
Cost and Benefit of the SLA Mapping Approach for Defining Standardized
Goods in Cloud Computing Markets

Michael Maurer1, Vincent C. Emeakaroha1, Ivona Brandic1, Jörn Altmann2
1Vienna University of Technology, Vienna, Austria,{maurer,vincent,ivona}@infosys.tuwien.ac.at
2Technology Management, Economics, and Policy Program, Department of Industrial Engineering

College of Engineering, Seoul National University, South-Korea, jorn.altmann@acm.org

Abstract

Due to the large variety in computing resources and,
consequently, the large number of different types of Ser-
vice Level Agreements (SLAs), any market for computing
resources faces the potential problem of a low market liq-
uidity. To counteract this problem, offering a set of stan-
dardized computing resources is appropriate. Each of these
standardized computing resources is defined through an
SLA template. An SLA template defines the structure of
an SLA, the attributes, the names of the attributes, and the
attribute values. Since these SLA templates are currently
static, they cannot reflect changes in users’ needs. To ad-
dress this shortcoming, we present the novel approach of
adaptive SLA matching. This approach adapts SLA tem-
plates based on SLA mappings by allowing Cloud users to
define mappings between public SLA templates, which are
available in the Cloud market, and their private SLA tem-
plates, which are used for various in-house business pro-
cesses of the Cloud user. Besides showing how public SLA
templates adapt to the demand of users, we also analyze the
benefits and costs of this approach. Costs are incurred ev-
ery time a user has to define a new SLA mapping to a public
SLA template due to its adaptation. In particular, within
this paper, we investigate the cost depending on the use of
different public SLA template adaptation methods. The sim-
ulation results show that the use of heuristics within adap-
tation methods helps balancing the cost and benefit of the
SLA mapping approach.

1 Introduction

Computing resource allocations in Clouds are based
not only on functional requirements but also on differ-
ent non-functional requirements. These non-functional re-
quirements (e.g., application execution time, reliability, and
availability) are termed Quality of Service (QoS) require-
ments and are expressed and negotiated by means of Service

Level Agreements (SLAs). In order to facilitate the cre-
ation and management of SLAs, SLA templates have been
introduced. SLA templates, which represent popular SLA
formats, comprise elements such as names of trading par-
ties, names of SLA attributes, measurement metrics, and
attribute values [1].

In Cloud computing markets, buyers and sellers of com-
puting resources face the problem of varying definitions of
computing resources. Computing resources are described
through different non-standardized attributes (e.g., CPU
cores, execution time, inbound bandwidth, outbound band-
width, and processor type). [4]. Sellers use them to describe
their supply of resources and buyers use them to describe
their demand for resources. As a consequence, a large va-
riety of different SLAs exists in the market. The success of
matching asks (i.e, offers of sellers) and bids (i.e., offers of
buyers) becomes very unlikely [1].

Approaches tackling this plethora of SLA attributes in-
clude the use of standardized SLA templates for a specific
consumer base [5, 6], downloadable predefined provider-
specific SLA templates [7], and the use of ontologies [8, 9].
These approaches clearly define SLA templates and require
users to agree a priori on predefined requirements. The SLA
templates are static.

However, the demand of users changes over time. For
example, the emergence of multi-core architectures in com-
puting resources required the inclusion of the new attribute
”number of cores”, which was not present in an SLA tem-
plate a couple of years ago. However, the existing ap-
proaches for the specification of SLA templates cannot eas-
ily deal with demand changes. These approaches involve
heavy user-interactions to adapt existing SLA templates to
changing market conditions.

In this paper, we apply adaptive SLA mapping, a new
approach that can react to changing market conditions [1].
This approach adapts public SLA templates, which are used
in the Cloud market, based on SLA mappings. SLA map-
pings, which have been defined by users based on their

needs, bridge the differences between existing public SLA
templates and the private SLA template (i.e., the SLA tem-
plate of the user). Since a user cannot easily change the
private SLA template due to internal or legal organizational
requirements, an SLA mapping is a convenient workaround.

The benefits of SLA mappings for market participants
are threefold. Firstly, traders can keep their private tem-
plates, which are required for other business processes. Sec-
ondly, based on their submitted mappings of private SLA
templates to public SLA templates, they contribute to the
evolution of the market’s public SLA templates, reflecting
all traders’ needs. Thirdly, if a set of new products is intro-
duced to the market, our approach can be applied to find a
set of new public SLA templates. All these benefits result in
satisfied users, who continue to use the market, therefore in-
creasing liquidity in the Cloud market. However, these ben-
efits come with some cost for the user. Whenever a public
SLA template has been adapted, the users of this template
have to re-define their SLA mappings.

The five contributions of this paper are: (1) the defini-
tion of an appropriate use case to exemplify the adaptive
SLA mapping approach; (2) the definition of three adap-
tation methods for adapting public SLA templates to the
needs of the user; (3) the investigation of conditions under
which SLA templates should be adapted; (4) the formaliza-
tion of measures (i.e., utility and cost) to assess SLA adapta-
tions and SLA adaptation methods; and (5) the introduction
of an emulation approach for the use cases.

The remainder of the paper is organized as follows: Sec-
tion 2 describes related work. Section 3 introduces the adap-
tive SLA mapping approach and the utility and cost model.
The simulation setup, the three adaptation methods, and the
simulation infrastructure are described in Section 4. Section
5 presents the simulation results and a discussion. Section
6 concludes the paper.

2 Related Work

For putting this work in context of the state-of-the-art,
we briefly describe Cloud marketplaces and the existing
work on SLAs. Currently, a large number of commer-
cial Cloud providers have entered the utility computing
market, offering a number of different types of services.
We distinguish between computing infrastructure services,
which are pure computing resources on a pay-per-use ba-
sis [11, 12, 13], software services, which are computing
resources in combination with a software solution [6, 14],
and platform services, which allow customers to create their
own services in combination with the help of supporting
services of the platform provider. The first type of ser-
vices consists of a virtual machine, as in the case of Ama-
zon’s EC2 service, or in the form of a computing cluster,
as done by Tsunamic Technologies. The number of re-
sources offered by a provider is low. For example, Ama-

zon and EMC introduced only three derivations of their ba-
sic resource type [5]. Examples for the second type of ser-
vices are services offered by Google (Google Apps [6]) and
Salesforce.com [14]. These companies provide access to
software on pay-per-use basis. These Software-as-a-Service
(SaaS) solutions can hardly be integrated with other solu-
tions, because of their large variety. Examples for the third
kind of Cloud services are Sun N1 Grid [15], force.com
[14], and Microsoft Azure [16]. In this category, the focus
lies on provisioning essential basic services that are needed
by a large number of applications. These basic services
can be ordered on a pay-per-use basis. Although the goal
of these offerings is a seamless integration with the users
applications, standardization of interfaces is largely absent.
Concluding, we can state that, apart from first attempts in
the service type infrastructure as a service, standardization
attempts do almost not exist.

The main SLA matching mechanisms are based on
OWL, DAML-S, or similar semantic technologies. [8] de-
scribe a framework for semantic matching of SLAs based
on WSDL-S and OWL. [9] present a unified QoS ontol-
ogy applicable to specific scenarios such as QoS-based Web
services selection, QoS monitoring, and QoS adaptation.
[17] present an autonomic Grid architecture with mecha-
nisms for dynamically reconfiguring service center infras-
tructures. It is exploited to fulfill varying QoS requirements.
Besides those mechanisms, [10] discuss autonomous QoS
management, using a proxy-like approach for defining QoS
parameters that a service has to maintain during its interac-
tion with a specific customer. The implementation is based
on WS-Agreement, using predefined SLA templates. How-
ever, they cannot consider changes in user needs, which is
essential for creating successful markets, as shown in our
earlier work [1]. Several works on current SLA manage-
ment are presented in [2]. Besides, regardless of the type
of approach used, these approaches do not evaluate and ex-
plain the benefit and costs through the introduction of SLA
matching mechanisms.

3 Adaptive SLA Mapping

In this section, we present a use case for adaptive SLA
mapping. Besides, we discuss the SLA life cycle and intro-
duce the utility and cost model for assessing SLA matching
approaches.

3.1 Use Case

Since resources can be exposed as services using typical
Cloud deployment technologies (i.e., SaaS/PaaS/IaaS), we
assume that the service provider of Figure 1 registers its re-
sources (e.g., infrastructure, software, platforms) to partic-
ular public templates (step 1, Figure 1). If some differences
between its resources (private SLA template) and the public

Figure 1: Use case of SLA mapping.

templates exist, the provider defines SLA mappings, trans-
forming the private template into the public template (step
2, Figure 1). The management of SLA mappings, which is
performed with VieSLAF, is explained in detail in [3].

In step 3, Cloud users can look up Cloud services that
they want to use in their workflow. In Figure 1, we ex-
emplified a business process (i.e, workflow) for medical
treatments [18]. It includes various interactions with hu-
man beings (e.g., the task of getting a second opinion on
a diagnosis) as well as interaction with different infrastruc-
ture services. Some of these tasks (e.g., the reconstruction
of 2-dimensional SPECT images to 3-dimensional SPECT
images) can be outsourced to the Cloud [18]. Thereby, we
assume that the private SLA template (representing the task)
cannot be changed, since it is also part of some other local
business processes and has to comply with different legal
guidelines for electronic processing of medical data. There-
fore, in case the user decides to outsource a task and dis-
covers differences between the private SLA template and
the public SLA template, the user defines an SLA map-
ping. The mapping describes the differences between the
two SLA templates (step 4). A typical mapping is the map-
ping of an attribute name to another attribute name (e.g.,
number of CPUsto cores) or the inclusion of a new SLA
attribute (e.g.,parallel programming models) into the SLA
template.

The public SLA templates are stored in searchable
repositories using SQL and non-SQL-based databases (e.g.,
HadoopDB). The SLA mappings, which have been pro-
vided by users and providers to the entity managing the
public SLA templates, are evaluated after certain time pe-
riods, in order to adapt the public SLA templates to the
needs of the users. The adapted public SLA templates re-

place the existing public SLA templates in the repository,
constituting our novel approach of adaptive SLA mapping.
The adaptation method, which adapts the public SLA tem-
plates, performs it such that the new public SLA templates
represent user needs better than the old SLA templates (step
5). Besides the adaptation of attribute names and attribute
values, the adaptations can also include definitions of new
branches of templates (e.g., a medical SLA template can be
substituted by more specialized templates on medical imag-
ing and surgery support). The definition of different ver-
sions of a particular template is also possible as shown for
the templates in the bioinformatics domain (step 6).

3.2 Public SLA Template Lifecycle

To illustrate the lifecycle of public SLA templates, we
give a short example as shown in Figure 2 first.

A
B
C

A'
B'
C''

Iteration 2

A'
B'
C'

A''
B''
C''

A'
B'
C'' Iteration 1

Private SLA templates

user

b
user

c

user

a

Figure 2: SLA mapping process.

Initially, the SLA template registry only holds the ini-
tial public SLA templateT0. In iteration 1, all users define
mappings from their private templates toT0. Since the at-
tribute of the public SLA template(A, B, C)and the attribute
names of each user differ, every user has to create 3 attribute

mappings. Based on these mappings, the new versionT1 of
the public template is generated (according to the adapta-
tion method used), containing the attribute namesA’, B’,
C” . Since the public template has changed, users need to
change their mappings as well (iteration 2). Consequently,
usera only needs one attribute mapping, userb can reduce
the number of attribute mappings to 2, and userc does not
need to issue any attribute mapping, since the public tem-
plate is completely identical to her private template. This
example shows how our adaptive SLA mapping approach
adapts a public SLA template to the needs of users. In ad-
dition to this, since adapted public SLA templates represent
the need of market participants, it is most likely that new
requests of users need less attribute mappings, reducing the
cost for users.

The formalized public SLA template lifecycle, which
consists of five steps, is shown in Figure 3.

Step 1:

Initial

Template

Step 2:

Consumer

Mappings

Step 4:

Adapt Template

and Publish It

Step 5:

Final

Template

Step 3:

Learn

Consumer

Needs

Figure 3: Formalized public SLA template lifecycle.

An initial template is created in the beginning of the life-
cycle (step 1, Figure 3). Afterwards, consumers perform
SLA mappings (step 2). Based on their needs, inferred
from these mappings (step 3), and the predefined adapta-
tion method, the public SLA template is adapted (step 4).
Assuming that the demand of market participants does not
change, a final template is generated (step 5). If the demand
has changed during a fixed time period, the process contin-
ues with step 2. In practice, the time between two iterations
could correspond to a time period of one week. During that
time new SLA mappings are solicited from consumers and
users.

3.3 Adaptation Methods

The adaptation methods determine for every attribute
name separately, whether the current attribute name should
be adapted or not. The first adaptation method is the maxi-
mum method (which has been applied to the example shown
in Figure 2). The remaining two adaptation methods differ
with respect to their use of heuristics to find a balance be-
tween benefit and cost.

3.3.1 Maximum Method

Applying this method, the SLA attribute name, which has
the highest number of attribute name mappings, is selected
(maximum candidate). The selected attribute name will be-
come the next attribute name used by the next public SLA
template.

Example:If we assume that all attribute names have the
same count, this method would select any of the four pos-
sible attribute names randomly. If a public SLA template
already exists, the method will choose the attribute name
that is currently used in the public SLA template.

3.3.2 Threshold Method

In order to increase the requirements for selecting the max-
imum candidate, this method introduces a threshold value.
If an attribute name is used more than this threshold (which
can be adapted) and has the highest count, then this attribute
name will be selected. If more than one is above the thresh-
old and they have the same count, the method proceeds as
described for the maximum method. If none is above the
required threshold, then the method sticks to the currently
used attribute name. Note, throughout the examples in this
paper, we fix the threshold to 60%.

Example:Assuming an example in which none of the at-
tribute names has a mapping percentage above 60% and all
counts are equal, the threshold method sticks to the attribute
name that is currently used in the public SLA template.

3.3.3 Maximum-Percentage-Change Method

This method is divided into two steps. In the first step, the
attribute name is chosen according to the maximum method.

In the second step, which comprisesτ iterations, attribute
names will be changed, only if the percentage difference
between the highest count attribute name and the currently
selected attribute name exceeds a threshold. The threshold
σT is set to 15%. A low threshold leads to more mappings,
whereas a high threshold leads in average to fewer map-
pings. Afterτ iterations (e.g.,τ = 10), the method re-starts
with executing the first step. It allows even slighter changes
to take effect.

Example: Let’s suppose the mapping count resulted in
attribute nameA′ having the highest count. By applying
the maximum method,A′ is selected. In the next itera-
tion, the number of mappings for each attribute name has
changed. Attribute nameA accounted for 10%,A′ for 28%,
A′′ for 32%, andA′′′ for 30% of all mappings. Assuming
a threshold of 15%, the chosen attribute does not change.
The percentage difference between attribute nameA′ and
the attribute nameA′′ with the highest count is only13.3%.

3.4 Utility and Cost Model

Since the aim of this paper is to assess the benefit and
the cost of using the adaptive SLA mapping approach for
finding the optimal standardized goods in a Cloud market,
we define a utility model and a cost model. The utility func-
tion and the cost function, which take attributes of the cus-
tomer’s SLA template and the attributes of the public SLA
template as input variables, helps to quantify the benefit and

cost. For our utility model, we assume an increase in ben-
efit, if an attribute of both templates is identical. This is
motivated by the fact that the Cloud resource traded is iden-
tical to the need of the buyer (or the provisioned resource
of the provider) and, therefore, no inefficiency through re-
source over-provisioning occurs. The cost model captures
the effort of changing an SLA mapping. A cost to the user is
only incurred, if the user needs to change its SLA mapping
because of a change in the public SLA template.

To formally introduce these models, we introduce some
definitions. The set of SLA attributes is defined asTvar.
As an example, we setTvar = {α,β}, whereα represents
Number of Cores in one CPUandβ representsAmount of
CPU Time(Note,α andβ could also represent attribute val-
ues). All possible attribute names that a user can map to
a π ∈ Tvar are denoted asVar(π). Within our example, we
setVar(α) = {A,A

′
,A

′′
,A

′′′
}, representingVar(“Number of

Cores in one CPU”) ={CPU Cores, Cores of CPU, Num-
ber of CPUCores, Cores}, andVar(β) = {B,B

′
,B

′′
,B

′′′
}.

Assuming a set of consumers’ private templatesC =
{c1,c2, . . . ,cn}, we can now define the relationship of a spe-
cific SLA attribute to a specific name of this SLA attribute
at the iterationi ∈ N for every private and public template
p, p∈C∪{T} as

SLAp,i : Tvar →
[

π∈Tvar

Var(π). (1)

With respect to our example, we assumeSLAT,0(α) = A
andSLAT,0(β) = B as our initial public templateT at itera-
tion 0.

Based on these definitions, we define the utility function
u+

c,i and the cost functionu−c,i for consumerc, attributeπ ∈
Tvar, and iterationi ≥ 1 as

u+
c,i(π) =

{

1, SLAc,i(π) = SLAT,i(π)

0, SLAc,i(π) 6= SLAT,i(π)
(2)

u−c,i(π) =































0, SLAc,i(π) = SLAT,i(π)

0, SLAc,i(π) 6= SLAT,i(π)∧

SLAT,i−1(π) = SLAT,i(π)

1/2, SLAc,i(π) 6= SLAT,i(π)∧

SLAT,i−1(π) 6= SLAT,i(π)

(3)

We choose our utility function as exemplified in [20].
The utility function states that a consumerc receives a util-
ity of 1, if the name of the attribute of the private SLA
template matches the name of the public SLA template at-
tribute, and a utility of 0 otherwise.

The cost function states that a consumer has a cost of
1/2, if the attribute names do not match and the public tem-
plate attribute of the last iteration changed to a new one. In
this case, the consumer has to define a new attribute map-
ping, as he cannot use the old one anymore. In the other two
cases, the consumer has no cost, since either the attribute

names match or the public template attribute name did not
change since the last iteration. That means he does not need
any new mapping. Thus, for attributeπ, the consumerc at
iterationi gets the net utility

uo
c,i,π = u+

c,i(π)−u−c,i(π). (4)

The net utility for all attributes at iterationi for consumer
c is defined as the sum of the net utilitiesuo

c,I ,π:

uo
c,i = ∑

π∈Tvar

uo
c,i,π. (5)

The overall utility and overall cost (i.e., the utility and
cost of all usersC and attributesπ at iterationi) are defined
as:

U+
i = ∑

c∈C
∑

π∈Tvar

u+
c,i(π) (6)

U−
i = ∑

c∈C
∑

π∈Tvar

u−c,i(π) (7)

Consequently, the overall net utility at iterationi is de-
fined as the difference between the overall utilities minus
the overall cost:

Uo
i = U+

i −U−
i . (8)

4 Simulation Environment

In order to analyze the performance of the three adap-
tation methods with respect to balancing between adapting
the public SLA template to the current needs of all users
and the cost of making new SLA mappings, we set up a
simulation environment.

4.1 Testbed

For our simulation, we use a testbed that is composed of
production-level software (i.e.,VieSLAF) and software that
simulates SLA mappings of users. Figure 4 illustrates our
emulationtestbed. The components that are drawn in white
are production-level software. It comprises the knowledge
base, components for managing SLA mappings provided by
consumers and providers, and the adaptation method. The
grey components indicate the simulated components.

The SLA mapping middleware, which follows a
client/service design, facilitates the access to registries
and provides a GUI used for browsing public SLA tem-
plates. The SLA mapping middleware is based on differ-
ent Windows Communication Foundation (WCF) services,
of which only a few are mentioned here. For example, the
SLAMappingServiceis used for the management of SLA
mappings (cf. (3), Figure 4) by users (i.e., consumers and
providers). Consumers may search for appropriate ser-
vices throughSLAQueryingServicein the registry and de-
fine appropriate SLA mappings by using the methodcre-
ateAttributeMapping. With each query, it is also checked

Adaptation methods for

SLA templates:

- Maximum Method

- Threshold Method

- Maximum-Percentate-

 Change Method

Remote

SLA

template

Meta Negotiaiton

Middleware (MNM)
Meta Negotiaiton

Middleware (MNM)
Meta Negotiaiton

Middleware (MNM)
SLA Mapping

Middleware

WSDL

API
...

...

Remote

SLA

template

Data Model

Private SLA

template

Private SLA

template

Trans-

formation

rules:

XSLT,

XPath

Trans-

formation

rules:

XSLT,

XPath

Trans-

formation

Rules:

XSLT,

XPath

Trans-

formation

Rules:

XSLT,

XPath

meta

negotiatio

n document

meta

negotiatio

n document

Public

SLA

template

Knowledge Base

SLA Demand

Generation for Consumer

Consumer

Provider

Registry

VieSLAF

(1)(2)

(3)

(4)

(5)

Public

SLA

template

SLA Mapping

Middleware

SLA Supply

Generation for Provider

Figure 4: Adaptive SLA mapping architecture using VieSLAF.

whether a user has also specified SLA mappings. The rules
necessary for the transformations of SLA attributes (or a set
of SLA attributes) are stored in the database and can be ap-
plied by users to their private SLA templates.

For storing the SLA templates in a predefined data model
(cf. (4)), we implemented registries representing search-
able repositories. Currently, we have implemented an MS-
SQL 2008 database with a Web service frontend. To handle
scalability issues, we intend to utilize non-SQL DBs (e.g.,
HadoopDB) with SQL-like frontends (e.g., Hive [22]). SLA
templates are stored in a canonical form, enabling the com-
parison of these XML-based templates. The registry meth-
ods are also implemented as WCF services and can be ac-
cessed only with appropriate access rights. The access
rights distinguish three access roles:consumer, provider
andregistry administrator.

Based on the submitted SLA mappings, public SLA tem-
plates are adapted, using an adaptation method (cf. (5)).

4.2 Simulation Parameter Settings

For our simulation, we define five scenarios on how often
attribute names occur in average. That means each scenario
defines an occurrence distribution of four different SLA at-
tribute names. The five scenarios, which have been chosen
such that they represent different situations, are defined as
follows:

• Scenario a: All attribute name counts of an attribute
are equal.

• Scenario b: The counts of three attribute names are
equally large and larger than the remaining one.

• Scenario c: Two attribute name counts are equally
large and are larger than the other two, which are
equally large as well.

• Scenario d: One attribute name, which has been picked
as the attribute name for the initial setting, has a larger
count than the remaining three attribute names, which
are equally large.

• Scenario e: One attribute name, which has not been
picked as the attribute name for the initial setting, has
a larger count than the remaining three attribute names.

The actual values of each of the five scenarios are shown
in Table 1. The four attribute names chosen for this example
are:A,A′,A′′,A′′′.

Table 1: Average occurrence of attribute names in all scenarios.
Scenarios[%]

a b c d e

A 25 10 10 30.0 23.3
A’ 25 30 10 23.3 30.0
A” 25 30 40 23.3 23.3
A”’ 25 30 40 23.3 23.3

For example, if the attributeα (CPU Time) is distributed
according to scenarioc, then the four attribute names oc-
cur in average as follows: 10% of the attribute names isA,
10% of the attribute names isA′, 40% of the attribute names
is A′′, and 40% of the attribute names isA′′′. However, as
we intend to account for slight changes in the demand for
attribute names by users, we draw randomly the attribute
names according to the distribution given in Table 1 instead
of generating the exact number of attribute names. Con-
sequently, the actual counts of attribute names might vary
compared to the average values shown in Table 1. As an ex-
ample, the attribute names generated according to the dis-
tribution of scenarioc might be 9%, 12%, 37%, and 42%
instead of 10%, 10%, 40%, and 40%. This process of gen-
eration of attribute names is executed for each iteration.

Furthermore, another three simulation parameters are
set. First, we limit the number of iterations to 20. At each
iteration, 100 users perform SLA mappings to all SLA at-
tributes. At the end of an iteration, a new public SLA tem-
plate is generated, which is based on the adaptation method
and the users’ SLA mappings.

Table 2 summarizes these settings.

Table 2: Simulation parameter settings.
Simulation Parameter Value

Number of scenarios 5
Number of users (consumers / providers) 100
Number of SLA attributes per SLA template 1
Number of SLA attributes names per attribute 4
Number of adaptation methods applied 3
Number of iterations 20

We used these parameter settings for each of the adapta-
tion methods.

5 Experimental Results and Analysis

5.1 Net Utilities of Adaptation Methods

Using the SLA mapping approach, the user gets the ben-
efit of having access to public SLA templates that reflect
the overall market demand (i.e., the average user’s demand).
This gain of some user is expressed with equation 2. How-
ever, this comes with the cost for defining new SLA map-
pings whenever the public SLA template changed (equation
3). Within this section, we investigate the cost of all users
(equation 7), the utility of all users (equation 6), and the
net utility of all users (equation 8) for different adaptation
methods. The net utility metric is used to decide which of
the three adaptation methods is superior.

The first adaption method that we investigate is the max-
imum method. It is our reference method, since it does not
use any heuristics. The simulation results, which are shown
in this section, have been obtained from running the sim-
ulation with parameter settings as described in section 4.2.
The simulation results shown are averages over all scenar-
ios. The advantage of this method is that the public SLA
template generated with this method minimizes the differ-
ences to all private SLA templates of all users. This method
requires, however, many changes of SLA mappings.

!"

#!"

$!"

%&!"

%'!"

&!!"

!" &" #" '" $" %!" %&" %#" %'" %$" &!"

!
"
##
$
%
&

()* +,-./0 "

12*+,33"4-35)6" 12*+,33"7.0)" 12*+,33"8*)"4-35)6"

Figure 5: Utility, cost, and net utility for the maximum method.

Figure 5 shows, as expected, that the maximum method
generates a high utility, since it achieves many matchings of
attribute names of the public SLA template and the private
SLA templates. Its net utility stays around its initial net
utility value of about 170 for each iteration. However, as
expected as well, it requires many new mappings and, thus,
incurs high costs. Consequently, the net utility is far lower
than the utility.

In order to address this issue of high cost, we use heuris-
tics in the following two adaptation methods. The heuristics
help to find a balance between the utility of having a public
SLA template, whose attribute names are identical to most
of the attribute names of the private SLA templates, and
the cost of creating new SLA attribute mappings. The first
heuristics-based adaptation method, which we investigate,
is the threshold method. The simulation results are shown
in Figure 6.

!"

#!"

$!"

%&!"

%'!"

!" &" #" '" $" %!" %&" %#" %'" %$" &!"

!
"
##
$
%
&

()* +,-./0 "

12*+,33"4-35)6" 12*+,33"7.0)" 12*+,33"8*)"4-35)6"

Figure 6: Utility, cost, and net utility, for the threshold method.

Figure 6 illustrates that the threshold method does not
incur any cost to users at all. This is due to the high thresh-
old (i.e., 60%), resulting in no changes of the SLA template
attribute names. Nevertheless, the utility (and net utility)
is not higher than the maximum method, just more stable
across the 20 iterations. Therefore, the threshold method
with a threshold of 60% could be considered the other ex-
trem strategy, in which the initial public SLA template does
not get adapted at all. By lowering the threshold parame-
ter such that the threshold parameter in a few iterations is
lower than the highest count of an attribute name, it is ex-
pected that the net utility improves. If the threshold parame-
ter is lower than the minimum count of an attribute name in
all iterations, then this method is identical to the maximum
method.

The maximum-percentage-change method is the second
heuristics-based adaptation method, which we investigate
and the results are shown in Figure 7.

!"

#!"

$!"

%&!"

%'!"

&!!"

!" &" #" '" $" %!" %&" %#" %'" %$" &!"

!
"
##
$
%
&

()* +,-./0 "

12*+,33"4-35)6" 12*+,33"7.0)" 12*+,33"8*)"4-35)6"

Figure 7: Utility, cost, and net utility for the maximum-
percentage-change method withτ = 10.

The simulation results show that in the first iteration and
every tenth iteration (τ = 10) the overall net utility decreases
significantly due to the high amount of changes of SLA
mappings (Figure 7). The cost is very high. At these it-
erations, this method chooses the attribute names with the
maximum number of counts (not considering the threshold
of 15%). In the subsequent iterations, however, the cost
is low and the overall net utility increases significantly. It
achieves even higher values than the other two methods.

5.2 Average Cost and Average Net Utility

Table 3 shows the average overall utility, average overall
cost, and the average overall net utility for all three adap-
tation methods. The averages are calculated over all itera-
tions. The maximum method has achieved the highest av-
erage overall utility. It satisfies the largest number of users.
However, since it also incurs the highest costs, it becomes
the method with the lowest average overall net utility.

Table 3: Overall utility, overall costs, and overall net utilities aver-
aged across all iterations (The best values are highlightedin bold).

Maximum Threshold Max.-Perc.-Change

avg. overall utility 171.9 99.5 166.6
avg. overall cost 91.3 0.0 39.95
avg. overall net utilities 80.6 99.5 126.65

The threshold method does slightly better with respect
to the average net utility than the maximum method. This
is due to the zero cost. The threshold method (with a high
threshold) stays with a fixed set of SLA attribute names for
the public SLA template.

The best adaptation method with respect to the aver-
age overall net utility is the maximum-percentage-change
method. We observe that the average overall net utility is
better than the other two adaptation methods, although the
average overall utility is not the highest among the three
adaptation methods. The reason is that the cost is low.
The low cost is a result of the fact that the SLA attribute
names of the public SLA template are not changed fre-
quently. They are only changed in iterationskτ + 1,k ∈ N0

(i.e., when the method behaves like the maximum method)
and whenever the threshold of 15% is exceeded.

Based on the result shown in this section, we can state
the adaptive SLA mapping approach is a good way of gen-
erating standardized goods, which address the needs of the
market. To reduce the cost for creating SLA mappings fre-
quently, the introduction of heuristics into the adaptation
methods is helpful. Results show that a significant reduc-
tion of costs can be achieved, balancing the benefit and the
cost of SLA mapping.

6 Conclusion and Outlook

In this paper, we have investigated cost, utility, and net
utility of the adaptive SLA mapping approach, in which
market participants may define SLA mappings for translat-
ing their private SLA templates to public SLA templates.
Contrary to all other available SLA matching approaches,
the adaptive SLA mapping approach facilitates continuous
adaptation of public SLA templates based on market trends.
However, the adaptation of SLA mappings comes with a
cost for users in the form of effort for generating new SLA
mappings to the adapted public SLA template. To calcu-
late the cost and benefits of the SLA mapping approach,

we utilized the SLA management framework VieSLAF and
simulated different market situations. Our findings show
that the cost for SLA mappings can be reduced by intro-
ducing heuristics into the adaptation methods for generat-
ing adapted public SLA templates. The methods show cost
reduction and increase in average overall net utility.

Acknowledgment

The authors would like to thank Marcel Risch for his
valuable discussions. The research was partially supported
by the National Research Foundation of Korea (grant num-
ber K21001001625-10B1300-03310) and the Vienna Sci-
ence and Technology Fund (grant agreement ICT08-018).

References

[1] M. Risch, I. Brandic, J. Altmann.Using SLA Mapping to Increase Market Liq-
uidity. NFPSLAM-SOC 2009. In conjunction with The 7th International Joint
Conference on Service Oriented Computing, Stockholm, Sweden, November
2009.

[2] R. Buyya, K. Bubendorfer.Market Oriented Grid and Utility Computing. John
Wiley & Sons, Inc., New Jersey, USA, 2008

[3] I. Brandic, D. Music, P. Leitner, S. Dustdar.VieSLAF Framework: Enabling
Adaptive and Versatile SLA-Management. GECON2009. In conjunction with
Euro-Par 2009, 25- 28 August 2009, Delft, The Netherlands.

[4] M. Risch, J. Altmann.Enabling Open Cloud Markets Through WS-Agreement
Extensions. Service Level Agreements in Grids Workshop, in conjunction with
GRID 2009, CoreGRID Springer Series, Banff, Canada, October 2009.

[5] Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/,
2010.

[6] Google Apps, http://www.google.com/apps/, March 2010.
[7] Business Objective Driven Reliable and Intelligent Grids for Real Business

(BREIN), http://www.eu-brein.com/, February 2010.
[8] N. Oldham, K. Verma, A. P. Sheth, and F. Hakimpour.Semantic WS-agreement

partner selection. 15th International Conference on World Wide Web, WWW
2006, Edinburgh, Scotland, UK, May 2006.

[9] G. Dobson, A. Sanchez-Macian.Towards Unified QoS/SLA Ontologies. IEEE
Services Computing Workshops (SCW), Chicago, Illinois, USA, pp.18-22,
September 2006.

[10] B. Koller, L. Schubert.Towards Autonomous SLA Management Using a Proxy-
Like Approach. Multiagent Grid Systems. vol.3, no.3, IOS Press, Amsterdam,
The Netherlands, 2007.

[11] M. Risch, J. Altmann, L. Guo, A. Fleming, C. Courcoubetis. The GridEcon
Platform: A Business Scenario Testbed for Commercial CloudServices.6th
international Workshop on Grid Economics and Business Models, Delft, The
Netherlands, August 2009.

[12] Tsunamic Tech. Inc., http://www.clusterondemand.com/, 2010.
[13] EMC Atmos Online, https://mgmt.atmosonline.com/, 2010.
[14] Salesforce.com, http://www.salesforce.com, March 2010.
[15] Sun Grid, http://www.sun.com/service/sungrid/index.jsp, 2010.
[16] Microsoft Azure, http://www.microsoft.com/windowsazure/, 2010.
[17] D. Ardagna, G. Giunta, N. Ingraa, R. Mirandola, and B. Pernici. QoS-Driven

Web Services Selection in Autonomic Grid Environments. International Con-
ference on Grid Computing, High Performance and Distributed Applications
(GADA), Montpellier, France, November 2006.

[18] I. Brandic, S. Benkner, G. Engelbrecht, R. Schmidt.QoS Support for Time-
Critical Grid Workflow Applications. 1st IEEE International Conference on e-
Science and Grid Computing, Melbourne, Australia, December 2005.

[19] E. Oberortner, U. Zdun and S. Dustdar:Tailoring a Model-Driven Quality-of-
Service DSL for Various Stakeholders. MiSE 2009.

[20] J. Chen, B. Lu.An Universal Flexible Utility Function in Grid Economy. 2008
IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Ap-
plication.

[21] R. A. Fisher.Statistical Methods for Research Workers. ed. 12, Edinburgh,
Oliver and Boyd, 1954.

[22] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain et. Al.Hive - A Warehousing
Solution Over a Map-Reduce Framework. VLDB 2009.

