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Abstract Web services are gaining high popularity and importance on mobile devices.
Connected to ad-hoc networks, they provide the possibility to establish spontaneously even
complex service-based workflows and architectures. However, usually these architectures
are only as stable and reliable as the underlying network infrastructure. Since topologies
of mobile ad-hoc networks behave unpredictably, dependability within them can be only
achieved with a dynamic replication mechanism. In this paper we present a highly flexible
solution for replication and synchronization of stateful Web services and discuss the behavior
of the implemented prototype in large-scale simulations.
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1 Introduction

Web services, as standardized and extensible software systems for machine-to-machine in-
teraction, open up many new possibilities to perform automated workflows based on loosely
coupled services. This flexibility and the high interoperability, due to the use of open stan-
dards, had a great impact on the rising popularity of Web services on mobile devices [1-7],
especially in collaborative working environments [8-11]. The area of application ranges from
services enabling access to personal data such as cryptographic keys, payment methods,
identifications, etc. to services providing desired functionality for a whole group of clients,
such as registries, data transcoders, proxy services, and many more. While the first group
of services is often strictly bound to the user’s device, services of the second group need to
be constantly available. In ad-hoc networks, fulfilling this basic requirement is hampered,
since the behavior of each node is unpredictable, which results in a highly dynamic topol-
ogy. Nodes are able to relocate in the network, can disappear due to shutdowns or unstable
connections, just to mention some common characteristics. To apply reliable Service Ori-
ented Architectures (SOAs) in such environments, it is necessary to replicate individual
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Web services and to ensure their synchrony, including those of stateful Web services. Such
a solution has to be able to deal with transient nodes and changing network structures, to
place replicas dynamically, and to allow their convenient invocation for the clients.

In [12] we presented a system for dynamic discovery and replication of Web services
in ad-hoc networks, for utilizing the publish-find-bind paradigm of SOAs even in typically
unreliable network environments. The contribution of the current paper is concerned with
the evolution of the replication mechanism and the results of a case study, simulating the
system’s behavior in large-scale ad-hoc environments, in order to find optimal trade-offs for
an effective replication.

The structure of this paper is as follows. Section 2 starts with discussing the concept and
the architecture of the proposed solution. Section 3 presents the case study and the results
of the simulations. Section 4 contains a short overview of related work and Section 5 finally
concludes and contains ideas for future work.

2 Dynamic Replication of Web Services in Ad-hoc Networks

Replication has been used for a long time to achieve dependability. High-Availability Clus-
ters, Redundant Arrays of Independent Disks (RAIDs), replicated databases, and the root
servers of the Domain Name System (DNS) are probably the best known examples for using
redundancy in order to ensure fault tolerance. Furthermore, solutions for the replication of
Web services have already been developed, e.g., [13,14]. These solutions frequently have the
drawbacks that they use replicas at static and predefined locations, are based on central-
ized request dispatchers or controllers, or use other techniques which are suited solely to
managed infrastructure networks, in which they operate.

However, taking the requirements and restrictions of mobile ad-hoc networks into con-
sideration, a completely new approach has to be applied. Ad-hoc networks are established
spontaneously via wireless network links and without the need of any preexisting physi-
cal infrastructure. All communication is routed via nodes within the wireless range, which
are, in turn, responsible for forwarding the packets until they reach the final destination
node. Therefore, the availability of individual nodes as well as the coherence of the whole
network is vulnerable to the movements of all participants in the network. This poses a
challenge to any replication mechanism. Firstly, the replicas have to be placed in a dynamic
manner, which avoids predefined and static locations, hence, the replicator is able to react
dynamically to changes in the network. Secondly, the detection of changes in availability of
individual nodes and their services is important. Since disconnections might happen due to
crashes or because the node moved too far away from the wireless range, one cannot rely
on the nodes to report their unavailability via event notifications. Therefore, it is neces-
sary to perform active monitoring in intervals. The third important requirement lies in the
peer-to-peer characteristics of mobile ad-hoc networks, which strictly require a completely
decentralized solution. Furthermore, mobile devices have the disadvantage of consuming
battery power. To reduce its consumption, it is necessary to keep the produced network
traffic as low as possible.

These limitations disqualify the currently available solutions for replication and call for a
new approach which (a) is flexible enough to handle the highly dynamic network structures,
(b) is completely decentralized, since ad-hoc network are not suited to static and centralized
resources, (¢) monitors the availability of Web services, (d) takes performance properties into
consideration while placing replicas, and (e) produces as little network traffic as needed.
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In [12] we introduced a system consisting of a combination of dynamic Web service dis-
covery based on distributed UDDI [15] registries, and of a Web service replicator mechanism
for ad-hoc networks, which was work in early progress at that time. Since then, the repli-
cator evolved towards being more scalable, flexible, and bandwidth-saving, and, therefore,
better suited for mobile ad-hoc networks. The following sections discuss the concept of our
approach, with Section 3 presenting the results of an intense testing in a simulated ad-hoc
network with up to 140 nodes.

2.1 Concept € Architecture

Replication of stateful Web services can be achieved in (a) an active manner, also known as
state machine [16], (b) in a semi-active one, or (c) in a passive manner, also called primary
copy [17]. The state machine is based on the idea of sending invocations to all replicas and
waiting for all responses. Combined with methods for suppressing nested invocations [18]
and for ensuring that all replicas receive their requests in the same order, this technique
guarantees automatically synchrony of states. However, it assumes that all operations pro-
duce deterministic output and state transitions, excluding, for instance, functions which use
random data. This limitation can be overcome by declaring explicitly all indeterministic
functions and by directing their invocations to only one service, which is in turn responsible
for forwarding possible changes of the internal state to all other replicas. This approach is
called semi-active and is a composition of the ideas of the state machine and the primary
copy approach. In primary copy all invocations are sent to only one destination. This pri-
mary service updates automatically all backups and stays the master of all replicas until a
failure occurs, in which case a new one has to be selected.

Comparing these techniques considering the dynamic destination environment, it be-
comes obvious that the active and semi-active approaches are unsuitable. By virtue of the
possibility of ad-hoc networks to split and merge, this would require a costly synchronization
before the invocations, in order to have all replicas performing their calculations based on
the same internal state. Furthermore, it is essential to keep network traffic as low as possi-
ble, which disqualifies an approach where SOAP-based invocations are sent to all replicas.
Therefore, we chose primary copy for our replicator system, with one service instance han-
dling all requests and synchronizing all backup instances via the Simple Replicator Protocol
(SRP) which saves bandwidth.

To clearly structure the complex task of replication and to make it maintainable and
flexible, the Web service replicator was designed as a collection of individual modules (see
Figure 1), cooperating via the lightweight Internal Database which stores all relevant data.
These modules have a small memory footprint and are part of every instance of the Web
service replicator, which means that all nodes are theoretically able to execute all particular
tasks, such as monitoring or managing replicas. The result is a true peer-to-peer community
of nodes where elections decide about distributing the necessary tasks, preferably on the
most powerful nodes, while the remaining ones stay idle.

— Replication is handled by the modules Replicator Web Service, Monitor, and Replica
Placement Mechanism.

— Synchronization is done separately within the Synchronizer module and extensions to
the replicable and stateful Web services.

— All Web services, viz the Replicator Web Service and the individual replicas, are deployed
at a combination of the Jetty Servlet Container [19] and Apache Axis [20].
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Fig. 1 Modularized architecture of the replicator system

— The Simple Replicator Protocol Server is handling all communication which is done via
the lightweight SRP protocol.

Furthermore, instead of using hardcoded techniques for finding nodes in the network, a
plug-in interface is provided for allowing the system to operate within all kinds of TCP-
based computer networks, not only mobile ones. For instance, one might want to provide
reliable Web services in a wide area network (WAN), belonging to some community, which
is distributed over the world and where hosts are known to be shut down at times. Each
node joining a network must know at least one of the already connected nodes or must wait
until it gets discovered itself (active vs. passive connecting). After that, the system puts
automatically the rest of the integration to the peer-to-peer network into effect.

2.2 Concept of Replication

All calculations of the replication mechanism are based on a global view. This means that
nodes are informed about all other nodes in the network which have the replicator system
installed, their properties, and their hosted services. Although, compared to gossip-based
approaches, this hampers scalability, a global view is unavoidable to keep the replicas of a
particular service in a synchronized state.

The simplified replication mechanism works as follows: The Monitor checks periodically
for changes in the network and sends after each cycle a notification to the other modules
about having finished its task. The newly monitored state is then analyzed by the Replica
Placement Mechanism which evaluates whether the controlled replicas are in an inconsistent
state which needs to be corrected. This procedure consists of first electing leaders for the
replicas of each Web service, and eventually controlling the ones for which the local host
was elected as the leader. The following sections provide a more in-depth insight into the
functionality of the individual modules.
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2.2.1 Internal Database The database is kept entirely in memory and acts as a medium
between all modules of the system, by storing information about hosts and services, their
availability, performance properties and requirements, and information about current leaders
and monitors in the network. Every module can retrieve and update the records in order to
perform its calculations and to store the results. To keep the database scalable, all records
are fully indexed and queries are performed via a set-based language, which is able to process
most of the necessary queries in O(1) or O(log n).

2.2.2 Replicator Web Service The Replicator Web Service is a special case of a module,
which works completely in passive mode and is invoked only by remote hosts. Its task is
to provide the facility to hot-deploy Web services and, furthermore, to manipulate their
states remotely. As Figure 2 illustrates, these states can be either deployed, hibernated, or
not installed at all. The idea of hibernating Web services which are no longer needed, is to
disable them instead of deleting them completely. In case when too few replicas exist and
new ones have to be deployed, hibernated ones can be woken up quickly without resending
the whole archive. This way the replication mechanism can react faster to changes in the
network, reducing network traffic at the same time.

hibernated

[wake up]

[uninstall]

[hibernate]

‘\[install]

[uninstall]

deployed

Fig. 2 Deployment states of Web service replicas

The realization of this module as a Web service allows to communicate with a destination
which is operating in the same Java environment as the replicas. This is necessary for
evaluating whether all necessary resources of a replicable Web service (e.g., Jar-files, classes)
already exist or need to be installed before the deployment.

2.2.8 Monitor The Monitor is the system’s source for getting information about changes
in the network and, therefore, has a significant influence on the response time of the whole
replication mechanism. All hosts and services have to be checked periodically for evaluating
whether their states have changed, whether they are still available, and what properties they
have. For better scalability, this procedure is performed in a distributed and incremental
manner (see simplified scenario in Figure 3). By performing the algorithm in Listing 1
the most powerful nodes are elected as monitors, which are responsible for partitioning
the nodes by their unique IDs into groups, detecting changes within their groups, and
forwarding them to the other monitors. Furthermore, the monitors exchange addresses of
known nodes in order to merge possible subnetworks and to guarantee the coherence of
the whole environment. This technique is referred to as active monitoring (Listing 2). In
contrast, all other nodes in the network perform passive monitoring (Listing 3), which means
that they select one of the active monitors and retrieve periodically the actualized state from
it.
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Fig. 3 Distributed monitoring

Listing 1 ”Election of active monitors (Pseudocode)”

monitoring () {
// bootstrap: address(es) of host(s) were retrieved by

// but no data about their properties or services were
// -> retrieve complete view from random host
passive_monitoring (random host)
// main loop
loop in intervals {
sort all hosts by performance properties
number of monitors depends on size of network

// election:
monitors = list of fastest hosts

// is localhost one of the fastest hosts
if (monitors contain localhost) {
active_monitoring (monitors)

} else {

// fetch a monitor,
// retrieve the view of the network from it
if (mon from last loop not available) {

mon = random monitor

host-finder,
retrieved yet

=> monitor 7?7

try to use it again in the next cycle

}

passive_monitoring (mon)

}

send event notification to leader elector

}

Listing 2 ” Active monitoring (Pseudocode)”

// expects the list of all monitors of the network as argument

active_monitoring (monitors) {
= position of localhost within sorted monitors

pos
num = number of monitors

// current group of hosts which must be checked
mygroup = all hosts where (host.id%num == pos)

// do the actual monitoring
start concurrent threads for all hosts in mygroup {

check host and properties
check services and requirements
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}
wait until threads finish
// exchange data with other monitors
start concurrent threads for all hosts in monitors {
// send only changes since last exchange to save bandwidth
send changed state of mygroup to host
// all monitors must see the same nodes in the network
send list of new node addresses to host

}

Listing 3 ”Passive monitoring (Pseudocode)”

// retrieves the current view of the network from monitor
passive_monitoring (monitor) {
if (monitor was used in the last loop) {
// save bandwidth
retrieve incremental data
} else {
// get the whole view of the network
retrieve all data
}
// inform monitor of newly connected nodes
send list of new node addresses to monitor

}

The nodes of the network usually notice changed states within one or two monitoring cycles.

1. The monitor of the changed node’s group detects it within one cycle and forwards it
immediately to the other monitors.

2. All other nodes, which perform passive monitoring, retrieve it from the active monitors
during the next cycle.

All communication necessary for monitoring is done via the Simple Replicator Protocol,
which was designed to keep exchanged messages as short as possible by serializing all data
into a compact format, in order to save network bandwidth. Furthermore, network traffic is
reduced even more by exchanging data in an incremental manner, which means that only
changes which took place after the last request are transferred.

2.2.J Replica Placement Mechanism  After the changed state of the network was monitored,
the Replica Placement Mechanism comes into play. Its task is mainly to follow the declared
requirements of the Web services (e.g., min/max number of replicas, system performance) in
order to have them placed at the best suited locations, balancing the load on the nodes this
way. Moreover it is responsible for moving replicas away from nodes which are constantly
under heavy load or have only little time left to live, due to low batteries. This task is split
into the Leader FElector module and the actual placement logic.

The Leader Elector has to check whether the local host is expected to manage the repli-
cation of a particular Web service (Listing 4). This decision is done solely by querying the
database for the properties of the other replicas in the network, analyzing their preferences
and accepting the resulting leader, which can, of course, be the local host. The advantage
of this method is that all calculations are based on the information in the local database,
without the need of contacting other nodes, which would slow down the overall process.
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Listing 4 ”Election of leader for replication (Pseudocode)”

// run after monitor has finished

loop for each deployed web service {

// list all replicas, including the local one
replicas = list of its replicas in the network
if (only omne replica exists) {

// only one means only on localhost

localhost is leader

} else {
// more than one requires election
leaders = declared leaders of all replicas

// the most popular one will be accepted
sort leaders by popularity/frequency
// do more than 2 leaders share the first place 7
if (more than one most popular leader exists) {
// try to put leaders on monitors to be earlier
// informed about state changes
sort hosts by bandwidth and monitoring status
accept the fastest one
} else {
accept the most popular leader

}

}

send event notification to replication 1logic

A feature of this algorithm is the ability to correct quickly the inconsistency of multiple
concurrent leaders of the same group of replicas. Multiple leaders can occur in situations
where a group of replicas was split due to movements of routers in the ad-hoc network, the
newly independent groups elected their leaders, and were later merged again.

After the election, the placement logic is notified to manage the replicas controlled by
the local host. We do allow the application of custom logics as plug-ins, which must use
the provided API for transferring services between nodes. The API postpones all received
commands to after the next monitoring cycle, in order to check then whether the local host
is still controlling this replica. If the control was lost in the meanwhile, e.g., because another
node won the election, the command will be discarded, otherwise, it will be executed. This
way possible collisions between multiple leaders can be solved in most cases.

By default, or if an invalid plug-in is used, a predefined logic is applied (Listing 5). Its
main task is to control whether the desired number of replicas is deployed and to correct
this in case of an inconsistency. Furthermore, it checks whether some of the replicas have to
be moved to better suited locations by comparing the performance properties of hosts and
the requirements of services. The case study in Section 3 was performed with this default
replication logic.

Listing 5 " Simple Replication Logic (Pseudocode)”

// run after leader elector has finished

loop for each controlled web service {

// which hosts are better suited to this service?
sort hosts regarding service preferences

// need more running replicas 7



Dynamic Replication and Synchronization of Web Services 9

if (number of replicas too low) {
if (services are somewhere hibernated) {
wake up on fastest hosts
} else {
send new replicas to fastest hosts
}

synchronize new replicas

// too many replicas? -> delete
if (number of replicas way to high) {
delete surplus replicas on slowest hosts

// ... and hibernate
if (number of replicas slightly to high) {
hibernate replicas on slowest hosts
}
// avoid hosts with only little time left, e.g., due to low batteries
if (replicas exists on transient hosts) {
move services to other/fastest hosts
synchronize new replicas

2.3 Concept of Synchronization

Since most of the Web services, which are deployed on mobile devices, are stateful, it is im-
portant to ensure synchrony between all replicas. Unfortunately, this is not always possible.
Ad-hoc networks can split into multiple subnetworks and merge again after a time. In these
subnetworks the internal states of the replicas can get totally out-of-sync with the ones in
the other nets, so that resynchronization after a merging becomes impossible. Imagine a
Web service with a similar functionality to DHCP, where clients request unique addresses
from a limited pool, e.g., for identification within some virtual network structure. If replicas
of this service get split, each group only knows the addresses it has offered to the clients
before, but it does not have any information about the other groups anymore. This can
result in addresses being assigned to more than one client, which poses a conflict in case the
groups merge again. This limitation for stateful and replicated services in ad-hoc networks
is a fact which has to be accepted. Therefore, Web services which need perfect consistency
of states are not applicable within them. However, for the rest of the services, we provide a
facility to synchronize their states quickly.

To make use of this functionality, each stateful Web service (see sample service in List-
ing 6) must extend a class, which provides the necessary functionality to perform syn-
chronization but also registers the service automatically at the Synchronizer module. This
registration also implies that the Web service grants full read-write access to its so called
State Objects, which encapsulate all data (e.g., variables, objects) relevant for the internal
state. Now the service is able to command the module to synchronize its state with the other
replicas. Usually this is done after an invocation which changed the state. As a consequence
the Synchronizer checks which State Objects have changed, contacts the remote Synchro-
nizers running on the replicas, serializes the changes, and updates the remote states. To
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keep this communication fast and lightweight, it is realized again via the Simple Replicator
Protocol. Listing 7 contains a short sample of a SRP communication.

Listing 6 ” Sample Web service with a synchronized String object”

public class SampleService extends SynchronizedService {

// synchronized state object

private static FieldSetterStateObject synchronizedString;
// variable holding the actual state value

private static String stringObject="hello world";

public SampleService() throws Exception {
// SynchronizedService() registers at synchronizer module
super () ;

}

// called during registration at synchronizer module

@0verride

protected void initializeStateObjects() throws Exception {
// create the state object pointing to the string
synchronizedString=new FieldSetterStateObject(

SampleService.class.getField("stringObject"));

// grant read/write access to the synchronizer
registerStateObject (synchronizedString);

}

// Web service operation
public String getString() {
return stringObject;

}

// Web service operation
public void setString(String str) {
stringObject=str;
try {
// propagate updated state to all replicas
synchronizeStateObjects ();
} catch (Exception e) {
// handle or ignore failed synchronization

}

/7

Listing 7 ”Simple Replicator Protocol - Sample commands for manipulating state objects”

LISTSTATE syncTest
100 OK

price 2 123
book_title 4 96354

AN N N ANV
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GETITEMS syncTest book_title
100 OK
<51 |book_title|4| java.lang.String|V2ViU2VydmljZXM=>

ASSIGNITEMS syncTest <35|pricel4]|java.lang.Integer|0Tk=>
100 0K

AN ANV AN AN AV

— Lines 1-5: A list of state objects of service “syncTest” is retrieved. It contains two objects,
named “price” and “book_title“, including their serial stamps which are incremented after
each synchronization, and the hash sums for comparing equality.

— Lines 6-9: Object “book_title” is retrieved in a serialized form. The first field holds the
length of the serialized string. The rest of the item consists of the object’s name, it’s
serial stamp, the Java class name and the Base64-encoded value of the variable.

— Lines 10-12: A new value is assigned to object “price”.

Possible state collisions, which might happen after two desynchronized groups of replicas
merge again, can be resolved by either fusing the states or by simply declaring one state as
dominant and withdrawing the others. Although the first variant seems to be preferable it is
only possible for a subset of stateful Web services, e.g., for registries which can be rejoined.
For these services we provide a possibility to plug-in a module which is able to merge multiple
states into a single consistent one. However, for most Web services merging states is either
not possible or at least too expensive. In such situations the Synchronizer automatically
determines the dominant state, which is the one that was accessed most often, and replaces
all conflicting ones. Although this method has the drawback of revoking a state which was
used for servicing past requests, it is in many cases unavoidable to reinstall consistency
between all replicas.

As mentioned in Section 2.1, the concept of our solution is based on the primary copy
approach. This means that of all replicas, one is selected as the master and all invocations
are directed to it. This selection is already done in the Leader Elector module, which elects
a leader node for controlling all replicas of a particular service.

2.4 Concept of Invocation

To have the replicator system running on the nodes of a mobile ad-hoc network raises the
question how this all affects the clients which want to invoke a certain Web service. How
does a client find the proper primary copy? What happens when the primary copy fails
and a new one is not elected until this failure is detected? How shall a situation where,
due to the merging of two subnetworks, two primary copies exist, be handled? In order to
disburden the client developers from solving all these difficulties we provide a simple Java
tool named WSDL-finder. The task of this utility is to find the proper Web service instance
in the network, to track the movements of the replicas, and finally to return a WSDL file
pointing to the primary copy. The sequence diagram in Figure 4 illustrates these steps.

1. At first, an instance of the desired Web service must be found and passed to the WSDL-
finder. Discovery of Web services in dynamic and transient networks can be achieved
with methods as presented in [12,21]. However, this is not a task of the tool and must
be done by the client.
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Fig. 4 Invocation of replicated Web services by using the WSDL-finder

2. Then, the tool retrieves the correct location of the primary copy instance and returns a

WSDL file pointing to it. This consists of:

(a) contacting the host of the discovered service and retrieving the locations of all repli-
cas. Moreover, the WSDL-finder requests the location of the primary copy from each
replica and accepts the most popular one, in order to correct temporary inconsisten-
cies. Furthermore, the locations of all replicas are cached and updated during each
run. This way it is possible to follow the movements of a replicated Web service
without querying the registries continuously.

(b) contacting the primary copy and retrieving the automatically generated WSDL file
from the Apache Axis SOAP Container [20].

3. The client can now pass this WSDL file as an argument to the Apache Web Service

Invocation Framework [22] and invoke the proper Web service replica.

The WSDL-finder must be used before every invocation of a replicated Web service in order
to be aware of a changing location of the primary copy. Since most of the communication
is done via the fast and light-weight Simple Replicator Protocol, the additional traffic and
delay is kept very low.

Temporary inconsistencies, such as an unavailable primary copy or multiple concurrent
ones, are handled automatically. Since the election of a new primary copy after a failure of
the old one is usually only a matter of a few seconds (depending on the monitoring intervals),
the utility simply waits and polls one of the cached replicas periodically to retrieve the new
location. In contrast to this, multiple concurrent replicas, which may occur after a merging
of subnetworks, do not pose a problem for invocation. In fact, it is just a continuation of
the scenario with split networks, where separated replicas of the same service are invoked.
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Possible state conflicts are resolved by the synchronization mechanism later anyway, when
the leaders of the separated replicas have to be merged.

3 Case Study

The replicator system is based on the idea of having nodes, which know about the other nodes
in the network and their services, are able to determine whether themselves are expected to
perform some tasks (e.g., monitoring, controlling particular replicas), and also know which
other nodes are currently performing which tasks. In short, it is based on a global view. This
knowledge about the state of the distributed replicator system is retrieved periodically from
the monitoring nodes. These, however, are in turn elected by using the last monitored state.
Moreover, changed states (e.g., failures of nodes, new available nodes, changed properties)
may imply further changes, such as relocations or elections of new monitors and controllers,
which have to be propagated again. Therefore the replicator system works in a recursive
manner and was designed to correct possible inconsistencies by swinging into a consistent
state again, usually not later than after two or three monitoring cycles.

The purpose of the case study was to analyze this behavior, to evaluate how the system
behaves in networks consisting of up to 140 nodes, and how fast it reacts to changes in the
network. Furthermore, the simulations were used to determine proper configuration values,
such as monitoring intervals, which have an immense impact on the systems performance
and response time.

During this case study we concentrated only on the replication mechanism and did not
include any simulations for testing the performance of service state synchronization. The
reason for this is that the synchronization is completely controlled by the individual Web
services, which are free to decide when and how their states have to be synchronized, and are
expected to do it wisely regarding the capabilities of the environment they are operating in.
Especially the size of their State Objects, the number of deployed replicas, and the frequency
of invocation have a significant influence on the load of the network. However, these values
are neither part of the configuration of the replicator system nor should be restricted by it.

3.1 Sitmulation of Transient Networks

The case study was performed on two blade servers which each have four Intel Xeon 3.2 GHz
CPUs, 2 GB of RAM, and Linux as the operating system. The Web service replicator uses
only a marginal amount of CPU power, however, each instance comes with an own Jetty
and Apache Axis server and has to run in a separate Java Virtual Machine (JVM). As a
result, the memory usage of each replicator instance is approximately 27-29 MB (including
11 MB of shared memory). This consumption can be reduced to a few MB by using a JVM
for PDAs, which has a much smaller memory footprint, and by replacing Apache Axis with
a more light-weight Web service container or SOAP API, such as kSOAP [23].

For the evaluation we started 140 instances of the replicator system in a simulated mobile
ad-hoc network with transient node availability, limited the bandwidth of the network links
(using Traffic Control [24]) to WLAN-typical 11 MBit, and extended the replicators with a
possibility to disable them, in order to simulate failures. The actual simulation was controlled
by a utility which disabled single nodes in a random but balanced manner, and enabled them
again after a defined period of time. The balancing was applied in order to keep statistical
variations of the results low in spite of the randomized testing, by paying attention to
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adjusting the downtimes of the nodes. Furthermore, randomized performance properties
were assigned to all nodes during the bootstrapping process.

Due to an extended and detailed logging, we were able to trace the behavior and band-
width usage of the system by analyzing the log files.

3.2 Evaluation

Two of the main requirements to the replicator system are: (a) to react as quickly as possible
to changes in the network and (b) to consume as little network traffic as possible. However,
faster response times can only be achieved as a consequence of a more frequent monitoring,
which, in turn, produces more traffic. Therefore, it was necessary to find the best trade-
offs, in order to satisfy the need for a quick reaction of the replica placement mechanism
without consuming too much bandwidth. These trade-offs were determined by collecting
and analyzing the following statistics:

— Network traffic of passive/active monitoring in static/dynamic networks with various
numbers of monitors

— Network traffic of passive/active monitoring in static/dynamic networks of various sizes

— Network traffic, depending on the monitoring interval

— Amount of time necessary to detect changes in the network, depending on the monitoring
interval

— Amount of time necessary to elected a new leader after a failure, depending on the
monitoring interval

— Amount of time necessary to deploy a new replica after a failure, depending on the
monitoring interval

Since mobile ad-hoc networks vary in size, bandwidth, dynamic behavior, and the perfor-
mance of the nodes, it is impossible to find an optimal general configuration for all envi-
ronments. Furthermore, the number of deployed Web services, the size of their replicas, and
preferences for replication have also a strong influence on the performance. However, it makes
sense to analyze the system’s general behavior in a case study and to find trade-offs which
will perform well in most environments. This way, we determined a default configuration for
the replicator system.

3.2.1 Network Traffic & Scalability For finding a configuration which keeps network traffic
low, it was necessary to take a close look at the system’s behavior in static and dynamic
environments, in networks of different sizes, and, first of all, to analyze the produced traffic
depending on the size of the monitoring groups.

As explained in Section 2.2.3, the monitoring works in a distributed manner, which
partitions the network into groups, each checked by a single active monitor. These monitors
exchange the state information about their groups among themselves. Although a higher
number of monitors reduces automatically the load, caused by checking the group, on each
one of them, it also increases the exchanged amount of data:

amount_all_data * (num_monitors — 1)

amount_exchanged_data = -
num-monitors

The purpose of the first simulations (see Figure 5) was to evaluate a proper number of
monitors, viz a proper size of their groups, in order to find a balance between the individual
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Fig. 5 Traffic of networks with various sizes of monitor groups

load on each monitor and the total traffic of the network. For this reason, we tested the
replicator in a static environment, where all nodes were already in a consistent state, and
in a highly dynamic network, where every 5 seconds 10% of the nodes were deactivated and
reactivated again after 15 seconds. The size of the network was 140 nodes, the monitoring
interval was set to 2.5 seconds, and the simulations were performed for group sizes of 12,
16, 20, 24, 28, 35, 50 and 80 nodes per monitor.

As Figures 5(a) and 5(b) demonstrate, the total traffic of the network grew with the
number of monitors. Especially in the static environment, where incremental monitoring
reduced the traffic significantly, the communication overhead of too many monitors became
obvious. On the other hand, if too few monitors were elected, their groups were too large,
which resulted in a high individual load on each of them (see Figures 5(c) and 5(d)). Sce-
narios like this call for a compromise. Following the average traffic of the monitors, one can
observe that their load was not decreased relevantly any more if the groups became smaller
than 24 nodes. Moreover, the total traffic in the network was growing significantly then.
Therefore we regarded a group size of 24 nodes per monitor as a reasonable compromise for
the systems default configuration and used it during the rest of the simulations.

As the replicator system is based on a global view, its scalability is obviously limited,
since a changed state has to be propagated to all nodes. However, comparing this disadvan-
tage with the benefits a global view is providing for synchronization, and taking also into
consideration that mobile ad-hoc networks do usually consist (at most) of a few hundred
nodes, the facts militate in favor of a global view approach. Particularly, because of the
limited scalability, it was necessary to find out how the system performs in networks of
different sizes, regarding its produced traffic.
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Fig. 6 Traffic of nodes in networks of various sizes

Our test environments consisted of 20, 40, 60, 80, 100, 120, and 140 nodes, the monitoring
interval was again 2.5 seconds, and as a result of the first set of simulations we used a
monitoring group size of 24 nodes. Again we examined the traffic in static networks and in
dynamic ones, where every 5 seconds for 10% of the network’s nodes a disconnection was
simulated.

Figure 6(a) presents the average traffic per node in the static networks. Although every-
thing was in a consistent state and only small amounts of data had to be propagated due
to incremental monitoring, the traffic was slightly increased with the growing size of the
network. This mainly took place due to the fact that a larger number of nodes automat-
ically implied a larger number of monitors, which were exchanging data. In contrast, the
average traffic per node in the dynamic networks (see Figure 6(b)) was growing proportion-
ally, due to the changes which had to be propagated to all nodes. As a consequence of these
testings, it is safe to say that in both environments, the static and the dynamic one, the
per-node traffic was growing linearly with the size of the network, which of course resulted
in a quadratically growing total traffic. However, in general, the gradient of the curves is
mainly impacted by the level of dynamics in the network. The less changes occur, the more
gently inclined the curves are. This leads to the conclusion, that the global view approach
is, in spite of its scalability limitations, capable of being applied in mobile ad-hoc networks
which are on the one hand unpredictable, however, on the other hand, are usually much less
dynamic than the test environments of our case study.

3.2.2 Response Time The last simulations of the case study served the purpose of deter-
mining a good trade-off between the need of a low network traffic and the need of a quick
response time. Obviously, this poses a conflict, since both requirements are contradictory
to each other. For this reason we tested the replicator system in identical environments,
but with different monitoring intervals (2.0 seconds - 6.0 seconds) in order to compare the
curves of average response times and traffic per node.

The response time was almost solely impacted by the monitoring interval (see Fig-
ure 7(a)) and, therefore, was growing proportionally with it. As anticipated, the time until
a node detected a change in the network (e.g., failure, new leader) averaged the monitoring
interval, since it usually takes two cycles (as explained in Section 2.2.3) and each cycle has
an expectation of half the interval.

The election of a new leader took slightly longer, since leaders are preferably placed
on the monitoring nodes by the election algorithm. This has the advantage that they are
informed faster about changes in the network (one cycle instead of two), and thus are also
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Fig. 7 Traffic and response times depending on the monitoring interval

able to react faster. However, if a node which is a monitor and a leader at the same time
fails, all nodes which were using it for retrieving the state (passive monitoring) have to select
a new monitor and to retrieve the state afresh, which causes a delay.

The last part of the simulation dealt with the necessary time to deploy a new replica
after an old one failed. Since the performance of this task usually also depends on the size of
the Web service archive, we kept it small (3 KB) in order to determine the actual response
time of the system and to avoid delays caused by transferring large archives. Figure 7(a)
demonstrates that on the average this task took twice the time as for detecting a simple
change, viz one interval to detect the change and one to react. Although the decision how
to react is done immediately, this delay is happening since the command is postponed to
the next cycle, as explained in Section 2.2.4.

In a nutshell, all these simulations made clear that the response time grows propor-
tionally with the monitoring interval. In contrast to it, the produced network traffic is not
increased proportionally with a smaller interval, as the results in Figure 7(b) show. This
convenient behavior is the consequence of the incremental monitoring, where changes have
to be propagated only once and subsequent requests receive an empty response. Hence, al-
though choosing a smaller monitoring interval, in order to be able to react faster to changes
in the network, does not affect the produced traffic significantly, it does affect the CPU load.
Especially for the monitoring nodes, which have to service requests of groups of approxi-
mately 24 nodes and which may have only limited resources (e.g., older PDAs) and other
software running concurrently, this might be a criterion for avoiding very short intervals.
However, today it is highly probable that a mobile ad-hoc network consists of at least a



18 S.Dustdar et al.

few nodes which are more powerful (e.g., notebooks, newer PDAs), and which will be then
preferably elected as monitors. Therefore, we do not see the necessity of using longer in-
tervals, sacrificing quick response times this way, and regard an interval of 2.0 seconds as
favorable.

3.2.8 Results The result of this case study is mainly that we gained insight to the sys-
tem’s behavior in various simulated ad-hoc networks of different parameters. Moreover, we
determined a default configuration which represents a good trade-off for most of the mobile
ad-hoc networks. These values can be tweaked if the system is going to be applied in un-
typical environments or if a more optimal configuration, suited perfectly to the destination
environment, has to be used.

4 Related Work

Birman et al. [25] present several useful extensions to Web services for self-diagnosis and
self-repairing, which, however, are not suited to ad-hoc networks. They distinguish between
monitoring of single components on the one hand and aggregated properties of the system
on the other hand. The second method is able to detect failures noticed only by a group of
clients. Moreover, they introduce event notification for informing other components about
missing availability, giving them them opportunity to roll over to backup resources.

Dekel et al. present with “Easy” [26] a system which addresses performance-aware high
availability by using replication. Although this solution does neither deal with Web services
nor with replication in dynamic networks, it provides a quite detailed list of service aspects
which have to be taken into account while replicating.

With “WS-Replication” [13] Salas et.al. propose an infrastructure for WAN replication
of Web services. It uses group communication based on SOAP-multicast and provides a
transparent replication and fail-over. Although this infrastructure also is able to deploy
Web services on remote sites, the concept is not suited for mobile ad-hoc networks because
of its bandwidth-consuming SOAP-multicast and the lack of a dynamic replica placement.

Fault tolerant SOAP (FT-SOAP) [27], developed by Liang et.al., provides a primary
copy based replication of Web services, which uses an extension to WSDL, pointing to a
group of replicas. Since this group is static, this approach is unusable for our problem.

Ye and Shen introduce a middleware [14] that supports reliable Web services built on
active replication. Their system is based on proxies which multicast requests to the replicas
and return the results to the clients. Furthermore it contains a suppression of duplicate
messages. Again this system is not applicable in dynamic networks, due to static resources.

Jeckle’s and Zengler’s Active UDDI [28] is an extension to the UDDI’s invocation API
in order to enable fault-tolerant and dynamic service invocation. It is able to detect changes
in availability of services and replaces unavailable services with alternative ones from the
registry, which provide the same functionality. However this approach does neither replicate
services actively nor does it ensure synchrony of stateful ones.

Friedman [29] developed a concept for partial caching of Web services in ad-hoc networks.
His solution places proxy services in an optimal manner, which takes the structure of the
network as well as qualities of connections into consideration. However, proxy services still
rely on the initial instance and therefore do not provide fault tolerance.
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5 Conclusions

In this paper, we presented a solution for dynamic replication and synchronization of stateful
Web services in mobile ad-hoc networks. Following the requirements, which ad-hoc networks
pose to a replication approach, we have developed a system which is highly flexible in order
to handle all the difficulties caused by unpredictable topologies. Our approach is completely
decentralized, places replicas in a dynamic manner by following the requirements of the
services, produces a low amount of network traffic, and, furthermore, makes the invocation
of replicated Web services convenient for the clients. This makes it a generally applicable
solution which can be used in all kinds of networks which require fault-tolerant Web services.

Furthermore, we analyzed selected aspects of the system and tested them in a case
study, simulating large-scale ad-hoc networks. This way we were able to evaluate how the
system performs in dynamic environments. These insights allowed to determine important
configuration parameters.

Hence, the contribution of our paper is a solution that combines already existing and
newly developed ideas for replication to a system which makes it possible to apply reliable
Service Oriented Architectures even in typically unreliable network environments.

5.1 Future Work

The main drawback of the currently existing replicator system is that it places the replicas
solely by taking performance criteria into consideration and ignores the structure of the
network. This makes the worst case possible where all replicas are located next to each other
and a disconnection of a single router makes all of them unavailable. This is a problem which
can be solved if methods for prediction of ad-hoc network partitioning [30,31] are applied
and the replicas are placed wisely, for instance, by following the ideas in [32-34]. Once these
strategies are developed and implemented, they can be attached to the replicator system as
a plug-in to the placement mechanism.
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