
Testbeds for Emulating Dependability Issues of
Mobile Web Services

Lukasz Juszczyk, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstraße 8/184-1, A-1040 Vienna, Austria
Email: {juszczyk,dustdar}@infosys.tuwien.ac.at

Abstract—Today’s ubiquitous internet access has opened new
opportunities for mobile workers. By using portable devices, the
workers are not only able to access their company’s data and/or
services from everywhere, but are also offering their own services
for being accessible on-demand. The result is on the one hand a
higher flexibility, in terms of coordination, but on the other hand
poses various challenges to the company’s internal workflows due
to the dynamic nature of mobility. Consequently, the workflows
must be tested at runtime in realistic scenarios in order to get
evidence about their correct execution. In this paper we present
an approach for emulating mobile workers in order to test the
effects of unreliable dependability on workflows. By using the
Genesis2 framework we generate testbeds consisting of real Web
services and simulate their QoS as well as mobility issues such as
packet loss, delay, and an unreliable availability. By generating a
running testbed environment, our approach allows to investigate
a workflow’s execution at to detect runtime faults.

I. I NTRODUCTION AND MOTIVATION

In the last years, mobile (or portable) devices, such as net-
books, personal digital assistants (PDAs), and smart phones,
have reached a performance level which allows to apply
them for more sophisticated purposes, compared to the old
days when they served mainly as messengers or calendars.
Today, they cover a wide spectrum of applications, from
those for pure entertainment and/or simple tasks (as evident
in the increasingly popular smart-phone applications) up to
critical systems, e.g., for disaster response using mobilead-
hoc networks [1]. This trend has also had a high impact on
the domain of mobile workers which perform their tasks on
the move, being equipped with portable devices [2]. Initially,
their devices served mainly as clients for accessing their
company’s data and/or services [3], but has evolved towards
workers also providing their own Web services [4] which
can be called on-demand and integrated into a company’s
internal workflows [5]. For realizing such systems it makes
sense to apply service-oriented computing (SOC) which offers
a high level of flexibility due to the decoupling of clients and
services. This flexibility is of high importance, since mobile
workers are not available 24/7, as it is the case with static
software services, but rather provide a volatile availability and,
in addition, suffer from unreliable connections. In order to
handle these dynamics, the workflows must be able to adapt
to unforeseen events in order to guarantee a correct execution.
However, we are not dealing with adaptation mechanisms in
this paper, but we regard a related problem. How can such
workflows be tested with respect to their runtime behavior?

Especially for long-running workflow systems, it is necessary
to test these in terms of performance, stability, scalability,
and to check the adaptation mechanisms in realistic scenarios.
Evidently, this calls for testbed infrastructures which emulate
such scenarios and allow to verify the workflow’s execution
before deployment.

In this paper we present a solution which allows to set up
such testbeds in a convenient yet flexible manner. Our work
is based on the Genesis2 framework [6] (in short, G2) and
supports the creation of running testbeds out of script-based
specifications. In a nutshell, engineers are free to specifythe
structure and behavior of the testbed, consisting for instance
of Web services, clients, registries, and to generate running
instances of these at a distributed back-end. We have extended
G2 in order to emulate dependability issues of mobile workers
and to control these via the Groovy [7] scripting language.

We present our approach as follows. In the current section
we outlined a short motivation for our research. Section II,
is the main part of the paper, and describes our contribution,
its benefits, and limitations. Finally, in Sections III and IV we
compare our approach to related work and conclude this paper.

II. OUR APPROACH: GENESIS2 & TRAFFIC CONTROL

The aim of our tool-based solution is to support engineers
in generating testbeds which emulate an environment of mo-
bile workers, including the inherent dynamics which pose
a challenge to workflow systems. These dynamics include
volatile availability, network delays, packet losses, andquality
of service (QoS) in general. Our approach combines the G2
framework, which handles the generation of SOA testbeds,
with the Linux tool traffic control in order to inject commu-
nication faults for simulating dependability issues.

A. Genesis2 Testbed Generator

In the last years we realized a gap between the progress
of research on service-oriented computing (SOC) in general
and on testing solutions for SOC. So far, work has been
mainly done on testing single Web services, but it has been
neglected to work on solutions for testing large systems which
operate on service-based environments themselves, such as
active registries, governance systems, or workflow engines.
Runtime-based tests for these systems require testbed envi-
ronments, consisting of Web services, clients, service buses,
mediators, etc. However, the set up of such testbeds has

G2 Framework

G2 Plugins

Testbed

Control

Testbed

Instances

Tested

SOA / Workflow

Fig. 1. Layers of interaction within a Genesis2-based testbed

been a cumbersome and time consuming task due to the lack
of proper tool support. In order to close this gap, we have
developed the G2 framework which aims at providing means
for engineers to specify testbeds, program their behavior,and
generate automatically running instances of these. Due to
space constraints it is not possible to present all details of
G2. Instead, we refer interested readers to [6] and summarize
the most relevant features in this paper.

G2 comprises a centralized front-end, from where testbeds
are modeled and controlled (via Groovy scripts), and a dis-
tributed back-end at which the models are transformed into
real testbed instances. The front-end maintains a virtual view
on the testbed, allows engineers to manipulate it on-the-fly
via scripts, and propagates changes to the back-end in orderto
adapt the running testbed. For the sake of extensibility, G2uses
composable plugins which augment the testbed’s functionality,
making it possible to emulate diverse topologies, functional
and non-functional properties, and behavior. Figure 1 depicts
a simplified view on the different layers of a G2-based testbed
and the interactions within them.

• At the lowest level, G2 maintains connections between
the front-end and the back-end hosts in order to synchro-
nize the testbed model and to propagate plugins.

• On top of this, the individual plugins are deployed,
which are free to implement their own communication
strategies, e.g., for data exchange via gossiping.

• Based on the G2 framework and the functionality pro-
vided by the plugins, engineers create models of their
testbeds and deploy these on the back-end where G2
takes care of generating real instances. At the front-
end, the models comprise virtual objects which represent
the generated instances and act as proxies for on-the-fly
manipulations.

• The generated testbed consists of the elements modeled
by the engineer and behaves according to its specifica-
tion, e.g., by having nested service invocations, registry

queries, etc. All in all, the testbed’s behavior is fully
customizable and not restricted by the G2 framework.

• Eventually, on top of this emulated environment, the
workflow or service-oriented architecture (SOA) can be
tested.

In summary, the engineer specifies the testbed at the front-
end, definingwhat shall be generatedwhere, with which
customizations, and the framework takes care of synchronizing
the model with the corresponding back-end hosts on which
the testbed elements are generated and deployed. Listing 1
contains a sample script for modeling a Web service, pro-
gramming it’s behavior (in this case just returning a String
value), and deploying it at a back-end host. After deployment,
it is possible to perform adaptations on-the-fly by changing
the Web service’s model which is immediately propagated to
the generated instance at the back-end.

de f d t = d a t a t y p e . c r e a t e ("/schemas/types.xsd" ,"vCard")

de f s e r v i c e = webse rv i ce . b u i l d{
/ / c r e a t e model o f T e s t S e r v i c e wi th one o p e r a t i o n
T e s t S e r v i c e (b i n d i n g :"doc,lit" , t a g s : ["test"]) {

SayHel lo (ca rd : vCard , r e s u l t : S t r i n g){
de f name = ca rd . name
re turn "hello $name"

}
}

} [0]

/ / impo r t back−end h o s t r e f e r e n c e
de f beHost1 = h o s t . c r e a t e ("192.168.1.11:8080")

s e r v i c e . dep loyAt (beHost1)/ / dep loyment a t back−end

s e r v i c e . o p e r a t i o n s += . . ./ / on−the−f l y a d a p t a t i o n s

Listing 1. ’Specification and deployment of a Web service’

For the purpose of emulating mobile worker’s Web services,
we are using the G2 framework for generating the basic
testbed. Furthermore, we apply plugins for simulating QoS
and dependability issues of mobile workers.

B. Emulating Mobile Web Services

Web services on portable devices suffer from two kinds
of problems: unreliable connectivity, caused by the nature
of wireless communication, and an unsteady availability of
the human worker. If such services need to be incorporated
into a company’s workflow or service-oriented architecture,
these systems must be able to handle the dynamics inherent in
mobile computing and must be tested in simulated scenarios.
Consequently, they require a testbed which emulates mobile
workers and their dependability problems.

In our approach we make use of the distributed nature of a
G2 testbed and assign each worker a separate back-end host
and deploy a customizable set of services which represent the
workers’ repertoires. The emulation of connectivity problems
and of QoS takes place on two different levels. While con-
nectivity problems usually affect whole devices, including the
access to all deployed services, QoS properties are local to

individual services, or to be more precise, to their operations.
To achieve an effective emulation of these, we have extended
G2 with two additional plugins: anetwork emulator, for low
level fault injection, and aQoS plugin, for emulating QoS
properties such as processing time, throughput, and scalability.

1) Network Emulator Plugin:For emulating network faults
we are using the Linux tooltraffic control (tc) [8] in combi-
nation with thenetemmodule [9]. Basically, for each back-end
host, which represents a worker’s device, the plugin creates a
virtual IP address which can be then controlled viatc:

i f c o n f i g l o : 0 add 1 9 2 . 1 6 8 . 1 . 1 1

In order to control the fault behavior via the front-end, the
plugin defines extensions to the model of back-end hosts, so
that the testbed used can steer a host’s properties via simple
variable assignments:

beHost1 { / / m a n i p u l a t e h o s t p r o p e r t i e s
t c . l o s s = 0 .025 / / p a c k e t l o s s
t c . d e l ay = 1500 / / p a c k e t d e lay
t c . c o r r u p t = 0 .001 / / p a c k e t c o r r u p t i o n

}

G2 intercepts these manipulation request and propagates the
changes to the corresponding back-end hosts at which they are
translated intotc commands:

t c q d i s c change dev l o : 0 r o o t netem l o s s 2.5%
t c q d i s c change dev l o : 0 r o o t netem d e lay 1500ms
t c q d i s c change dev l o : 0 r o o t netem c o r r u p t 0.1%

As a result, the network emulator plugin makes it possible to
deploy back-end hosts on virtual IP addresses and to control
their emulated communication properties from remote.

2) QoS Emulator Plugin:For emulating quality of service,
we have ported theQoSPluginof the first version of Gen-
esis [10] to G2. In contrast to the network emulator which
augments the hosts, theQoSPluginattaches itself to the Web
services and their operations in order to make them behave
according to specified non-functional attributes. Currently, the
spectrum of supported QoS attributes includes processing time,
invocation throughput, scalability on parallel invocations, ser-
vice availability, and accuracy [11]. Again, the plugin is being
controlled via variables and simulates QoS by delaying service
invocations, throwing exceptions, and altering the service’s
deployment status:

s e r v i c e {
/ / m a n i p u l a t e whole s e r v i c e ’ s p r o p e r t i e s
qos . p r o c e s s i n g t i m e = 60/ / 1 minute
qos . t h r o u g h p u t = 5 /60/ / 5 t a s k s per hour
qos . a v a i l a b i l i t y = 0 .98 / / 98% a v a i l a b i l i t y

/ / m a n i p u l a t e QoS of s i n g l e WS o p e r a t i o n
SayHel lo . qos . t h r o u g h p u t = 10/60

}

C. Illustrating Example

In the following we are using a sample specification script
for demonstrating the practical application of our approach.
Due to the limited space in this paper, the script manipulates
the attributes for emulation of network failures and QoS only

by assigning randomized values. This behavior does obviously
not emulate a realistic scenario, which would rather require
more sophisticated strategies for distribution of workersand
simulation of their behavior. However, for demonstration pur-
poses it shows how the testbed can be steered.

The script starts with referencing 20 back-end hosts at
virtual IPs and importing message type definitions from XSD
files. In Lines 7-23 a basic set of worker’s Web services
is defined which are then all deployed on every single host
(Lines 25-29). Finally, in Lines 31-43 a background thread is
started for each host, which controls the emulation of network
connectivity and QoS by changing the corresponding variables.

111 . up to (3 0) { n−> h o s t . c r e a t e ("192.168.1.$n:8080") }

3de f s t a t = d a t a t y p e . c r e a t e ("/my/types.xsd" ,"typeName")
4de f t a s k = . . . / / impo r t message d a t a t y p e s from XSD

6de f s e r v i c e S e t = webse rv i ce . b u i l d{
7/ / d e f i n e r e q u i r e d Web s e r v i c e s & o p e r a t i o n s
8S t a t u s S e r v i c e (b i n d i n g :"rpc,enc") {
9GetWorkerS ta tus (r e s p o n s e : s t a t){
10re turn . . . / / c u r r e n t worker s t a t u s
11}
12}

14TaskManagerServ ice (){
15Ass ignTask (t : t ask , r e s p o n s e : S t r i n g){
16/ / . . . program o p e r a t i o n b e h a v i o r
17}
18StopTask (task ID : S t r i n g , r e s p o n s e :boolean) {
19/ / . . . program o p e r a t i o n b e h a v i o r
20}
21}

23/ / more s e r v i c e s
24}

26h o s t . g e t A l l () . each{ h −> / / on each h o s t . . .
27s e r v i c e S e t . each{ s −> / / dep loy a l l s e r v i c e s
28s . dep loyAt (h)
29}
30}

32h o s t . g e t A l l () . each{ h −>

33Thread . s t a r t {
34whi le (r unn ing) { / / boo lean f l a g
35Thread . d e lay (5000) / / i n 5 sec i n t e r v a l s
36/ / s e t randomized a t t r i b u t e s
37h . t c . l o s s = new Random () . n e x t F l o a t ()
38/ / f o r each dep loyed s e r v i c e
39h . webse rv i ce . g e t A l l () . each{ s −>

40s . qos . a v a i l a b i l i t y = . . . / / random a t t r i b s
41}
42}
43}
44}

Listing 2. ’Simplified specification of testbed emulating mobile workers’

For the sake of brevity, we have restricted the demonstrated
testbed to only emulating mobile Web services. In reality,
depending on the requirements of the tested system, a proper
testbed would also incorporate registries, client functionality
for invoking services, message interceptors, etc. Details, about
how such a testbed can be specified and generated, are
explained in our previous work [6].

D. Limitations

Of course, our approach is not capable of emulating all
aspects of mobile computing. All it does is generating Web
services and, if desired, also other SOA components, and
binding them to hosts which are controllable remotely. In other
words, it emulates a dynamic environment (= creates a mock-
up) for testing of a workflow or SOA operating on top of
that environment. Our approach does not aim at emulating the
runtime of mobile devices in order to test software on these.
For this, engineers should use device emulators, e.g., from
Microsoft [12] or Sun Microsystems [13].

Furthermore, currently we are only able to simulate simple
QoS of workers, which do not provide a high level of realism.
We regard it necessary to emulate the workers’ behavior also
regarding working times, variable working speed, and other
relevant attributes of human work. This will be addressed in
future work.

III. R ELATED WORK

In the domain of testbed generation, the projects/prototypes
of SOABench [14] and PUPPET [15] provide a functionality
similar to that of G2. SOABench aims at benchmarking BPEL
workflow engines [16] via modeling experiments and generat-
ing service-based testbeds. It provides runtime control ontest
executions as well as mechanisms for test result evaluation.
Regarding its features, SOABench is focused on performance
evaluation and generates Web service stubs that emulate QoS
properties, such as response time and throughput. Similar
to SOABench, PUPPET generates QoS-enriched testbeds for
verifying service compositions, but is more focused on the
verification of Service Level Agreement (SLA) fulfillments for
composite services. Similar to G2, these two approaches serve
their purposes by generating service-based testbeds which
emulate QoS. Yet, G2 is not restricted to a specific domain but
is highly customizable via plugins which introduce aspectsof
emulated environments, such as our network emulator which
injects communication faults. Moreover, G2 allows to program
the behavior of generated Web services in order to customize
it to the testing purpose.

For the emulation of communication faults, we are using
traffic control [8] and netem[9] which provide all necessary
functionality to inject faults on a single host. Related to this,
we could have also used network emulators such as ns2 [17]
or GloMoSim [18], which provide even more sophisticated
functionality thannetembut at the cost of sacrificing simplic-
ity. Furthermore, emulators for mobile ad-hoc networks, such
as Octopus [19], MobiNet [20], or MobiEmu [21] do exist,
of which each has different strengths and weaknesses. Also in
this case, it would be possible to integrate our approach with
one of these emulators. All in all, the purpose of our work has
never been to compete with these tools but to integrate them
with G2 for emulating mobile Web service-based computing.

IV. CONCLUSION

In this paper we have presented our approach for emulating
mobile workers’ Web services in order to test the effects of

a volatile dependability on a service-oriented architecture at
runtime. By using the Genesis2 framework, we are able to
generate testbed environments which we augment with plugins
for simulating mobility issues, such as network failures as
well as quality of service attributes. The strengths of our
approach are the high degree of customizability, which allows
to generate testbeds of arbitrary structure and behavior, and
the convenience of using a compact scripting language for
modeling the testbeds.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Community Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube).

REFERENCES

[1] T. Catarci, M. de Leoni, A. Marrella, M. Mecella, B. Salvatore, G. Vet-
ere, S. Dustdar, L. Juszczyk, A. Manzoor, and H. L. Truong, “Pervasive
software environments for supporting disaster responses,”IEEE Internet
Computing, vol. 12, no. 1, pp. 26–37, 2008.

[2] M. Perry, K. O’Hara, A. Sellen, B. A. T. Brown, and R. H. R. Harper,
“Dealing with mobility: understanding access anytime, anywhere,”ACM
Trans. Comput.-Hum. Interact., vol. 8, no. 4, pp. 323–347, 2001.

[3] M. Chen, D. Zhang, and L. Zhou, “Providing web services tomobile
users: the architecture design of an m-service portal,”IJMC, vol. 3,
no. 1, pp. 1–18, 2005.

[4] D. Schall, R. Gombotz, C. Dorn, and S. Dustdar, “Human interactions in
dynamic environments through mobile web services,” inICWS. IEEE
Computer Society, 2007, pp. 912–919.

[5] D. Schall, H. L. Truong, and S. Dustdar, “The human-provided services
framework,” in CEC/EEE. IEEE, 2008, pp. 149–156.

[6] L. Juszczyk and S. Dustdar, “Script-based generation ofdynamic
testbeds for soa,” inICWS. IEEE Computer Society, 2010.

[7] “Groovy Programming Language,” http://groovy.codehaus.org.
[8] “Linux Advanced Routing & Traffic Control,” http://lartc.org.
[9] “netem - Network Emulator,” http://www.linuxfoundation.org/en/Net:

Netem.
[10] L. Juszczyk, H. L. Truong, and S. Dustdar, “Genesis - a framework for

automatic generation and steering of testbeds of complexweb services,”
in ICECCS. IEEE Computer Society, 2008, pp. 131–140.

[11] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping performance
and dependability attributes of web services,” inICWS. IEEE Computer
Society, 2006, pp. 205–212.

[12] “Microsoft Device Emulator,” http://go.microsoft.com/fwlink/?LinkId=
71203.

[13] “Java ME Emulator Toolkits,” http://java.sun.com/javame/sdk/.
[14] D. Bianculli, W. Binder, and M. L. Drago, “Automated performance

assessment for service-oriented middleware,” Faculty of Informatics -
University of Lugano, Tech. Rep. 2009/07, November 2009. [Online].
Available: http://www.inf.usi.ch/researchpublication.htm?id=55

[15] A. Bertolino, G. D. Angelis, and A. Polini, “A qos test-bed generator
for web services,” inICWE, ser. Lecture Notes in Computer Science,
vol. 4607. Springer, 2007, pp. 17–31.

[16] “OASIS - Business Process Execution Language for Web Services,”
http://www.oasis-open.org/committees/wsbpel/.

[17] “The Network Simulator - ns2,” http://www.isi.edu/nsnam/ns/.
[18] “Global Mobile Information System Simulator,” http://pcl.cs.ucla.edu/

projects/glomosim/.
[19] F. D’Aprano, M. de Leoni, and M. Mecella, “Emulating mobile ad-

hoc networks of hand-held devices: the octopus virtual environment,” in
MobiEval. ACM, 2007, pp. 35–40.

[20] P. Mahadevan, A. Rodriguez, D. Becker, and A. Vahdat, “Mobinet: a
scalable emulation infrastructure for ad hoc and wireless networks,”
Mobile Computing and Communications Review, vol. 10, no. 2, pp. 26–
37, 2006.

[21] Y. Zhang and W. Li, “An integrated environment for testing mobile ad-
hoc networks,” inMobiHoc. ACM, 2002, pp. 104–111.

