
Programming Evolvable Web Services

Martin Treiber, Lukasz Juszczyk, Daniel Schall, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstraße 8/184-1
A-1040 Vienna, Austria

{treiber,juszczyk,schall,dustdar}@infosys.tuwien.ac.at

ABSTRACT
Web services have emerged as a technology for designing and com-
posing distributed applications. Recent research increasingly ad-
dressed the need to adapt such systems based on changing require-
ments and environmental constraints. From the developers point of
view, it is already a daunting task to update the description, imple-
mentation, or configuration of individual services that are already
deployed in the runtime environment. A major undertaking is up-
date and maintenance of large scale service environments.

In this work, we introduce a programming model enabling the
adaptation and evolution of service-oriented systems in a simple
and intuitive way. Most existing work focuses on self-adaptation
aspects. We present a user-centric approach and a framework sup-
porting both automatic mechanisms for adaptation and foremost a
programming model to reduce the burden of reconfiguration, up-
date, and customization of service-based applications. We imple-
mented the programming model on top ofGenesis, a Java-based
Web services framework.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Evolutionary prototyping;
H.3.5 [Online Information Services]: Web-based Services

General Terms
Web services, service evolution, adaptation

Keywords
Genesis, programming model, evolvable services

1. INTRODUCTION
The continuous evolution of software systems towards more ro-

bust, flexible and ultimately self-adapting systems holds different
challenges for the implementation of such systems. One way to
address these challenges is to build loosely coupled software sys-
tems [28] from existing well defined components. Service based
applications, service compositions respectively, are examples of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

such systems, which support modifications (e.g., service replace-
ment) without breaking the service based software system.

While the major emphasis was put onhow to model services,
considerably less attention was paid on the developer’s perspective.
Significant evolutionary of services during the life cycle [2, 25],
like code refactoring or the implementation of new algorithms do
not happen automatically, but rather require a human, i.e., the de-
veloper, in the loop who conducts these changes [30]. Developers
require an answer to the question ofhow to implement services
and their changes. Consequently, developers need the support from
the service infrastructure to be able to modify services in an effi-
cient manner. Furthermore, an adequate programming abstraction
is required that allows developers to change the implementation of
services according to changing requirements.

Current approaches offer limited support for developers regard-
ing the modification of services. They treat Web services either
as components [5], as resources [15], focus on interface descrip-
tions [10,16] or describe services with semantic techniques [1,14].
The support for direct modifications of Web services in the deploy-
ment environment is limited, approaches like chain of adapters [18]
intercept and transform messages but do not support the developer
in modifying deployed Web services.

We propose a programming methodology for Web services which
introduces concepts and mechanisms to implement evolvable Web
services. We base our approach on an abstract, tree based represen-
tation of Web services which is the foundation for the implementa-
tion of evolvable Web services. Our prototype runtime environment
implementation is build upon the Genesis framework [17], which is
able to support the runtime modification of Web services and pro-
vides the needed abstractions for our programming methodology.

In the following section, we discuss application scenarios high-
lighting the need for adaptation mechanisms in Web services-based
systems.

1.1 Application Scenarios
The presented application scenarios are motivated by the need to

create service-based applications which may be subject to chang-
ing requirements. In the first scenario we discuss an example where
distributed organizations form virtual organizations (VO) to collab-
orate on joint tasks/projects. The second case highlights the need to
provide customized services based on the service consumers pref-
erences.

• VO formation and collaboration: The global scale and distri-
bution of companies have changed the economy and dynam-
ics of businesses. In recent years, companies and individuals
have started to formvirtual organizations (VO) to harvest
business opportunities which single partners cannot realize
due to missing expertise or resources [29]. VOs are estab-

lished by creating connections between individual partners.
Web services and SOA are the ideal technical framework to
automate the formation process as well as interactions within
VOs. Since VOs form and dissolve for the timespan of a
specific collaboration, it is desirable to create tailored ser-
vices supporting the needed interactions between partners in
an easy manner. Thus, developers are required to create a
set of services enabling collaborations. On the other hand,
tailored services prevent unauthorized access to services or
operations that should remain invisible to the collaboration
partner.

• Provisioning of custom services: The Web and services have
undergone fundamental changes. Users demand for person-
alization and context-awareness when using services. Ser-
vices may be adapted based on the users’ context information
by offering extended features. Also, personalization plays
an increasing role as the number of available services in-
creases. A simple example is a Web portal where person-
alized views are created based on user preferences. Web ser-
vice providers, for example hosting services in cloud envi-
ronments, may want to create services offering a set of fea-
tures (operations) targeting a specific consumer and/or com-
munity. These custom services can be created by selecting
and aggregating operations from existing services.

Both scenarios demand for flexibility and adaptability of ser-
vices. A system satisfying the needs of the presented application
cases is not designed, developed, and deployed in a top-down man-
ner, but rather changes and evolves over time. While research in
the semantic Web services community focuses on automatic adap-
tation (e.g., mediation of messages, goal driven compositions, etc.)
of services, our approach focuses on the user perspective. The fun-
damental question we attempt to address in this work is: how can
developers efficiently adapt systems while maintaining the system’s
availability?

1.2 Adaptation in Service-oriented Systems
In the following, we discuss various possibilities for adapting

service-oriented architectures (SOA). Generally, we distinguish be-
tween(i) manual adaptation performed by developers and(ii) au-
tomatic (self-)adaptation. The latter has recently received consid-
erable attention from the research community while the former is
not sufficiently supported by existing WS toolkits and frameworks.
Figure 1 provides an overview of adaptation in SOA.

The development process can be viewed from various starting
points. TheProvider may start to implement services based on
market demands and innovations of competitors. We make no as-
sumption about the role of the provider with regards to develop-
ment aspects of services. From the Web services point of view,
functional capabilities of services can be described through well-
defined interfaces [10], whereas non-functional characteristics, for
example service metering, costs, and Quality-of-Service (QoS) at-
tributes [25], can modeled using policy frameworks.

Providers typically offer a set of services to a number ofCon-
sumers. As mentioned in our motivating application scenarios, con-
sumers may have different preferences and requirements, thereby
demanding for customizations of services. The provider is respon-
sible for hosting services in an appropriateInfrastructure to satisfy
consumer demands in terms of functional capabilities and QoS.

Autonomic adaptation (see self-referential arrow) may need to be
performed to satisfy QoS guarantees, service availability, to name a
few and has received considerable attention (e.g., see [22]). For ex-
ample, such self-adaptation actions may be triggered by notifying

Provider Developer

Infrastructure

Service

select

implement
program and

adapt

use

consult

manipulate

monitornotify

adapt

(autonomic)

Backend

(Runtime)

Frontend

G
e
n
e
s
is

W
S
 F
ra
m
e
w
o
rk

Consumer ... Consumer 1 to n

Figure 1: Overview adaptive SOA: the proposed programming
model comprises programming and adaptation performed by
developers and manipulation of services.

services about infrastructure events.
Here we address adaptations performed by theDeveloper. The

developer is in charge of programming services and implementing
adaptations (dotted arrow pointing from Developer to Service in
Figure 1). A set of tools are needed for this purpose, which are de-
picted asFrontend andBackend, both provided by theGenesis WS
Framework [17]. The developer performs the logical action ‘pro-
gram and adapt’ using the frontend comprising tools, APIs, user
shell, etc. The backend is deployed in the infrastructure — poten-
tially multiple backend instances to achieve scalability. Also, the
infrastructure is monitored by the backend to receive information
about deployed resources or load conditions which can be propa-
gated back to the frontend to assist the developer when adapting
services. Automatic adaptations could potentially be triggered by
the backend, although this is not within the scope of this work.

1.3 Contributions
In this work, we highlight the following novel key contributions:

1. A user-centric approach for programming and adapting Web
services using theGenesis WS Framework. The proposed
framework offers a script-based Web service programming
environment.

2. A simple and intuitive programming model assisting devel-
opers in adaptation actions such as service migration, repli-
cation, or even refactoring of multiple distributed services at
the same time.

3. Extensibility and flexibility in managing services throughbe-
havior modules.

The rest of this paper is organized as follows: in section 2 we
introduce our programming model and discuss the mechanisms that
are required to program evolvable Web services. We show how
developers can be program and adapt services using a script-based
programming approach. In the following section 3, an architectural
overview is given. Afterwards, we discuss benefits and limitations
of our approach in 4 and related work in 5. Finally, we conclude
the paper in 6 and give an outlook on future work.

2. PROGRAMMING MODEL
The proposed programming model differs from the usual method-

ology for Web service development. In order to make Web services
adaptable, in the sense of altering the service’s interface and behav-
ior at runtime, we regard it as useful to encapsulate its implementa-
tion into serializeable and composable building blocks. Today, the
most common way of developing Web services is to create data/-
code objects representing the services, with class methods imple-
menting the service’s operations. The main drawback of this ap-
proach is the tight binding of operations to services (which means,
methods to objects) making it impossible to perform adaptations on
a structural level without recompiling and redeploying the whole
service. This poses a hard limitation for flexibility and adaptability.

Our approach, derived from the programming model of the Gen-
esis testbed generator framework [17], splits the Web service model,
according to the structure in WSDL documents [10], into 4 main
layers of element types, namely Host, Service, Operation, and Mes-
sageType (see Figure 2).

H 1

O 1

S 1

T 1

O n

Host

Layer

T nT 2 . . . T 1 T nT 2 . . .

. . .

Service

Layer

Operation

Layer

Message

Type Layer

H 2

S 2

. . .

H 1 ... Host O 1 ... OperationS 1 ... Service T 1 ... Message Type

Figure 2: Programming abstraction for Web services.

The Host type references a remote host and provides access to
its deployed services, in order to de-/re-/install these. The Service
type represents the general specification of a Web service, with all
its global dependencies and properties. Operations encapsulate the
behavior of the service and MessageTypes define the schemas of
the exchanged messages, which also includes headers.

Our methodology comprises the usage of an API at the front-end
in order to control a set of back-end hosts. The main features of
the API deal with creating and manipulating Web service models
and for deploying them on the back-end hosts. At the back-end,
a runtime environment handles the transformation of models into
service instances and supports the basic CRUD (Create, Read, Up-
date, Delete) operations for manipulating them. Furthermore, our
approach supports the usage of pluggable behavior modules which
augment the Web services with arbitrary functionality, e.g., access
to data bases or registration at UDDI brokers. Table 1 summarizes
the main effects of CRUD operations on the model.

2.1 Script-based Web Service Programming
Our framework provides a Java-based API for accessing the model,

which can be also integrated into scripting environments such as
the Bean Scripting Framework (BSF)1 or Groovy2. In this paper,
we are using sample code snippets written in Jython3, a BSF-based
implementation of the Python language, to demonstrate the simple

1http://jakarta.apache.org/bsf/
2http://groovy.codehaus.org
3http://www.jython.org

Model Modification

Host Create: Bootstrapping of remote host (requires
Cloud-like host manipulations)
Read: Retrieve model of deployed Web services
(e.g., for migration)
Update:
• Update of host-global behavior modules
• Setting host-global properties
Delete: Host shutdown

Service Create: Service deployment for creation / replica-
tion / migration
Read: Read service configuration and metadata
Update:
• of service behavior modules
• of service properties (e.g. URL)
Delete: Service undeployment

Operation Create: Addition of operation
Update:
• of operation code
• of operation properties (e.g. binding)
Delete: Removal of operation

Message-
Type

Create: Addition of headers and/or message types
Update:
• of request/response types and headers
• of header processing code
Delete: Removal of headers and/or message types

Behavior
Module

Create: Deployment of pluggable behavior mod-
ules for extending Web services
Update:
• Replacement of modules
• Steering of pluggable functions via parameter

manipulation
Delete: Undeployment of modules

Table 1: Modifications on model types and behavior modules.

usage of our programming model. The following sample shows the
creation and deployment of a simple Web service:

% c r e a t e h o s t r e f e r e n c e
h = Host ("http://example.net:8080/services")

% c r e a t e s e r v i c e d e f i n i t i o n w i t h doc / l i t b i n d i n g
s = S e r v i c e ("SampleService")
s . se tDocumen tS ty le ()
s . s e t L i t e r a l U s e ()

% c r e a t e dummy method i n J y t h o n
def s i g n (pa r) :

s i g n a t u r e S t r ="Not implemented yet"
re turn s i g n a t u r e S t r

% bind method t o s e r v i c e o p e r a t i o n
o = O p e r a t i o n ("SignData")
o . s e t B e h a v i o r (s i g n)

% c r e a t e XSD−based message t y p e s
t = MessageType ("types.xsd" , "dataTypeName")

% a t t a c h message t y p e s t o o p e r a t i o n
o . addInputType ("param" , t)
o . se tOu tpu tType ("string") % t y p e f o r s i g n () r e s p o n s e

% a t t a c h o p e r a t i o n t o s e r v i c e
s . addOpera t i on (o)

% a t t a c h s e r v i c e t o h o s t and d e p l o y
s . dep loyAt (h)

By executing this script code, the Web service is deployed at
http://example.net:8080/services/SampleService. The
functionality of the service is defined by binding a native Jython
method (sign()) to a Web service operation, in order to encapsu-
late the operation’s behavior for remote execution.

Deployed Web services can be adapted by importing their model
from a host, performing changes to it, and redeploying it again.
The next snippet demonstrates this feature and shows how to extend
services with behavior modules.

% i m p o r t s e r v i c e model from remote h o s t
h = Host ("http://example.net:8080/services")
s = h . g e t S e r v i c e ("SampleService") % g e t by name
o = s . g e t O p e r a t i o n ("SignData")

% c r e a t e new header message t y p e
c t = MessageType ("types.xsd" , "credentials")
c t . s e t H e a d e r (t r u e)

o . add InputType ("creds" , c t)

% u s e s " au th " and " gpg " p l u g i n s
def newSign (par , c r e d s) :

au th . check (c r e d s)% e x c e p t i o n on f a i l u r e
s i g n a t u r e S t r = gpg . s i g n (pa r)
re turn s i g n a t u r e S t r

% r e p l a c e o p e r a t i o n b e h a v i o r
o . s e t B e h a v i o r (newSign)

% i n s t a l l p l u g i n a t h o s t u s i n g g l o b a l a l i a s " au th "
h . u s e P l u g i n ("auth.jar")
% i n s t a l l p l u g i n a t s e r v i c e u s i n g l o c a l a l i a s " gpg "
s . u s e P l u g i n ("gpg.jar")

% r e d e p l o y m e n t a t remote h o s t
s . upda te ()

Apart from simple adaptations, which change a service’s inter-
face and/or behavior, changes can be also performed at a higher
level, by combining API methods into composite ones, for instance
to migrate or replicate services to other hosts (see Figure 3).

H 1

O 1

S 1

T 1

O 1

Host

Layer

T nT 2 . . . T 1 T nT 2 . . .

Service

Layer

Operation

Layer

Message

Type Layer

H 2

S 1

Service

Migration

H 1 ... Host O 1 ... OperationS 1 ... Service T 1 ... Message Type

Figure 3: Migration of service S1 from host H1 to host H2

During deployment at back-end hosts, models of Web services
are translated into running instances of these. For this purpose
our system serializes service models, including the code blocks of
the operations and all referenced pluggable modules, and transfers
them to the designated hosts. The translation process itself com-
prises the analysis of the Web service model and the generation
of Java code which implements the intented behavior. We do not
present the details of the translation process in this paper, but refer
interested readers to [17].

def r e p l i c a t e S e r v i c e (serv iceName , fromHost , t oHos t)
% i m p o r t model from s o u r c e h o s t
s = fromHost . g e t S e r v i c e (serv iceName)
i f s i s None :

r a i s e Excep t i on ("Unknown service")
% d e p l o y a t new one
s . dep loyAt (toHos t)
re turn s

def m i g r a t e S e r v i c e (serv iceName , fromHost , t oHos t)
s = r e p l i c a t e S e r v i c e (serv iceName , fromHost , t oHos t)
% remove a f t e r s u c c e s s f u l d e p l o y m e n t
s . undeployFrom (fromHost)

def mig ra teHos t (fromHost , t oHos t)
% i t e r a t e t h r o u g h d e p l o y e d p l u g i n s and s e r v i c e s
f o r p i n f romHost . ge tP lug inModu les () :

t oHos t . u s e P l u g i n (p)
f o r s i n f romHost . g e t S e r v i c e s () :

m i g r a t e S e r v i c e (s . getName () , f romHost , t oHos t)

2.2 Extending Services with Behavior Modules
For our programming model particular priority has been put on

simplicity, allowing developers to set up Web services quickly and
to perform adaptations in a convenient manner.

However, this came at the cost of sacrificing the ability to create
complex Web services due to the encaplusation of Web service op-
erations to single code blocks, e.g., to Jython methods like in the
previous samples. To overcome this limitation to a certain degree,
we are using pluggable behavior modules which can provide arbi-
trary functionality and which can be accessed by the operations.

Our framework supports developers by providing an abstract Java
class for the modules, which takes care of binding them to the run-
time environment via alias names. Modules can bei either regis-
tered at the host level, for globally visibility, or at the service level,
for restricted visibility to particular services. We have developed a
set of behavior modules which are frequently needed in the SOA
domain, e.g., a service invoker for calling remote services and a
simple workflow engine for executing nested BPEL4 processes.

In the next sample a UDDI plugin is invoked in two special
operations (onDeploy() andonUndeploy() which are exe-
cuted automatically by the Genesis framework when services are
installed or removed) in order to register the service automatically
at a UDDI broker.

s = % . . . g e t S e r v i c e

% d e f i n e d e p l o y m e n t and undep loymen t hooks
def r e g i s t e r () :

udd i . r e g i s t e r (t h i s)

d = O p e r a t i o n ("onDeploy")
d . s e t B e h a v i o r (r e g i s t e r)

def d e r e g i s t e r () :
udd i . d e r e g i s t e r (t h i s)

ud = O p e r a t i o n ("onUndeploy")
d . s e t B e h a v i o r (d e r e g i s t e r)

s . addOpera t i on (d)
s . addOpera t i on (ud)

% a t t a c h p l u g i n t o s e r v i c e u s i n g l o c a l a l i a s
s . u s e P l u g i n ("uddi.jar")

% r e d e p l o y w i t h hooks
s . upda te ()

4http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.
0.pdf

3. ARCHITECTURE AND FRAMEWORK
Existing service execution environments have limited support

for the run time modification of services. Traditionally, a runtime
modification of a service would require the re-deployment of a ser-
vice leading to downtimes. Our prototype is based on the Genesis
framework [12,17] allowing for the direct modification of services
that are deployed. Genesis provides a Java-based framework for
specifying characteristics of Web services and for generating in-
stances of these services on-the-fly on a distributed backend. Via a
plug-in facility, the service environment can be enhanced and up-
dated (e.g., policies, implementation, and configuration) and, fur-
thermore, can be controlled remotely.

The architecture is presented in Figure 3 consisting of four es-
sential layers:

(i) SBA Developer Tools offering user interfaces for the devel-
oper,(ii) Genesis Frontend to access core API features,(iii) Gen-
esis Backend responsible for hosting and monitoring services, and
(iv) SOA Environment consisting of a set of service, clients, and
other infrastructure elements such as a Web service registry to dy-
namically discover services, legacy services, and workflow engines,
for example, BPEL execution engines.

WF Engine

Genesis Backend

Infrastructure

Legacy System

WS Registry

WS

Generator
WS Invoker

Module

Repository

Genesis Frontend

Genesis API Features

S 1 S 2 S 3 S n

SBA Developer Tools

M 1 M 2 M 3 M n

S

M

... Web services

... Modules

manages

Figure 4: Architectural overview.

• Genesis Frontend: Provides means for defining, updating,
and controlling SOA environments. Generated service in-
stances are deployed and registered in the backend. The de-
veloper interacts with the frontend using a set of SBA devel-
oper tools. As mentioned previously, changes in the envi-
ronment may including updates in service selection policies,
features by enhancing message types, and upgrades in the
services’ implementation (modules).

• Genesis API: Provides the features to generate, deploy, and
invoke Web services. As shown in Figure 3,WS Generator
takes the user input (specification of a service) and generates
the corresponding service artifacts. Behavioral models that
can be (re)used by various services residing in the backend
are stored and managed by theModule Repository. The
WS Invoker provides the facility for creating requests to
interact with services. Furthermore, the invoker plugin con-
tains a reference to a logger plugin to log service invocations
and other events triggered by Genesis.

• Genesis Backend: The backend comprises services that are
deployed on a distributed set of hosts. Multiple backend
instances can be used to manage large scale SOA environ-
ments. Backend instances communicate with each other to
synchronize service updates and registrations.

4. DISCUSSION
The adaptation of services requires careful considerations. In the

following two subsections, we discuss the strengths and the limita-
tions of our proposed programming model and its current imple-
mentation.

4.1 Strengths
The flexibility of our model has several positive implications for

the service developer who benefits from the following features:

• Simplicity and intuitivity: Web services can be created in a
simple and intuitive manner. For example, the developer is
able to modify services on the host layer (e.g., replication,
migration) with the same programming primitives like on the
service layer when changing the operations of a service.

• Modularity: As a unit of reuse [27], behavior modules allow
developers to encapsulate arbitrary functionality and reuse
these modules with different services in the Genesis runtime
environment.

• Run time service adaptation: The modification of services
at run time is supported by the Genesis based prototype in-
frastructure. The Genesis environment manages the (re-) de-
ployment of services and the modifications in a transparent
way for the developer. Our prototype implementation sup-
ports developers by hiding the complexity of service mod-
ifications and keeps the available services in sync with the
abstract programming model.

• Consistency between Model and Service: The gap between
the abstract model that describes a service and its implemen-
tation is very narrow. When manipulating the service model,
the developer directly changes the implementation of the ser-
vice and vice versa. Thus, we lay the foundation for auto-
mated service modifications which can be caused other than
by the developer.

4.2 Current Limitations
Using a flexible programming model, we encounter a set of chal-

lenges that are of importance and are not fully addressed in our cur-
rent version of the programming model. Limitations at this stage
include:

• Support for Stateful Services: An issue that has strong impact
on service adaptations is state [21]. Services which have in-
ternal state that influences the execution result of a service5

must be treated in a manner that does not corrupt the state of
the service during the adaptation process. A straightforward
approach is to allow service modifications only in ground
states when no transaction is active and the internal state of
a service can be persisted and then later recovered to restart
the service. This obviously limits applicable modifications,
because (i) adaptations only can take place during a certain
time interval and (ii) modifications that change the service

5S-Cube Knowledge Model:http://www.s-cube-network.
eu/km/terms/s/stateful-service

semantics (e.g., the removal of an operation) are not appli-
cable if the service is not in a ground state. In the present
implementation, we do not support the complex manipula-
tions of stateful services which require knowledge of meta
information like active transactions.

• Dependency Model: Dependencies of services manifest them-
selves in different dimensions [31]. We can roughly distin-
guish between internal and external service dependencies.
Examples of internal dependencies are the use of behavior
modules, external dependencies can be observed as links to
databases or libraries. These dependencies need to be taken
into account, before a service is adapted. An approach to
model dependencies is the use of manifest files that simply
lists required resources of Web services that must be avail-
able for a service to function properly. In our programming
model, we encounter these types of dependencies on all four
layers. For example, the migration of an operation from one
service to another might require the availability of a certain
behavior module at the target service. Currently, we do not
provide active support to manage dependencies on the infras-
tructure level.

• Security Model: Security concerns are no addressed with our
current prototype implementation. Basically, each user that
has access to the Genesis framework can modify each service
at any given moment.

• User Model: Related to the security model are considerations
about the user model. Similar to the security model, we do
not support a dedicated user model in the current version.

• Eventing Model - Event Propagation: The causes that trig-
ger adaptations can originate from different sources. For ex-
ample, the observation that a service is operating near its
pre-defined maximum throughput of 50 requests per second,
might trigger a duplication of the service to another host to
handle the load in order to fulfill the requirements of cus-
tomers. Manually triggered adaptions, include for example
internal code changes due to optimization of algorithms are
triggered by the developer. The needed infrastructure is not
yet implemented subject to future work.

5. RELATED WORK
Most existing works on the adaptation of services [11] addresses

the adaptability on the level of service composition. Approaches
like [26] or [8, 9] solve service composition adaptation with the
help aspect oriented programming [19]. Similar in spirit, but focus-
ing on syntactic replacement strategies, the work presented in [22]
also adapts services on the composition level. With a finer gran-
ularity, the authors in [24] present an aspect oriented approach to
implement adaptive services.

Much relevant work has been done in the area of Model Driven
Development (MDD) of Web services. In [3] an approach for semi-
automatic generation of Web service artifacts is presented. These
artifacts include workflow definitions as BPEL, Web service inter-
faces as WSDL, and security constraints in WS-Policy. A simi-
lar approach is described in [4], where service templates and ex-
ecutable specifications are generated for simplifying the develop-
ment of Web services. In [32] a framework is presented, which
uses UML (Unified Modeling Language) specifications for Enter-
prise Distributed Object Computing (EDOC), which are translated
into Web service skeletons and, optionally, BPEL processes.

Other approaches focus on mediation aspects of service adap-
tion. The work presented [6] introduces the concept of adaptor,
Kaminski et al. [18] who propose a chain of adaptors, and Kong-
denfha et al. [20] who identify mismatch pattern between service
protocols tackle the problem of service adaption problem from a
behavior perspective. The work of [23] uses a semi-automated ap-
proach to identify and to resolve mismatches between service in-
terfaces and protocols, in oder to generate service adapters. The
ITACA toolbox [7] creates behavior models from abstract BPEL
descriptions in order to generate adaptation contract specifications.
A formal approach is taken by Dumas et al. [13] who introduce an
algebra, complemented by a visual notation, to reconcile behavioral
mismatches between services.

While having the same goal in creating adaptable services, our
approach addresses the general problem of service adaptation on a
different level. We introduce a hierarchical abstraction to imple-
ment services and organize the service internals. Using basic cre-
ate, read, update and delete operations on the service abstraction,
we provide the means for developers to modify services as well as
the foundation for future automated adaptations.

6. CONCLUSION
We presented a programming model that supports the developer

in creating adaptive services. Our proposed programming model
structures services in a hierarchical model which abstracts from the
actual implementation. We further separate implementation con-
cerns since we encapsulate the functionality of services in behavior
modules. This strong separation provides the developer of services
to program adaptations with elementary operations (create, read,
update and delete). For example the migration of a service opera-
tion from one service to another service is a sequence of read and
update operations.

We implemented a prototype based on the Genesis framework
[12, 17] that provides the required functionality to adapt services
during run time. Our current prototype supports elementary oper-
ations on the proposed programming model and manages the run
time service adaptations. Thus, developers of services do not need
keep infrastructure issues in mind when modifying services.

In future work, we will address several issues. First of all, we
are going to extend our programming model. We intend to include
the support for complex events to trigger adaption activities. To
address the issue of potentially creating adaptions which lead to in-
consistent service states (e.g., a service operation change during a
transaction), we aim at providing constraints that govern the adap-
tion of services.

On a higher level of abstraction, we will investigate the use of
policy driven adaptions such as load balancing or refactoring of ser-
vices. Furthermore, we will investigate the use of an environment
resource description model in order to be able to express service
dependencies from external resources.

On the infrastructure level, we are going to extend the Genesis
framework to support the aforementioned adaptation mechanisms
and integrate rule engines like Drools6 to provide the ability to
manage complex adaptations. And finally, the deployment of the
Genesis framework into cloud environments will be investigated to
address scalability issues of the Genesis infrastructure.

Acknowledgment
The research leading to these results has received funding from the
European Community Seventh Framework Programme FP7/2007-
2013 under grant agreement 215483 (SCube) and 216256 (COIN).
6http://www.jboss.org/drools/

7. REFERENCES
[1] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T.

Schmidt, A. Sheth, and K. Verma. Web Services Semantics –
WSDL-S, 2005.

[2] V. Andrikopoulos, S. Benbernou, and M. Papazoglou.
Managing the evolution of service specifications.Advanced
Information Systems Engineering, pages 359–374, 2008.

[3] R. Anzböck and S. Dustdar. Semi-automatic generation of
web services and bpel processes - a model-driven approach.
In Business Process Management, pages 64–79, 2005.

[4] K. Baïna, B. Benatallah, F. Casati, and F. Toumani.
Model-driven web service development. InCAiSE, pages
290–306, 2004.

[5] M. Beisiegel, H. Blohm, D. Booz, M. Edwards, O. Hurley,
S. Ielceanu, A. Miller, A. K. an Ashok Malhotra, J. Marino,
M. Nally, E. Newcomer, S. Patil, G. Pavlik, M. Raepple,
M. Rowley, K. Tam, S. Vorthmann, P. Walker, and
L. Waterman. SCA Service Component Architecture SCA
Service Component Architecture - Assembly Model
Specification, 2007.

[6] B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and
F. Toumani. Developing adapters for web services
integration.Advanced Information Systems Engineering,
pages 415–429, 2005.

[7] J. Camara, J. A. Martin, G. Salaun, J. Cubo, M. Ouederni,
C. Canal, and E. Pimentel. Itaca: An integrated toolbox for
the automatic composition and adaptation of web services.
Software Engineering, International Conference on,
0:627–630, 2009.

[8] A. Charfi and M. Mezini. Aspect-oriented web service
composition with ao4bpel.Web Services, pages 168–182,
2004.

[9] A. Charfi and M. Mezini. Ao4bpel: An aspect-oriented
extension to bpel.World Wide Web Journal: Recent
Advances on Web Services (special issue), 10(3):309–344,
September 2007.

[10] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Language
(WSDL) 1.1, 2001.

[11] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and
K. Pohl. A journey to highly dynamic, self-adaptive
service-based applications.Automated Software
Engineering, 15(3-4):313–341, 2008.

[12] T. U. V. Distributed Systems Group, DSG. Genesis.
Prototype web page, 2009.http://www.infosys.
tuwien.ac.at/prototype/Genesis.

[13] M. Dumas, M. Spork, and K. W. 0002. Adapt or perish:
Algebra and visual notation for service interface adaptation.
In S. Dustdar, J. L. Fiadeiro, and A. P. Sheth, editors,
Business Process Management, volume 4102 ofLecture
Notes in Computer Science, pages 65–80. Springer, 2006.

[14] D. Fensel, H. Lausen, J. de Bruijn, M. Stollberg, D. Roman,
A. Polleres, and J. Domingue. Wsml a language for wsmo.
Enabling Semantic Web Services, pages 83–99, 2007.

[15] R. T. Fielding.Architectural styles and the design of
network-based software architectures. PhD thesis, 2000.
Chair-Taylor, Richard N.

[16] M. J. Hadley. Web Application Description Language
(WADL), 2006.

[17] L. Juszczyk, H.-L. Truong, and S. Dustdar. Genesis - a
framework for automatic generation and steering of testbeds
of complexweb services. InICECCS ’08: Proceedings of the

13th IEEE International Conference on on Engineering of
Complex Computer Systems, pages 131–140, Washington,
DC, USA, 2008. IEEE Computer Society.

[18] P. Kaminski, M. Litoiu, and H. Müller. A design technique
for evolving web services. InCASCON ’06: Proceedings of
the 2006 conference of the Center for Advanced Studies on
Collaborative research, page 23, New York, NY, USA, 2006.
ACM.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. InECOOP, pages 220–242, 1997.

[20] W. Kongdenfha, H. Motahari-Nezhad, B. Benatallah,
F. Casati, and R. Saint-Paul. Mismatch patterns and
adaptation aspects: A foundation for rapid development of
web service adapters.Services Computing, IEEE
Transactions on, 2(2):94–107, April-June 2009.

[21] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R.
Douceur, and J. Howell. The smart way to migrate replicated
stateful services. InEuroSys ’06: Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on Computer
Systems 2006, pages 103–115, New York, NY, USA, 2006.
ACM.

[22] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive
monitoring and service adaptation for ws-bpel. In J. Huai,
R. Chen, H.-W. Hon, Y. Liu, W.-Y. Ma, A. Tomkins, and
X. Zhang, editors,WWW, pages 815–824. ACM, 2008.

[23] H. R. Motahari Nezhad, B. Benatallah, A. Martens,
F. Curbera, and F. Casati. Semi-automated adaptation of
service interactions. InWWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages
993–1002, New York, NY, USA, 2007. ACM.

[24] G. Ortiz and A. Prado. Adapting web services for multiple
devices: A model-driven, aspect-oriented approach. In
Services - I, 2009 World Conference on, pages 754–761, July
2009.

[25] M. P. Papazoglou. The challenges of service evolution. In
CAiSE ’08: Proceedings of the 20th international conference
on Advanced Information Systems Engineering, pages 1–15,
Berlin, Heidelberg, 2008. Springer-Verlag.

[26] K. Ponnalagu, N. Narendra, J. Krishnamurthy, and
R. Ramkumar. Aspect-oriented approach for non-functional
adaptation of composite web services. InServices, 2007
IEEE Congress on, pages 284–291, July 2007.

[27] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable units of behaviour. 2743:327–339, 2003.

[28] M. Shaw and D. Garlan.Software architecture: perspectives
on an emerging discipline. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1996.

[29] F. Skopik, D. Schall, and S. Dustdar. Innovative Human
Interaction Services Specification (COIN FP7-216256).
Technical report, 2009.

[30] M. Treiber, H.-L. Truong, and S. Dustdar. Semf - service
evolution management framework.Software Engineering
and Advanced Applications, 2008. SEAA ’08. 34th
Euromicro Conference, pages 329–336, Sept. 2008.

[31] M. Treiber, H.-L. Truong, and S. Dustdar. On analyzing
evolutionary changes of web services. pages 284–297, 2009.

[32] X. Yu, J. Hu, Y. Zhang, T. Zhang, L. Wang, J. Zhao, and
X. Li. A model driven development framework for enterprise
web services. InEDOC, pages 75–84, 2006.

