
VieSLAF Framework:
Increasing the Versatility of
Grid QoS Models by Applying
Semi-automatic
SLA-Mappings

Ivona Brandic, Dejan Music, Philipp
Leitner and Schahram Dustdar
ivona@infosys.tuwien.ac.at
dejan@infosys.tuwien.ac.at
leitner@infosys.tuwien.ac.at
dustdar@infosys.tuwien.ac.at

TUV-1841-2009-02 March 9, 2009

Technical University of Vienna
Information Systems Institute
Distributed Systems Group

Novel computing paradigms like Grid and Cloud computing facilitate effi-
cient, flexible, and on demand provision of the computational resources. In
such models users usually pay for the resource usage and expect that non-
functional requirements are satisfied, as for example, in terms of execution
time, reliability, and availability. Non-functional requirements are nego-
tiated between service provider and consumer using Service Level Agree-
ments (SLAs) standards. Currently available Quality of Service (QoS) mod-
els assume that service provider and consumer have matching SLA tem-
plates and common understanding of the negotiated terms. However, this is
an unrealistic assumption in systems where service consumer and provider
meet each other dynamically and on demand. In this paper we present
VieSLAF, a novel framework for the specification and management of SLA
mappings bridging the gap between non-matching SLA templates. Using
our framework users can browse publicly available template registries, as-
sign their local templates to the remote templates, define SLA mappings if
necessary and finally start negotiation with services. After the discussion
on VieSLAF architecture we present the solutions for the monitoring of the
SLA parameters as well as first experimental results.

Keywords: Cloud Computing, Grid Computing, Service-Oriented
Architecture

c©2009, Distributed Systems Group, Technical University of Vienna

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
fax: +43 1 58801-18491
URL: http://www.infosys.tuwien.ac.at/



VieSLAF Framework: Increasing the Versatility of
Grid QoS Models by Applying Semi-automatic

SLA-Mappings
Ivona Brandic, Dejan Music, Philipp Leitner and Schahram Dustdar

Distributed Systems Group
Institute of Information Systems
Vienna University of Technology

Vienna, Austria
Email: {ivona,dejan,leitner,dustdar}@infosys.tuwien.ac.at

Abstract—Novel computing paradigms like Grid and Cloud
computing facilitate efficient, flexible, and on demand provision of
the computational resources. In such models users usually pay for
the resource usage and expect that non-functional requirements
are satisfied, as for example, in terms of execution time, reliability,
and availability. Non-functional requirements are negotiated
between service provider and consumer using Service Level
Agreements (SLAs) standards. Currently available Quality of
Service (QoS) models assume that service provider and consumer
have matching SLA templates and common understanding of the
negotiated terms. However, this is an unrealistic assumption in
systems where service consumer and provider meet each other
dynamically and on demand. In this paper we present VieSLAF,
a novel framework for the specification and management of
SLA mappings bridging the gap between non-matching SLA
templates. Using our framework users can browse publicly
available template registries, assign their local templates to the
remote templates, define SLA mappings if necessary and finally
start negotiation with services. After the discussion on VieSLAF
architecture we present the solutions for the monitoring of the
SLA parameters as well as first experimental results.

I. INTRODUCTION

Nowadays, well established and traditional resource sharing
models are shifted towards novel market-oriented resource
sharing models revolutionizing existing Grid and High Per-
formance Computing (HPC) concepts [7]. In market-oriented
resource sharing models users discover resources on demand
and pay for the usage of the specific resources. In turn they
expect that besides requested functional also non-functional
requirements of the application execution are fulfilled [1], [24].
Non-functional requirements comprise application execution
time, reliability, availability and similar issues. Non-functional
requirements are termed as Quality of Service (QoS) and are
expressed and negotiated by means of Service Level Agree-
ments (SLAs). SLA templates represent empty SLA documents
i.e., SLA documents, with all required elements like parties,
SLA parameters, metrics and objectives, but without QoS
values [9].

A large body of work deals with SLA based QoS negotiation
and integration of QoS concepts into Grid management tools
[18], [10], [21]. However, most of the existing work relies

on inflexible QoS models assuming that the communication
partner have matching SLA templates. Matching SLA tem-
plates limits QoS negotiation only between partners where
QoS relationship is already established off-line, or to partners
who belong to a particular Grid portal [1]. In commercially
used Grids and especially in case of computational clouds
matching SLAs are an unrealistic assumption since services
are discovered dynamically and on demand. Thus, in order to
increase QoS versatility, flexible QoS models are necessary
where negotiation is possible even between services which
do not have matching SLA templates. The problems with
non-matching templates can be exemplified on a very simple
example with differing terms of contract on both sides. The
term price may be defined as usage price or service price,
etc., leading to inconsistencies during the negotiation process.
Another example of not matching templates are different price
units on provider’s and consumer’s side (e.g., Euro and Dollar)
or SLA templates which differ in their structure.

In this paper we approach the gap between existing QoS
methods and novel computing paradigms like Cloud Com-
puting by proposing VieSLAF, a framework for the manage-
ment of SLA mappings. Thereby, mappings are defined by
XSLT1 documents where inconsistent parts of one document
are mapped to another document e.g, from the consumer’s
template to the provider’s template. Moreover, based on SLA
mappings and deployed taxonomies we eliminate semantic
inconsistencies between consumer’s and provider’s SLA tem-
plate. Using VieSLAF users may discover services on demand,
define mappings to available templates if necessary and finally
start the negotiation with selected services. Therefore, the ne-
gotiation is not only limited to services belonging to a special
portal or where a relationship is already established off-line. A
user friendly GUI for the definition and specification of SLA
mappings simplifies the management of SLA mappings. Based
on a case study the presented SLA mapping architecture has
been successfully used to manage SLA mappings in context

1XSL Transformations (XSLT) Version 1.0,
http://www.w3.org/TR/xslt.html



of a Grid workflow management tool [5]. Additionally to [5]
where we presented the general approach of SLA mappings
in context of a Grid workflow management tool, in this paper
we present (1) the VieSLAF architecture in detail with modules
for the measurement of SLA parameters, (2) implementation
details of the VieSLAF framework; (3) and first experimental
results.

ViesLAF has been developed in the context of the Vienna
Science and Technology Fund (WWTF) granted project Foun-
dations of Self-Governing ICT Infrastructures (FoSII) [14].
The aim of the FoSII project is to develop an adaptive service
infrastructure where services automatically adapt themselves
to the occurred failures or environmental changes. Manage-
ment of the inconsistencies between SLAs and negotiation
bootstrapping is also one of the major FoSII goals. VieSLAF
framework represents the first attempt in achieving these goals.

The main contributions of this paper are: (1) description of
the scenarios for the definition of SLA mapping documents;
(2) definition of the VieSLAF architecture used for the semi-
automatic management of SLA mappings including monitoring
service; and (3) evaluation of the VieSLAF architecture using
an experimental testbed.

The rest of this paper is organized as follows: Section II
presents the related work. Section III presents the VieSLAF
architecture including the used semantic model, methods for
SLA mappings and transformations, used registries and fea-
tures for the SLA monitoring. In Section IV we discuss our
first experimental results. Section V concludes this paper and
describes the future work.

II. RELATED WORK

Currently, large body of work has been done in the area
of Grid service negotiation and SLA-based QoS [19], [8].
Most of the related work can be classified into following
three categories: (i) adaptive QoS systems, which do not use
standard SLA languages for the generation and negotiation of
electronic contracts [23]; (ii) adaptive SLA mechanisms based
on OWL, DAML-S and other semantic technologies [21], [10],
[29]; (iii) SLA based QoS systems, which consider varying
service requirements but do not consider non matching SLA
templates [3], [1], [26]. Moreover, several projects are dealing
with resource lookup based on functional and non-functional
requirements.

Work presented in [22] discusses incorporation of SLA-
based resource brokering into existing Grid systems. Glatard
et al. discuss a probabilistic model of workflow execution
time evaluated in context of EGEE grid infrastructure [11].
Work described in [26] presents an approach for dynamic
workflow management and optimisation using near-realtime
performance with strategies for choosing an optimal service,
based on user-specified criteria, from several semantically
equivalent Web services.

Oldham et al. describes a framework for semantic matching
of SLAs based on WSDL-S and OWL [21]. Dobson at al.
present a unified quality of service (QoS) ontology applicable
to the main scenarios identified such as QoS-based Web

services selection, QoS monitoring and QoS adaptation [10].
Zhou et al. surveys the current research on QoS and service
discovery, including ontologies such as OWL-S and DAML-
S. Thereafter, an ontology is proposed, DAML-QoS, which
provides detailed QoS information in a DAML format [29].
Hung et al. proposes an independent declarative XML lan-
guage called WS-Negotiation for Web services providers and
requestors. WS-Negotiation contains three parts: negotiation
message, which describes the format for messages exchanged
among negotiation parties, negotiation protocol, which de-
scribes the mechanism and rules that negotiation parties should
follow, and negotiation decision making, which is an internal
and private decision process based on a cost-benefit model or
other strategies [16].

Ardagana et al. [3] presents an autonomic grid architectures
with mechanisms to dynamically re-configure service center
infrastructures, which is basically exploited to fullfill varying
QoS requirements. Work presented in [1] extends the service
abstraction in the Open Grid Services Architecture (OGSA)
for QoS properties focusing on the application layer. Thereby,
a given service may indicate the QoS properties it can of-
fer or it may search for other services based on specified
QoS properties. Work presented in [8] proposes generalized
resource management model where resource interactions are
mapped onto a well defined set of platform-independent SLAs.
The model is based on Service Negotiation and Acquisition
Protocol (SNAP) providing the lifetime management SLAs.

Condor’s ClassAds mechanism is used to represent jobs,
resources, submitters, and other Condor daemons [23]. Dan
et al. [9] presents a framework for providing customers of
Web services differentiated levels of service through the use of
automated management and SLAs. Zhao et al. discusses how
semantic technologies can be used for workflow provenance
[28], whereas work described in [13] discusses how semantic
technologies may be used by mobile devices which need to
locate and select appropriate Grid services in an automatic and
flexible way.

Verma provides an overview of service level agreements
in IP networks. The work identies three common approaches
that are used to satisfy SLAs in IP networks [25]. Jurca et al.
proposes a new form of SLAs where the price is determined
by the QoS which is actually delivered by service provider. For
the monitoring of QoS a novel approach is introduced based
on reputation mechanism [17].

However, to the best of our knowledge none of the dis-
cussed approaches deals with user-driven and semi-automatic
definition of SLA mappings enabling negotiations between in-
consistent SLA templates. Our approach for the SLA mappings
is presented in the following.

III. SLA MAPPING ARCHITECTURE BASED ON VIESLAF
FRAMEWORK

In this section we present the architecture used for the semi-
automatic management of SLA mappings. First, we discuss
the architectural components for the management the SLA
mappings based on the VieSLAF architecture. Thereafter, we



describe the VieSLAF’s core components in detail and give a
sample architectural case study. Furthermore, we present the
extended VieSLAF architecture with semantic data model and
monitoring service for the SLA parameters.

A. VieSLAF Overview

The VieSLAF framework enables application developers
to efficiently develop adaptable service-oriented applications
simplifying the handling with numerous Web service specifi-
cations. The framework facilitates management of QoS models
as for example management of meta-negotiations [6]. Based
on VieSLAF framework service provider may easily manage
QoS models and SLA templates and frequently check whether
selected services satisfy developer’s needs e.g., specified QoS-
parameters in SLAs. As already mentioned VieSLAF has
been developed in the context of the WWTF funded project
Foundations of Self-Governing ICT Infrastructures (FoSII)
[14].

B. VieSLAF architecture

Using an appropriate GUI users i.e., service provider and
consumer, may browse through templates (as shown in step
1, Figure 1). Thereafter, they can publish services to the
registry and define SLA mappings from local WSLAs (user’s
and provider’s SLAs), to remote WSLAs (publicly available
SLA templates), and vice versa (steps 2 and 3 in Figure 1).
We classify service templates into categories i.e., for each
specific domain, as for example medical, telecommunication
or financial domain we provide a single template. Using the
GUI user may browse and select templates to which he wants
to specify SLA mappings. In the following we present the
VieSLAF’s registry concept.

1) Registry: The registry is a searchable repository for SLA
templates and mappings. Currently, this is implemented as a
MS-SQL 2008 database with a Web service front end that
provides the interface for the management of SLA mappings.
However, it is possible to host the registry using a cloud of
databases hosted on a service provider such as Google App
Engine [12] or Amazon S3 [2].

The database is manipulated based on the role-model. The
registry methods are implemented as Windows Communica-
tion Foundation (WCF) services and can be accessed only
with appropriate access rights. We define three roles: service
consumer, service provider and registry administrator. Service
consumers are able to search suitable services for the selected
service categories e.g., by using the method findServices.
Service consumer may also create SLA-mappings using the
method createAttributeMapping. Service providers may pub-
lish their services and bind it to a specific template category
using the method createService. Furthermore, they may define
SLA-mappings by using the method createAttributeMapping.
Registry administrators may create, update and delete service
categories. Please note that for all create methods we have
implemented corresponding CRUD2 methods. Each template

2create, read, update and delete

category is identified with an unique name and is stored in the
database as an XML document. Each service is identified with
a name and is described with a WSDL-URI, contract, binding
and filled SLA-template of the selected category. For each
service multiple SLA-mapping documents may be defined.

2) SLA-Mapping Middleware: The aim of the SLA map-
ping middleware is to facilitate access to the registry on
the provider’s and consumer’s side as shown in Figure 1.
SLA mapping middleware can be easily plugged into existing
middleware as we demonstrated in [5] with Aneka and Gridbus
broker and Amadeus workflow framework. Aneka [6] is a
resource management system for enterprise Grids composed
of machines running Microsoft Windows operating system.
Aneka provides facilities for advance reservation of computing
nodes and supports flexible scheduling of applications con-
structed using different parallel programming models such as
bag-of-tasks and dataflow computing. The Gridbus Broker [24]
maps jobs to appropriate resources considering various re-
strictions specified by terms of functional and non-functional
requirements.

As already mentioned in Section III-B1 SLA-mapping
middleware is based on different WCF services. For the
sake of brevity, in the following we discuss just a few of
them. The RegistryAdministrationService provides methods for
the manipulation of the database where administrator rights
are required e.g., creation of template categories. Another
example represents WSLAMappingService, which is used for
the management of SLA mappings by service consumer and
service provider. WSLAQueryingService is used to query the
SLA mapping database. The database can be queried based
on template categories, SLA attributes and similar attributes.
Other implemented WCF service are for example services for
SLA parsing, XSL transformations, and SLA validation.

Service consumers may search for appropriate services
through WSLAQueryingService and define appropriate SLA-
mappings by using the method createAttributeMapping, as
depicted in step 5 of Figure 1. Each query request is checked
during the runtime, if the service consumer has also specified
any SLA-Mappings for SLAElements and SLAAttributes spec-
ified in category’s SLA-Template (see steps 5 - 7 in Figure 1).
Before the requests of service consumers can be completely
checked, SLA transformations are applied (see step 8 in Figure
1). The rules necessary for the transformations of attributes and
elements can be found in the database and can be applied using
the consumer’s WSLA-Template. Thereafter, we have the con-
sumer’s template completely translated into category’s WSLA-
Template. Transformations are done by WSLATransformator
implemented with the .NET 3.5 technology and using LINQ3.

As depicted in step 11 we have also implemented features
for the monitoring of the SLA parameters as explained in Sec-
tion III-D. Step 12, adaptation of SLA templates, is subject of
ongoing work, where we develop mechanism for the automatic
adaptation of the publicly available SLA templates.

After the negotiation with service’s provider, (step 9) service

3Language Integrated Query



 

 

Remote SLA 
template

Gridbus Broker
Meta Negotiaiton 

Middleware (MNM)
Meta Negotiaiton 

Middleware (MNM)
Meta Negotiaiton 

Middleware (MNM)
 SLA Mapping MiddlewareSLA Mapping Middleware

Aneka
Amadeus 
Workflow

WSDL

DB

9. Negotiation

2. Publishing SLA (parsing)
3. Publishing SLA-Mappings

5. Quering Templates
6. Selecting Services
7. Publishing SLA-Mappings

Alternate 
Offers 

Negotiation 
Strategy

API

DBDB
Registry

...
...

Sample Service
Consumer

Sample Service
Provider

Alternate 
Offers 

Negotiation 
Strategy

Participant 1 Participant 2

Remote SLA 
template

Taxonomies

Local SLA 
template

Local SLA 
template

Remote SLA 
template

4 parsing SLA-Mappings, 
mapping to the data-model

Trans-
formation 
rules: 
XSLT, 
XPath

Trans-
formation 
rules: 
XSLT, 
XPath

Trans-
formation 
Rules: 
XSLT, 
XPath

Trans-
formation 
Rules: 
XSLT, 
XPath

Sevice 1
Thread1_param1
Thread2_param2

Threadn_paramn
...

Sevice 2
Thread1_param1
Thread2_param2

Threadn_paramn
...

10. Service Invocation

11. Monitoring SLA-Parameter

8. SLA Transformation
12. Templates adaptation 

1. User choosing templates 
and defining SLA Mappings

Cloud of measurement services

Fig. 1. Extended VieSLAF Architecture with Monitoring and Taxonomies

consumer can communicate directly through the proxy with
the service (step 10). As depicted in Figure 1, SLA-templates
are mapped to VieSLAF’s semantic data model based on
taxonomies. The VieSLAF’s data model is explained in the
following.

C. VieSLAF’s semantic data model

Figure 1 shows the extended VieSLAF architecture with the
features for data mapping and monitoring of SLA parameters.
As shown in that figure we map data to predefined taxonomies
and thus enable semantic mapping of data (see step 4).

The semantic model is automatically filled up with data each
time a Registry Administrator creates new template category.
After this step other users of VieSLAF’s functionality e.g.,
service consumers and service providers, can specify SLA-
Mappings for each SLAElement or SLAAttribute created for
this template. Additionally to already existing WSLA schema
elements (e.g., SLAElement, SLAAttribute) we define SLA-
Mappings. For each SLAAttribute and SLAElement element,
one or more SLA-Mappings can be specified. For each SLA-
Mapping two rules will be created: rule from local (consumer
or provider) SLA template into category SLA template and
vice versa.

1. ...
2. <Metric name=’averageResponseTime’ type=’double’ ...>
3. <Source>MedicineProvider</Source>
4. <Function xsi:type=’Divide’ resultType=’double’>
5. <Operand>
6. <Function xsi:type=’Plus’ resultType=’double’>
7. <Operand>
8. <Metric>averageResponseTimeHost1</Metric>
9. </Operand>
10. <Operand>
11. <Metric>averageResponseTimeHost2</Metric>
12. </Operand>
13. </Function>
14. </Operand>
15. <Operand>
16. <LongScalar>2</LongScalar>
17. </Operand>
18. </Function>
19. </Metric>
20. ...

Fig. 2. Example Metric

D. Monitoring Service

As depicted in Figure 1 step 11, we implemented a light-
way concept for monitoring of SLA parameters for all services
published in a category. The aim of the monitoring service is
to frequently check the status of the SLA parameters of a SLA
agreement and deliver the information to the service consumer



and/or provider. Furthermore, monitoring service monitors
values of SLA parameters as specified in SLA-Template of
the published services. Monitoring starts after publishing of
a service in a category and is provided through the whole
lifetime of the service. Monitoring service is implemented
as an internal registry service, similar to other services for
parsing, transformation, and validation, that we have already
explained in previous sections. In the following we describe
how the monitoring process can be started i.e., all the steps
necessary to setup monitoring.

After the publishing of the service and SLA mappings,
SLAs are parsed and it is identified which SLA parameters
have to be monitored and how. We distinguish between
periodically measured SLA parameters and the parameters
which are measured on request. The values of the periodically
measured parameters are stored in the so-called parameter-
pool. Monitoring service provides two methods: a knock-
in method for starting the monitoring and a method for
receiving the measured SLA parameters from the measurement
pool. Whenever a user requests monitoring information of the
particular SLA (i) in case of periodically measured parameters
SLAs parameters are requested from the parameter-pool or
(ii) in case of on-request parameters SLA parameters are
immediately measured as defined in the parsed and validated
SLAs.

According to WSLA specification SLA parameters may be
(composed) metrics. Thus, we distinguish between composite
and resource metrics. Examples of composite metrics are
maximum response time of a service or average availability
of a service. Resource metrics are for example number of
service invocations, or system uptime. Functions specify how
a composite metric is computed. Figure 2 depicts a composite
metric averageResponseTime (see line 2), which is calculated
as an arithmetic mean of resource metrics averageResponse-
TimeHost1 (see line 8) and averageResponseTimeHost2 (see
line 11).

We have currently implemented various functions as for
example: Max, Mean, Median, NumberGreaterThenThreshold,
etc.. In Figure 2 two functions are defined. Firstly, the function
Plus is specified, which adds averageResponseTimeHost1 and
averageResponseTimeHost2. Secondly, the function Divide is
specified, which divides the amount received by function
Plus by 2. For functions which are evaluated periodically,
an evaluation period is specified by means of a computation
schedule. The schedule defines the time intervals during which
the functions are executed to compute the metrics. These
time intervals may be for example weekly, daily, hourly, etc.
Observed values are periodically stored into parameter pool of
a specific service and can be queried asynchronously through
the monitoring interface.

For the implementation of the monitoring services we used
Abstract Factory Pattern and Lazy Singleton Pattern. Thus,
we create only one lazy instance of the monitoring service
which is then used by all WCF-Services as described in III-B2.
Currently, we implemented the monitoring service with LINQ
technology of .NET 3.5 framework. The monitoring concept

Database

Windows Server 2008
SP 1 

S1 S10...

SLA Mapping 
Middelware

VieSLAF 
Client

Registry

Administrator Role 

Registry administration 
Service invocation 
Mapping, Parsing 

VieSLAF

Fig. 3. VieSLAF Testbed

0.01 

0.1 

1 

10 

5x 10x 15x 20x 25x 50x 100x 500x 1000x 

Simple XSLTCompiledTransform 
ComplexXSLTCompiledTransform 
Simple XSLTTransform 
ComplexXSLTTransform 

number of runs 

s 

Fig. 4. Stress Tests with XSLTCompiledTransform Transformer and XSLT-
Transform Class

is implemented in an asynchronous way based on background
threads. As shown in Figure 1 for each SLAparameter of each
service one monitoring thread is started. In the future we
plan to monitor also the Obligation part of WSLA templates
and detect, if there are any violations to the negotiated SLA
parameters.

IV. EVALUATION

In this section we evaluate the VieSLAF framework. In
Section IV-A we measure the overhead produced by SLA map-
pings compared to Web service invocation without mappings.
First, we describe the experimental testbed and the used setup.
Thereafter, we discuss the experimental results. In Section
IV-B we discuss stress tests with varying number of SLA
mappings which are invoked concurrently. In Section IV-C
we present results with varying number of SLA mappings per
Web service invocation.

A. Overhead Test

In order to test the VieSLAF framework we developed a
testbed as shown in Figure 3. As a client machine we used
an Acer Aspire Laptop, Intel Core 2 Duo T5600 1.83 GHz,
2 MB L2 Cache, 1GB RAM. For hosting of 10 sample
services, calculator service with 5 methods, we used single
core Xenon 3.2Ghz, L1 cache, 4GB RAM Sun blade machine.



Service Search Time Total
SLA-Mapping Remaining Time

Validation Consumer Mapping Provider Mapping

Time in sec 0.046 0.183 0.151 1.009 1.389
Time [%] 3.32 13.17 10.87 72.64 100.00

TABLE I
SLA MAPPINGS OVERHEAD COMPARED TO SIMPLE WEB SERVICE INVOCATION (WITHOUT SLA MAPPINGS)

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1,000 

5X  10X  15X  20x 

SLA‐Mappings  SLA‐Mappings + Client InvocaCon 

ms 

number of SLA Mappings per Web service invocaCon 

Fig. 5. Measurements with varying number of SLA mappings per Web
Service Invocation

We use the same machine to host VieSLAFs WCF services.
The aim of our evaluation is to measure the overhead produced
using VieSLAF’s WSLAQueryingService for search and SLA
mapping of the appropriate services.

We created 10 services (S1,..., S10) and 10 accounts for
service providers. We also created registry administrators role,
which manages the creation of template categories with the
corresponding SLA templates. The SLA template represents a
remote calculator service with five methods: Add, Substract,
Multiply, Divide and Max. Service providers defines five
SLAMappings which have to be used during the runtime. Also
the service consumers specifies five SLAMappings. We specify
three simple, syntactic mappings where we only change the
name of an element or attribute. The other two mappings
consider also semantic mappings. One mapping is used for
converting of Euros to Dollars and the other one for millisec-
onds to seconds.

Table I shows the experimental results. The measured values
represent the arithmetic mean of 20 service invocation. The
overhead measured during the experimental results includes
the time needed for validation of WSLA documents (column
Validation in Table I), the time necessary to perform SLA-
mappings from local consumers to remote SLA templates
(column Consumer Mapping) and the time necessary to
transform remote SLA templates to local providers templates
(column Provider Mapping). Furthermore, we measured the
the remaining time necessary to perform search. The remaining
time includes the round trip time for a search including

data transfer between client and service and vise versa. As
shown in Table I the time necessary to handle SLA Mappings
(V alidation + ConsumerMapping + ProviderMapping)
represents 0.38 seconds or 27, 36% of the overall search time.

Please note that the intention of the presented experimental
results is the proof of concept of the SLA mapping approach.
We did not test the scalability issues, since we attempt to
employ Computing Clouds like Google App Engine [12] or
Amazon S3 [2] in order to cope with the scalability issues.

B. Stress Tests

With the stress tests described in this section we tested
how the VieSLAF middleware cope with the multiple SLA
mappings, differing in their complexity and which are executed
concurrently. Evaluation is done on Acer Aspire Laptop, Intel
Core 2 Duo T5600 1.83 GHz, 2 MB L2 Cache, 1GB RAM.
For the evaluation we have used two different SLA mappings:

• Simple: Invocation of very simple SLA mappings, an
example is translation of one attribute to another attribute
e.g. usage price to price.

• Complex: Represents the invocation of the complex SLA
mappings as for example already mentioned US Dollar
to Euro mapping.

We have tested VieSLAF with different versions of XSLT
transformer, namely with XSLTCompiledTransform, .Net ver-
sion 3.0 and with the obsolete XSLTTransform Class from
.Net 1.1. Figure 4 shows the measurements with the XSLT-
CompiledTransform Transformer and with the XSLTTransform
Class. On the x axis we have the number of SLA mappings
performed concurrently i.e., number of runs. On the y axis we
have the measured time for the execution of SLA mappings
in seconds.

Considering the measurements results we can observe that
XSLTTransform Class is faster than the XSLTCompiledTrans-
form Transformer form the newer .Net version. Complex
mappings executed with the XSLTTransform Class almost
overlap with the simple mappings executed with the XSLT-
CompiledTransform. Also we can observe that in both cases,
in simple and complex mapping, the performance starts to
significantly decrease with number of SLA mappings > 100.
In case when the number of mappings < 100 the execution
time is about or less than 1 second.

C. Multiple SLA Mapping Tests

In this section we discuss performance results measured
during a Web service call with varying number of SLA
mappings per service. We measured 5, 10, 15 and 20 SLA



mappings per Web service call. In order to create a realistic
testbed we used SLA mappings which depends on each other:
e.g., attribute A is transformed to attribute B, B is transformed
to C, C to D, and so on. Thus, in many cases SLA mappings
can not be performed concurrently, they have to be performed
sequentially.

Evaluation is done on Acer Aspire Laptop, Intel Core 2 Duo
T5600 1.83 GHz, 2 MB L2 Cache, 1GB RAM. Figure 5 shows
measured results. We executed SLA mappings between remote
template and provider’s template (i.e., Provider Mappings
as described in Table I) before the runtime, because these
mappings are known before consumer requests. Thus, only
mappings between consumer’s template and remote template
are done during the runtime as indicated with the SLA Mapping
line. The line SLA Mapping + Client invocation comprises
the time for the invocation of a Web service method including
SLA mapping time. The SLA Mapping + Client invocation line
does not comprise round-trip time, it comprises only request
time.

We can conclude that even with increasing number of SLA
mappings the time necessary for the SLA mappings represents
about 20% of the overall execution time.

V. CONCLUSION AND FUTURE WORK

In this paper we presented the VieSLAF framework used
for the management of SLA mappings. SLA mappings are
necessary in service oriented Grids and computational Clouds
where service consumer and provider usually do not have
matching SLA templates. Thus, based on SLA mapping even
those partners with slightly different templates may negotiate
with each other and increase the number of potential negoti-
ation partners. We have demonstrated how Grid service user
(provider and consumer) may search for appropriate services,
define SLA mappings, if necessary, and finally start service
negotiation and execution. Using VieSLAF Grid service users
can even monitor SLA parameters during the execution of the
service calls. Finally, we discussed our first proof of concept
based on the experimental results.

We are currently developing adaptation methods for the
SLA templates. Based on the submitted SLA mappings and
pre-defined learning functions public SLA templates should
adapt themselves. Thus, public SLA templates should reflect
the majority of the local SLA templates. Currently, in our
approach we consider only WSLA document language. A chal-
lenging research issue represents the bootstrapping of other
SLA document languages (e.g. WS-Agreement), where even
partners which understand different SLA document languages
may communicate with each other.

ACKNOWLEDGMENT

The work described in this paper was partially supported
by the Vienna Science and Technology Fund (WWTF) under
grant agreement ICT08-018 Foundations of Self-governing
ICT Infrastructures (FoSII) and by the European Community’s
Seventh Framework Programme [FP7/2007-2013] under grant
agreement 215483 (S-Cube).

REFERENCES

[1] R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, and S. Sohail. G-qosm:
Grid service discovery using qos properties. Computing and Informatics,
21:363–382, 2002.

[2] Amazon Simple Storage Services (S3), http://aws.amazon.com/s3/
[3] D. Ardagna, G. Giunta, N. Ingraffia, R. Mirandola and B. Pernici. QoS-

Driven Web Services Selection in Autonomic Grid Environments. Grid
Computing, High Performance and Distributed Applications (GADA)
2006 International Conference, Montpellier, France, Oct 29 - Nov 3, 2006.

[4] J. Blythe, E. Deelman, Y. Gil. Automatically Composed Workflows for
Grid Environments. IEEE Intelligent Systems 19(4): 16–23 2004.

[5] I. Brandic, D. Music, S. Dustdar, S. Venugopal, and R. Buyya. Advanced
QoS Methods for Grid Workflows Based on Meta-Negotiations and SLA-
Mappings. The 3rd Workshop on Workflows in Support of Large-Scale
Science. In conjunction with Supercomputing 2008, Austin, TX, USA,
November 17, 2008.

[6] I. Brandic, S. Venugopal, Michael Mattess, and Rajkumar Buyya, Towards
a Meta-Negotiation Architecture for SLA-Aware Grid Services. Technical
Report, GRIDS-TR-2008-9, Grid Computing and Distributed Systems
Laboratory, The University of Melbourne, Australia, Aug. 8, 2008.

[7] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg,
and Ivona Brandic. Cloud Computing and Emerging IT Platforms: Vision,
Hype, and Reality for Delivering Computing as the 5th Utility, Future
Generation Computer Systems, ISSN: 0167-739X, Elsevier Science,
Amsterdam, The Netherlands, 2009, in press, accepted on Dec. 3, 2008.

[8] K. Czajkowski, I. Foster, C. Kesselman, V. Sander and S. Tuecke, SNAP:
A Protocol for Negotiating Service Level Agreements and Coordinating
Resource Management in Distributed Systems. 8th Workshop on Job
Scheduling Strategies for Parallel Processing, Edinburgh Scotland, July
2002.

[9] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig,
M. Polan, M. Spreitzer, and A. Youssef. Web services on demand: WSLA-
driven automated management. IBM Systems Journal, 43(1), 2004.

[10] G. Dobson, A. Sanchez-Macian. Towards Unified QoS/SLA Ontologies.
Proceedings of the 2006 IEEE Services Computing Workshops (SCW
2006), Chicago, Illinois, USA, 18-22 September 2006.

[11] T. Glatard, J. Montagnat, X. Pennec. A Probabilistic Model to Analyse
Workflow Performance on Production Grids. 8th IEEE International
Symposium on Cluster Computing and the Grid (CCGrid 2008), pp.510-
517, Lyon, France, 19-22 May 2008.

[12] Google App Engine, http://code.google.com/appengine
[13] T. Guan, E. Zaluska, D. De Roure. A Semantic Service Matching

Middleware for Mobile Devices Discovering Grid Services. Advances
in Grid and Pervasive Computing, Third International Conference, GPC
2008, pp. 422-433 Kunming, China, May 25-28, 2008.

[14] Foundations of Self-Governing ICT Infrastructures (FoSII) Project,
http://www.wwtf.at/projects/research projects/details/index.php?
PKEY=972 DE O

[15] I. Foster, and C. Kesselman, and G. Tsudik, and S. Tuecke. A Security
Architecture for Computational Grids, Proc. 5th ACM Conference on
Computer and Communications Security Conference, San Francisco, CA,
USA, ACM Press, New York, USA, 1998.

[16] P.C.K. Hung, L. Haifei, J. Jun-Jang. WS-Negotiation: an overview of
research issues. Proceedings of the 37th Annual Hawaii International
Conference on System Sciences, Big Island, Hawaii, 5-8 January 2004.

[17] R. Jurca, B. Faltings. Reputation-based Service Level Agreements for
Web Services. In Proceedings of 3rd International Conference on Service
Oriented Computing, pp. 396-409, Amsterdam, The Netherlands, Decem-
ber 12-15, 2005.

[18] Daniel A. Menasce, Emiliano Casalicchio: QoS in Grid Computing.
IEEE Internet Computing 8(4): 85-87, 2004.

[19] A. Paschke, J. Dietrich, K. Kuhla: A Logic Based SLA Management
Framework, Semantic Web and Policy Workshop (SWPW), 4th Semantic
Web Conference (ISWC 2005), Galway, Ireland, 2005.

[20] I. J. Taylor, E. Deelman, D. B. Gannon. Workflows for e-Science.
Springer Verlag, 2005.

[21] N. Oldham, K. Verma, A. P. Sheth, F. Hakimpour. Semantic WS-
agreement partner selection. Proceedings of the 15th international con-
ference on World Wide Web, WWW 2006, Edinburgh, Scotland, UK,
May 23-26, 2006.

[22] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, and K. Krish-
nakumar. A multi-agent infrastructure and a service level agreement nego-
tiation protocol for robust scheduling in grid computing. in Proceedings of



the 2005 European Grid Computing Conference (EGC 2005), Amsterdam,
The Netherlands, February, 2005.

[23] D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing in Prac-
tice: The Condor Experience. Concurrency and Computation: Practice and
Experience, Vol. 17, No. 2-4, pages 323-356, February-April, 2005.

[24] S. Venugopal, R. Buyya and L. Winton, A Grid Service Broker for
Scheduling e-Science Applications on Global Data Grids, Concurrency
and Computation: Practice and Experience, 18(6): 685-699, Wiley Press,
New York, USA, May 2006.

[25] Dinesh C. Verma. Service Level Agreements on IP Networks. Proceed-
ings of the IEEE, Vol. 92, No. 9, September 2004.

[26] D. W. Walker, L. Huang, O. F. Rana, Y. Huang. Dynamic service
selection in workflows using performance data. Scientific Programming
15(4): 235-247 (2007)

[27] Web Service Level Agreement (WSLA),
http://www.research.ibm.com/wsla/
WSLASpecV1-20030128.pdf

[28] J. Zhao, C. Goble, R. Stevens, D.Turi. Mining Taverna’s semantic web of
provenance Concurrency and Computation: Practice & Experience 20(5),
John Wiley & Sons, Inc., New Jersey, April 2008.

[29] Ch. Zhou, L.-T. Chia, B.-S. Lee. Semantics in service discovery and
QoS measurement. IT Professional, 7(2): 29- 34, Mar-Apr 2005.


	TUV-1841-2006-38
	IWQoS2009TR

