
Cost-Efficient and Application SLA-Aware Client Side Request Scheduling in an
Infrastructure-as-a-Service Cloud

Philipp Leitner, Waldemar Hummer, Benjamin Satzger, Christian Inzinger, Schahram Dustdar
Distributed Systems Group

Vienna University of Technology
Argentinierstrasse 8/184-1, 1040 Vienna, Austria

{lastname}@infosys.tuwien.ac.at

Abstract

Providers of applications deployed in an Infrastructure-
as-a-Service cloud permanently face the decision of
whether it is more cost-efficient to scale up (i.e., rent more
resources from the cloud) or to delay incoming requests,
even though doing so may lead to dissatisfied customers
and broken service level agreements. This decision is
further complicated by the fact that not all customers have
the same agreements, and not all requests require the same
amount of resources devoted to them. In this paper, we
present an approach for optimally scheduling incoming
requests to virtual computing resources in the cloud, so
that the sum of payments for resources and loss incurred
by service level agreement violations is minimized. We
discuss our approach based on an illustrative use case.
Furthermore, we present a numerical evaluation based on
real-life request data, which shows that our agreement-
aware algorithm improves upon earlier work, which does
not take service level agreements into account.

I. Introduction

Current research and practice of information systems
engineering is seeing substantial interest in the idea of
cloud computing [3], [5]. In cloud computing, resources,
such as CPU processing time or disk space, are rented
and released purely on demand. The advantages of this
model are manifold, including potential cost savings for
users, virtually limitless scalability, and greener IT because
of reduced energy consumption. One popular approach to
cloud computing is the Infrastructure-as-a-Service (IaaS)
model [10], where virtual computing resources (virtual
machines) are acquired and released on demand. This
idea has been made popular in recent years by widely

used implementations, such as Amazon’s Elastic Compute
Cloud1 or the Eucalyptus2 open source implementation.
Even though the IaaS model delivers considerably more
flexibility than previous server leasing models (e.g., renting
a dedicated server at a commercial computing center), a
certain level of planning remains necessary, as providers
need to take billing time units [9] (BTUs) into account,
the atomic measurement of billable computing resources.
Typically, the BTU is relatively large (e.g., one hour for
EC2) as compared to the time necessary to serve requests.

For applications deployed to IaaS clouds, service level
agreements [7] (SLAs) are becoming increasingly impor-
tant. SLAs are contractual agreements between application
providers and their customers. They are negotiated on
a per-customer basis (different customers typically have
different SLAs), and govern the minimum quality (e.g., re-
sponse time) that customers can expect. Violation of SLAs
is problematic for application providers, as SLA violations
incur direct or indirect financial losses for the provider.
SLA-bound application providers face an important trade-
off in IaaS settings. On the one hand, they want to
minimize cases of SLA violations, as to minimize penalty
payments and customer dissatisfaction, i.e., ultimately, to
save money. On the other hand, the typical way to provide
better QoS in an IaaS setting is to scale out [19], that is,
to acquire a larger number of virtual computing resources
from the cloud, which incurs costs as well. Alternatively, a
provider may try to schedule application requests smartly
among existing virtual computing resources, so as to fulfill
the largest percentage of SLAs without paying for more
resources. However, this decision is complicated by the
fact that not all requests are equal (some requests take up
more computing resources to complete), and neither are all
SLAs (some customer’s requests have tighter SLAs than

1http://aws.amazon.com/ec2/
2http://open.eucalyptus.com/

others, and some SLAs are more expensive to violate than
others).

In this paper we propose an approach for scheduling
application requests to IaaS virtual computing resources, so
that SLA-bound service providers can minimize their over-
all costs. We define the total costs as the sum of the costs of
SLA violations and IaaS virtual computing resources costs.
The proposed approach takes all the previously mentioned
intricacies into account. The main assumptions that are
implied in this paper are that (1) application requests are
stateless, i.e., requests can be scheduled to any computing
resource without consideration of where earlier requests
have been scheduled to, and that (2) the execution time
of requests can be reasonably precisely approximated in
advance by the application provider. Our approach does not
assume that providers have any information about future
requests.

The rest of this paper is structured as follows. Sec-
tion II introduces an illustrative case, which exemplifies
the setting of our approach. Section III contains the main
contribution of the paper, the description of the SLA-aware
request scheduling approach. We numerically evaluate our
approach in Section IV, and discuss some related scientific
work in Section V. Finally, Section VI concludes the paper,
and discusses some important future research directions.

II. Illustrative Use Case

In the rest of the paper, we will use the case of BIaaS
(pronounced bias), a Web-based business intelligence (BI)
application for small and medium-sized enterprises as
scenario. In essence, BIaaS allows smaller companies with
no access to complex analytics to upload raw data (e.g.,
sales data) in an anonymized form to BIaaS via a secured
Web service interface, in order to later on generate a
number of standard or customer-specific BI reports (e.g.,
a predictive analysis of sales trends). BIaaS is run by a
small startup company, which, by itself, does not own
the significant processing power and storage necessary to
generate these reports. Instead, BIaaS rents on demand
virtual machines at a public IaaS cloud. Similarly, the
necessary database cluster (to securely store the uploaded
customer data) is maintained via a rented cluster of cloud
data services.

This case is depicted in Figure 1. The BIaaS application
consists of an application frontend, which hosts the Web
services that customers use in order to interact with the
application. This frontend is hosted on a single large
EC2 cloud instance. The time-consuming process of report
generation is delegated to one of a number of instances
from a pool of workers. These workers are identical,
and can be scaled up and down on demand, depending
on current load. The actual customer data is stored in

Amazon EC2

B
Ia

aS
A

pp
lic

at
io

n
Fr

on
te

nd

RDS Cluster

Master

Slave 1 Slave 2

BI Worker Pool
(dynamically sized)

Customer 1

Customer 2

Customer 3

Figure 1. BIaaS Case Study Overview

an Amazon Relational Database Service3 (RDS) cluster,
consisting of one master node and two slaves. In the figure,
three example customers are depicted. Customer 1 has a
very tight SLA with BIaaS, i.e., requests from Customer 1
need to be handled as soon as possible, as this SLA does
not allow for much delay, and is very expensive to violate.
Customer 3 also has an SLA with BIaaS, but this SLA is
easier to maintain. Finally, Customer 2 does not have an
SLA at all, i.e., requests from Customer 2 are served on a
best effort basis.

The main challenge that we tackle in this paper is how
to cost-optimally size the pool of workers (i.e., when to
scale up and when to scale down), and how to optimally
assign incoming requests to workers, depending on the
current load of each worker and the SLAs and estimated
durations associated with each request. This allows BIaaS
to prevent over-provisioning, while at the same time main-
taining compliance with the SLAs that are most important
to the provider. Please note that we are illustrating the
BIaaS case using Amazon cloud services mostly because
of their high publicity. Our approach is in general not
limited to any specific IaaS provider.

III. SLA-Aware Request Scheduling

In this section, we describe the main contribution of
this paper, a cost-efficient and SLA-aware client side
request scheduling technique. This approach can be used
by cloud application developers to manage the pool of
virtual resources in a way that is cost-efficient for the
application provider.

A. Overview

In order to illustrate the decision problem tackled in this
paper, Figure 2 shows a simple scheduling scenario based

3http://aws.amazon.com/rds/

on the BIaaS case.

B
Ia

aS
A

pp
lic

at
io

n
Fr

on
te

nd

B
I W

or
ke

r P
oo

l

t

r1

r1r2

r2
r3 - r6

r3
-

r6

r7

r7

Virtual Resources
Key: Resource Running

Resource Provisioning

Incoming Request

Executing Request

Figure 2. Scheduling Requests

In the figure, requests (r1 to r7) are arriving irregu-
larly over time, and requests have individually different
durations. Whenever a request is received by the BIaaS
application frontend, it faces the decision of either instan-
tiating a new virtual computing resource (and scheduling
the request there), or scheduling the request to any of
the existing virtual resources. r1, r2 and r7 trigger the
allocation of new resources in the example. As indicated
by the dashed start in the lifeline of each resource, during
startup, there is a brief period of time when the resource
is provisioned (i.e., the resource already exists, but is yet
unable to process requests). The requests r3 to r6 are
scheduled to existing resources. Note that requests can also
be scheduled to resources which are currently busy, adding
the request to any position in this resource’s waiting list.

B. Assumptions

Our approach is based on some background assump-
tions. Most importantly, we assume that requests can
be scheduled independently from each other. Essentially,
this means that we require the individual requests to be
stateless. State between requests may be maintained by the
application, but this state needs to be stored in a way that is
accessible by all virtual resources (e.g., in the RDS cluster
in the BIaaS case). Additionally, in order to allow for
meaningful scheduling, the application provider needs to
be able to generate reasonable predictions of the duration
of each request. Furthermore, we assume that requests,
once started, should not be interrupted. Similarly, requests
cannot be moved to a different virtual resource, once they
have been scheduled. Note that these assumptions are
in line with related earlier research work [9]. However,
as compared to this earlier paper, we have relaxed the
assumptions to the end that we do not consider virtual
resources to be available instantly (i.e., we take the provi-
sioning time of virtual resources into account).

C. Definitions

In order to formally describe our scheduling technique,
we first need to define a number of relevant concepts.
Firstly, a request r ∈ R is issued by a customer. Requests
have request durations dr ∈ R, which incorporate the times
between when a request is received by the provider and the
time the final result is delivered back. dr consists of two
important components, the waiting time wr ∈ R (the time
between receiving the request and starting to execute it)
and the execution time er ∈ R (the time that it takes to
actually carry out the request). The request duration is the
sum of these components (dr = wr + er).

Requests have SLAs associated, which we refer to as
SLAr ∈ SLA. In our model, SLAs are functions that map
request durations dr to numerical costs, i.e., SLAr : R→
R.

 t1 t2

100

300

500

700

Request Duration

SL
A

Co
st

s

Figure 3. Example SLA Function

SLA functions come in many different shapes and
forms [16]. In this paper, we generally assume a linear
penalty function with two point discontinuities, similar to
the example depicted in Figure 3. These SLA functions
typically exhibit two important properties. Firstly, they are
monotonically increasing, i.e., ∀ SLAr ∈ SLA ∀d1, d2 ∈
R : (d1 < d2) =⇒ (SLAr(d1) ≤ SLAr(d2)).
This means that the penalty for a higher degree of SLA
violation should never be smaller than the penalty for
a “lesser” violation. Secondly, SLA functions have two
special points, referred to as t1 and t2. Up to and including
t1 the penalty is 0 (no violation has occurred). Beyond this
point, a penalty has to be paid which depends linearly on
how much the request has been delayed, up to a second
point discontinuity t2. Starting with t2, the customer and
provider have essentially given up on the request. The
request is cancelled, and a fixed penalty is charged.

However, SLAs are not the only cost factor that ap-
plication providers need to keep in mind. Renting virtual
resources also incurs significant costs. We refer to the
virtual resources rented by an application provider as
the set of H , consisting of concrete resources h ∈ H .

60 1 2 3 4 5

100

300

500

700

Hours Rented

Vi
rt

ua
l R

es
ou

rc
e

C
os

ts
BTU

Costs / BTU

Figure 4. Virtual Resource Cost Function

Each resource has a request queue Qh ∈ Q (whenever a
request is finished, the first request on Qh is processed
next). We use index terminology to refer to requests at
specific positions in the queue, e.g., Qh[1] refers to the
first (the currently executing) request in the request queue
of h. The function a : Q → R denotes the time that
a currently executing request (by definition at the first
index of the queue) is already executing. Furthermore, |Qh|
denotes the queue length of the resource. The function
t : H → R captures the total time that a resource was
running. Obviously, the costs of renting a given virtual
resource h (referred to as cvm(t(h))) are a function of
that total run time t(h) (cvm : R → R). In general, we
assume cvm to be a piecewise linear step function, with a
structure similar to the one depicted in Figure 4. This type
of function has two important parameters: (1) the length of
the billing time unit btu, which is the granularity of billing
for the resource (e.g., for Amazon EC2, virtual resources
are billed by the hour, that is, btu is one hour); (2) the costs
for a single virtual resource per BTU (cbtu). The function
f : H → R denotes the “free” time of a host, i.e., the time
that we need to pay anyway, but for which currently no
request is scheduled. Essentially, the free time is time that
the host would be online but idle.

Finally, we need to keep in mind that virtual resources
do not immediatly become available when they are rented.
Much more, there is a startup phase, during which the
resource is provisioned and booted. In our formal model,
we use the constant p to refer to this provisioning time.
p is defined as the time between requesting a new virtual
resource from the cloud provider, and the time when the
first request can be served by the resource. We assume
that p is of comparable size for every virtual resource.
Note that, in general, p is relatively large as compared to
the execution time er for most r ∈ R. This means that
launching a virtual resource on demand, to serve a given
request, will often increase the total duration dr of this
request by orders of magnitude, as compared to using an
idle existing virtual resource.

D. Request Scheduling

Based on the formal model described in Section III-C,
we are now able to define an SLA-aware decision proce-
dure for optimally scheduling incoming requests to virtual
resources. In short, we aim to minimize the overall costs
for the provider of the cloud application. We define the
overall costs as in Equation 1. This equation can essentially
be reduced to two vital components: reducing the sum
of SLA violations for all requests, while at the same
time keeping the operational costs for the virtual cloud
resources minimal.

OC =
∑
r∈R

SLAr(dr) +
∑
h∈H

cvm (t(h))→ min! (1)

As indicated in Section III-A, for every request,
scheduling can decide to either instantiate a new virtual
computing resource or use an existing one. For each exist-
ing resource, we can insert the new request at any position
in this resource’s request queue. Consequently, for each re-
quest, we have to consider 1 +

∑
h∈H (|Qh|+ 1) different

scheduling decisions. We can represent each scheduling
decision as a 3-tuple z =< r, h, i >, with r being the
request to schedule, h being the host to execute this request
on, and i being the index of this host’s queue that we want
to place the request on. We propose the following simple
greedy approach for deciding between these decisions: for
a request r, select the scheduling decision where the costs
cr(r, h, i) are minimal. For decisions to start a new virtual
resource, the costs are as defined in Equation 2.

cr(r, h, i) = SLAr(p + er) + cvm(p + er) (2)

Calculating the costs of scheduling to an existing host
is more complex. Primitively, the costs in this case are
the sum of three components (Equation 3), the SLA costs
of this request, the potentially increased SLA costs of
other requests affected by this decision, and the potentially
increased cloud costs that this decision leads to.

c(r, h, i) = cSLA + ∆cSLA
+ ∆cvm (3)

cSLA can be defined straight-forward as the SLA
penalty that has to be paid, under the assumption that
the duration of the request is going to be the sum of
the execution times of all requests scheduled before this
one, plus the execution time of this request, minus the
past execution time of the currently executing request
(Equation 4).

cSLA = SLAr

i−1∑
j=1

(eQh[j]) + er − a(Qh)

 (4)

The increased cloud costs ∆cvm
are defined as in

Equation 5. If the host will be running idle for longer
than what it takes to execute the request, the request can
essentially be handled for free. Otherwise, we need to
factor in the costs of renting this resource for one or even
more additional BTUs.

∆cvm
=

{ ∣∣∣ er−f(h)btu · cbtu
∣∣∣ if er > f(h)

0 if er ≤ f(h)
(5)

Finally, the sum of all changes to the SLA costs of
other requests scheduled to the same host is defined in
Equation 6. For simplicity, we use dr to refer to the
originally predicted duration of an existing request here.
Essentially, this equation signifies that, for each request
which is going to move backwards one slot in the queue,
we need to calculate and sum up the new SLA costs minus
the original SLA costs prior to the change.

∆cSLA
=

|Qh|∑
j=i

(
SLAQh[j] (dQh

+ er)−
SLAQh[j] (dQh

)

)
(6)

If two or more decisions are associated with the same
costs, we need an additional tie breaking criterion. To this
end, we may either select one of these decisions at random,
or use a principle that we refer to as “minimal reduction
of possibilities”. This principle prefers decisions, which
use the shortest idle times that are still suitable to handle
the request. That is, costs being equal, we prefer to use
the smallest block of resources available, so that larger
blocks of idle time remain available to handle possible
future requests.

E. Releasing Virtual Computing Resources

Besides these scheduling decisions, the application
frontend in the overview in Figure 2 also needs to de-
cide when to release unused existing resources. However,
without information about future requests, resource release
decisions are trivial. In this case, the cost-optimal strategy
for the provider is to never release resources until the
end of the next BTU (i.e., if the BTU is one hour, never
release resources until another full hour has passed, as this
remaining time needs to be paid anyway), and to always
release resources which are not in use at the end of a BTU.

With more information about the request distribution,
it is possible to construct release heuristics, which im-
prove upon this trivial strategy (for instance, leave one
or more unused “spare” resource available to prepare
for upcoming load peaks), but the performance of such
heuristics depends strongly on the costs of keeping virtual
computing resources online versus the provisioning time p

of new resource, i.e., in tendency, keeping spare resources
becomes more attractive if resources are cheap and p
is large. We leave further discussion of resource release
heuristics to future research.

IV. Evaluation

In this section, we numerically evaluate the SLA-aware
scheduling approach. Therefore, we have implemented the
approach, as well as a number of other scheduling algo-
rithms, using a test harness based on the Groovy4 scripting
language. We compare scheduling algorithms based on
a real-life request log, courtesy of the Grid Workloads
Archive [11], which we have associated with generated
SLA data.

A. Comparison Algorithms

In order to illustrate the usefulness of our approach, we
will compare our SLA-aware greedy scheduling strategy
with some established algorithms, as surveyed in [9].
More concretely, we have implemented the comparison
algorithms summarized in Table I.

Comparison Algorithm Reasoning
1VM4All Provides a lower bound on cloud costs

1VMPerReq Maximum parallelization of requests
BinPacking Maximizes utilization of resources

Table I. Summary of Comparison Algorithms

The 1VM4All scheduling algorithm uses only a single
virtual resource to handle all requests. All incoming re-
quests are appended to the end of the queue of this single
resource. 1VMPerReq is the other extreme. This algorithm
does not enqueue any requests. Instead, if an idle running
resource is found, this idle resource is used. If no idle
virtual resource is available, a new one is requested and
used. Finally, we also use a classic heuristic for online bin
packing [6], best fit bin packing. Essentially, this heuristic
schedules a request to the running machine whose free
time best matches the execution time of the request. This
algorithm aims at maximizing the utilization of virtual
resources.

B. Experimental Setup

For a fair comparison of the algorithms, we have used
a sample of a real-life data set collected by the Grid
Workloads Archive. More concretely, we have used the
AuverGrid workload trace with the identifier Gwa-t-45.

4http://groovy.codehaus.org/
5http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-4

From this trace, we have skipped the first 1000 requests (as
these seem to present a relatively uninteresting bootstrap
phase of low activity), and used the next 2000 requests
with a processing time between 10 and 60000 seconds.
From these requests, we extracted their duration as well
as the delay between requests, and associated randomly
generated SLA functions of the form depicted in Figure 3.
In this way, we have extracted two different data sets, one
with rather lenient SLAs (i.e., the SLAs are defined with
significant leeway for delays) and one with stricter SLA
definitions. For the lenient data set, the average violation
threshold (t1 in Figure 3) is set to 2.5 · er, while t1 for
the strict set is in average only 1.5 · er. We provide both
experimental base data sets online6, to allow for scientific
validation of our results.

C. Results

In the following, we will compare the SLA and cloud
costs accruing for the application provider when schedul-
ing requests based on the different algorithms. However,
before looking at final costs, we present some important
insights into the runtime of our experiments, which exem-
plify better what is going on during each experiment run.
The following plots depict runs against the data set with
more lenient SLAs, however, the general insights described
below are equally valid for the other data set. Furthermore,
we have omitted 1VM4All in these plots, as the special
nature of this algorithm leaves plotting the number of hosts
and requests uninteresting.

 0

 50

 100

 150

 200

 250

 300

 350

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sc
he

du
le

d
R

eq
ue

st
s

Experiment Runtime [ms]

SLA-Aware Scheduling
1VMPerJob
BinPacking

Figure 5. Scheduled Requests

Firstly, Figure 5 depicts the number of currently sched-
uled (i.e., executing or enqueued) requests at each point in
time during the experiment. Waiting times are minimal for
1VMPerJob (requests are per definition only waiting while

6http://www.infosys.tuwien.ac.at/prototypes/VRESCo/cloud12/data

new virtual resources are provisioned). As BinPacking
aims at making the most out of already paid resources,
some requests are delayed longer in order to maximize uti-
lization. Our SLA-aware scheduling approach is positioned
in the middle, as it aims at enqueuing requests with more
lax SLAs, and tries to handle expensive SLAs directly.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Ac

tiv
e

Vi
rtu

al
 R

es
ou

rc
es

Experiment Runtime [ms]

SLA-Aware Scheduling
1VMPerJob
BinPacking

Figure 6. Active Virtual Resources

Even more interesting is Figure 6, which provides a
view at the number of currently active virtual resources
at each point in time. Evidently, our SLA-aware approach
is more “stable” in its resource usage, while the number
of active resources fluctuates more drastically using both
1VMPerJob and BinPacking with current load. As the
provisioning time p of resources is typically significant
as compared to the execution time er of requests, we
consider this relative stability to be a useful property of
the approach.

Algorithm SLA Costs Cloud Costs Overall Costs (OC)
SLA-Aware 883 255400 256283

1VM4All 1756684 230600 1987284
1VMPerJob 0 321000 321000
BinPacking 3171 305100 308271

Table II. Experimental Results (Lenient SLAs)

Obviously, the most interesting question is whether
our SLA-aware approach is able to reduce the overall
costs OC as compared to other algorithms. Hence, final
costs (summed up over all requests in the data sets) for
all algorithms and both data sets are listed in Table II
and Table III. As we can see, our SLA-aware approach
leads to the least overall cost for both data sets. As
expected, 1VMPerJob minimizes SLA costs, but does so
by overpaying on cloud resources. 1VM4All minimizes
cloud costs, but SLA payments are larger by orders of
magnitude than with all other competitors (in fact, many
requests even exceed t2, and, hence, are in fact cancelled).

BinPacking provides a middle ground between SLA and
cloud costs, but overall costs are still higher than using our
SLA-aware approach.

Algorithm SLA Costs Cloud Costs Overall Costs (OC)
SLA-Aware 32023 253400 285423

1VM4All 12480685 230500 12711185
1VMPerJob 8338 320600 328938
BinPacking 46285 304700 350985

Table III. Experimental Results (Strict SLAs)

V. Related Work

In recent years, cloud computing [3], [5] has become
a proliferating research area, with many important results
being generated around the globe. Generally speaking,
many current cloud computing research approaches are
cost-aware [17], [24], in the sense that they take the costs
of renting virtual resources into account. Typically, the
base assumption is that an externally fixed number of
requests needs to be handled within a fixed time frame,
with the only variable being the cloud deployment and
scheduling. This is unlike our work, which allows to find
the best tradeoff between request execution performance
and costs for the cloud.

Our main vehicle for bringing application performance
and cloud hosts into comparable dimensions are service
level agreements (SLAs). SLAs are an active research
topic within the services computing area, leading to
specifications, such as WSLA [7] or WS-Agreement [2].
Many approaches exist for managing SLAs in service-
based environments (e.g., [23]), including approaches that
also take costs of adaptation and SLA violations into
account [15]. The latter paper is particularly interesting
for us, as the formalization that we have used to model
the execution duration / infrastructure cost tradeoff in
Section III is based on this earlier work. In the area of
cloud computing research, [1] provided some ground work
on SLAs in clouds, including a conceptual framework and
some typical service level objectives. Unfortunately, [1]
does not take application and customer-specific SLAs into
account, which makes it less relevant for the purposes of
the current paper. The short paper presented in [20] is more
relevant, starting from a similar idea as the contribution of
the current paper. However, instead of finding the optimal
tradeoff between SLA violations and cloud costs, [20] aims
for the best middle ground between SLA violations and
revenue generated by the cloud application.

Conceptually, the current paper is based on the ideas
first presented in [9]. This paper introduced various simple
algorithms for scheduling requests to virtual computing
resources. We extend upon this idea by including the

notion of SLAs, and present a novel, SLA-aware decision
procedure. The evaluation, that we have presented in
Section IV, mostly compares the results of our decision
procedure to these earlier results. However, [9] was not
the first paper to discuss request scheduling in the cloud.
Other contributions in this area include [18], which works
based on queueing theory, [21], which applies the notion
of gang scheduling (a scheduling approach stemming from
Grid job scheduling), and [13], which introduces a new
algorithm called DPSA (dynamic priority scheduling algo-
rithm). These papers mainly focus on the scheduling prob-
lem that the cloud operator faces (for instance, scheduling
virtual computing resources to physical hosts). Approaches
that aim at scheduling at client-side, as we do, are currently
harder to come by. One interesting approach is discussed
in [4], where client-side scheduling onto a combination
of in-house and cloud resources has been researched.
Additionally, [9] as described above, also covers client-side
cloud scheduling. Unlike our contribution, these papers do
not explicitly cover SLAs of application providers.

Finally, some interesting work orthogonal to the contri-
butions of this paper needs to be discussed. [12] presents
a GNU Octave based implementation of performance pre-
dictions in a grid or cloud. In the context of our work, this
is particularly relevant, as it allows application providers
to generate the necessary predictions of request execution
times, which we have excluded in Section III. Note that
other approaches, such as artificial neural networks [14] or
finish time prediction [8] may also be suitable to generate
projections of execution times. [22] is interesting, as it
provides a cloud-based middleware, which automatically
adapts to incoming load to improve performance. How-
ever, this paper does not consider SLAs or the costs of
scaling up and down. Similarly, [16] presents CloudScale,
another cloud computing middleware that transparently
handles scaling for the application provider. The approach
discussed in the current paper has been designed to be
easily usable in the scope of CloudScale.

VI. Conclusions

We have presented an application SLA-aware approach
for scheduling requests to virtual computing resources in
an IaaS cloud. Essentially, our work resolves the request
execution time / infrastructure costs trade-off described
in [9] by breaking down both factors to costs for the
provider, hence allowing us to find an optimal solution
to this scheduling problem. We presented an easy-to-
implement cost-based decision procedure, and evaluated
our approach based on a real-life request data set from
the scientific computing domain. We have numerically
compared our decision procedure with a set of algorithms
published earlier, and found that our approach leads to

better results (i.e., lower costs for the application provider)
than any of these.

A. Future Research Directions

In this paper, the main focus was on the solution
of the SLA-aware scheduling problem itself, abstracting
away from some important technical issues. In earlier
work, we have presented the CloudScale framework [16]
for transparently scaling applications in the cloud. As
next steps, we plan to integrate the scheduling approach
discussed here into CloudScale, and, consequently, to
evaluate our ideas using a more extensive case study, which
features a real running cloud application. Furthermore,
we plan to relax some of the assumptions of the current
iteration of our work. More concretely, we will investi-
gate possibilities to pause and migrate executing requests
within CloudScale, allowing us to “update” assignments of
requests to virtual computing resources later on, even after
a request has started to execute. We plan to investigate the
usage of machine learning based prediction technqiues to
implement concrete tools for projecting the execution time
er of requests in advance, as required by our scheduling
approach. In earlier work, we have already applied artificial
neural networks for conceptually similar problems [14].
Finally, as already indicated in Section III-E, a more
detailed investigation of resource release heuristics, which
incorporate predictions about future request distributions,
will also be part of our future work.

Acknowledgement

The research leading to these results has received
funding from the European Community’s Seventh Frame-
work Programme [FP7/2007-2013] under grant agreements
215483 (S-Cube) and 257483 (Indenica).

References

[1] M. Alhamad, T. Dillon, and E. Chang, “Conceptual SLA Framework
for Cloud Computing,” in 4th IEEE International Conference on
Digital Ecosystems and Technologies (DEST), 2010.

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web Ser-
vices Agreement Specification (WS-Agreement),” Open Grid Forum
(OGF), Tech. Rep., 2006, http://www.gridforum.org/documents/
GFD.107.pdf, Last Visited: 2012-01-29.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A
View of Cloud Computing,” Communications of the ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[4] M. D. Assunção, A. Costanzo, and R. Buyya, “A Cost-Benefit
Analysis of Using Cloud Computing to Extend the Capacity of
Clusters,” Cluster Computing, vol. 13, pp. 335–347, 2010.

[5] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality
for Delivering Computing as the 5th Utility,” Future Generation
Computing Systems, vol. 25, pp. 599–616, 2009.

[6] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, Approximation
Algorithms for Bin Packing: a Survey. PWS Publishing Co., 1997,
pp. 46–93.

[7] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler,
H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef, “Web Services
on Demand: WSLA-Driven Automated Management,” IBM Systems
Journal, vol. 43, no. 1, pp. 136–158, 2004.

[8] B. F. Dongen, R. A. Crooy, and W. M. Aalst, “Cycle Time
Prediction: When Will This Case Finally Be Finished?” in OTM
Confederated International Conferences, 2008, pp. 319–336.

[9] S. Genaud and J. Gossa, “Cost-wait Trade-offs in Client-side Re-
source Provisioning with Elastic Clouds,” in 4th IEEE International
Conference on Cloud Computing (CLOUD 2011), 2011.

[10] D. Hilley, “Cloud Computing: A Taxonomy of Platform and
Infrastructure-Level Offerings,” 2009.

[11] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and
D. H. J. Epema, “The Grid Workloads Archive,” Future Generation
Computer Systems, vol. 24, pp. 672–686, 2008.

[12] G. Kousiouris, D. Kyriazis, K. Konstanteli, S. Gogouvitis, G. Kat-
saros, and T. Varvarigou, “A Service-Oriented Framework for GNU
Octave-Based Performance Prediction,” in 2010 IEEE International
Conference on Services Computing (SCC’10), 2010, pp. 114–121.

[13] Z. Lee, Y. Wang, and W. Zhou, “A Dynamic Priority Scheduling
Algorithm on Service Request Scheduling in Cloud Computing,” in
International Conference on Electronic and Mechanical Engineer-
ing and Information Technology (EMEIT), 2011, pp. 4665–4669.

[14] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar,
and F. Leymann, “Runtime Prediction of Service Level Agreement
Violations for Composite Services,” in Proceedings of the 3rd
Workshop on Non-Functional Properties and SLA Management in
Service-Oriented Computing (NFPSLAM-SOC’09), 2009.

[15] P. Leitner, W. Hummer, and S. Dustdar, “Cost-Based Optimization
of Service Compositions,” IEEE Transactions on Services Comput-
ing (TSC), 2012, to appear.

[16] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar,
“CloudScale - a Novel Middleware for Building Transparently Scal-
ing Cloud Applications,” in ACM Symposium on Applied Computing
(SAC), 2012.

[17] J. Li, S. Su, X. Cheng, Q. Huang, and Z. Zhang, “Cost-Conscious
Scheduling for Large Graph Processing in the Cloud,” in IEEE
International Conference on High Performance Computing and
Communications (HPCC’11), 2011, pp. 808–813.

[18] L. Li, “An Optimistic Differentiated Service Job Scheduling System
for Cloud Computing Service Users and Providers,” in 3rd Inter-
national Conference on Multimedia and Ubiquitous Engineering,
2009, pp. 295–299.

[19] M. M. Michael, J. E. Moreira, D. Shiloach, and R. W. Wisniewski,
“Scale-Up x Scale-Out: A Case Study Using Nutch/Lucene,” in
21th International Parallel and Distributed Processing Symposium
(IPDPS 2007), 2007, pp. 1–8.

[20] H. J. Moon, Y. Chi, and H. Hacigümüs, “SLA-Aware Profit Opti-
mization in Cloud Services via Resource Scheduling,” in Proceed-
ings of the 2010 6th World Congress on Services (SERVICES’10),
2010, pp. 152–153.

[21] I. A. Moschakis and H. D. Karatza, “Performance and Cost Evalu-
ation of Gang Scheduling in a Cloud Computing System With Job
Migrations and Starvation Handling,” in 16th IEEE Symposium on
Computers and Communications (ISCC 2011), 2011, pp. 418–423.

[22] B. Satzger, W. Hummer, P. Leitner, and S. Dustdar, “ESC: Towards
an Elastic Stream Computing Platform for the Cloud,” in 4th IEEE
International Conference on Cloud Computing (CLOUD 2011),
2011, pp. 348 – 355.

[23] A. Schmietendorf, R. Dumke, and D. Reitz, “SLA Management -
Challenges in the Context of Web-Service-Based Infrastructures,” in
Proceedings of the IEEE International Conference on Web Services
(ICWS’04), 2004.

[24] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A Cost-Aware
Elasticity Provisioning System for the Cloud,” in 31st International
Conference on Distributed Computing Systems (ICDCS’11), 2011,
pp. 559–570.

