
Large Scale Web Service Discovery and Composition using High Performance
In-Memory Indexing

Lukasz Juszczyk, Anton Michlmayr, Christian Platzer,
Florian Rosenberg, Alexander Urbanec, Schahram Dustdar

VitaLab, Distributed Systems Group
Vienna University of Technology

Argentinierstraße 8/184-1, A-1040 Vienna, Austria
lastname@infosys.tuwien.ac.at

Abstract

With the growing number and ubiquitous usage of Web
services throughout the service-oriented community, the
need to find service descriptions in a given repository, as
well as composing them to a desired output, becomes a
major issue in both research and corporate environments.
Considering emerging semantic technologies and methods
for service matching that is not limited to a mere syntac-
tic level, the need for fast discovery and composition algo-
rithms arises. In this paper we present a system created at
the VitaLab in Vienna with the purpose to overcome the ob-
stacles which are implications of both, large service repos-
itories and large ontologies to describe semantic relations.

1. Introduction

Considering the current research in the field of service-
oriented computing, two of the most important topics are
service discovery and composition. Especially when deal-
ing with large sets of service descriptions, discovery issues
move from trivia to intriguing problems. Finding matches
for a given query, or even composing existing services to a
desired output must be possible with an 100% accuracy rat-
ing. At the same time, the need to process such requests in
an efficient way raises the need for better and faster methods
than those used today.

Driven by the experiences gained during last year’s chal-
lenge, we decided to lay a strong focus on the indexing
method and schema parsing, since those were the most chal-
lenging fields and probably will also be in the future. It is
sometimes difficult to keep the balance between an efficient
index that allows fast retrieval of stored data and limited
memory size to keep the system scalable. Another possibil-

ity we had to keep in mind is an approach that does not rely
on indexes but works with query-based methods directly
on the underlying data. That, of course, entails additional
overhead during query processing, while no time has to be
spent on indexing (and therefore memory requirements are
extraordinary low).

Like last year we decided to stay close to the vision of an
Internet populated by a huge amount of services and there-
fore rely on an indexing approach, even if we therefore had
to investigate how to make the indexing and parsing process
faster which is not service-related in the first place but nec-
essary for the overall performance nevertheless. Further-
more, we laid a stronger focus on an efficient algorithm to
select semantic relations for a given set of parameters, given
in the sample queries.

This paper presents the VitaLab system VIECH (Vita-
Lab Efficient Composition using HStrings), starting with an
overview of the major components for indexing and query
processing, and followed by a detailed description of the al-
gorithms used for discovery and composition. Finally, we
provide an outlook on the anticipated efficiency of both, our
algorithms and our index structure.

2. The VitaLab System

The VitaLab system VIECH consists of three main mod-
ules which are illustrated in Figure 1:

• The Index component parses the descriptions of ser-
vices and ontologies and creates an index for fast in-
formation retrieval.

• The Composition component performs the discovery
and composition of Web services, based on the index.

• The Web service interface, based on Apache Axis2 [1],
accepts query requests, forwards them to the composi-
tion component, and returns the results.

Ontology

(schema files)
WSDL

repository

INDEXING

StAX

Indexes

(in-memory)

INDEXING COMPOSITION

Query

COMPOSER

Results

StAX

WEB SERVICE

INTERFACE

WEB SERVICE

Figure 1. Overview of the V IECH System.

2.1 Parsing and Indexing

For processing large amounts of WSDL data and on-
tology descriptions, an efficient indexing strategy is of
paramount importance. However, finding such a strat-
egy is not trivial since requirements, such as low memory
consumption and fast response time, are often conflicting.
Therefore it is necessary to analyze the characteristics of
the index to arrange its data structures accordingly. For in-
stance, this analysis may include ratio and costs of updates
and queries, the complexity of the indexed data, and gen-
eral constraints, such as maximum memory consumption.
For the development of the VIECH system we analyzed the
sample input files and general requirements of Web service
composition algorithms to find an optimal balance.

2.1.1 Parsing of XML

Traditionally XML parsing can be done by using either tree-
based parsers such as DOM, or event-based ones such as
SAX. While tree-based parsers read the whole document,
keep it in a tree structure, and allow to operate on it in a
convenient way, they are afflicted with an inferior perfor-
mance and a large memory footprint. In contrast to this ap-
proach, event-based parsers return the XML document as a
stream of tokens, which is a fast and lightweight technique
but requires the application to keep track of the document
structure. Although both approaches have advantages and
disadvantages, depending on the field of their application,a
tree-based processing of large XML files is not reasonable.
Therefore we use the StAX [3] parser WoodStox [4] to pro-
cess only the relevant parts of the XML files, which results
in high throughput and low memory consumption.

2.1.2 Indexing of Ontologies

Semantic composition of Web services is based on ontolo-
gies which describe types and their hierarchies. As these
hierarchies solely contain subtype-supertype relations,the
possible queries are also limited to finding (a) all existing
types, (b) their subtypes, (c) their supertypes, and (d) check-
ing whether two types are in any relation to each other at all.
Therefore, the Type Index can be kept in simple hashtables,
as illustrated in Figure 2.

type name

t
1

t
2

...

t
n

type node subtypes

supertype

ONTOLOGY INDEXING STRUCTURE

node
1

node
2

...

node
n

subtypes

supertype

subtypes

supertype

sub- & super-types
Type Index

Figure 2. Structure of the Ontology Index.

For all existing types aTypeNodeobject is stored in the
Type Index, which in turn contains all direct sub- and su-
pertypes. Although, this implies that a retrieval of all –
not only the subsequent – sub- or supertypes has to be per-
formed in a recursive manner, it allows to keep the Type
Index lightweight and scalable.

2.1.3 Indexing of WSDL Descriptions

The WSDL index structure consists of two tables: Partname
Index and Service Index (see Figure 3).

Partname Index Service Index

part name

p
1

p
2

...

p
n

in_list

out_list

in_list

out_list

...
...

...

in_list

out_list

service name

s
1

requests

responses

s
2

requests

responses

...
...

...

s
k

requests

responses

service

WSDL INDEXING STRUCTURE

Figure 3. Structure of the WSDL Index.

The Partname Index uses a hashtable to maintain the
mapping from each part name into two lists of service
names: thein list andout list corresponding to part name

p are the lists of services which havep as request and re-
sponse, respectively. In this way, it takesO(1) to get a list
of services that consume, or produce a particular part name
p. The Service Index utilizes a hashtable that maps a service
name into detailed information of the correspondent service
(namely request and response part names).

2.1.4 Flyweight Design Pattern

For building the indexes we make intense use ofHString,
a Flyweight [6] implementation of strings. This technique
aims at reducing the memory consumption in situations
where identical objects can be mapped to a single one, in-
stead of keeping an instance for each of them. We regard
this pattern as especially useful for the indexes, since they
consist of names of services and input-/output-types which
occur in multiple hashtables concurrently. Moreover, we
use the high performance collections GNU Trove [2] to ef-
ficiently manage and access the indexes.

2.2 Processing Algorithms

In this section we present the algorithms we use to solve
semantic discovery and composition of Web services where
the type information of input and output messages is en-
coded in XML schema and referenced by all WSDL files.

2.2.1 Semantic Discovery Algorithm

Considering a set of servicess, the problem inherent in Web
service discovery can be summarized as finding a result set
of services that take as input a set of part namesprovided,
and return as output a set of part namesresultant. The
part names are organized in a type hierarchy. For input part
names, all subtypes have to be considered, while all super-
types can be used for output parts.

Algorithm 1 semDiscovery(provided, resultant)

Require: resultant 6= {}
1: result ← {}
2: goals ← presponse(resultant0)
3: for i = 1 to |resultant| − 1 do
4: goals ← goals ∩ presponse(resultanti)
5: end for
6: if provided = {} then
7: return goals

8: end if
9: for all si ∈ goals do

10: if provided ⊆SEM in(si) then
11: result ← result ∪ si

12: end if
13: end for
14: return result

Algorithm 1 works as follows: The set of services that
can produce a goal is constructed from Line 2 to 5. We
usepresponse(r) to get all services that have the part type
(or subsuming types)r in their response. Ifprovided is
empty, the set of goals is returned (Line 6 to 8). Otherwise,
for all possible goals the service is added to the result, if
the input parameters of the service represent a subset of the
expanded set of provided part names and subsumed types,
as expressed by theSEM suffix in⊆SEM (Line 10 to 12).

2.2.2 Semantic Composition Algorithm

Algorithm 2 relies on the semantic indexing as well as
the semantic discovery algorithm described above to find
a sequence of services that satisfy a given query. A ser-
vice sx is understood as a concept representing a tuple
{in(sx), out(sx)}, holding both a listing of the input and
output part names of the service. A composition query con-
sists of two listsI andO, containing the given input parts of
the query, as well as the desired output parts. Hence, to sat-
isfy a query, a sequence of services has to be found which
is able to return these output part names with the provided
input parts.

Algorithm 2 semComposition(I,O)

Require: I 6= {} andO 6= {}
1: O′ ← O

2: I ′ ← I

3: repeat
4: s ← semDiscovery({}, O′)
5: orders based onmax(in(sx) ∈ I ′)
6: for all si ∈ s do
7: if in(si) ⊆SEM I ′ then
8: Mappings ← Mappings ∪ {out(si), si}
9: I ′ ← I ′ ∪ out(si)

10: O′ ← O′ \ out(si)
11: else
12: if !(in(si) ⊆SEM O′) then
13: O′ ← O′ ∪ in(si)
14: end if
15: end if
16: end for
17: if O ⊆SEM I ′ then
18: found ← true

19: end if
20: until found = true

21: return resolve(Mappings)

Our approach uses an iterative backward search for
achieving this goal, where in each run first all services are
discovered that can deliver the required output parts (Line
4). This listing is then ordered by the degree to which
their input parts match the already available inputs found by

the algorithm so far (Line 5). This ensures that promising
services are prioritized over services with more unsatisfied
parts and hence greatly optimizes runtime-performance.

In the next step (Line 6 to 16), all these services are
checked whether the available input partsI (and subsumed
types) already fulfill their signature, in which case their out-
put parts are added to the list of available input parts, and
removed from the list of required outputs (Line 9 and 10).
Besides, for each output part an entry is added to a mapping
table that holds information on how to get to the respective
part, allowing to backtrace the solution in the end (Line 8).

In case the necessary input parts are not available, they
will be added to the list of required output parts in Line 11
to 15 (as long as they or subsumed types are not already
in either of the two lists). After all services are processed
the search will be redone with a broader scope. Using this
approach of an adaptive search pattern instead of a direct
recursion favors building broad over deep search-trees, and
leads to improved performance especially on large data sets.

Each iteration ends by checking if all required output
types are already in the list of available input types (Lines
17 to 19). This means that a path to the desired goal has
been found and the program will terminate. In a final step
the mapping table is resolved to a path by recursively nav-
igating through the mappings starting with the final output
of the composition (Line 21).

3 Preliminary Evaluation

After our promising results from last year [5], we signif-
icantly enhanced the type and service indexing, as well as
the algorithm used for service composition.

Our experimental evaluation was performed on a Dell
Blade, 3.2 GHz Dual Xeon processor with 2 GB memory
and SCSI hard disk with 10000 rpm. We used all the data
sets provided by the WS-Challenge organizers. The results
of the semantic discovery compared with the results of our
solution from the WS-Challenge 2006 are illustrated in Fig-
ure 4. The tests were performed ten times for each data
set and the average value was calculated. Each query file
consists of ten different discovery queries per data set. The
main time is consumed during the first run, where the com-
plete in-memory index has to be built.

The performance is significantly better than last year, we
now need approximately 18 % of the original time for the
indexing and 25 % for the discovery process.

The results of the semantic composition are currently not
stable for publication, therefore, we do not present detailed
performance numbers here. Nevertheless we can say that
the performance of the composition also increased signifi-
cantly due to a faster index structure.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

discovery_100_16discovery_20_16discovery_20_4

M
ill

is
ec

on
ds

Comparison of WS Challenge 06 and 07

2006 results
2007 results

Figure 4. Performance comparison.

4. Conclusion

The VIECH system represents our contribution to this
year’s Web Service Challenge. The goal of this challenge is
to implement a system that provides semantic discovery and
composition of Web services. For the construction of our
system, we learned from the experience gained during last
year’s Web Service Challenge. Primarily, we re-used the
V IECH system from last year as foundation. Furthermore,
we introduced a completely new composition algorithm,
and also significantly improved the indexing component us-
ing the Flyweight Design Pattern and high-performance col-
lections. The preliminary results clearly show an enormous
performance gain for indexing and discovery. However,
the composition algorithm still has to be thoroughly eval-
uated. Finally, to meet the requirements of the challenge,
we adapted the VIECH system to provide its functionality
as a web service using the Axis2 framework.

References

[1] Apache Axis2.http://ws.apache.org/axis2.
[2] GNU Trove - High Performance Collections for Java.http:

//trove4j.sourceforge.net/.
[3] JSR 173: Streaming API for XML. http://jcp.org/

en/jsr/detail?id=173.
[4] Woodstox - High Perfomance XML Processor.http://

woodstox.codehaus.org.
[5] M. Aiello, C. Platzer, F. Rosenberg, H. Tran, M. Vasko, and

S. Dustdar. Web service indexing for efficient retrieval and
composition. InProceedings of the IEEE Joint Conference
on E-Commerce Technology and Enterprise Computing, E-
Commerce and E-Services (CEC/EEE’06), San Francisco,
CA, USA. IEEE Computer Society, 2006.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.De-
sign Patterns. Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional, 1997.

