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Abstract—One of the key concepts of service-oriented comput-
ing is dynamic binding which favors on-demand integration of
services into a running system. Companies can outsource tasks to
external partners by using their services and are able to switch
over to alternatives at runtime. However, this flexibility comes at
a high cost because it complicates the testing process significantly.
The major problem with external services is their restricted
usability for testing purposes, due to costs or because policies
forbid trial invocations. In this paper we present our approach
to solve this issue by generating automatically testbeds which
emulate external services. Based on previous work on testbed
generation, we have developed a technique for intercepting Web
service invocations in Java-based systems, generating emulated
replicas at runtime, and redirecting the invocations transparently.
We describe the concepts of our approach, its applicability, and
limitations.

I. INTRODUCTION

The concept of service-oriented architecture (SOA) is

grounded on modularization of functionality into reusable

services and on providing these to clients for on-demand

usage. Hence, software systems can be engineered faster due

to software reuse and due to the possibility to outsource

particular tasks to external partners/experts. Though, in spite

of these benefits, engineers of outsourcing systems are facing

several problems. Integration of functionality provided by

external services turns an SOA vulnerable, as the services

may become unavailable or may suffer from degraded quality

of service. Hence, it is a potential risk for the dependability

of an outsourcing SOA system. To address this issue, such

systems should undergo rigorous tests, in order to make sure

that they are able to handle faults properly and that there will

be no bad surprises once they are deployed. Unfortunately,

the whole testing procedure becomes problematic as invoca-

tions of external services often cost money or because their

providers have policies which restrict trial invocations. As a

solution to this issue, we have proposed in previous works the

generation of testbed infrastructures. We have introduced the

Genesis2 testbed generator [1] which supports SOA engineers

in setting up customizable testbeds. Later we have extended

our work towards fault injection [2] for emulating faults in

SOA environments. In short, engineers write scripts in which

they specify the composition and and functional behavior of

the testbeds and Genesis2 interprets the specifications and

generates running testbeds instances from these.

In the current paper, we evolve our approach towards an

automated generation of testbeds and reduce the input of

SOA engineers significantly. We apply AspectJ [3], an AOP

extension [4] for the Java VM, for inspecting SOA systems

at runtime in order to detect invocations of external Web

services. On a detection, our system analyzes the remote

services, generates replicas of these, and deploys them within

a testbed. Eventually, the invocation is redirected to the replica

transparently, leaving the original service untouched. The

result of this procedure is that external SOA infrastructures

can be emulated on-the-fly and their replicas act as a testbed

for the engineer. Compared to our previous work, the current

paper brings forward the concept of testbed generation towards

more automation, requiring less specification input from the

engineer. It improves the practical applicability and accelerates

the testing process.

This paper has the following structure. The next section

covers our vision of software testing in SOA and motivates the

usage of testbed generators. Section III explains our concept

for automated testbed generation. In Sections IV and V we

present a basic evaluation of our approach and discuss its

limitations. In Section VI we review related research and in

the end we conclude the paper and summarize our results.

II. TESTING IN SOA SOFTWARE DEVELOPMENT

The idea of software modularization was not invented with

SOA, it has been applied since decades. However, what SOA

propagates is not only to compose systems out of a set of

modules, referred to as services, but also to integrate remote

services, provided by external partners, into a system. This

is supported by the open character of Web service-based

SOA, that uses open standards for communication (SOAP [5]),

interface descriptions (WSDL [6]), and for the numerous WS-*

extensions which are public [7]. The benefits are obvious:

faster software development due to reuse and the ability to

choose dynamically among available services depending on

their quality, just to list to most prominent ones. External

Web services can be integrated easily by analyzing their

WSDL descriptions, making sure that client and service agree

on communication details, such as available operations and

exchanged message types. To specify the quality of their

services, some providers offer service level agreements (SLA)

that define minimal performance metrics and penalties, if these



are not met. SLAs do help to make a SOA system more

predictable, as service providers have a strong incentive to

guarantee a promised quality in order to avoid penalties. Yet in

spite of this gain on predictability, the dependency on external

Web services remains a risk as SLAs are sometimes missed

and a failing service can have critical effects on the system

that depends on it. Of course, unless it is able to handle

these properly. And here appears a major problem of today’s

SOA software development: how can engineers develop and

evaluate techniques for handling faults of remote components,

if they don’t have full access to these components. Naturally,

external partners do not allow arbitrary invocations of their

services just for the sake of testing, as this would put additional

load on these and degrade their performance. Furthermore,

external services do often cost money and, therefore, each test

run would cost money. To summarize the dilemma of SOA

engineers: on the one hand the outsourcing of tasks to external

services can accelerate the development of a system but, on

the other hand, dependencies on external services do imply

new challenges for testing the system.

In our previous work we argued that this dilemma can be

mitigated by using testbeds that emulate external SOA infras-

tructures. We have developed techniques for how such testbeds

can be generated and we have implemented a prototype called

Genesis2 [1], in short G2. By making the tested system interact

with replicas of external Web services, instead of their real

instances, engineers are given a new level of freedom for

running their tests. Of course, the usability of such testbeds

depends mainly on their realism, in terms of how precisely

they replicate external Web services. To bring forward this

question, we have extended G2 for multi-level fault injection

to simulate various faults in Web services communication [2].

The main benefit of our approach is that SOA engineers can

test their systems in a kind of separated sandbox, that fakes

an existing SOA environment and in which they can perform

unrestricted test runs. In our methodology, the engineers had

to write specification scripts that describe the environment

to be emulated, including the topology as well as functional

behavior of it. In the current paper we simplify this process,

by partially automating the specification of testbeds.

III. AUTOMATED GENERATION OF SOA SANDBOXES

In a nutshell, our approach is based on monitoring running

Java-based SOA systems, detecting calls of external Web

services, and redirecting them to generated replicas. Figure 1

depicts our approach which consists of the following steps:

1) Detection of Web service calls in the SOA system, by

intercepting WSDL retrieval code in the Java runtime.

2) Analysis of the WSDL document and generation of a

replica model at the front-end.

3) Rule-based customizations of the replica model.

4) Deployment of the replica instance, from the model, at

the testbed infrastructure (back-end).

5) Forwarding of the replica WSDL document to the SOA

system, instead of the original WSDL.

6) Actual Web service invocation, redirected to the replica.
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Fig. 1. Web service call interception and generation of replicas

In the next sections we explain the concepts behind each

step and give an overview about the extendability and pro-

grammability of the testbeds. We start with the Genesis2 (G2)

testbed generator framework, which is the base grounding of

our approach, providing functionality to generate testbeds on-

demand.

A. Genesis2 Testbed Generator Framework

The purpose of the G2 framework is to support the setup

of testbeds for SOA. It emulates environments consisting of

services, clients, registries, and other SOA components and

supports programming of their behavior. G2’s most distinct

feature is its ability to generate running testbed instances

and to integrate these into existing SOA environments which

empowers testers to evaluate SOA systems at runtime.

G2 comprises a centralized front-end, from where testbeds

are modeled and controlled, and a distributed back-end, con-

sisting of hosts at which the models are transformed into

real testbed instances. The front-end maintains a virtual view

on the testbed, for on-the-fly manipulations via scripts, and

propagates changes to the back-end in order to adapt the

running testbed. For the sake of extensibility, G2 uses com-

posable plugins which augment the testbed’s functionality,

making it possible to emulate diverse topologies, functional

and non-functional properties, and behavior. Figure 2 depicts

a simplified view on the different layers of a G2-based testbed

and the interactions within them. At the two bottom layers,

G2 connects the front-end to the distributed back-end and in-

stalled plugins establish their communication structures. Most

important are the two top layers. Based on the provided model

schema, the engineer creates models of SOA components

which are then being generated and deployed at the back-

end hosts. At the very top layer, the testbed instances are

running and behave/interact according to the specification. The

aggregation of these instances constitutes the actual testbed

infrastructure on which the developed SOA can be evaluated.

In summary, at the front-end the engineer specifies via

Groovy scripts [8] the details of the testbed, defining what
shall be generated where, with which customizations, and the

framework takes care of synchronizing the model with the
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Fig. 2. Interactions within G2 layers

corresponding back-end hosts on which the testbed elements

are generated and deployed. The following snippet contains

a sample script for modeling a Web service, programming

it’s behavior (in this case just returning a String value),

and deploying it at a back-end host. After deployment, it is

possible to perform adaptations on-the-fly by changing the

Web service’s model which is immediately propagated to the

generated instance at the back-end.

1 / / i m p o r t r e f e r e n c e o f c l o u d back−end h o s t
2 d e f beHost1 = h o s t . c r e a t e ("someHost.domain" , 8 0 8 0 )

4 / / i m p o r t d a t a t y p e from XSD f i l e
5 d e f d t = d a t a t y p e . c r e a t e ("/path/types.xsd" ,"vCard" )

7 / / c r e a t e model o f T e s t S e r v i c e wi th one o p e r a t i o n
8 d e f s e r v i c e = w e b s e r v i c e . b u i l d {

10 T e s t S e r v i c e ( b i n d i n g : "doc,lit" ) {
11 SayHi ( c a r d : vCard , r e s u l t : S t r i n g ) {
12 re turn "hi ${card.name}"
13 }
14 }
15 } [ 0 ]

17 s e r v i c e . dep loyAt ( beHost1 ) / / dep loyment

19 s e r v i c e . o p e r a t i o n s += . . . / / on−the−f l y a d a p t a t i o n

For detailed information about the Genesis2 framework and on

our concepts for testbed generation we refer interested readers

to our previous works [1], [2], [9].

B. AOP-based Interception of Web service Invocations

Aspect-oriented programming (AOP) is a paradigm which

aims to increase software modularity by allowing the separa-

tion of cross-cutting concerns [4]. In particular, AOP allows

developers to alter the behavior of a system (in terms of

enhancing but also replacing functionality) at runtime by spec-

ifying pointcuts and join points (intercepted points/functions

in a program) and executing advices (new/additional behavior)

on them. For example, a developer can define aspects for

enhancing a program with logging functionality. Up to date,

AOP has gained high popularity among software engineers

and numerous programming languages provide support for it.

However in this paper we have concentrated on Java and on

its AOP extension called AspectJ [3], due to Java’s importance

for Web (service) engineering.

In our approach we apply AOP for intercepting Web service

invocations, create replica services in a testbed, and redirect

the invocations to these, as depicted in Figure 1. To be precise,

we intercept the retrieval of WSDL documents, as this is the

first step of a typical invocation procedure [10]: WSDLs are

retrieved from a registry and then passed to a client generator

which creates the corresponding invocation stubs. Here we

intervene in the program flow. Before the client generator

processes the WSDL we analyze it in order to create a replica

of the service in a dedicated testbed infrastructure (replica

creation is explained in the next section). The next step is

to replace transparently the original WSDL with the one of

the replica, in order to make the client generator create stubs

which point to the new endpoint and, eventually, to direct

all invocations to it. This way, the original service is only

contacted for retrieving its description but all communication

is actually done with its replica in the testbed.

The interception of WSDL retrieval is realized via aspects

which detect calls of the retrieval routines in the SOA system

and by altering their execution. Depending on which Web

service framework the system is using (e.g., Apache Axis 2

[11], Apache CXF [12], or GlassFish [13]) different aspects

must be applied in order to match the corresponding API func-

tions. The following code snippet shows a simple aspect which

covers the WSDL4J [14] library/framework, used by various

workflow engines. At first a pointcut is defined which catches

calls of the method WSDLReader.readWSDL(String). If

this pointcut is matched at runtime, the following advice will

be executed. It passes the URI to the Sandbox utility class

that initiates the replication of the service in the background

and returns the URI to the replica’s WSDL. Finally, the

intercepted method is called, however, the URI of the original

WSDL is replaced with the one of the replica.

1p u b l i c a s p e c t I n t e r c e p t o r A s p e c t {

3/ / p o i n t c u t d e f i n i n g i n t e r c e p t e d f u n c t i o n s
4p u b l i c p o i n t c u t r e t ( S t r i n g u r i , WSDLReader r ) :
5c a l l (∗ WSDLReader . readWSDL ( S t r i n g ) ) &&
6a r g s ( u r i ) &&
7t a r g e t ( r ) ;

9/ / a d v i c e b e i n g e x e c u t e d when p o i n t c u t f i r e s
10D e f i n i t i o n a round ( S t r i n g u r i , WSDLReader r :
11r e t ( u r i , r ) {

13S t r i n g repURI=Sandbox . c r e a t e R e p l i c a ( u r i ) ;
14re turn p r o c e e d ( r e p U r i , r ) ;
15}
16}

Having such aspects defined, a Java-bsed SOA system can

be monitored at runtime by executing it on top of AspectJ

which takes care of weaving the aspects into the running code

(referred to as load-time weaving) and which delegates the

generation of replicas to the Sandbox generator.



C. On-the-fly Generation of Service Replicas
In a nutshell, the process of replicating Web services com-

prises the following three main steps:

1) the remote Web service is analyzed and a basic model

of a replica service is created,

2) the model is subject to user-defined customizations, and

3) the final model is transferred to a back-end host where

a running Web service is generated out of it.

Steps 1 and 3 are fully automated and no user interactions

are required in these. The only semi-automated part resides

in step 2 where engineers can define own rule-based

customizations for the generated services. Though, at runtime

the customizations are applied automatically, which results in

an automated overall execution of the replication process.

1) Creation of a Replica Model: The G2 testbed generator

supports modelling of Web services via the framework’s API

or via the Groovy-based scripting language (like in Listing 1)

which, in turn, is simply a user-friendly front-end for the API.

Moreover, G2 provides a model schema (see Figure 3) which

specifies a) which component model types are available, b)

which customizations can be performed to these, and c) how

these components can be composed into a coherent testbed

infrastructure. In short, the schema represents the framework’s

functionality and acts as a template for modelling testbeds.
For creating the model of a replica service, our tool

retrieves the original service’s WSDL document in order to

analyze the interface and to clone it in the model. Even though

the analysis of WSDL documents could be done in a ”raw”

manner by processing the document directly, for instance by

using the WSDL4J library [14], we apply the wsimport
utility of JAX-WS [15] for convenience. wsimport takes

WSDL’s as input and generates corresponding Java stubs,

imports referenced XML schemas automatically, checks for

WS-I [16] compatibility, and performs various other necessary

steps which would otherwise have to be done manually. Our

tool takes the generated stubs and compiles them which

provides us a binary representation of the service’s interface

which can be analyzed via object reflection techniques plus

by checking the corresponding Java annotations. This way,

we can easily determine the service’s operation signatures,

message types, binding information, and all the other required

data for modelling a replica, and translate this data into the

model representation. The next step is to perform user-defined

customizations to the model.

2) Customization, Extensibility, and Programmability: The

result of the first step is a model of a replica service which

clones the original service’s interface, however, does not

provide any (proper) functionality. On an invocation it delivers

response messages which are syntactically correct, according

to the XML schema definition (XSD) [17] in the WSDL

document, but simply fills these messages with randomized

data, which makes them semantically meaningless. Therefore,

at this stage the replica can be regarded as a pure dummy or

mock-up service. For some test cases mock-ups are perfectly

sufficient, for instance if the engineer wants to determine how

Host
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Fig. 3. Base Web service model schema with fault-injection extensions [2]

many parallel service invocations his/her tested SOA system

can handle, regardless of the response message content. But

if the test cases become more sophisticated and message

content does matter, or if the services must expose certain

functional or non-functional behavior, then the replica models

must be customized in order to meet these requirements and

to expose the desired behavior. This is a part of the replication

process that we cannot automate, as requirements vary with

every tested SOA system and the purpose of the particular

test case. Furthermore, it is impossible to replicate a remote

service’s functionality automatically and to provide 100%

realism, as explained in Section V. But what we can do is to

support engineers in performing the necessary customizations

in order to replicate the behavior as good as possible and/or
required for the tests! For this purpose we make use of G2’s

extensibility via plugins and, again, apply Groovy scripts

for specifying rules for how generated replica services are

customized. Plugins enhance the framework’s functionality, in

terms of what SOA components can be generated, plus they

can augment already available component types. For example,

in [2] we presented techniques for enhancing SOA testbeds

with fault injection (FI) on three levels: 1) on the network level

for hampering the packet flow, 2) on the service execution level

for emulating degraded quality of service (QoS), and 3) on the

message level for corrupting the content of SOAP messages.

Each FI level was realized in a separate plugin that enhanced

the basic model schema of G2 with a model type for specifying

the fault behavior (depicted in Figure 3).

The following Listing demonstrates two sample rules for

customizing replica services with FI plus for assigning func-

tional behavior to the service’s operations. The rules are

wrapped in a Groovy closure [18] which takes the service

model as parameter (svc). The first rule matches services

by their namespace (Line 4) and augments them with a QoS

model that simulates changing availability. In Lines 6-14 the

QoS model is instantiated, bound to the service, and the

availability behavior is programmed. The second rule matches

services by their declared name plus by whether they contain a

certain operation. In case of a match, the operation’s behavior

is programmed to return prepared responses from a repository

containing replay data.



1 s e r v i c e C u s t o m i z e r = { svc −>

3 / / c u s t o m i z e s e r v i c e which has ” i n f o s y s ” i n i t s NS
4 i f ( svc . namespace =˜ / i n f o s y s . ac . a t / ) {
5 / / i n s t a n t i a t e QOS model and a t t a c h t o s e r v i c e
6 d e f svcQos = qos . c r e a t e ( )
7 svc . qos = scvQoS
8 / / program a v a i l a b i l i t y b e h a v i o r model
9 svcQos . a v a i l a b i l i t y = {

10 i f ( new Date ( ) . g e t H o u r s ( ) <8) { / / t i l l 8 AM
11 re turn 99 /100 / / s e t h igh a v a i l a b i l i t y o f 99%
12 }
13 re turn 90 /100 / / o t h e r w i s e , s e t lower r a t e
14 }
15 }

17 / / c u s t o m i z e s e r v i c e wi th a p a r t i c u l a r o p e r a t i o n
18 i f ( svc . name == "CustomerSVC" &&
19 "GetCustomerData" i n svc . o p e r a t i o n s . name ) {
20 / / program b e h a v i o r o f o p e r a t i o n v i a c l o s u r e
21 svc . g e t O p e r a t i o n ("GetCustomerData" ) . b e h a v i o r = {
22 d e f r e s p o n s e = r rRepo . g e t ( r e q u e s t )
23 re turn r e s p o n s e
24 }
25 }

27 }

All in all, engineers are given a possibility to perform

arbitrary customizations to the generated replica models and

to use the full potential of G2, in terms of extensibility and

programmability [1].

3) Generating Web service Instances in the Back-end:
After the replica model has been generated in step 1 and

customized in step 2, the next step is to transfer it to the

back-end for generating a running Web service instance in the

testbed. G2 testbeds are usually hosted on a distributed back-

end infrastructure, composed of a set of hosts on which the

testbed components are deployed. Therefore, a destination host

must be chosen. Similar to specifying customization rules for

services, engineers can define rules telling where to deploy

the replica services. The following snippet shows a simple

configuration which references 10 hosts in the back-end (from

192.168.1.1:8080 to 192.168.1.10:8080) and for each given

replica service it choses a random one.

1 h o s t L i s t = [ ]

3 1 . up to ( 1 0 ) { n−> / / c r e a t e l i s t o f 10 h o s t r e f s
4 h o s t L i s t += h o s t . c r e a t e ("192.168.1.$n" , 8 0 8 0 )
5 }

7 h o s t C h o s e r = { svc −> / / s im p ly p i c k a random h o s t
8 d e f pos = new Random ( ) . n e x t I n t ( h o s t L i s t . s i z e ( ) )
9 re turn h o s t L i s t [ pos ]

10 }

The process of generating Web service instances out of the

models comprises the serialization of the model, transferring

it to the G2 instance at the choses back-end host, and, finally,

the translation of the model into a running and deployable Web

service. The first two steps are trivial but the generation of Web

services from models is far more sophisticated, being based on

generative programming. Once the model has been received at

the back-end instance, the following steps are executed:

1) Recursive analysis of the WebService model to de-

termine used customization plugins and message types.

2) Translation of message types (DataType models) to

Java classes that represent the XSD-based data structures

(using xjc, the Java XML Binding Compiler).

3) Automatic generation of Java/Groovy source code im-

plementing the modeled Web service.

4) Compilation of sources using Groovy’s built-in compiler.

5) Generation of customizations by corresponding plugins.

6) Deployment of completed Web service instance at local

Apache CXF [12] endpoint.

For more details about the generation of Web services, we

refer to [1] and [19].

All in all, the result of the whole replication process

is a running Web service that clones the original service’s

interface, behaves according to the engineer’s customizations,

and can be used for testing purposes. Yet, some readers might

wonder about the applicability of this approach, the realism

of such a testbed, and what kind of drawbacks exist. We are

trying to answer these questions in Section V.

IV. EVALUATION

To prove the quality of our approach, it would be necessary

to evaluate its practical usefulness as well as its intrusiveness

into the tested SOA system. However, the evaluation of

usefulness would require the application of our approach in

a significant number of SOA development projects in order to

determine the usability, convenience, as well as how much time

was saved in the development/testing process. Due to a lack of

access to a sufficient number of ongoing development projects,

we were not able to perform this kind of evaluation. Instead

we concentrated on evaluating the level of intrusiveness. As

our approach does alter the execution of the SOA system, it

is important to find out how much the altered runtime differs

from the original one, in terms of performance degradation.

The goal is to keep the intrusiveness and the changes at

runtime as small as possible.

In our evaluation we have applied our approach on in-

tercepting dynamic binding and invocation of Web services.

We agree with [20] that dynamic binding combined with

message-based interactions is the proper way to implement

SOA communication. SOA systems should be able to adapt

to its environment and redirect invocations to ”better suited”

Web services at runtime, instead of being tightly bound to

particular services. This requires that the invocation stubs,

that handle the communication with the remote services, are

not hard-coded, but are being generated dynamically out of

the services’ WSDL descriptions. In our evaluation we have

used three different Web service frameworks/libraries which

are capable of dynamic binding:

1) Apache CXF [21] is a rich framework, supporting SOAP

[5], ReST [22], WS-* extenstions, etc. Implements the

JAX-WS API [15] for Web service development.

2) The Groovy SOAP Module [23] provides SOAP support

for the Groovy language [8]. Strongly focused on sim-

plicity and usage convenience, less on feature support.
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Fig. 4. Processing time evaluation - measuring the performance penalties of intercepting Web service invocations

3) DAIOS [20] aims at supporting truly dynamic interac-

tions between clients and services. Provides composition

of request messages automatically via similarity metrics

between request data and WSDL contract, improving

loose coupling this way.

For testing these client generators, we took the QWS dataset

[24] that is basically a collection of WSDL documents of

public SOAP Web services. In total it contains 2505 WSDLs,

however, we were not able to use all of these for our purposes.

First of all, 31% of the documents are not WS-I-compatible as

they use RPC/encoded bindings or other WSDL styles which

have been regarded as deprecated [16]. Furthermore, 15% of

the remaining WSDLs were corrupted, for instance by refer-

encing not existing XSD definitions or by having an invalid

document structure. Moreover, we also removed 12% of valid

WSDLs as they were referencing remote artifacts which had

to be downloaded with sometimes significant latency which

delayed and, therefore, distorted the whole processing time of

the client generators. The remaining WSDLs were considered

as suitable for executing our evaluation.

To determine the performance intrusiveness, we calculated

how fast a client generator actually generates the correspond-

ing stub code and how much this procedure is delayed if we

apply the testbed generator aspects. We did not measure the

time for eventually invoking the services on purpose, for two

reasons: 1) the main load is caused during the analysis of the

WSDL and the generation of the stubs, and only minimal load

is caused during the actual invocation, and 2) the invocation

is mainly delayed by the processing time of the remote Web

service (referred to as QoS) and does not depend on the client

generator at all.

Figure 4(a) visualizes the distribution of processing times

for the three testes client generators, while Figure 4(b) shows

the processing time of the replica generator for comparison.

The performance of the client generators differs significantly,

due to their level of (pre-)processing of Web service calls.

For instance, DAIOS does not generate and compile code

into Java classes but simply analyzes the content of the

WSDL document. This makes DAIOS, by far, the fastest

client generator. Groovy SOAP and Apache CXF, however,

take the WSDL document as input for generating stub classes

and for translating message types into Java classes. Even

though this provides several benefits, it comes at the cost of

performance. For the set of WSDL document of the QWS

dataset we measured an average processing time of 12 msec

for DAIOS, 871 msec for Groovy SOAP, and 1622 msec

for CXF1. For the replica generator we measured an average

processing time of 4617 msec which is significantly slower

than the client generators. As a consequence, if our testbed

generator approach is applied on a SOA system that uses

dynamic binding, the following delays will occur for the

generation of clients: DAIOS-based calls would be slowed

down by a factor of 384 - which is, however, exceptional as

DAIOS performs only restricted processing of the WSDL -,

for Groovy SOAP the slow down factor would by 6.3, and

for CXF it would be 3.8. Of course, this delay happens only

once, namely when the client stub gets generated during the

first invocation of the service. Each subsequent call will not

be delayed, as the replica needs to be created only once.

For a better visualization of the delay caused by replication,

we measured the performance of the individual steps of a

Web service call interception: a) of the client generator, b)

of the WSDL analyzer, and c) of the actual replica generator.

Figure 4(c) displays the results. Again we performed the

tests on the QWS dataset, sorted the WSDLs according to

their size/complexity, and this time we used only Apache

CXF as the base client generator. The bottom graph displays

the performance of CXF, which is quite constant except for

the very complex WSDL’s. The middle graph shows the

accumulated performance of the WSDL analyzer, in addition

to CXF’ processing time. On the top, the graph displays

the sum of all three modules, which constitutes the actual

processing time for intercepting a Web service call plus for

generating the corresponding replica service. The results show

that approximately 30% of the time is consumed for analyzing

the remote WSDL and creating the model, 44% is spent on

1The measurements were performed on an Intel i5 M520 CPU with 2.4GHz.
However, we mainly compare the relative performance difference between
the WS frameworks and the replica generator, which renders the system’s
hardware secondary.



generating a running replica Web service out of it, while the

generation of the local client stubs takes only 26% of the time.

These tests demonstrate that intercepting Web service calls

for the purpose of generating replicas and redirecting the calls

to them does significantly slow down the client generation

process. What does that mean for the level of performance

intrusiveness and how does that affect the whole system’s

runtime and, consequently, the testing process? First of all,

this evaluation represents the current implementation status

and without doubt further optimizations would be possible.

But still, the performance degradation would be noticeable,

even if only at the client generation and not at the invocations

of a Web service. Though, how much this slowdown really

affects the testing of an SOA system depends on many factors:

on the applied Web service framework, on the number of Web

services being invoked and on their complexity, on whether the

invocations are blocking or asynchronous, etc. In a nutshell,

many factors play a role when determining how much this all

affects the systems performance and whether this matters for

the tests at all. There are many scenarios where it makes sense

to replicate external Web services on-the-fly, while for some

it is not reasonable. We try to draw up the main concerns and

pro/contra arguments for/against our approach in the following

section.

V. DISCUSSION

The usage of testbeds and, especially, the replication of

existing Web services raises questions about the applicability

of the concept, whether it is possible to replicate SOA envi-

ronments in a realistic way, and various other concerns which

deserve to be discussed in more depth. In the following we

give our opinion on the questions we regard as most relevant.

How realistic are such testbeds? What about replication of
functional behavior?
To make it short: replication of functional behavior, without

having access to the remote Web service’s code, is not pos-

sible. Let’s consider the example of a complex and stateful

remote service which performs sophisticated calculations, uses

a data base system as data source, interacts with some legacy

components, etc. There is no way of replicating its functional

behavior in 100% if one has only access to the Web service’s

interface description. There are means to record and playback

Web service interactions, e.g., [25], [26], but still the repli-

cation of functionality is only limited to the recorded data.

That is something we have to live with. But what is a SOA

software engineer supposed to do, if he/she is developing a

system that must interact with such a complex service, but

he/she is not allowed to use this service for testing purposes?

Basically, his/her hands are bound and the best solution is

to use a replica of the service in a testbed. And for this

replica, it is up to the developer to implement a ”realistic”

behavior according to the requirements of the test run. Often

it is sufficient to emulate just QoS properties (e.g., by taking

over the collected QoS data from the QWS dataset), or to

implement a rudimentary clone of the services functionality,

etc. It all depends on how much is known about the original

service and how much of it must be replicated. We cannot

solve this problem in a fully automated manner, but we can

support developers by replicating the service’s interface and by

providing means for assigning functional behavior to them, as

shown in [1]. So the answer is that it is the task of the testing

engineer to assign sufficiently realistic behavior to the replicas.

We have no possibility to unburden him/her from that.

Does it really make sense to generate replicas on-the-fly at
runtime, instead of having a pre-generated testbed?
In our previous work we argued that testbeds need to be

generated before the test runs, mostly by specifying all details

via G2’s scripting language and deploying the testbed on a

back-end. In the current paper we try to convince readers

about generating testbeds on-thy-fly, which is in general the

exact opposite. Why is that? First of all, in the previous papers

we described the current state and on-the-fly generation had

not been developed back then. But now, as it is possible, is

it always preferable? In our opinion it makes sense if the

testbed composition is not known a-priori or a generation

of the complete testbed infrastructure is not reasonable, e.g.,

because it could get too large-scale even though only a few

services of it would be actually invoked. For such scenarios on-

the-fly generation is more efficient and, therefore, preferable.

How does the presented approach support engineers at
running the tests or at evaluating test results?
In the current state, there is almost no support at all as we

regard it out of scope. The current focus is is only on testbed

generation, which is still work in progress as many challenges

have not been solved yet. Regarding the execution of the test

runs and the evaluation of test results (e.g., logs) we do not

provide any support so far, however, we will tackle these

challenges in our future research projects.

VI. RELATED RESEARCH

Several research groups have investigated the generation of

testbed infrastructures for SOA, yet we have not discovered

any works which would be similar to our approach of creating

testbeds by intercepting Web service invocations. In spite of

that, some works have brought forward research on automated

generation of testbeds, they have developed concepts related

to ours, and are, therefore, relevant for comparison.

For instance, SOABench [27] provides sophisticated sup-

port for benchmarking of BPEL engines [28] via modeling

experiments and generating service-based testbeds. It provides

runtime control on test executions as well as mechanisms for

test result evaluation. Regarding its features, SOABench is

focused on performance evaluation and generates Web service

stubs that emulate QoS properties, such as response time and

throughput. The testbeds are generated from BPEL models and

from the WSDL documents of the referenced Web services.

Like in SOABench, the authors of PUPPET [29] examine

the generation of QoS-enriched testbeds for service compo-

sitions. PUPPET does not investigate the performance but

verifies the fulfillment of Service Level Agreements (SLA)

of composite services. This is done by analyzing WSDL and

WS-Agreement documents [30], generating testbeds out of it,



and emulating the QoS of the generated Web services in order

to check the SLAs.

Both tools, SOABench and Puppet, have in common with

our approach that they support the generation of Web service-

based testbeds by reading in WSDL documents and generating

stubs from these, plus extend these in order to emulate QoS

properties, e.g., by delaying the execution. The main difference

is, however, that they rely on an a-priori knowledge about the

testbed environment, e.g., the set of required Web services.

Our approach is more focused on dynamic SOA systems

that determine at runtime which services they invoke and,

therefore, testbeds for them cannot be built in a static manner.

An other solution is provided with soapUI [26], a software

for functional testing of Web services and clients. It supports

the generation of mock-up services and the customization of

these with functional behavior. However, soapUI does also

rely on a-priori specifications and is focused on testing single

services or clients, not supporting a convenient generation of

large-scale testbeds.

Apart from these related works, no more research has been

published on testbed generation for SOA. As shown in recent

detailed surveys on Web service’s testing, such as [31], the

research community has rather concentrated on testing single

services, e.g., [32], [33], or composite ones, e.g., [34], [35], but

has neglected too much the necessity of testbed infrastructures.

VII. CONCLUSION

In this paper we have presented a technique for generat-

ing testbeds for Web service-based systems automatically by

applying aspect-oriented programming. We define aspects via

which we intercept the invocation of Web services in a running

SOA system, generate replicas of the services on-the-fly, and

redirect the initial invocations to the replicas in a transparent

manner. With this work we have extended our research on

SOA testbed generation towards more automation, as testers

are not required anymore to specify all Web services of a

testbed manually but this task is performed by our tool.

Of course, our approach is not able to generate fully

functional replicas in a perfectly automated manner. Still

testers need to specify the functional behavior in our scripting

language. However, we can reduce the amount of required

specification for setting up testbeds significantly and, there-

fore, can speed up the whole process of testing SOA systems.
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