.14 24.14 16.95 8.31
135 35.2 5.8 7.1 4.9 1.2 2.3 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.970 0.04 122.64 24.44 16.95 8.31
140 35.2 5.8 7.1 4.9 1.1 2.2 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.971 0.04 123.09 24.72 16.95 8.31
145 35.2 5.8 7.1 4.9 1.1 2.2 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.972 0.04 123.90 25.23 16.95 8.31
150 35.2 5.8 7.1 4.9 1.0 2.1 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.974 0.04 124.32 25.50 16.95 8.31
155 35.2 5.8 7.1 4.9 1.0 2.1 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.975 0.04 124.77 25.78 16.95 8.31
160 35.2 5.8 7.1 4.9 0.9 2.0 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.976 0.03 125.26 26.07 16.95 8.31
165 35.2 5.8 7.1 4.9 0.9 2.0 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.976 0.03 125.78 26.36 16.95 8.31
170 35.2 5.8 7.1 4.9 0.8 2.0 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.977 0.03 126.01 26.51 16.95 8.31
175 35.2 5.8 7.1 4.9 0.8 1.9 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.978 0.03 126.29 26.69 16.95 8.31
180 35.2 5.8 7.1 4.9 0.8 1.9 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.979 0.03 126.50 26.83 16.95 8.31
185 35.2 5.8 7.1 4.9 0.8 1.9 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.980 0.03 126.84 27.02 16.95 8.31
190 35.2 5.8 7.1 4.9 0.7 1.9 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.980 0.03 127.13 27.20 16.95 8.31
195 35.2 5.8 7.1 4.9 0.7 1.8 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.980 0.03 127.27 27.29 16.95 8.31
200 35.2 5.8 7.1 4.9 0.7 1.8 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.981 0.03 127.32 27.32 16.95 8.31
205 35.2 5.8 7.1 4.9 0.7 1.8 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.981 0.03 127.36 27.35 16.95 8.31
210 35.2 5.8 7.1 4.9 0.7 1.8 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.981 0.03 127.39 27.37 16.95 8.31
215 35.2 5.8 7.1 4.9 0.7 1.8 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.981 0.03 127.50 27.42 16.95 8.31
220 35.2 5.8 7.1 4.9 0.7 1.8 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.981 0.03 127.57 27.46 16.95 8.31
225 35.2 5.8 7.1 4.9 0.7 1.8 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.981 0.03 127.64 27.51 16.95 8.31
230 35.2 5.8 7.1 4.9 0.7 1.8 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.982 0.03 127.70 27.53 16.95 8.31
235 35.2 5.8 7.1 4.9 0.6 1.8 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.982 0.03 127.93 27.67 16.95 8.31
240 35.2 5.8 7.1 4.9 0.6 1.8 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.982 0.03 128.12 27.76 16.95 8.31
245 35.2 5.8 7.1 4.9 0.6 1.7 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.982 0.03 128.14 27.78 16.95 8.31
250 35.2 5.8 7.1 4.9 0.6 1.7 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.982 0.03 128.17 27.79 16.95 8.31

B.5 Error Correction Factor α (S5)

S5 RTA σ RTB σ RTC σ DAA σ DAB σ DAC σ HRB σ HRC σ tRTAC
tRTBC

tDAAC
tDABC

0.24 35.2 5.8 1.7 2.6 0.0 0.3 28.5 3.1 81.3 12.9 82.9 7.9 0.968 0.04 1.000 0.00 136.09 14.87 143.12 2.30
0.26 35.2 5.8 1.9 2.7 0.0 0.3 28.5 3.1 75.6 12.1 77.0 7.4 0.964 0.04 0.999 0.01 136.08 15.65 135.53 2.23
0.28 35.2 5.8 2.2 3.1 0.0 0.3 28.5 3.1 70.8 11.4 72.1 6.9 0.961 0.04 0.999 0.01 136.04 15.26 129.19 2.23
0.30 35.2 5.8 2.3 3.3 0.1 0.6 28.5 3.1 66.5 10.7 67.8 6.3 0.956 0.04 0.999 0.01 135.52 15.34 124.93 2.26
0.32 35.2 5.8 2.4 3.3 0.1 0.6 28.5 3.1 62.7 10.1 64.3 5.9 0.953 0.05 0.998 0.01 135.34 15.53 119.04 3.09
0.34 35.2 5.8 2.6 3.5 0.1 0.6 28.5 3.1 59.5 9.5 61.2 5.7 0.947 0.05 0.998 0.01 135.33 16.23 112.79 3.35
0.36 35.2 5.8 2.8 3.5 0.1 0.7 28.5 3.1 56.6 9.0 58.5 5.5 0.941 0.05 0.998 0.01 135.05 16.80 105.88 3.92
0.38 35.2 5.8 2.9 3.6 0.1 1.0 28.5 3.1 53.9 8.6 56.0 5.3 0.933 0.05 0.997 0.01 134.01 16.80 99.71 4.73
0.40 35.2 5.8 3.1 3.7 0.1 1.0 28.5 3.1 51.6 8.1 53.7 5.1 0.925 0.06 0.997 0.01 133.80 17.26 94.45 4.93
0.42 35.2 5.8 3.3 3.8 0.2 1.0 28.5 3.1 49.5 7.7 51.8 4.9 0.917 0.06 0.997 0.01 133.59 17.42 89.99 5.77
0.44 35.2 5.8 3.4 3.9 0.2 1.1 28.5 3.1 47.6 7.4 50.1 4.7 0.909 0.06 0.996 0.01 133.38 17.90 84.98 6.24
0.46 35.2 5.8 3.6 4.0 0.2 1.1 28.5 3.1 45.9 7.0 48.5 4.6 0.900 0.07 0.996 0.01 133.37 18.39 80.50 6.80
0.48 35.2 5.8 3.7 4.1 0.2 1.1 28.5 3.1 44.5 6.7 47.0 4.4 0.890 0.07 0.996 0.01 133.19 18.68 76.25 7.01
0.50 35.2 5.8 3.9 4.2 0.2 1.1 28.5 3.1 43.1 6.4 45.5 4.3 0.878 0.07 0.996 0.01 133.17 19.15 70.98 7.17
0.52 35.2 5.8 4.0 4.3 0.2 1.1 28.5 3.1 41.9 6.1 44.5 4.3 0.867 0.08 0.996 0.01 133.13 19.54 67.24 7.81
0.54 35.2 5.8 4.2 4.4 0.2 1.1 28.5 3.1 40.6 5.8 43.4 4.2 0.855 0.08 0.995 0.02 132.91 19.85 63.21 8.52
0.56 35.2 5.8 4.4 4.4 0.2 1.2 28.5 3.1 39.6 5.6 42.3 4.1 0.844 0.08 0.995 0.02 132.62 20.43 59.60 8.81
0.58 35.2 5.8 4.6 4.5 0.3 1.2 28.5 3.1 38.6 5.3 41.4 4.0 0.831 0.08 0.994 0.02 132.58 20.89 56.24 9.29
0.60 35.2 5.8 4.7 4.5 0.3 1.3 28.5 3.1 37.7 5.2 40.4 3.9 0.817 0.09 0.994 0.02 132.12 21.26 52.70 9.08
0.62 35.2 5.8 4.9 4.6 0.3 1.3 28.5 3.1 36.9 5.0 39.6 3.9 0.806 0.09 0.993 0.02 131.88 21.76 49.62 9.47
0.64 35.2 5.8 5.1 4.6 0.3 1.3 28.5 3.1 36.1 4.8 38.8 3.8 0.790 0.09 0.993 0.02 131.85 22.38 46.88 9.66
0.66 35.2 5.8 5.2 4.6 0.3 1.3 28.5 3.1 35.4 4.7 38.0 3.7 0.777 0.09 0.992 0.02 131.82 22.75 43.94 9.67
0.68 35.2 5.8 5.4 4.7 0.3 1.3 28.5 3.1 34.8 4.5 37.3 3.6 0.762 0.10 0.992 0.02 131.79 23.28 41.12 9.68
0.70 35.2 5.8 5.5 4.7 0.4 1.5 28.5 3.1 34.2 4.3 36.7 3.6 0.747 0.10 0.991 0.02 130.81 23.50 38.50 9.76
0.72 35.2 5.8 5.7 4.7 0.4 1.5 28.5 3.1 33.7 4.2 36.0 3.6 0.732 0.10 0.991 0.02 130.76 24.05 35.48 9.55
0.74 35.2 5.8 5.9 4.7 0.4 1.6 28.5 3.1 33.1 4.1 35.4 3.6 0.716 0.10 0.991 0.02 130.01 24.39 32.62 9.47
0.76 35.2 5.8 6.0 4.8 0.4 1.6 28.5 3.1 32.7 4.0 34.9 3.5 0.703 0.10 0.990 0.02 129.84 24.78 30.32 9.44
0.78 35.2 5.8 6.2 4.8 0.4 1.6 28.5 3.1 32.2 3.9 34.4 3.5 0.689 0.11 0.989 0.02 129.79 25.34 28.31 9.35
0.80 35.2 5.8 6.4 4.8 0.5 1.6 28.5 3.1 31.8 3.8 33.9 3.4 0.672 0.11 0.989 0.02 129.67 25.98 25.94 9.09
0.82 35.2 5.8 6.5 4.8 0.5 1.6 28.5 3.1 31.4 3.7 33.5 3.4 0.657 0.11 0.988 0.02 129.42 26.36 24.04 9.21
0.84 35.2 5.8 6.7 4.9 0.5 1.6 28.5 3.1 31.1 3.6 33.0 3.3 0.642 0.11 0.987 0.03 129.37 26.99 22.25 8.89
0.86 35.2 5.8 6.8 4.9 0.5 1.6 28.5 3.1 30.8 3.5 32.6 3.3 0.625 0.11 0.986 0.03 129.22 27.48 20.47 8.79
0.88 35.2 5.8 7.0 4.9 0.6 1.7 28.5 3.1 30.4 3.4 32.2 3.2 0.610 0.11 0.985 0.03 128.86 27.76 18.62 8.52
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0.90 35.2 5.8 7.1 4.9 0.6 1.7 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.983 0.03 128.44 28.00 16.95 8.31
0.92 35.2 5.8 7.3 4.9 0.6 1.7 28.5 3.1 29.9 3.3 31.6 3.2 0.580 0.11 0.982 0.03 128.21 28.56 15.37 8.26
0.94 35.2 5.8 7.4 4.9 0.6 1.8 28.5 3.1 29.6 3.2 31.3 3.1 0.566 0.11 0.979 0.03 127.94 28.97 13.95 8.23
0.96 35.2 5.8 7.6 5.0 0.7 1.8 28.5 3.1 29.3 3.2 31.0 3.1 0.554 0.11 0.976 0.03 127.57 29.15 12.47 8.19
0.98 35.2 5.8 7.7 5.0 0.7 1.9 28.5 3.1 29.1 3.2 30.7 3.1 0.542 0.11 0.971 0.04 126.81 29.23 11.06 7.90
1.00 35.2 5.8 7.8 5.0 0.8 1.9 28.5 3.1 28.9 3.1 30.4 3.1 0.525 0.11 0.957 0.05 126.55 29.62 9.58 7.79

B.6 Prediction Amplitude Error Mean µ (S7)

S7 RTA σ RTB σ RTC σ DAA σ DAB σ DAC σ HRB σ HRC σ tRTAC
tRTBC

tDAAC
tDABC

−0.72 35.2 5.8 7.1 4.9 0.0 0.3 28.5 3.1 30.2 3.4 81.6 8.4 0.596 0.11 0.999 0.01 136.01 32.17 133.06 127.76
−0.70 35.2 5.8 7.1 4.9 0.0 0.4 28.5 3.1 30.2 3.4 76.4 7.6 0.596 0.11 0.999 0.01 135.96 32.13 130.23 124.41
−0.68 35.2 5.8 7.1 4.9 0.0 0.4 28.5 3.1 30.2 3.4 71.9 7.1 0.596 0.11 0.999 0.01 135.95 32.12 124.65 118.49
−0.66 35.2 5.8 7.1 4.9 0.0 0.4 28.5 3.1 30.2 3.4 68.0 6.6 0.596 0.11 0.999 0.01 135.83 32.05 120.63 114.05
−0.64 35.2 5.8 7.1 4.9 0.1 0.5 28.5 3.1 30.2 3.4 64.8 6.3 0.596 0.11 0.998 0.01 135.50 31.88 115.37 108.55
−0.62 35.2 5.8 7.1 4.9 0.1 0.7 28.5 3.1 30.2 3.4 61.9 5.9 0.596 0.11 0.998 0.01 135.06 31.67 111.75 104.54
−0.60 35.2 5.8 7.1 4.9 0.1 0.7 28.5 3.1 30.2 3.4 59.3 5.6 0.596 0.11 0.998 0.01 135.04 31.66 107.45 99.94
−0.58 35.2 5.8 7.1 4.9 0.1 0.7 28.5 3.1 30.2 3.4 57.0 5.5 0.596 0.11 0.998 0.01 134.95 31.60 101.09 93.52
−0.56 35.2 5.8 7.1 4.9 0.1 0.9 28.5 3.1 30.2 3.4 54.9 5.3 0.596 0.11 0.998 0.01 134.21 31.28 95.98 88.28
−0.54 35.2 5.8 7.1 4.9 0.1 0.9 28.5 3.1 30.2 3.4 53.0 5.1 0.596 0.11 0.997 0.01 134.02 31.16 91.50 83.64
−0.52 35.2 5.8 7.1 4.9 0.2 1.0 28.5 3.1 30.2 3.4 51.2 4.9 0.596 0.11 0.996 0.01 133.56 30.92 87.35 79.31
−0.50 35.2 5.8 7.1 4.9 0.2 1.0 28.5 3.1 30.2 3.4 49.6 4.7 0.596 0.11 0.996 0.01 133.55 30.91 83.68 75.43
−0.48 35.2 5.8 7.1 4.9 0.2 1.1 28.5 3.1 30.2 3.4 48.2 4.5 0.596 0.11 0.996 0.01 133.36 30.81 79.81 71.44
−0.46 35.2 5.8 7.1 4.9 0.2 1.1 28.5 3.1 30.2 3.4 46.9 4.5 0.596 0.11 0.996 0.01 133.19 30.70 74.98 66.63
−0.44 35.2 5.8 7.1 4.9 0.2 1.1 28.5 3.1 30.2 3.4 45.7 4.4 0.596 0.11 0.996 0.01 133.17 30.70 71.07 62.70
−0.42 35.2 5.8 7.1 4.9 0.2 1.1 28.5 3.1 30.2 3.4 44.6 4.4 0.596 0.11 0.996 0.01 133.14 30.67 67.07 58.71
−0.40 35.2 5.8 7.1 4.9 0.2 1.1 28.5 3.1 30.2 3.4 43.6 4.3 0.596 0.11 0.995 0.02 133.09 30.63 63.72 55.29
−0.38 35.2 5.8 7.1 4.9 0.2 1.2 28.5 3.1 30.2 3.4 42.6 4.2 0.596 0.11 0.995 0.02 132.65 30.39 60.31 51.86
−0.36 35.2 5.8 7.1 4.9 0.3 1.2 28.5 3.1 30.2 3.4 41.7 4.1 0.596 0.11 0.994 0.02 132.38 30.22 57.33 48.81
−0.34 35.2 5.8 7.1 4.9 0.3 1.2 28.5 3.1 30.2 3.4 40.9 4.0 0.596 0.11 0.994 0.02 132.37 30.21 54.22 45.68
−0.32 35.2 5.8 7.1 4.9 0.3 1.3 28.5 3.1 30.2 3.4 40.1 3.9 0.596 0.11 0.994 0.02 132.10 30.05 51.44 42.83
−0.30 35.2 5.8 7.1 4.9 0.3 1.3 28.5 3.1 30.2 3.4 39.3 3.9 0.596 0.11 0.993 0.02 131.96 29.97 48.64 40.00
−0.28 35.2 5.8 7.1 4.9 0.3 1.3 28.5 3.1 30.2 3.4 38.6 3.8 0.596 0.11 0.993 0.02 131.82 29.88 46.23 37.51
−0.26 35.2 5.8 7.1 4.9 0.3 1.3 28.5 3.1 30.2 3.4 37.9 3.7 0.596 0.11 0.992 0.02 131.82 29.87 43.52 34.79
−0.24 35.2 5.8 7.1 4.9 0.4 1.4 28.5 3.1 30.2 3.4 37.3 3.6 0.596 0.11 0.992 0.02 131.08 29.53 40.79 32.07
−0.22 35.2 5.8 7.1 4.9 0.4 1.5 28.5 3.1 30.2 3.4 36.7 3.6 0.596 0.11 0.991 0.02 130.81 29.39 38.21 29.50
−0.20 35.2 5.8 7.1 4.9 0.4 1.5 28.5 3.1 30.2 3.4 36.1 3.5 0.596 0.11 0.991 0.02 130.68 29.31 35.87 27.14
−0.18 35.2 5.8 7.1 4.9 0.4 1.6 28.5 3.1 30.2 3.4 35.6 3.6 0.596 0.11 0.990 0.02 130.00 28.98 33.27 24.63
−0.16 35.2 5.8 7.1 4.9 0.4 1.6 28.5 3.1 30.2 3.4 35.1 3.5 0.596 0.11 0.990 0.02 129.85 28.90 30.97 22.38
−0.14 35.2 5.8 7.1 4.9 0.4 1.6 28.5 3.1 30.2 3.4 34.6 3.5 0.596 0.11 0.990 0.02 129.82 28.88 28.97 20.36
−0.12 35.2 5.8 7.1 4.9 0.5 1.6 28.5 3.1 30.2 3.4 34.1 3.4 0.596 0.11 0.989 0.02 129.69 28.79 27.08 18.46
−0.10 35.2 5.8 7.1 4.9 0.5 1.6 28.5 3.1 30.2 3.4 33.7 3.4 0.596 0.11 0.988 0.02 129.49 28.65 25.04 16.43
−0.08 35.2 5.8 7.1 4.9 0.5 1.6 28.5 3.1 30.2 3.4 33.3 3.3 0.596 0.11 0.988 0.02 129.39 28.58 23.57 14.87
−0.06 35.2 5.8 7.1 4.9 0.5 1.6 28.5 3.1 30.2 3.4 32.9 3.3 0.596 0.11 0.987 0.03 129.36 28.55 21.70 13.06
−0.04 35.2 5.8 7.1 4.9 0.5 1.7 28.5 3.1 30.2 3.4 32.6 3.2 0.596 0.11 0.986 0.03 129.06 28.36 20.21 11.52
−0.02 35.2 5.8 7.1 4.9 0.6 1.7 28.5 3.1 30.2 3.4 32.2 3.2 0.596 0.11 0.984 0.03 128.86 28.23 18.40 9.75
0.00 35.2 5.8 7.1 4.9 0.6 1.7 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.983 0.03 128.44 28.00 16.95 8.31
0.02 35.2 5.8 7.1 4.9 0.6 1.7 28.5 3.1 30.2 3.4 31.6 3.2 0.596 0.11 0.982 0.03 128.20 27.84 15.47 6.84
0.04 35.2 5.8 7.1 4.9 0.6 1.8 28.5 3.1 30.2 3.4 31.3 3.1 0.596 0.11 0.980 0.03 128.05 27.75 14.17 5.54
0.06 35.2 5.8 7.1 4.9 0.7 1.8 28.5 3.1 30.2 3.4 31.0 3.1 0.596 0.11 0.978 0.03 127.73 27.56 12.79 4.20
0.08 35.2 5.8 7.1 4.9 0.7 1.9 28.5 3.1 30.2 3.4 30.8 3.1 0.596 0.11 0.974 0.04 126.86 27.11 11.62 3.05
0.10 35.2 5.8 7.1 4.9 0.7 1.9 28.5 3.1 30.2 3.4 30.6 3.1 0.596 0.11 0.967 0.04 126.76 27.04 10.37 1.82
0.12 35.2 5.8 7.1 4.9 0.8 1.9 28.5 3.1 30.2 3.4 30.3 3.1 0.596 0.11 0.958 0.05 126.53 26.87 9.33 0.80
0.14 35.2 5.8 7.1 4.9 0.8 1.9 28.5 3.1 30.2 3.4 30.1 3.1 0.596 0.11 0.944 0.05 126.17 26.61 8.22 0.26
0.16 35.2 5.8 7.1 4.9 0.9 2.1 28.5 3.1 30.2 3.4 30.0 3.1 0.596 0.11 0.927 0.06 124.56 25.76 7.38 1.08
0.18 35.2 5.8 7.1 4.9 1.0 2.2 28.5 3.1 30.2 3.4 29.8 3.1 0.596 0.11 0.904 0.07 123.87 25.30 6.61 1.83
0.20 35.2 5.8 7.1 4.9 1.1 2.2 28.5 3.1 30.2 3.4 29.7 3.1 0.596 0.11 0.877 0.07 123.17 24.84 5.96 2.45
0.22 35.2 5.8 7.1 4.9 1.2 2.2 28.5 3.1 30.2 3.4 29.6 3.1 0.596 0.11 0.847 0.08 122.66 24.41 5.48 2.92
0.24 35.2 5.8 7.1 4.9 1.3 2.3 28.5 3.1 30.2 3.4 29.5 3.1 0.596 0.11 0.814 0.08 122.15 23.95 5.03 3.34
0.26 35.2 5.8 7.1 4.9 1.4 2.3 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.782 0.09 121.75 23.55 4.72 3.65
0.28 35.2 5.8 7.1 4.9 1.5 2.3 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.751 0.10 121.23 23.07 4.45 3.91
0.30 35.2 5.8 7.1 4.9 1.6 2.3 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.723 0.10 120.73 22.57 4.29 4.07
0.32 35.2 5.8 7.1 4.9 1.7 2.3 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.696 0.10 120.11 22.08 4.21 4.15
0.34 35.2 5.8 7.1 4.9 1.9 2.4 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.674 0.10 119.38 21.44 4.12 4.22
0.36 35.2 5.8 7.1 4.9 2.0 2.4 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.657 0.11 118.65 20.90 4.12 4.20
0.38 35.2 5.8 7.1 4.9 2.1 2.4 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.643 0.11 118.27 20.50 4.08 4.24
0.40 35.2 5.8 7.1 4.9 2.2 2.4 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.634 0.11 117.81 20.08 4.10 4.22
0.42 35.2 5.8 7.1 4.9 2.3 2.5 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.625 0.11 117.27 19.58 4.11 4.21
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0.44 35.2 5.8 7.1 4.9 2.4 2.5 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.621 0.11 116.88 19.19 4.18 4.16
0.46 35.2 5.8 7.1 4.9 2.5 2.5 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.616 0.11 116.52 18.84 4.19 4.14
0.48 35.2 5.8 7.1 4.9 2.6 2.5 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.613 0.11 116.24 18.53 4.18 4.15
0.50 35.2 5.8 7.1 4.9 2.6 2.6 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.611 0.11 115.18 18.01 4.15 4.18
0.52 35.2 5.8 7.1 4.9 2.7 2.6 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.609 0.11 114.81 17.66 4.17 4.16
0.54 35.2 5.8 7.1 4.9 2.8 2.7 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.609 0.11 113.96 17.20 4.22 4.10
0.56 35.2 5.8 7.1 4.9 2.9 2.7 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.608 0.11 113.66 16.90 4.23 4.09
0.58 35.2 5.8 7.1 4.9 3.0 2.7 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.607 0.11 113.29 16.58 4.25 4.07
0.60 35.2 5.8 7.1 4.9 3.1 2.7 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.606 0.11 112.80 16.16 4.23 4.10
0.62 35.2 5.8 7.1 4.9 3.1 2.7 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.606 0.11 112.49 15.88 4.25 4.07
0.64 35.2 5.8 7.1 4.9 3.2 2.7 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.605 0.11 111.95 15.57 4.23 4.09
0.66 35.2 5.8 7.1 4.9 3.2 2.8 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.604 0.11 111.68 15.33 4.24 4.08
0.68 35.2 5.8 7.1 4.9 3.3 2.8 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.604 0.11 111.46 15.14 4.26 4.06
0.70 35.2 5.8 7.1 4.9 3.3 2.8 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.604 0.11 111.26 14.95 4.26 4.07
0.72 35.2 5.8 7.1 4.9 3.4 2.8 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.604 0.11 110.88 14.69 4.27 4.07
0.74 35.2 5.8 7.1 4.9 3.4 2.8 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.604 0.11 110.66 14.49 4.28 4.06
0.76 35.2 5.8 7.1 4.9 3.5 2.8 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.604 0.11 110.41 14.31 4.28 4.06
0.78 35.2 5.8 7.1 4.9 3.5 2.8 28.5 3.1 30.2 3.4 29.3 3.1 0.596 0.11 0.603 0.11 110.22 14.15 4.27 4.06
0.80 35.2 5.8 7.1 4.9 3.6 2.8 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.603 0.11 110.04 14.00 4.30 4.04
0.82 35.2 5.8 7.1 4.9 3.6 2.8 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.603 0.11 109.85 13.85 4.31 4.03
0.84 35.2 5.8 7.1 4.9 3.6 2.8 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.603 0.11 109.72 13.71 4.33 4.01
0.86 35.2 5.8 7.1 4.9 3.7 2.8 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.603 0.11 109.61 13.60 4.30 4.04
0.88 35.2 5.8 7.1 4.9 3.7 2.8 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.602 0.11 109.47 13.48 4.32 4.02
0.90 35.2 5.8 7.1 4.9 3.7 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.602 0.11 109.26 13.33 4.32 4.02
0.92 35.2 5.8 7.1 4.9 3.7 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.602 0.11 109.14 13.22 4.32 4.02
0.94 35.2 5.8 7.1 4.9 3.8 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.602 0.11 109.04 13.12 4.32 4.01
0.96 35.2 5.8 7.1 4.9 3.8 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.602 0.11 108.92 13.01 4.32 4.01
0.98 35.2 5.8 7.1 4.9 3.8 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.602 0.11 108.79 12.91 4.31 4.02
1.00 35.2 5.8 7.1 4.9 3.8 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.602 0.11 108.69 12.81 4.33 4.00
1.02 35.2 5.8 7.1 4.9 3.9 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 108.60 12.72 4.35 3.98
1.04 35.2 5.8 7.1 4.9 3.9 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 108.12 12.42 4.36 3.97
1.06 35.2 5.8 7.1 4.9 4.0 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 108.01 12.34 4.37 3.96
1.08 35.2 5.8 7.1 4.9 4.0 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 107.93 12.27 4.38 3.95
1.10 35.2 5.8 7.1 4.9 4.0 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 107.84 12.20 4.38 3.95
1.12 35.2 5.8 7.1 4.9 4.0 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 107.61 12.07 4.39 3.93
1.14 35.2 5.8 7.1 4.9 4.0 2.9 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 107.56 12.01 4.39 3.94
1.16 35.2 5.8 7.1 4.9 4.1 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 107.39 11.90 4.39 3.94
1.18 35.2 5.8 7.1 4.9 4.1 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 107.32 11.84 4.39 3.94
1.20 35.2 5.8 7.1 4.9 4.1 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 107.25 11.79 4.37 3.96
1.22 35.2 5.8 7.1 4.9 4.1 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 107.17 11.72 4.36 3.97
1.24 35.2 5.8 7.1 4.9 4.1 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 107.10 11.66 4.37 3.96
1.26 35.2 5.8 7.1 4.9 4.1 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 107.00 11.59 4.36 3.97
1.28 35.2 5.8 7.1 4.9 4.1 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 106.95 11.55 4.35 3.98
1.30 35.2 5.8 7.1 4.9 4.2 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.601 0.11 106.89 11.51 4.36 3.97
1.32 35.2 5.8 7.1 4.9 4.2 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.85 11.46 4.35 3.98
1.34 35.2 5.8 7.1 4.9 4.2 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.79 11.42 4.36 3.97
1.36 35.2 5.8 7.1 4.9 4.2 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.76 11.39 4.35 3.98
1.38 35.2 5.8 7.1 4.9 4.2 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.72 11.35 4.35 3.98
1.40 35.2 5.8 7.1 4.9 4.2 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.65 11.31 4.34 3.99
1.42 35.2 5.8 7.1 4.9 4.2 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.61 11.27 4.34 3.99
1.44 35.2 5.8 7.1 4.9 4.2 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.58 11.24 4.35 3.98
1.46 35.2 5.8 7.1 4.9 4.2 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.55 11.21 4.34 3.99
1.48 35.2 5.8 7.1 4.9 4.2 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.50 11.18 4.34 3.99
1.50 35.2 5.8 7.1 4.9 4.2 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.46 11.15 4.35 3.98
1.52 35.2 5.8 7.1 4.9 4.2 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.44 11.12 4.35 3.98
1.54 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.40 11.10 4.35 3.98
1.56 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.37 11.07 4.35 3.98
1.58 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.34 11.04 4.35 3.98
1.60 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.31 11.02 4.34 3.99
1.62 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.29 11.00 4.34 3.99
1.64 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.26 10.97 4.34 3.99
1.66 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.22 10.95 4.34 3.99
1.68 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.19 10.93 4.34 3.99
1.70 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.17 10.91 4.35 3.98
1.72 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.15 10.89 4.35 3.98
1.74 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.14 10.88 4.35 3.98
1.76 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.11 10.86 4.33 4.00
1.78 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.09 10.84 4.33 4.00
1.80 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.07 10.83 4.33 3.99
1.82 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.05 10.81 4.33 3.99
1.84 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.03 10.80 4.32 4.00
1.86 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.01 10.79 4.32 4.00
1.88 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 106.00 10.78 4.32 4.00
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1.90 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 105.98 10.76 4.32 4.00
1.92 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 105.97 10.75 4.32 4.00
1.94 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 105.96 10.74 4.32 4.00
1.96 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 105.94 10.73 4.32 4.00
1.98 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 105.93 10.72 4.32 4.00
2.00 35.2 5.8 7.1 4.9 4.3 3.0 28.5 3.1 30.2 3.4 29.4 3.1 0.596 0.11 0.600 0.11 105.93 10.71 4.32 4.00

B.7 Prediction Time Error Mean µ (S8)

S8 RTA σ RTB σ RTC σ DAA σ DAB σ DAC σ HRB σ HRC σ tRTAC
tRTBC

tDAAC
tDABC

−1.00 35.2 5.8 7.1 4.9 3.2 2.9 28.5 3.1 30.2 3.4 34.1 3.4 0.596 0.11 0.825 0.08 110.38 15.18 26.67 18.05
−0.96 35.2 5.8 7.1 4.9 3.1 2.8 28.5 3.1 30.2 3.4 34.0 3.4 0.596 0.11 0.829 0.08 111.82 15.87 26.22 17.63
−0.92 35.2 5.8 7.1 4.9 2.9 2.7 28.5 3.1 30.2 3.4 33.9 3.4 0.596 0.11 0.833 0.08 113.29 16.71 25.76 17.18
−0.88 35.2 5.8 7.1 4.9 2.8 2.6 28.5 3.1 30.2 3.4 33.8 3.4 0.596 0.11 0.839 0.08 114.78 17.55 25.33 16.76
−0.84 35.2 5.8 7.1 4.9 2.5 2.4 28.5 3.1 30.2 3.4 33.7 3.5 0.596 0.11 0.845 0.08 117.07 18.93 25.03 16.50
−0.80 35.2 5.8 7.1 4.9 2.3 2.2 28.5 3.1 30.2 3.4 33.7 3.4 0.596 0.11 0.852 0.08 119.40 20.12 24.82 16.25
−0.76 35.2 5.8 7.1 4.9 2.1 2.0 28.5 3.1 30.2 3.4 33.6 3.4 0.596 0.11 0.858 0.08 120.89 21.02 24.36 15.80
−0.72 35.2 5.8 7.1 4.9 2.0 2.0 28.5 3.1 30.2 3.4 33.5 3.4 0.596 0.11 0.865 0.08 121.85 21.67 23.90 15.37
−0.68 35.2 5.8 7.1 4.9 1.9 1.9 28.5 3.1 30.2 3.4 33.4 3.5 0.596 0.11 0.871 0.07 122.98 22.38 23.47 14.99
−0.64 35.2 5.8 7.1 4.9 1.7 1.7 28.5 3.1 30.2 3.4 33.3 3.5 0.596 0.11 0.878 0.07 124.49 23.29 23.07 14.59
−0.60 35.2 5.8 7.1 4.9 1.6 1.6 28.5 3.1 30.2 3.4 33.2 3.4 0.596 0.11 0.885 0.07 125.38 23.95 22.73 14.23
−0.56 35.2 5.8 7.1 4.9 1.4 1.5 28.5 3.1 30.2 3.4 33.2 3.5 0.596 0.11 0.892 0.07 127.03 25.00 22.34 13.89
−0.52 35.2 5.8 7.1 4.9 1.2 1.4 28.5 3.1 30.2 3.4 33.1 3.5 0.596 0.11 0.900 0.07 128.00 25.73 21.94 13.49
−0.48 35.2 5.8 7.1 4.9 1.1 1.2 28.5 3.1 30.2 3.4 33.0 3.5 0.596 0.11 0.907 0.06 129.14 26.49 21.60 13.18
−0.44 35.2 5.8 7.1 4.9 1.0 1.1 28.5 3.1 30.2 3.4 32.9 3.4 0.596 0.11 0.912 0.06 130.05 27.15 21.22 12.75
−0.40 35.2 5.8 7.1 4.9 0.8 1.0 28.5 3.1 30.2 3.4 32.8 3.4 0.596 0.11 0.920 0.06 131.14 27.96 20.58 12.12
−0.36 35.2 5.8 7.1 4.9 0.7 0.9 28.5 3.1 30.2 3.4 32.7 3.4 0.596 0.11 0.926 0.06 132.00 28.58 20.07 11.60
−0.32 35.2 5.8 7.1 4.9 0.6 0.8 28.5 3.1 30.2 3.4 32.5 3.3 0.596 0.11 0.934 0.05 132.81 29.23 19.81 11.23
−0.28 35.2 5.8 7.1 4.9 0.5 0.7 28.5 3.1 30.2 3.4 32.5 3.3 0.596 0.11 0.940 0.05 133.36 29.68 19.50 10.92
−0.24 35.2 5.8 7.1 4.9 0.4 0.5 28.5 3.1 30.2 3.4 32.4 3.3 0.596 0.11 0.948 0.05 134.19 30.33 19.10 10.51
−0.20 35.2 5.8 7.1 4.9 0.3 0.5 28.5 3.1 30.2 3.4 32.3 3.3 0.596 0.11 0.956 0.05 134.74 30.84 18.66 10.07
−0.16 35.2 5.8 7.1 4.9 0.2 0.4 28.5 3.1 30.2 3.4 32.2 3.3 0.596 0.11 0.964 0.04 135.19 31.24 18.29 9.69
−0.12 35.2 5.8 7.1 4.9 0.2 0.3 28.5 3.1 30.2 3.4 32.1 3.2 0.596 0.11 0.972 0.04 135.51 31.54 17.98 9.31
−0.08 35.2 5.8 7.1 4.9 0.1 0.4 28.5 3.1 30.2 3.4 32.1 3.2 0.596 0.11 0.979 0.03 135.59 31.70 17.66 9.04
−0.04 35.2 5.8 7.1 4.9 0.2 1.1 28.5 3.1 30.2 3.4 32.0 3.2 0.596 0.11 0.984 0.03 133.03 30.52 17.27 8.66
0.00 35.2 5.8 7.1 4.9 0.6 1.7 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.983 0.03 128.44 28.00 16.95 8.31
0.04 35.2 5.8 7.1 4.9 1.4 2.6 28.5 3.1 30.2 3.4 31.9 3.2 0.596 0.11 0.974 0.03 119.67 23.18 17.04 8.41
0.08 35.2 5.8 7.1 4.9 2.1 3.2 28.5 3.1 30.2 3.4 32.0 3.3 0.596 0.11 0.959 0.05 112.26 19.13 17.44 8.87
0.12 35.2 5.8 7.1 4.9 2.9 3.8 28.5 3.1 30.2 3.4 32.1 3.3 0.596 0.11 0.941 0.05 104.25 15.12 17.77 9.20
0.16 35.2 5.8 7.1 4.9 3.4 4.1 28.5 3.1 30.2 3.4 32.1 3.3 0.596 0.11 0.928 0.06 100.24 12.94 17.89 9.34
0.20 35.2 5.8 7.1 4.9 3.8 4.4 28.5 3.1 30.2 3.4 32.2 3.3 0.596 0.11 0.917 0.06 97.02 11.34 17.87 9.37
0.24 35.2 5.8 7.1 4.9 4.0 4.5 28.5 3.1 30.2 3.4 32.2 3.3 0.596 0.11 0.908 0.07 95.37 10.43 18.18 9.64
0.28 35.2 5.8 7.1 4.9 4.2 4.6 28.5 3.1 30.2 3.4 32.3 3.3 0.596 0.11 0.900 0.07 94.25 9.81 18.65 10.06
0.32 35.2 5.8 7.1 4.9 4.3 4.6 28.5 3.1 30.2 3.4 32.4 3.3 0.596 0.11 0.892 0.07 93.47 9.35 19.13 10.54
0.36 35.2 5.8 7.1 4.9 4.4 4.7 28.5 3.1 30.2 3.4 32.5 3.3 0.596 0.11 0.885 0.07 92.87 8.99 19.47 10.89
0.40 35.2 5.8 7.1 4.9 4.5 4.7 28.5 3.1 30.2 3.4 32.6 3.3 0.596 0.11 0.877 0.07 92.43 8.70 19.90 11.37
0.44 35.2 5.8 7.1 4.9 4.5 4.7 28.5 3.1 30.2 3.4 32.7 3.4 0.596 0.11 0.872 0.08 92.17 8.50 20.38 11.86
0.48 35.2 5.8 7.1 4.9 4.6 4.7 28.5 3.1 30.2 3.4 32.8 3.4 0.596 0.11 0.867 0.08 91.99 8.31 20.83 12.37
0.52 35.2 5.8 7.1 4.9 4.6 4.7 28.5 3.1 30.2 3.4 32.9 3.5 0.596 0.11 0.861 0.08 91.84 8.21 20.93 12.57
0.56 35.2 5.8 7.1 4.9 4.6 4.7 28.5 3.1 30.2 3.4 33.0 3.5 0.596 0.11 0.855 0.08 91.74 8.10 21.38 13.03
0.60 35.2 5.8 7.1 4.9 4.7 4.7 28.5 3.1 30.2 3.4 33.1 3.5 0.596 0.11 0.848 0.08 91.42 7.93 21.89 13.48
0.64 35.2 5.8 7.1 4.9 4.7 4.7 28.5 3.1 30.2 3.4 33.2 3.5 0.596 0.11 0.842 0.08 91.29 7.82 22.28 13.86
0.68 35.2 5.8 7.1 4.9 4.8 4.7 28.5 3.1 30.2 3.4 33.3 3.5 0.596 0.11 0.836 0.08 91.18 7.72 22.60 14.22
0.72 35.2 5.8 7.1 4.9 4.8 4.7 28.5 3.1 30.2 3.4 33.3 3.5 0.596 0.11 0.832 0.08 91.07 7.62 22.86 14.50
0.76 35.2 5.8 7.1 4.9 4.8 4.7 28.5 3.1 30.2 3.4 33.4 3.6 0.596 0.11 0.827 0.08 90.97 7.55 23.10 14.75
0.80 35.2 5.8 7.1 4.9 4.8 4.7 28.5 3.1 30.2 3.4 33.5 3.5 0.596 0.11 0.821 0.09 90.94 7.50 23.67 15.29
0.84 35.2 5.8 7.1 4.9 4.8 4.7 28.5 3.1 30.2 3.4 33.7 3.6 0.596 0.11 0.816 0.09 90.85 7.41 24.13 15.82
0.88 35.2 5.8 7.1 4.9 4.9 4.7 28.5 3.1 30.2 3.4 33.8 3.7 0.596 0.11 0.812 0.09 90.75 7.30 24.58 16.32
0.92 35.2 5.8 7.1 4.9 4.9 4.7 28.5 3.1 30.2 3.4 33.9 3.7 0.596 0.11 0.807 0.09 90.72 7.22 24.84 16.58
0.96 35.2 5.8 7.1 4.9 4.9 4.7 28.5 3.1 30.2 3.4 33.9 3.7 0.596 0.11 0.805 0.09 90.64 7.18 25.15 16.89
1.00 35.2 5.8 7.1 4.9 4.9 4.7 28.5 3.1 30.2 3.4 34.0 3.7 0.596 0.11 0.803 0.09 90.60 7.12 25.61 17.33
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APPENDIX C
Fixity Assurance

All fixity check values are provided as SHA-1 checksums, either of the git commits of
the respective repository, or of the specified file. Files not present in the repositories are
yielded by running the simulations as described in appendix A. In the table, the location
$A refers to simulations/01_detail, and $B refers to the prefetch-simulation
directory, where the regression results are stored, as described in section A.3; the short
forms are used for typesetting reasons.

Fixity Location Value
Commit of spiceJ git (tag 0.0.10) ddef963c278b291387f351de30825f5b6c708215
Commit of scovilleJ git (tag 0.0.7) 178f66738bec5bc771579228b528949ee7304e78
Commit of prefetch-simulation git (tag 0.0.2) 484b02c5ab39e202cfc1fa10b0c9e52568627cfc
Exemplary Configuration $A/configuration 3c5334b656673a07d2a09e1e79b48db081abc89c
Exemplary Genesis (TEX) $A/genesis.tex ad6beab64a5ce1e36f07718dedc18a0bff5eca33
Exemplary Genesis A $A/genesis_A d21a27219bb46bf9e26a30be8d19d2ea774db790
Exemplary Genesis B $A/genesis_B 4cbd4538459f389b483ff4fed53f9500879cbd39
Exemplary Genesis C $A/genesis_C 1aba5b6094af8c4bfd8281f95ab5bd78b9eaf2bc
Exemplary Result A (TEX) $A/result-timeline_A.tex 2bae972f308cbf7bae2c764820aa431335f00da2
Exemplary Result B (TEX) $A/result-timeline_B.tex 0251abfdf656808c1764850ce639350d6e17b9d9
Exemplary Result C (TEX) $A/result-timeline_C.tex 52a30976b0057a0c8aa128c85cc7fbdec5909223
Exemplary Result A (TXT) $A/result-summary_A.txt 59133d226d298911598cd34b8dbaa89c4e01450d
Exemplary Result B (TXT) $A/result-summary_B.txt c3d841fe31fd73bfea7982c238986b3589f10c3b
Exemplary Result C (TXT) $A/result-summary_C.txt 91136c05cd61e5ffd50ed729af67fe6fd03d5383
Regression Results for S1 $B/s1.out 641bb8e44aab36d1468bfb326476ef47a6b11217
Regression Results for S2 $B/s2.out 180b09e5fc5d3c9ce1bff53e262bab42506fa18a
Regression Results for S3 $B/s3.out 5d8a3f7f198e019967e068abbcf8d3f571c9a73b
Regression Results for S4 $B/s4.out 1c14cca86541fac29b2dea91098ade623324c935
Regression Results for S5 $B/s5.out 735578c01ac23e92c706749f8c835ba315d4707a
Regression Results for S7 $B/s7.out 439fa0ccc60e95d33fa50adffbbd0939d4addfd3
Regression Results for S8 $B/s8.out 72dd00fa199fa10a199183c3ba57acb2e4d20fe0
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