
Cost and Benefit of the SLA Mapping Approach

for Defining Standardized Goods in Cloud Computing

Markets

Michael Maurera, Vincent C. Emeakarohaa, Ivona Brandica, Jörn Altmannb

a{maurer,vincent,ivona}@infosys.tuwien.ac.at,

Vienna University of Technology, Vienna, Austria
bjorn.altmann@acm.org,

Technology Management, Economics, and Policy Program,

Department of Industrial Engineering, College of Engineering, Seoul National University,

South-Korea,

Abstract

Due to the large variety in computing resources and, consequently, the large
number of different types of Service Level Agreements (SLAs), any market for
computing resources faces the potential problem of a low market liquidity. To
counteract this problem, offering a set of standardized computing resources
is appropriate. Each of these standardized computing resources is defined
through an SLA template. An SLA template defines the structure of an
SLA, the attributes, the names of the attributes, and the attribute values.
Since these SLA templates are currently static, they cannot reflect changes
in users’ needs. To address this shortcoming, we present the novel approach
of adaptive SLA matching. This approach adapts SLA templates based on
SLA mappings by allowing Cloud users to define mappings between public
SLA templates, which are available in the Cloud market, and their private
SLA templates, which are used for various in-house business processes of the
Cloud user. Besides showing how public SLA templates adapt to the demand
of users, we also analyze the benefits and costs of this approach. Costs are
incurred every time a user has to define a new SLA mapping to a public
SLA template due to its adaptation. In particular, within this paper, we
investigate the cost depending on the use of different public SLA template
adaptation methods. The simulation results show that the use of heuristics
within adaptation methods helps balancing the cost and benefit of the SLA
mapping approach.

Preprint submitted to Future Generation Computer Systems January 17, 2011

*Manuscript
Click here to view linked References

http://ees.elsevier.com/fgcs/viewRCResults.aspx?pdf=1&docID=3222&rev=0&fileID=92774&msid={CF95CE9E-F376-46AF-BD03-21D23D2F586F}

Keywords: Service Level Agreement, Resource Monitoring, SLA Violation
Detection, SLA Enactment, Cloud Architecture

1. Introduction

Computing resource allocations in Clouds are based not only on func-
tional requirements but also on different non-functional requirements. These
non-functional requirements (e.g., application execution time, reliability, and
availability) are termed Quality of Service (QoS) requirements and are ex-
pressed and negotiated by means of Service Level Agreements (SLAs). In
order to facilitate the creation and management of SLAs, SLA templates
have been introduced. SLA templates, which represent popular SLA for-
mats, comprise elements such as names of trading parties, names of SLA
attributes, measurement metrics, and attribute values [1].

In Cloud computing markets, buyers and sellers of computing resources
face the problem of varying definitions of computing resources. Computing
resources are described through different non-standardized attributes (e.g.,
CPU cores, execution time, inbound bandwidth, outbound bandwidth, and
processor type). [4]. Sellers use them to describe their supply of resources and
buyers use them to describe their demand for resources. As a consequence, a
large variety of different SLAs exists in the market. The success of matching
asks (i.e, offers of sellers) and bids (i.e., offers of buyers) becomes very unlikely
[1].

Approaches tackling this plethora of SLA attributes include the use of
standardized SLA templates for a specific consumer base [5, 6], downloadable
predefined provider-specific SLA templates [7], and the use of ontologies [8, 9].
These approaches clearly define SLA templates and require users to agree a
priori on predefined requirements. The SLA templates are static.

However, the demand of users changes over time. For example, the emer-
gence of multi-core architectures in computing resources required the inclu-
sion of the new attribute ”number of cores”, which was not present in an
SLA template a couple of years ago. However, the existing approaches for
the specification of SLA templates cannot easily deal with demand changes.
These approaches involve heavy user-interactions to adapt existing SLA tem-
plates to changing market conditions. The benefit of this approach comes
with some cost for the user. Whenever a public SLA template has been
adapted, the users of this template have to define new templates. Within

2

this paper, we investigate these costs. In particular, we investigated under
what conditions public SLA templates should be adapted.

The method, which considers these conditions is called adaptation method.
After introducing a reference adaption method, we compare three additional
adaptation methods which differ in their heuristics applied. The heuristics
have been introduced in order to find a balance between the benefit of having
a public SLA template that is identical to most of the private SLA templates
and the cost of creating new SLA mappings by all users. As the metrics for
assessing the quality of the adaptation method, we define the overall system
net utility of all users. The net utility considers the benefit of having the same
attribute name in the public SLA template and in the private SLA template
as well as the cost of defining a new attribute name mapping. In this paper,
we apply adaptive SLA mapping, a new approach that can react to changing
market conditions [1]. This approach adapts public SLA templates, which
are used in the Cloud market, based on SLA mappings. SLA mappings,
which have been defined by users based on their needs, bridge the differences
between existing public SLA templates and the private SLA template (i.e.,
the SLA template of the user). Since a user cannot easily change the private
SLA template due to internal or legal organizational requirements, an SLA
mapping is a convenient workaround.

The benefits of SLA mappings for market participants are threefold.
Firstly, traders can keep their private templates, which are required for other
business processes. Secondly, based on their submitted mappings of private
SLA templates to public SLA templates, they contribute to the evolution
of the market’s public SLA templates, reflecting all traders’ needs. Thirdly,
if a set of new products is introduced to the market, our approach can be
applied to find a set of new public SLA templates. All these benefits result in
satisfied users, who continue to use the market, therefore increasing liquidity
in the Cloud market. However, these benefits come with some cost for the
user. Whenever a public SLA template has been adapted, the users of this
template have to re-define their SLA mappings.

The five contributions of this paper are: (1) the definition of an appro-
priate use case to exemplify the adaptive SLA mapping approach; (2) the
definition of three adaptation methods for adapting public SLA templates to
the needs of the user; (3) the investigation of conditions under which SLA
templates should be adapted; (4) the formalization of measures (i.e., utility
and cost) to assess SLA adaptations and SLA adaptation methods; and (5)
the introduction of an emulation approach for the use cases.

3

The remainder of the paper is organized as follows: Section 2 describes
related work. Section 3 introduces the adaptive SLA mapping approach and
the utility and cost model. The simulation setup, the three adaptation meth-
ods, and the simulation infrastructure are described in Section 4. Section 5
presents the simulation results and a discussion. Section 6 concludes the
paper.

2. Related Work

There is a large body of work managing resource provision and considering
negotiations and federation of Cloud and Grid resources. One example is [21]
facilitating agents technology designed to address the federation problems in
grid, such as resource selection and policy reconciliation. [22] propose a new
abstraction layer for the lifecycle of services that allows for their automatic
deployment and escalation depending on the service status. This abstraction
layer can sit on top of different cloud providers, hence mitigating the potential
lock-in problem and allowing the transparent federation of clouds for the
execution of services. [23] investigates three novel heuristics for scheduling
parallel applications on Utility Grids that manage and optimize the trade-off
between time and cost constraints.

However, most of the related work on SLA management considers resource
provision from the provider’s point of view and does not consider Cloud
Computing infrastructures in the context of a market place.

For putting this work in context of the state-of-the-art, we briefly de-
scribe Cloud marketplaces and the existing work on SLAs.Currently, a large
number of commercial Cloud providers have entered the utility computing
market, offering a number of different types of services. We distinguish be-
tween computing infrastructure services, which are pure computing resources
on a pay-per-use basis [11, 12, 13], software services, which are computing
resources in combination with a software solution [6, 14], and platform ser-
vices, which allow customers to create their own services in combination with
the help of supporting services of the platform provider. The first type of
services consists of a virtual machine, as in the case of Amazon’s EC2 service,
or in the form of a computing cluster, as done by Tsunamic Technologies.
The number of resources offered by a provider is low. For example, Ama-
zon and EMC introduced only three derivations of their basic resource type
[5]. Examples for the second type of services are services offered by Google
(Google Apps [6]) and Salesforce.com [14]. These companies provide access

4

to software on pay-per-use basis. These Software-as-a-Service (SaaS) solu-
tions can hardly be integrated with other solutions, because of their large
variety. Examples for the third kind of Cloud services are Sun N1 Grid [15],
force.com [14], and Microsoft Azure [16]. In this category, the focus lies on
provisioning essential basic services that are needed by a large number of
applications. These basic services can be ordered on a pay-per-use basis.
Although the goal of these offerings is a seamless integration with the users
applications, standardization of interfaces is largely absent. Concluding, we
can state that, apart from first attempts in the service type infrastructure as
a service, standardization attempts do almost not exist.

The main SLA matching mechanisms are based on OWL, DAML-S, or
similar semantic technologies. [8] describe a framework for semantic match-
ing of SLAs based on WSDL-S and OWL. [9] present a unified QoS ontology
applicable to specific scenarios such as QoS-based Web services selection,
QoS monitoring, and QoS adaptation. [17] present an autonomic Grid archi-
tecture with mechanisms for dynamically reconfiguring service center infras-
tructures. It is exploited to fulfill varying QoS requirements. Besides those
mechanisms, [10] discuss autonomous QoS management, using a proxy-like
approach for defining QoS parameters that a service has to maintain during
its interaction with a specific customer. The implementation is based on WS-
Agreement, using predefined SLA templates. However, they cannot consider
changes in user needs, which is essential for creating successful markets, as
shown in our earlier work [1]. Several works on current SLA management
are presented in [2]. Besides, regardless of the type of approach used, these
approaches do not evaluate and explain the benefit and costs through the
introduction of SLA matching mechanisms.

3. Adaptive SLA Mapping

In this section, we present a use case for adaptive SLA mapping. Besides,
we discuss the SLA life cycle and introduce the utility and cost model for
assessing SLA matching approaches.

3.1. Use Case

Since resources can be exposed as services using typical Cloud deployment
technologies (i.e., SaaS/PaaS/IaaS), we assume that the service provider of
Figure 1 registers its resources (e.g., infrastructure, software, platforms) to
particular public templates (step 1, Figure 1). If some differences between

5

Figure 1: Use case of SLA mapping.

its resources (private SLA template) and the public templates exist, the
provider defines SLA mappings, transforming the private template into the
public template (step 2, Figure 1). The management of SLA mappings, which
is performed with VieSLAF, is explained in detail in [3].

In step 3, Cloud users can look up Cloud services that they want to use in
their workflow. In Figure 1, we exemplified a business process (i.e, workflow)
for medical treatments [18]. It includes various interactions with human
beings (e.g., the task of getting a second opinion on a diagnosis) as well as
interaction with different infrastructure services. Some of these tasks (e.g.,
the reconstruction of 2-dimensional SPECT images to 3-dimensional SPECT
images) can be outsourced to the Cloud [18]. Thereby, we assume that the
private SLA template (representing the task) cannot be changed, since it
is also part of some other local business processes and has to comply with
different legal guidelines for electronic processing of medical data. Therefore,
in case the user decides to outsource a task and discovers differences between
the private SLA template and the public SLA template, the user defines an
SLA mapping. The mapping describes the differences between the two SLA
templates (step 4). A typical mapping is the mapping of an attribute name
to another attribute name (e.g., number of CPUs to cores) or the inclusion
of a new SLA attribute (e.g., parallel programming models) into the SLA
template.

The public SLA templates are stored in searchable repositories using SQL
and non-SQL-based databases (e.g., HadoopDB). The SLA mappings, which

6

have been provided by users and providers to the entity managing the public
SLA templates, are evaluated after certain time periods, in order to adapt
the public SLA templates to the needs of the users. The adapted public
SLA templates replace the existing public SLA templates in the repository,
constituting our novel approach of adaptive SLA mapping. The adaptation
method, which adapts the public SLA templates, performs it such that the
new public SLA templates represent user needs better than the old SLA
templates (step 5). Besides the adaptation of attribute names and attribute
values, the adaptations can also include definitions of new branches of tem-
plates (e.g., a medical SLA template can be substituted by more specialized
templates on medical imaging and surgery support). The definition of dif-
ferent versions of a particular template is also possible as shown for the
templates in the bioinformatics domain (step 6).

3.2. Public SLA Template Lifecycle

To illustrate the lifecycle of public SLA templates, we give a short example
as shown in Figure 2 first.

A
B
C

A'
B'
C''

Iteration 2

A'
B'
C'

A''
B''
C''

A'
B'
C'' Iteration 1

Private SLA templates

user

b
user

c

user

a

Figure 2: SLA mapping process.

Initially, the SLA template registry only holds the initial public SLA
template T0. In iteration 1, all users define mappings from their private tem-
plates to T0. Since the attribute of the public SLA template (A, B, C) and
the attribute names of each user differ, every user has to create 3 attribute
mappings. Based on these mappings, the new version T1 of the public tem-
plate is generated (according to the adaptation method used), containing
the attribute names A’, B’, C”. Since the public template has changed, users
need to change their mappings as well (iteration 2). Consequently, user a
only needs one attribute mapping, user b can reduce the number of attribute

7

mappings to 2, and user c does not need to issue any attribute mapping,
since the public template is completely identical to her private template.
This example shows how our adaptive SLA mapping approach adapts a pub-
lic SLA template to the needs of users. In addition to this, since adapted
public SLA templates represent the need of market participants, it is most
likely that new requests of users need less attribute mappings, reducing the
cost for users.

The formalized public SLA template lifecycle, which consists of five steps,
is shown in Figure 3.

Step 1:

Initial

Template

Step 2:

Consumer

Mappings

Step 4:

Adapt Template

and Publish It

Step 5:

Final

Template

Step 3:

Learn

Consumer

Needs

Figure 3: Formalized public SLA template lifecycle.

An initial template is created in the beginning of the lifecycle (step 1,
Figure 3). Afterwards, consumers perform SLA mappings (step 2). Based
on their needs, inferred from these mappings (step 3), and the predefined
adaptation method, the public SLA template is adapted (step 4). Assuming
that the demand of market participants does not change, a final template is
generated (step 5). If the demand has changed during a fixed time period, the
process continues with step 2. In practice, the time between two iterations
could correspond to a time period of one week. During that time new SLA
mappings are solicited from consumers and users.

3.3. Adaptation Methods

The adaptation methods determine for every attribute name separately,
whether the current attribute name should be adapted or not. The first
adaptation method is the maximum method (which has been applied to the
example shown in Figure 2). The remaining two adaptation methods differ
with respect to their use of heuristics to find a balance between benefit and
cost.

3.3.1. Maximum Method

Applying this method, the SLA attribute name, which has the highest
number of attribute name mappings, is selected (maximum candidate). The
selected attribute name will become the next attribute name used by the
next public SLA template.

8

Example: If we assume that all attribute names have the same count, this
method would select any of the four possible attribute names randomly. If
a public SLA template already exists, the method will choose the attribute
name that is currently used in the public SLA template.

3.3.2. Threshold Method

In order to increase the requirements for selecting the maximum candi-
date, this method introduces a threshold value. If an attribute name is used
more than this threshold (which can be adapted) and has the highest count,
then this attribute name will be selected. If more than one is above the
threshold and they have the same count, the method proceeds as described
for the maximum method. If none is above the required threshold, then the
method sticks to the currently used attribute name. Note, throughout the
examples in this paper, we fix the threshold to 60%.

Example: Assuming an example in which none of the attribute names
has a mapping percentage above 60% and all counts are equal, the threshold
method sticks to the attribute name that is currently used in the public SLA
template.

3.3.3. Maximum-Percentage-Change Method

This method is divided into two steps. In the first step, the attribute
name is chosen according to the maximum method.

In the second step, which comprises τ iterations, attribute names will be
changed, only if the percentage difference between the highest count attribute
name and the currently selected attribute name exceeds a threshold. The
threshold σT is set to 15%. A low threshold leads to more mappings, whereas
a high threshold leads in average to fewer mappings. After τ iterations (e.g.,
τ = 10), the method re-starts with executing the first step. It allows even
slighter changes to take effect.

Example: Let’s suppose the mapping count resulted in attribute name A′

having the highest count. By applying the maximum method, A′ is selected.
In the next iteration, the number of mappings for each attribute name has
changed. Attribute name A accounted for 10%, A′ for 28%, A′′ for 32%,
and A′′′ for 30% of all mappings. Assuming a threshold of 15%, the chosen
attribute does not change. The percentage difference between attribute name
A′ and the attribute name A′′ with the highest count is only 13.3%.

9

3.4. Utility and Cost Model

Since the aim of this paper is to assess the benefit and the cost of using the
adaptive SLA mapping approach for finding the optimal standardized goods
in a Cloud market, we define a utility model and a cost model. The utility
function and the cost function, which take attributes of the customer’s SLA
template and the attributes of the public SLA template as input variables,
helps to quantify the benefit and cost. For our utility model, we assume
an increase in benefit, if an attribute of both templates is identical. This is
motivated by the fact that the Cloud resource traded is identical to the need
of the buyer (or the provisioned resource of the provider) and, therefore,
no inefficiency through resource over-provisioning occurs. The cost model
captures the effort of changing an SLA mapping. A cost to the user is only
incurred, if the user needs to change its SLA mapping because of a change
in the public SLA template.

To formally introduce these models, we introduce some definitions. The
set of SLA attributes is defined as Tvar . As an example, we set Tvar = {α, β},
where α represents Number of Cores in one CPU and β represents Amount
of CPU Time (Note, α and β could also represent attribute values). All
possible attribute names that a user can map to a π ∈ Tvar are denoted as
V ar(π). Within our example, we set V ar(α) = {A, A

′

, A
′′

, A
′′′

}, representing
Var(“Number of Cores in one CPU”) = {CPU Cores, Cores of CPU, Number
of CPUCores, Cores}, and V ar(β) = {B, B

′

, B
′′

, B
′′′

}.
Assuming a set of consumers’ private templates C = {c1, c2, . . . , cn}, we

can now define the relationship of a specific SLA attribute to a specific name
of this SLA attribute at the iteration i ∈ N for every private and public
template p, p ∈ C ∪ {T} as

SLAp,i : Tvar →
⋃

π∈Tvar

V ar(π). (1)

With respect to our example, we assume SLAT,0(α) = A and SLAT,0(β) =
B as our initial public template T at iteration 0.

Based on these definitions, we define the utility function u+

c,i and the cost
function u−

c,i for consumer c, attribute π ∈ Tvar, and iteration i ≥ 1 as

u+

c,i(π) =

{

1, SLAc,i(π) = SLAT,i(π)

0, SLAc,i(π) 6= SLAT,i(π)
(2)

10

u−

c,i(π) =































0, SLAc,i(π) = SLAT,i(π)

0, SLAc,i(π) 6= SLAT,i(π)∧

SLAT,i−1(π) = SLAT,i(π)

1/2, SLAc,i(π) 6= SLAT,i(π)∧

SLAT,i−1(π) 6= SLAT,i(π)

(3)

We choose our utility function as exemplified in [20]. The utility function
states that a consumer c receives a utility of 1, if the name of the attribute
of the private SLA template matches the name of the public SLA template
attribute, and a utility of 0 otherwise.

The cost function states that a consumer has a cost of 1/2, if the attribute
names do not match and the public template attribute of the last iteration
changed to a new one. In this case, the consumer has to define a new attribute
mapping, as he cannot use the old one anymore. In the other two cases, the
consumer has no cost, since either the attribute names match or the public
template attribute name did not change since the last iteration. That means
he does not need any new mapping. Thus, for attribute π, the consumer c
at iteration i gets the net utility

uo
c,i,π = u+

c,i(π) − u−

c,i(π). (4)

The net utility for all attributes at iteration i for consumer c is defined
as the sum of the net utilities uo

c,I,π:

uo
c,i =

∑

π∈Tvar

uo
c,i,π. (5)

The overall utility and overall cost (i.e., the utility and cost of all users
C and attributes π at iteration i) are defined as:

U+

i =
∑

c∈C

∑

π∈Tvar

u+

c,i(π) (6)

U−

i =
∑

c∈C

∑

π∈Tvar

u−

c,i(π) (7)

Consequently, the overall net utility at iteration i is defined as the differ-
ence between the overall utilities minus the overall cost:

11

Uo
i = U+

i − U−

i . (8)

4. Simulation Environment

In order to analyze the performance of the three adaptation methods
with respect to balancing between adapting the public SLA template to the
current needs of all users and the cost of making new SLA mappings, we set
up a simulation environment.

4.1. Testbed

For our simulation, we use a testbed that is composed of production-
level software (i.e., VieSLAF) and software that simulates SLA mappings of
users. Figure 4 illustrates our emulation testbed. The components that are
drawn in white are production-level software. It comprises the knowledge
base, components for managing SLA mappings provided by consumers and
providers, and the adaptation method. The grey components indicate the
simulated components.

The SLA mapping middleware, which follows a client/service design, fa-
cilitates the access to registries and provides a GUI used for browsing public
SLA templates. The SLA mapping middleware is based on different Win-
dows Communication Foundation (WCF) services, of which only a few are
mentioned here.

SLA Mapping Middleware. A sample provider and a sample consumer are
shown in the lower part of Figure 4. Basically, a service consumer/provider
consists of a client/service based middleware, SLA mapping middleware fa-
cilitating the access to registries, and a GUI used for browsing remote tem-
plates. As already mentioned SLA mapping middleware is based on different
WCF services. For the sake of brevity, in the following we discuss just a
few of them. The RegistryAdministrationService provides methods for the
manipulation of the database where administrator rights are required e.g.,
creation of template categories. Another example represents the SLAMap-
pingService, which is used for the management of SLA mappings by service
consumer and service provider.

Service consumers may search for appropriate services through SLAQue-
ryingService and define appropriate SLA-mappings by using the method cre-
ateAttributeMapping. Each query request is checked at runtime, if the ser-
vice consumer has also specified any SLA-mappings for SLAElements and

12

Adaptation methods for

SLA templates:

- Maximum Method

- Threshold Method

- Maximum-Percentate-

 Change Method

Remote

SLA

template

Meta Negotiaiton

Middleware (MNM)
Meta Negotiaiton

Middleware (MNM)
Meta Negotiaiton

Middleware (MNM)
SLA Mapping

Middleware

WSDL

API
...

...

Remote

SLA

template

Data Model

Private SLA

template

Private SLA

template

Trans-

formation

rules:

XSLT,

XPath

Trans-

formation

rules:

XSLT,

XPath

Trans-

formation

Rules:

XSLT,

XPath

Trans-

formation

Rules:

XSLT,

XPath

meta

negotiatio

n document

meta

negotiatio

n document

Public

SLA

template

Knowledge Base

SLA Demand

Generation for Consumer

Consumer

Provider

Registry

VieSLAF

(1)(2)

(3)

(4)

(5)

Public

SLA

template

SLA Mapping

Middleware

SLA Supply

Generation for Provider

Figure 4: Adaptive SLA mapping architecture using VieSLAF.

SLAAttributes specified in category’s SLA-Template. SLA transformations
are applied before the requests of the service consumers can be completely
checked. The rules necessary for the transformations of attributes and ele-
ments can be found in the database and can be applied using the consumer’s
SLA template.

For example, the SLAMappingService is used for the management of SLA
mappings (cf. (3), Figure 4) by users (i.e., consumers and providers). Con-
sumers may search for appropriate services through SLAQueryingService in
the registry and define appropriate SLA mappings by using the method cre-
ateAttributeMapping. With each query, it is also checked whether a user has
also specified SLA mappings. The rules necessary for the transformations of
SLA attributes (or a set of SLA attributes) are stored in the database and
can be applied by users to their private SLA templates.

Knowledge Base. For storing the SLA templates in a predefined data model
(cf. (4)), we implemented registries representing searchable repositories.

13

Currently, we have implemented an MS-SQL 2008 database with a Web ser-
vice frontend. To handle scalability issues, we intend to utilize non-SQL DBs
(e.g., HadoopDB) with SQL-like frontends (e.g., Hive [25]). SLA templates
are stored in a canonical form, enabling the comparison of these XML-based
templates. The registry methods are also implemented as WCF services and
can be accessed only with appropriate access rights. The access rights dis-
tinguish three access roles: consumer, provider and registry administrator.
Service consumers may also create SLA-mappings using the method createAt-
tributeMapping. Service providers may publish their services and bind it to
a specific template category using the method createService.

Based on the submitted SLA mappings, public SLA templates are adapted,
using an adaptation method (cf. (5)).

4.2. Simulation Parameter Settings

For our simulation, we define five scenarios on how often attribute names
occur in average. That means each scenario defines an occurrence distribu-
tion of four different SLA attribute names. The five scenarios, which have
been chosen such that they represent different situations, are defined as fol-
lows:

• Scenario a: All attribute name counts of an attribute are equal.

• Scenario b: The counts of three attribute names are equally large and
larger than the remaining one.

• Scenario c: Two attribute name counts are equally large and are larger
than the other two, which are equally large as well.

• Scenario d: One attribute name, which has been picked as the attribute
name for the initial setting, has a larger count than the remaining three
attribute names, which are equally large.

• Scenario e: One attribute name, which has not been picked as the
attribute name for the initial setting, has a larger count than the re-
maining three attribute names.

The actual values of each of the five scenarios are shown in Table 1. The
four attribute names chosen for this example are: A, A′, A′′, A′′′.

For example, if the attribute α (CPU Time) is distributed according to
scenario c, then the four attribute names occur in average as follows: 10%

14

Table 1: Average occurrence of attribute names in all scenarios.

Scenarios [%]
a b c d e

A 25 10 10 30.0 23.3
A’ 25 30 10 23.3 30.0
A” 25 30 40 23.3 23.3
A”’ 25 30 40 23.3 23.3

of the attribute names is A, 10% of the attribute names is A′, 40% of the
attribute names is A′′, and 40% of the attribute names is A′′′. However, as
we intend to account for slight changes in the demand for attribute names by
users, we draw randomly the attribute names according to the distribution
given in Table 1 instead of generating the exact number of attribute names.
Consequently, the actual counts of attribute names might vary compared to
the average values shown in Table 1. As an example, the attribute names
generated according to the distribution of scenario c might be 9%, 12%, 37%,
and 42% instead of 10%, 10%, 40%, and 40%. This process of generation of
attribute names is executed for each iteration.

Furthermore, another three simulation parameters are set. First, we limit
the number of iterations to 20. At each iteration, 100 users perform SLA
mappings to all SLA attributes. At the end of an iteration, a new public
SLA template is generated, which is based on the adaptation method and
the users’ SLA mappings.

Table 2 summarizes these settings.

Table 2: Simulation parameter settings.

Simulation Parameter Value

Number of scenarios 5
Number of users (consumers / providers) 100
Number of SLA attributes per SLA template 1
Number of SLA attributes names per attribute 4
Number of adaptation methods applied 3
Number of iterations 20

We used these parameter settings for each of the adaptation methods.

15

5. Experimental Results and Analysis

5.1. Net Utilities of Adaptation Methods

Using the SLA mapping approach, the user gets the benefit of having ac-
cess to public SLA templates that reflect the overall market demand (i.e., the
average user’s demand). This gain of some user is expressed with equation
2. However, this comes with the cost for defining new SLA mappings when-
ever the public SLA template changed (equation 3). Within this section, we
investigate the cost of all users (equation 7), the utility of all users (equation
6), and the net utility of all users (equation 8) for different adaptation meth-
ods. The net utility metric is used to decide which of the three adaptation
methods is superior.

The first adaption method that we investigate is the maximum method. It
is our reference method, since it does not use any heuristics. The simulation
results, which are shown in this section, have been obtained from running
the simulation with parameter settings as described in section 4.2. The
simulation results shown are averages over all scenarios. The advantage of
this method is that the public SLA template generated with this method
minimizes the differences to all private SLA templates of all users. This
method requires, however, many changes of SLA mappings.

!"

#!"

$!"

%&!"

%'!"

&!!"

!" &" #" '" $" %!" %&" %#" %'" %$" &!"

!
"
##
$
%
&

()* +,-./0 "

12*+,33"4-35)6" 12*+,33"7.0)" 12*+,33"8*)"4-35)6"

Figure 5: Utility, cost, and net utility for the maximum method.

Figure 5 shows, as expected, that the maximum method generates a high
utility, since it achieves many matchings of attribute names of the public
SLA template and the private SLA templates. Its net utility stays around
its initial net utility value of about 170 for each iteration. However, as

16

expected as well, it requires many new mappings and, thus, incurs high
costs. Consequently, the net utility is far lower than the utility.

In order to address this issue of high cost, we use heuristics in the following
two adaptation methods. The heuristics help to find a balance between the
utility of having a public SLA template, whose attribute names are identical
to most of the attribute names of the private SLA templates, and the cost
of creating new SLA attribute mappings. The first heuristics-based adapta-
tion method, which we investigate, is the threshold method. The simulation
results are shown in Figure 6.

!"

#!"

$!"

%&!"

%'!"

!" &" #" '" $" %!" %&" %#" %'" %$" &!"

!
"
##
$
%
&

()* +,-./0 "

12*+,33"4-35)6" 12*+,33"7.0)" 12*+,33"8*)"4-35)6"

Figure 6: Utility, cost, and net utility, for the threshold method.

Figure 6 illustrates that the threshold method does not incur any cost
to users at all. This is due to the high threshold (i.e., 60%), resulting in no
changes of the SLA template attribute names. Nevertheless, the utility (and
net utility) is not higher than the maximum method, just more stable across
the 20 iterations. Therefore, the threshold method with a threshold of 60%
could be considered the other extrem strategy, in which the initial public SLA
template does not get adapted at all. By lowering the threshold parameter
such that the threshold parameter in a few iterations is lower than the highest
count of an attribute name, it is expected that the net utility improves. If the
threshold parameter is lower than the minimum count of an attribute name
in all iterations, then this method is identical to the maximum method.

The maximum-percentage-change method is the second heuristics-based
adaptation method, which we investigate and the results are shown in Figure
7.

The simulation results show that in the first iteration and every tenth it-
eration (τ = 10) the overall net utility decreases significantly due to the high

17

!"

#!"

$!"

%&!"

%'!"

&!!"

!" &" #" '" $" %!" %&" %#" %'" %$" &!"

!
"
##
$
%
&

()* +,-./0 "

12*+,33"4-35)6" 12*+,33"7.0)" 12*+,33"8*)"4-35)6"

Figure 7: Utility, cost, and net utility for the maximum-percentage-change method
with τ = 10.

amount of changes of SLA mappings (Figure 7). The cost is very high. At
these iterations, this method chooses the attribute names with the maximum
number of counts (not considering the threshold of 15%). In the subsequent
iterations, however, the cost is low and the overall net utility increases sig-
nificantly. It achieves even higher values than the other two methods.

5.2. Average Cost and Average Net Utility

Table 3 shows the average overall utility, average overall cost, and the
average overall net utility for all three adaptation methods. The averages are
calculated over all iterations. The maximum method has achieved the highest
average overall utility. It satisfies the largest number of users. However, since
it also incurs the highest costs, it becomes the method with the lowest average
overall net utility.

Table 3: Overall utility, overall costs, and overall net utilities averaged across all iterations
(The best values are highlighted in bold).

Maximum Threshold Max.-Perc.-Change

avg. overall utility 171.9 99.5 166.6
avg. overall cost 91.3 0.0 39.95
avg. overall net utilities 80.6 99.5 126.65

The threshold method does slightly better with respect to the average
net utility than the maximum method. This is due to the zero cost. The

18

threshold method (with a high threshold) stays with a fixed set of SLA
attribute names for the public SLA template.

The best adaptation method with respect to the average overall net utility
is the maximum-percentage-change method. We observe that the average
overall net utility is better than the other two adaptation methods, although
the average overall utility is not the highest among the three adaptation
methods. The reason is that the cost is low. The low cost is a result of
the fact that the SLA attribute names of the public SLA template are not
changed frequently. They are only changed in iterations kτ + 1, k ∈ N0

(i.e., when the method behaves like the maximum method) and whenever
the threshold of 15% is exceeded.

Based on the result shown in this section, we can state the adaptive
SLA mapping approach is a good way of generating standardized goods,
which address the needs of the market. To reduce the cost for creating
SLA mappings frequently, the introduction of heuristics into the adaptation
methods is helpful. Results show that a significant reduction of costs can be
achieved, balancing the benefit and the cost of SLA mapping.

6. Conclusion and Outlook

In this paper, we have investigated cost, utility, and net utility of the
adaptive SLA mapping approach, in which market participants may define
SLA mappings for translating their private SLA templates to public SLA
templates. Contrary to all other available SLA matching approaches, the
adaptive SLA mapping approach facilitates continuous adaptation of public
SLA templates based on market trends. However, the adaptation of SLA
mappings comes with a cost for users in the form of effort for generating new
SLA mappings to the adapted public SLA template. To calculate the cost
and benefits of the SLA mapping approach, we utilized the SLA management
framework VieSLAF and simulated different market situations. Our findings
show that the cost for SLA mappings can be reduced by introducing heuristics
into the adaptation methods for generating adapted public SLA templates.
The methods show cost reduction and increase in average overall net utility.

Acknowledgment

The authors would like to thank Marcel Risch for his valuable discussions.
The research was partially supported by the National Research Foundation of

19

Korea (grant number K21001001625-10B1300-03310) and the Vienna Science
and Technology Fund (grant agreement ICT08-018), Foundations of Self-
governing ICT Infrastructures (FoSII).

References

[1] M. Risch, I. Brandic, J. Altmann. Using SLA Mapping to Increase Mar-
ket Liquidity. NFPSLAM-SOC 2009. In conjunction with The 7th Inter-
national Joint Conference on Service Oriented Computing, Stockholm,
Sweden, November 2009.

[2] R. Buyya, K. Bubendorfer. Market Oriented Grid and Utility Comput-
ing. John Wiley & Sons, Inc., New Jersey, USA, 2008

[3] I. Brandic, D. Music, P. Leitner, S. Dustdar. VieSLAF Framework: En-
abling Adaptive and Versatile SLA-Management. GECON2009. In con-
junction with Euro-Par 2009, 25- 28 August 2009, Delft, The Nether-
lands.

[4] M. Risch, J. Altmann. Enabling Open Cloud Markets Through WS-
Agreement Extensions. Service Level Agreements in Grids Workshop,
in conjunction with GRID 2009, CoreGRID Springer Series, Banff,
Canada, October 2009.

[5] Amazon Elastic Compute Cloud (Amazon EC2),
http://aws.amazon.com/ec2/, 2010.

[6] Google Apps, http://www.google.com/apps/, March 2010.

[7] Business Objective Driven Reliable and Intelligent Grids for Real Busi-
ness (BREIN), http://www.eu-brein.com/, February 2010.

[8] N. Oldham, K. Verma, A. P. Sheth, and F. Hakimpour. Semantic WS-
agreement partner selection. 15th International Conference on World
Wide Web, WWW 2006, Edinburgh, Scotland, UK, May 2006.

[9] G. Dobson, A. Sanchez-Macian. Towards Unified QoS/SLA Ontologies.
IEEE Services Computing Workshops (SCW), Chicago, Illinois, USA,
pp.18-22, September 2006.

20

[10] B. Koller, L. Schubert. Towards Autonomous SLA Management Using a
Proxy-Like Approach. Multiagent Grid Systems. vol.3, no.3, IOS Press,
Amsterdam, The Netherlands, 2007.

[11] M. Risch, J. Altmann, L. Guo, A. Fleming, C. Courcoubetis. The GridE-
con Platform: A Business Scenario Testbed for Commercial Cloud Ser-
vices. 6th international Workshop on Grid Economics and Business Mod-
els, Delft, The Netherlands, August 2009.

[12] Tsunamic Tech. Inc., http://www.clusterondemand.com/, 2010.

[13] EMC Atmos Online, https://mgmt.atmosonline.com/, 2010.

[14] Salesforce.com, http://www.salesforce.com, March 2010.

[15] Sun Grid, http://www.sun.com/service/sungrid/index.jsp, 2010.

[16] Microsoft Azure, http://www.microsoft.com/windowsazure/, 2010.

[17] D. Ardagna, G. Giunta, N. Ingraa, R. Mirandola, and B. Pernici. QoS-
Driven Web Services Selection in Autonomic Grid Environments. Inter-
national Conference on Grid Computing, High Performance and Dis-
tributed Applications (GADA), Montpellier, France, November 2006.

[18] I. Brandic, S. Benkner, G. Engelbrecht, R. Schmidt. QoS Support for
Time-Critical Grid Workflow Applications. 1st IEEE International Con-
ference on e-Science and Grid Computing, Melbourne, Australia, De-
cember 2005.

[19] E. Oberortner, U. Zdun and S. Dustdar: Tailoring a Model-Driven
Quality-of-Service DSL for Various Stakeholders. MiSE 2009.

[20] J. Chen, B. Lu. An Universal Flexible Utility Function in Grid Economy.
2008 IEEE Pacific-Asia Workshop on Computational Intelligence and
Industrial Application.

[21] Wai-Khuen Cheng, Boon-Yaik Ooi, and Huah-Yong Chan. Resource fed-
eration in grid using automated intelligent agent negotiation. Future
Generation Computer Systems, Volume 26, Issue 8, October 2010, Pages
1116-1126

21

[22] Luis Rodero-Merino, Luis M. Vaquero, Victor Gil, Fermin Galan, Javier
Fontan, Ruben S. Montero, Ignacio M. Llorente, From infrastructure
delivery to service management in clouds, Future Generation Computer
Systems, Volume 26, Issue 8, October 2010, Pages 1226-1240,

[23] Saurabh Kumar Garg, Rajkumar Buyya, Howard Jay Siegel, Time and
cost trade-off management for scheduling parallel applications on Util-
ity Grids, Future Generation Computer Systems, Volume 26, Issue 8,
October 2010, Pages 1344-1355

[24] R. A. Fisher. Statistical Methods for Research Workers. ed. 12, Edin-
burgh, Oliver and Boyd, 1954.

[25] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain et. Al. Hive - A Ware-
housing Solution Over a Map-Reduce Framework. VLDB 2009.

22

*Biographies (Text)

*Biographies (Photograph)

