Web Service Discovery, Replication, and Synchronization in Ad-Hoc Networks

Lukasz Juszczyk, Jaroslaw Lazowski, Schahram Dustdar
{ljuszczyk, jlazowski, dustdar } @infosys.tuwien.ac.at

Vienna University of Technology
Distributed Systems Group
Vienna Internet Technologies Advanced Research Lab
Argentinierstralle 8, A-1040 Wien

Abstract

Mobile ad-hoc networks with their arbitrary topologies
are a difficult domain for providing highly available Web
services. Since hosts can move unpredictably, finding ser-
vices and featuring their constant and reliable functionality
poses a challenge. In this paper we present a flexible sys-
tem which is not only bound to ad-hoc networks, but can
be used in any other environment. QOur solution offers a
discovery technique which keeps UDDI information in dis-
tributed registries up-to-date and includes a replication and
synchronization mechanism which provides backup services
for a highly increased service dependability.

Keywords: Mobile Ad-Hoc Networks, Peer-to-Peer, Web
Services, Discovery, Registry, Replication, Synchronization

1. Introduction

The main advantage of mobile ad-hoc networks is the
self-configuring and self-maintaining topology. But unpre-
dictable movements of hosts make it difficult to provide
a reliable Service Oriented Architecture (SOA) where ser-
vices are required to be easily found and constantly avail-
able. If a host disappears or changes its position, infor-
mation about the service location in WSDL data [10] be-
comes invalid, clients are not notified about these changes,
request fulfillment is not possible any more, and the whole
workflow is brought to a halt. In such a situation we are
confronted with the problem of applying an architecture
which was not designed with dynamic networks in mind
to a highly dynamic environment. The presented solution
focuses on this by introducing a Web Service Discovery
and Registry system for having up-to-date UDDI informa-
tion [9] and a Web Service Replication and Synchronization
mechanism which strongly improves reliability of services

within typically unreliable network environments. Both
parts were designed with simplicity and flexibility in mind
and can be used separately. Nevertheless, this paper de-
scribes the combined solution which offers a light-weight
infrastructure based on Apache Axis [2] and jUDDI [6],
open to be applied in any kind of network.

Usually Web service registries have a well-known and
static location and are managed by a handful of administra-
tors. This method is not feasible within ad-hoc networks.
Our Web Service Discovery and Registry system sorts out
this problem by combining different benefits from existing
solutions [8, 5, 19, 11] and providing an automatic discov-
ery functionality which keeps track of alternating network
structures. Descriptions of Web services are published in
distributed UDDI registries and updated automatically once
a service ceases to be available or changes its location.

This is combined with the approach of replicating ser-
vices, to ensure the whole workflow in the network is not
interrupted by failures or simple relocations of hosts. Al-
though many papers propose static replication of services
to gain a higher availability, there is again a lack of answers
to this problem within networks with transient topologies.
Our Web Service Replication and Synchronization system is
self-configuring, uses flexible algorithms which adapt their
behavior to the dynamic characteristics of the network, and
is able to perform the replication regarding performance
properties of hosts and requirements of services. Further-
more, we are providing an interface which enables to apply
replication strategies suited for the individual requirements.

Web services are getting more and more popular since
they provide the possibility of a standardized, platform in-
dependent, and easily extensible communication. We are
currently implementing a prototype of the described system
and detailed measurements will determine the area of appli-
cability. These may be for instance the needs of groups of
engineers at conferences, action forces in emergency situa-
tions, ad-hoc BPEL-processes [4], etc.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

This paper is organized as follows. Section 2 starts with
describing possible faults in ad-hoc networks. Section 3
gives an overview of the service discovery and registry sys-
tem while Section 4 explains the replication and synchro-
nization methods and Section 5 the practical application of
our solution. Sections 6 and 7 finally present our review of
related work and conclusions.

2 Classification of Faults

While designing a fault-tolerant infrastructure for Web
services, it is important to identify possible kinds of faults
first and to specify how they are classified and handled. Es-
pecially in ad-hoc networks a host can become unavailable
due to many reasons, such as crashes or long delays caused
by communication media:

e Unavailable hosts:

Crash
Shutdown

Unstable network communication

Moving out of wireless network range
e Unavailable Web services:

— Crash or shutdown of Web service container
— Crash or undeployment of Web services

— Firewalls blocking
e Delays:

— High load on host or its Web services
— High load on network link

— Unstable network communication
e Changing network topology:

— Relocating hosts and routers

— Splitting ad-hoc networks caused by router
movements

It is not reasonable to distinguish between faults caused
by hardware-failures, software obstacles such as firewalls,
or greater delays due to unstable network links, etc. Fur-
thermore it is often impossible to find out the reasons for
unavailability. Therefore checking and monitoring is per-
formed by simple ping-like requests sent to services, await-
ing a response within a defined timeout interval. This way
slow hosts are sorted out automatically as bottlenecks, even
if they are available.

Alternations in the topology, such as relocations or
changing addresses, can be often handled by assigning Uni-
versally Unique Identifiers to hosts and this way tracking
their movements.

Master with
WS- Registry

Figure 1. Network Topology with three Star-
structures

3 Web Service Discovery and Registry

A main requirement of SOAs is the ability to find Web
services by querying UDDI registries. Usually the location
of both the registries and the services is static and changes
only rarely. Following the dynamic characteristics of ad-
hoc networks it is necessary to use a completely different
approach, by avoiding static centralization as far as this is
possible. Our solution fulfills this by partitioning the net-
work into autonomous groups and running distributed reg-
istries able to react on failures and disconnections by restor-
ing the lost service-descriptions quickly.

3.1 Structuring the Network

Since ad-hoc networks can grow rapidly and are most
often established using slow wireless communication, it is
necessary to keep network traffic as low as possible by
avoiding broadcast communication in a large scale. Con-
sidering this restriction we are partitioning the network into
several independent groups of hosts which are organized
in star-topologies, as shown in Figure 1. Each group ac-
tively monitors its members and consists of one controlling
master-host and an undefined number of common nodes:

e Master-hosts:

Master-hosts have sufficing resources (mainly CPU
and memory) for running a light-weight jUDDI reg-
istry plus the necessary discovery service. Each group
of hosts is controlled by a master, which keeps track of
other masters and acts as an access-point to retrieve
information about existing hosts and their groups.
Figure 2 illustrates the component-architecture, show-
ing the modules of the network management coexist-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

' Master-Host N
Management-GUI

Services [
[WS Registry Manager I

Web Service
Container

Network Control

Web Service

Registry

Node Discovery

\ /

Figure 2. Component Architecture of a
Master-host

ing with a Web service container. Apart from the man-
agement task, master-hosts are usual nodes which can
invoke and provide own Web services.

e Common network nodes:

PDAs, peripheral devices such as printers or scanners,
etc. are also allowed to join the network and provide
services. But due to lacking performance or possi-
bilities of running the management-code, they are not
qualified to become a master.

For building groups, common nodes joining the network
use JXTA [7] to discover all master-hosts from which one
has to be chosen as the leader. The procedure of deciding
whether a host is going to become a master or should join
another one can be done either manually by offering this
functionality to the user in a GUI, or automatically by per-
forming segmentation-algorithms, which have the handicap
of posing an NP-complete problem. Such algorithms can
use context-specific information for dividing the network
into groups of hosts sharing defined properties or groups
representing the physical structure of the network. After
joining a group, JXTA is deactivated on the nodes and peri-
odical heartbeat-messages are sent to the master-host, con-
firming the current availability. These heartbeats allow to
detect changes in the topology of the group, such as mov-
ing or disconnecting common nodes and master-hosts. Af-
ter detecting a disconnection of its master, every node of the
group has to redo the discovery-process to find a new one.

3.2 Service Discovery and Registry

The idea of UDDI Web service registries is to host infor-
mation about miscellaneous services at a well-known loca-
tion and to provide a convenient possibility of querying it.
Even in ad-hoc networks, this implies a certain centraliza-
tion, since it is not reasonable to expect every node to run
its own registry. We can accept centralization only if we
ensure that registries are notified about the availability of

services and rebuild themselves quickly after failures or dis-
connections. Furthermore it is necessary to place these reg-
istries at locations which are easy to find for all clients. As
a matter of course master-hosts pose a perfect destination.
Their locations are known by all nodes and the monitoring-
functionality makes is possible to keep UDDI-information
up-to-date. By using non-replicated distributed registries
the costs of recovering data of disconnected ones are kept
low, speeding up the process of repopulation. But unfortu-
nately, running multiple registries also implies an increased
probability of failure of one of them, compared to a sin-
gle registry. This can be controlled by choosing partial-
replication [16] of UDDI-data to avoid situations where
records without backups are lost, preventing clients from
finding services until the recovery process is completed.

To populate the registries, all nodes are required to pub-
lish lists of their services including meta-data which are
used for assembling the service-descriptions. This is done
immediately after a node is successfully connected to its
master-host, as described in Section 3.1. Nodes which lost
connection to their group are detected by missing heartbeat-
messages and all descriptions of their services are deleted
from the registry. Moreover services being deployed or un-
deployed on running hosts are detected by our extension of
Apache Axis and their registries are notified. This way the
UDDI-data can be kept in a consistent state all the time.

An aspect of distributed registries is the required mul-
ticast of a query. This can be optimized if the struc-
turing of the network was done by using context-specific
segmentation-algorithms. In such a case it is possible to
select only groups which might contain the desired web-
service and to direct the queries there, ignoring the rest. A
good example might be a network with business-processes
provided by different companies, where each group rep-
resents a single company. Searching for specific services
could be done by querying only registries of the desired
company.

4 Web Service Replication and Synchroniza-
tion

Our goal was to create a mechanism for replication and
consistency of replica-states, flexible enough to deal with
the problems in ad-hoc networks, and nevertheless to be us-
able within any other network. As mentioned in the Intro-
duction part, the discovery-system can be used separately
from the replicator. Therefore, the replicator is not bound
to specific network-environments or protocols, and just re-
quires a periodically actualized list of host-addresses, while
all specific checking and monitoring is done automatically.
For this reason we cannot use hard-coded methods for find-
ing new hosts, but instead we are opening a plug-in in-
terface, used for notifying about the states of existing and

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

new hosts in the network. The only connection between the
replicator and the discovery system described in Section 3
is realized as such a plug-in.

The whole replication system can be described as a co-
operation of these three separate parts (see Figure 3): Repli-
cator Web Service, Replica Placement Mechanism, and Ser-
vice State Synchronization.

Replicator-System

Replicator-

Web-Service ‘ Service-Replicas

Synchronization

Synchronization

Placement
e Server

Mechanism

Replica
Container

e

Web Service

Figure 3. Replication and Synchronization
Components

4.1 Replicator Web Service

For moving Web services from one host to another, a hot
deployment of services is mandatory. This means, services
should be able to be installed and uninstalled at running
hosts without the necessity of restarting the service con-
tainer or any other part of the system, which would interrupt
the workflow. We decided to implement the necessary func-
tionality for this also as a Web service. The main reason for
that is the convenient possibility of talking to a destination
service which is operating in the same run-time environ-
ment as the replicas. This allows to perform easy checks
for necessary classes, libraries, system attributes, and other
properties relevant for replication.

We have chosen Apache Axis as the container for the
replicator service and all deployed replicas, because of its
open-source license, speed, flexibility, and useful function-
ality such as request-handler chains. Hence, this constrains
all services to be Axis-compatible by providing deploy-
ment descriptors in WSDD-format [1] plus an additional
configuration-file with preferences for replication. The
replicator service provides the following functionality:

e Send and receive service archives:

Replication can be done in a push or pull manner. All
necessary files for deploying (e.g., property-files, de-
ployment descriptors, etc.) and for working (e.g., cer-
tificates, configurations, images, etc.) have to be con-
tained in this Jar-archive.

e Undeploy, redeploy, and delete services:

If a service is not needed at the moment but is re-
quired to be able to be reactivated later, it is possible

to undeploy it and redeploy it at a later date. This can
speed up replication within networks with a fast alter-
nating structure since it is possible to hibernate ser-
vices which can be woken up very quickly.

e Check and register libraries:

If services require external code in Jar-archives, it is
necessary to send and register them at the destination
host’s class-loader. Libraries are identified by check-
sums to avoid deploying identical copies with different
namings more than once.

e Return host and service properties:

These functions are called by the monitors to collect
properties of hosts and services in the network. The
most important properties are hardware parameters,
timestamps of deployments, links to hosts controlling
service replication, etc.

The replicator service works completely in passive mode,
viz it only responds to commands of clients without in-
voking anything independently. All active monitoring and
replication logic is part of the Replica Placement Mecha-
nism.

4.2 Replica Placement Mechanism

The main functionality of this mechanism is monitoring
of hosts and services, leader election, and the whole repli-
cation logic. While designing the algorithms, a top priority
was given to a behavior, adapting quickly to changes in the
network. This is achieved by avoiding voting-mechanisms
to find leaders, but rather using solutions which are able to
decide autonomously by comparing properties of the local
host to the monitored data.

4.2.1 Monitoring

Autonomous calculations, such as leader-elections, are
based on a global view of the network, which has to be peri-
odically monitored. Every single host has the capability of
monitoring, but for better scalability and load-balancing we
elect a number of max (2, numberOfHosts/50) hosts
with the least used network bandwidth as our monitors and
partition the network into groups, each one observed by
a single monitor. Information about changes in state and
availability of hosts and services is exchanged between the
monitors, so each of of them is able to offer a complete
view of the network. Election and monitoring is done as
described in Listing 1.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

Listing 1. "Monitoring"
// adapt 1intervals to network size
loop in intervals {
monitors = list fastest hosts
// is localhost a monitor?
if (localhost within monitors) {
// adjust host lists with monitors
get new host addresses from monitors
// which hosts shall be checked?
// group them by addresses
calculate list of hosts to check
// the actual monitoring

check hosts and their services

// get 1information about other hosts
exchange data with other monitors
} else {

// use another monitor
fetch random monitor and retrieve data

}
}

Random selection of a monitor-host provides a simple but
adequate way of load balancing. Nevertheless the perfor-
mance may sink, due to other applications or fluctuations
in the quality of the connection. In this case the health-
properties of the monitor-host will drop, which leads to
moving this task to another destination. To relevant infor-
mation about hosts and services is retrieved from the Repli-
cator Web Service which is running on every host accepting
service replicas. For evaluating the health of the hosts the
following properties are used: free CPU cycles, amount of
free memory, amount of free disk-space in the working di-
rectory, free network bandwidth, and the estimated time left
to live which can be calculated using battery statistics.

Unfortunately, in ad-hoc networks one cannot rely on
hosts sending events notifying about their disappearing.
This is why all the monitoring has to be active and in vari-
able intervals, depending on the size of the network. This
raises the problem that the monitored state can become out-
dated a short time after being retrieved and the algorithms
have to perform their calculations using old data. Therefore,
this may cause short inconsistencies, such as to many or to
few monitoring hosts or replication leaders. Since it is the
duty of our algorithms to follow this fact, they are designed
to correct it after the next cycle of the monitor. Hence, we
have a flexible system that accepts short inconsistent condi-
tions, which are rectified as soon as possible.

4.2.2 Replication Leader Election

For keeping replication strategies simple it is essential to
allow only one host to control the movements of a particular
service. This leader is unique in the network and every host
running this service has to apply the algorithm in Listing 2
to find out who is the leader.

Listing 2. "Leader election algorithm"
after every monitor-cycle {
if (service not deployed on other hosts)
declare localhost as leader
} else {
// find all leaders in the net

// sort by popularity

leaders = list leaders of service
// if more than one leader exists
// grep most popular one

if (at least 2 leaders equally popular) {
// may be localhost too

declare fastest one as new leader

} else {
// may be localhost too
accept most popular leader

}
}

The effect of this algorithm is that the host on which the
service was initially deployed stays the leader as long as
it is available. After a disconnection the fastest host will
be elected, although performance is not very important for
this task. Another feature is the merging of different leaders
within one calculation-cycle. This becomes necessary if an
ad-hoc network was split into many sub-nets, these sub-nets
elected their leaders and after a time they merged again.

4.2.3 Replication Logic

Since requirements of applications and network environ-
ments can vary extremely, we avoid prescribing defined
replication strategies, but allow applying custom solutions
suited to the individual needs. For giving this freedom, a
plug-in interface is provided, which is supported by a col-
lection of classes implementing functions for convenient
moving and synchronizing of services in the network. For
example one could adapt the P-Grid [13] peer-to-peer plat-
form with its sophisticated and flexible management system
to distribute Web services. In case no custom plug-in was
specified, a built-in replication method, called SimpleRepli-
cationLogic, is used. As Listing 3 shows, its behavior is
very simple but nevertheless adequate for the usual needs.

Listing 3. “"Simple Replication Logic"
after every leader-elector-cycle {
sort hosts regarding their properties
if (number of replicas too low) {
// mneed more running replicas
if (service is somewhere hibernated) ({
wake up
} else {
send new replicas to fastest hosts
}

synchronize new replicas

YFF.F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

}

if (number of replicas way to high) ({
delete surplus replicas on slowest hosts
leave some services hibernated

if (number of replicas slightly to high) {
hibernate replicas on slowest hosts

/

// can be maybe used later
if (replicas exists on transient hosts) ({
hosts have only little time left
move services to other/fastest hosts
synchronize new replicas

}

All services have to declare the minimum and maximum
allowed number of replicas within a single monitored net-
work. We do not want to allow them more control of the
replication process, since we believe this should be handled
by the replication logic.

Remembering the problem with short inconsistencies af-
ter merging several sub-networks, as described in Section
4.2.1, it becomes obvious that for a short time more than
one leader can exist, even if this is fixed by the election-
algorithm in the next cycle. Nevertheless, this could cause
a situation where the leaders want to perform some modifi-
cations concurrently, causing collisions or another inconsis-
tent state. So it is necessary to postpone these modifications
to the next round to ensure that only one leader will be left
and all other hosts are forced to abandon their modifica-
tions.

4.3 Service State Synchronization

Although replication provides the advantage of enhanc-
ing the availability of Web services within any network
strongly, it can consume a lot of bandwidth since all repli-
cas have to be synchronized. This can be avoided if the
number of replicas is not chosen too high or only services
are replicated which do not need a lot of data to be ex-
changed to keep a consistent state. While mobile ad-hoc
networks are not suited for synchronization of services with
large amounts of data, this problem disappears on faster net-
works. Our system does not set any limits but instead we let
it up to the users to choose their replicated services wisely,
depending on the network environment.

For a clearly arranged synchronization process, a simpli-
fied primary-copy approach [15] was chosen. This means,
all requests from clients are sent to the primary host, which
is in our case the replication leader for this service. This
host has to notify all replicas of changes in the state of
the service. Another alternative to primary-copy is the ac-
tive replication approach, where requests are sent to all
replicas and all individual responses are received by the

caller. This method requires client-multicasts for all invo-
cations and thus would slow down service-calls and make
re-synchronization of split networks more complicated.

In our implementation, changes in the state of a service
are tracked by declaring all relevant variables in a container-
class. After every invocation of the service the container
checks for alternations in the state and notifies all known
backups about them. Since SOAP-calls would slow down
the whole synchronization process, all communication is
done via a TCP-based protocol to a small server which is
running on a fixed port and serving only synchronization re-
quests. For developers it is recommended to write and regis-
ter so-called synchronization-helper-classes, which can be
compared to serializers and deserializers in SOAP imple-
mentations. These are used for calculating state changes of
an object and to serialize these changes. After being re-
ceived on the destination host the changes are applied to the
state object, using the same classes. This method helps to
reduce network traffic, because only necessary changes are
being sent instead of the whole objects. Nevertheless this
is not mandatory, since otherwise the state is serialized by
using a Java-ObjectStream.

Unfortunately, it is not always possible to ensure perfect
state-consistency in ad-hoc networks which can split and
merge again. This problem is explained using the following
example, where a ticket-distribution Web service is repli-
cated:

1. The replication mechanism spawns new replicas,
which are synchronized.

2. A laptop, establishing this network by acting as a
router between two sub-nets, is suddenly shut down.
Now two autonomous nets exists, having no informa-
tion about each others any more, but both containing
replicas of this service.

3. Both nets act completely individually, managing their
replicas which are synchronized among themselves but
not with the ones from the other net. Clients are chang-
ing the states of the services continuously by request-
ing new tickets.

4. The connecting router is up and running again, merg-
ing the sub-nets.

5. The newly merged network now contains clients,
which received the same ticket. In this case synchro-
nization of service states is impossible without declar-
ing one of them as invalid.

Situations like this one are handled, by regarding the ser-
vice which was invoked most often as all-dominant and re-
placing all other states. As a result of this, a part of the
clients has formerly received responses based on a service-
state which was later nullified.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

This example demonstrates the issue, that perfect syn-
chronization of states is impossible in highly dynamic net-
works. Again replicated services have to be chosen respec-
tively to the network environment. While it is not always
feasible to ensure ideal synchronization consistency in mo-
bile ad-hoc networks, this issue disappears in less dynamic
networks, where parts of the network are not likely to dis-
connect.

5 Practical Application

In the previous chapters we have described an infrastruc-
ture, which helps to build SOAs within dynamic and unre-
liable networks. But this raises the question, how client-
software can stand to benefit from all these features. Of
course the UDDI registries can be browsed the usual way,
but what about the invocation of replicated services? Ev-
ery function-call should be directed to the primary-copy and
never to the backups. But where can a client find the loca-
tion of the primary-copy?

For this reason we have written a simple utility which
queries the registries for locations of services and returns
the corresponding WSDL-file, pointing to the correct loca-
tion. To achieve this, the following steps are necessary:

‘ Client UDDI Registry ‘ ‘ Repicator Service | Primary Copy ‘
| Sendquery | H |
I |
I |
1
) Retum Location : :
=== ! |
[} I |
Query Localion of Primary Copy : :
T |
[} |
?) ' i
Retum Location |
=== A======== |
1 | |
| RetievewsDL | :
T T
1 I
3) ' ;
Generate and rewurn WSDL
=== i i |
I |
1
]

Figure 4. Automatic Retrieval of WSDL-data

1. Find a host which is running the service, even if this
is a replica. This can be done easily by querying the
registries.

2. Ask the replicator-service running there for the loca-
tion of the service’s primary-copy.

3. Request the Apache Axis container to return an auto-
matically generated WSDL-file for this service.

The returned WSDL-file could then be used as input for the
Apache Web Service Invocation Framework [3], which en-
ables calling Web services in a convenient way, without

having to take care manually of all necessary API-calls.
Changes in the availability of a service are noticed and han-
dled by querying the monitoring-hosts and requesting a new
WSDL-file from the new primary-copy.

6 Related Work
6.1 Host- & Service-Discovery

WS-Discovery [11] is a new discovery technique, espe-
cially for peripheral devices, which will probably replace
Universal Plug and Play in the near future. Queries for ser-
vices are sent to all nodes using a multicast discovery proto-
col, while optional discovery proxies can be used to scale to
a large number of endpoints. Nevertheless multicast queries
consume a lot of network bandwidth.

DEAPspace [19] provides an infrastructure for a decen-
tralized discovery and description of services on pervasive
devices. It uses proactive single-hop broadcasts, and there-
fore is only usable in short-range networks. Furthermore it
does not focus on Web services and registering them.

The Service Location Protocol [8] provides a scalable
framework for discovery and selection of network services.
SLP uses unicast- and multicast-communication, and thus
floods the network with search-messages, which increases
network usage and thus power consumption.

The DIANE-project [5] deals with semi-semantic over-
lays, structuring the network into logical groups, called
DLanes. Each service’s description is propagated through
them, notifying hosts about all services on the current lane.
Holding up the structures in the network causes a high over-
head, resulting in a reduced flexibility in fast changing net-
work topologies.

6.2 Replication & Synchronization

WS _Reliability and WS_ReliableMessaging [12] enable
to send a request through intermediate hosts to a Web ser-
vice while it is unavailable, guaranteeing that it will be
processed At-Least-Once, At-Most-Once or Exactly-Once.
But if the target service disappeared forever or a quick re-
sponse is desired, it is inevitable to use replication.

A lot of interesting ideas about replication and synchro-
nization can be found in Easy [17]. Although that solution
is neither focused on Web services nor suited for highly dy-
namic network environments, it provides useful guidelines
for replicating system states.

Friedman presents in [18] ideas about caching parts of
Web service data for reducing load and traffic. It places the
caches regarding the structure of the ad-hoc network but all
of them are still dependent on the primary service, which is
still the single point of failure.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

The solution in [14] provides extensions to the Web
service architecture, featuring detection and reporting of
failures, reliable messaging and multicasts for replicated
servers. Unfortunately some important parts of the system,
such as event notification, monitoring, and distributed con-
trol are not usable within ad-hoc networks.

7 Conclusion

Our contributions of this paper include (a) making UDDI
registries usable within ad-hoc networks by segmentation,
(b) replication of services for increased availability, and
(c) synchronization of stateful services. The prototype of
our solution suggests an enhancement to Service Oriented
Architectures, which are usually applied in managed net-
works. Enabling SOAs within dynamic ad-hoc networks
opens a lot of new possibilities, by offering a standardized
way of communication in spontaneously established net-
works, especially interesting for cooperating groups of en-
gineers.

References

[1] Apache Axis Deployment Descriptor Reference. http://
www.osmoticweb.com/axis-wsdd/.

[2] Apache Axis SOAP Container. http://ws.apache.
org/axis.

[3] Apache Web Service Invocation Framework. http://ws.
apache.org/wsif/.

[4] Business Process Execution Language for Web Services.
http://www-128.ibm.com/developerworks/
library/specification/ws-bpel/.

[5] DIANE. http://hnsp.inf-bb.uni-jena.de/
DIANE/.

[6] Java Implementation of UDDI. http://ws.apache.
org/juddi/.

[7] JXTA Peer-to-Peer Protocols. http://www.jxta.org.
[8] Service Location Protocol. http://www.openslp.
org/doc/rfc/rfc2608.txt.
[9] Universal Description, Discovery and Integration. http:
//www.uddi.org.
[10] Web Services Description Language. http://www.w3 .
org/TR/wsdl.
[11] Web Services Dynamic Discovery. http://msdn.
microsoft.com/ws/2004/10/ws-discovery/.
[12] WS_Reliability & WS_ReliableMessaging. http:
//developers.sun.com/sw/platform/
technologies/ws-reliability.v1.0.%pdf.
[13] K. Aberer, P. Cudr-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: A Self-
organizing Structured P2P System. SIGMOD, 32(2):29-32,
Sept. 2003.
[14] K. P. Birman, R. van Renesse, and W. Vogels. Adding
High Availability and Autonomic Behavior to Web Services.
In 26th International Conference on Software Engineering,
pages 17-26, 2004.

[15] N. Budhiraja and K. Marzullo. Highly-Available Services
Using the Primary-Backup Approach. In Second Workshop
on the Management of Replicated Data, pages 47-50, 1992.

[16] L.-R. Chen and F. B. Bastani. Reliability of Fully and Par-
tially Replicated Systems. IEEE Transactions on Reliability,
41(2):175-182, June 1992.

[17] E. Dekel, O. Frenkel, G. Goft, and Y. Moatti. Easy: Engi-
neering High Availability QoS in wServices. In 22nd Inter-
national Symposium on Reliable Distributed Systems, pages
157-166, 2003.

[18] R.Friedman. Caching Web Services in Mobile Ad-Hoc Net-
works: Opportunities and Challenges. In Second ACM In-
ternational Workshop on Principles of Mobile Computing,
pages 90-96, 2002.

[19] R. Hermann, D. Husemann, M. Moser, M. Nidd, C. Rohner,
and A. Schade. DEAPspace - transient ad-hoc networking
of pervasive devices. In First Annual Workshop on Mobile
and Ad Hoc Networking and Computing, pages 133—-1134,
2000.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the First International Conference on Availability, Reliability and Security (ARES’06)
0-7695-2567-9/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

