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ABSTRACT
We study fault localization techniques for identification of
incompatible configurations and implementations in service-
based applications (SBAs). Practice has shown that stan-
dardized interfaces alone do not guarantee compatibility of
services originating from different partners. Hence, dynamic
runtime instantiations of such SBAs pose a great challenge
to reliability and dependability. The aim of this work is
to monitor and analyze successful and faulty executions in
SBAs, in order to detect incompatible configurations at run-
time. We propose an approach using pooled decision trees
for localization of faulty service parameter and binding con-
figurations, explicitly addressing transient and changing fault
conditions. The presented fault localization technique works
on a per-request basis and is able to take individual service
inputs into account. Considering not only the service con-
figuration but also the service input data as parameters for
the fault localization algorithm increases the computational
complexity by an order of magnitude. Hence, our perfor-
mance evaluation is targeted at large-scale SBAs and illus-
trates the feasibility and decent scalability of the approach.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
C.4 [Performance of Systems]: Reliability, availability,
and serviceability; I.2.6 [Learning]: Induction

General Terms
Algorithms, Experimentation, Management, Reliability

Keywords
Fault Localization, Service-Oriented Architecture, Pooled
Decision Trees, Dependability

1. INTRODUCTION
Distributed and mission-critical enterprise applications are

becoming more and more reliant on external services, pro-
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vided by suppliers, customers or other members of service
value networks [3] (SVNs). In many industries, the technical
interfaces of these services are governed by industry stan-
dards, specified by bodies such as the TM Forum1 (TMF),
the Association for Retail Technology Standards2 (ARTS) or
the International Air Transport Association3 (IATA). Hence,
integration of services provided by different partners into
a single service-based application (SBA) becomes feasible.
Additionally, as oftentimes a multitude of potential partners
are providing implementations of the same standardized in-
terfaces, SBAs are enabled to dynamically switch providers
at runtime, i.e., select the most suitable implementation of a
given standardized interface based on current requirements.

Unfortunately, practice has shown that standardized in-
terfaces alone do not guarantee compatibility of services
originating from different partners. Many industry stan-
dards are prone to underspecification, while others simply
allow multiple alternative (and incompatible) implementa-
tions to co-exist. Additionally, and particularly for younger
specifications, not every vendor can be trusted to interpret
each standard text in the same way. Consequently, there are
practical cases where SBAs, which should work correctly in
theory, fail to function because of unexpected incompati-
bilities of service implementations chosen at runtime. Note
that this does not necessarily mean that any single one of
the chosen service implementations is faulty in itself – it
merely means that two or more chosen service implemen-
tations do not work in conjunction (even though both may
work perfectly in combination with other services).

In this paper, we present a machine learning driven ap-
proach to identify such incompatibilities of industry stan-
dard implementations. We analyze runtime event logs emit-
ted by the SBA using decision tree techniques and principal
component analysis, with the goal of suggesting combina-
tions of service implementations that should not be used in
conjunction. Decision trees are a white-box machine learn-
ing approach that allow to extract incompatibility rules from
the constructed tree [28]. Our approach takes into account
not only the actual service implementations themselves, but
also the received input and the produced output data of im-
plementations. Furthermore, we quantify the benefits of our
approach based on a numerical evaluation.

The remainder of the paper is structured as follows. The
core part is presented is Section 2, where we establish a
model for fault localization in SBAs and describe our ap-

1http://www.tmforum.org/browse.aspx
2http://www.nrf-arts.org/
3http://www.iata.org/Pages/default.aspx



proach in detail. In Section 3 we briefly discuss the prototyp-
ical implementation of the system. Section 4 contains a com-
prehensive experimental evaluation and discusses strengths
and limitations of the approach. Section 5 discusses related
work in the field of reliable distributed systems and fault
localization in SBAs. Finally, Section 6 concludes the paper
and points to future research directions.

2. FAULT LOCALIZATION APPROACH
This section discusses our novel fault localization tech-

nique. Section 2.1 establishes a notion for the model of
SBAs. Sections 2.2 and 2.3 discuss preprocessing and ma-
chine learning techniques used to learn rules which describe
the reasons for faults based on the collected model data.

2.1 System Model
We establish a generalized model that forms the basis for

the concepts presented in the paper. The core model arti-
facts are discussed in the following.

A SBA consists of a set of industry standard service in-
terfaces I = {i1, . . . , in} and a set of implementations C =
{c1, . . . , cm}. The mapping between interface and imple-
mentation is defined by the function c : I → P(C), where
P(C) denotes the power set of C. The domain of possible
input parameters P , each defined by name (N) and domain
of possible data values (D) is represented by P = N × D.
Function p : I → P(P ) returns all inputs required by an
interface, and d : P → D returns the value domain for a
given parameter. The set F ⊆ I × I defines data flows
as pairs of interfaces (ix, iy), where the output of ix be-
comes the input of iy. Transitive data flows spanning more
than two services can be derived from F . Moreover, we de-
fine T = 〈t1, . . . , tk〉 as the sequence of logged execution
traces tx : K → V in chronological order, mapping the
set of keys K = I ∪ (I × N) to values V = C ∪ D; in-
terfaces I map to implementations C, whereas parameter
names I × N map to parameter domains D. Finally, the
function r : {1, . . . , k} → {success, fault} is used to express
the result of a trace tx, x ∈ {1, . . . , k}, i.e., whether the trace
represents a successful or failed execution of the SBA.

Summarizing the model, the core idea of our approach is
to analyze log traces of SBA executions for fault localization.
We consider two classes of properties as part of the traces: 1)
runtime binding of interfaces to concrete implementations,
2) service input parameters, i.e., data provided by the user
to the application as well as data flowing between services.

2.2 Trace Data Preparation
Table 1 lists an excerpt of six exemplary traces for an

imaginative customer-oriented SBA. The table contains mul-
tiple rows which represent the traces (t1, . . . , t6); the columns
contain the bindings for the service interfaces (i1, i2, i3, . . .),
the input parameter values (tx(. . .)), and the success re-
sult of the trace (r(x)). Two exemplary parameters for a
customer service are in the Table: tx(i1,

′ custID′) denotes
the customer identifier provided to some interface i1, and
the parameter tx(i2,

′ premium′) tells the service interface
i2 whether it is dealing with a regular customer or a high-
paying premium customer.

We follow the typical machine learning terminology and
denote the column titles as attributes and the rows starting
from the second row as instances. The first attribute (tx) is
the instance identifier, and r(x) is denoted class attribute.

tx i1 i2 i3 .. tx(i1,
′ custID′) tx(i2,

′ premium′) .. r(x)

t1 c1 c3 c7 .. ′joe123′ false .. success
t2 c2 c4 c6 .. ′aliceXY ′ true .. success
t3 c1 c5 c8 .. ′joe123′ false .. fault
t4 c2 c5 c8 .. ′bob456′ true .. success
t5 c2 c4 c7 .. ′aliceXY ′ true .. success
t6 c1 c4 c8 .. ′lindaABC′ false .. fault
..

Table 1: Example Traces for Sample Application

The number of attributes and combinations of attribute
values can grow very large. To estimate the number of pos-
sible traces for a medium sized application, consider an SBA
using 10 interfaces (|I| = 10), 3 candidate implementations
per interface (|c(ix)| = 3 ∀ix ∈ I), 3 input parameters per
service (|p(ix)| = 3 ∀ix ∈ I), and 100 possible data values
per parameters (|d| = 100 ∀ix ∈ I, (n, d) ∈ p(ix)). The
total number of possible execution traces in this SBA is

310 ∗ 100310 = 5.9049 ∗ 1064. Efficient localization of faults
in such large problem spaces evidently poses a huge algo-
rithmic challenge. Even more problematically, the problem
space becomes infinite if the service parameters use non-
finite data domains (e.g., String). The first step towards
feasible fault analysis is to reduce the problem space to the
most relevant information. We propose a two-step approach:

1. Identifying (ir)relevant attributes: The first manual
preprocessing step is to decide, based on domain knowledge
about the SBA, which attributes are relevant for fault lo-
calization. For instance, in an e-commerce scenario we can
assume that a unique customer identifier (custID) does not
have a direct influence on whether the execution succeeds
or fails. Per default, all attributes are deemed relevant, but
removing part of the attributes from the execution traces
helps to reduce the search space.

2. Partitioning of data domains: Research on software
testing and dependability has shown that faults in programs
are often not solely incurred by a single input value, but
usually depend on a range of values with common charac-
teristics [30]. Partition testing strategies therefore divide
the domain of values into multiple sub-domains and treat
all values within a sub-domain as equal. As a simple ex-
ample, consider a service parameter with type Integer (i.e.,
{−231, . . . ,+231−1}), a valid partitioning would be to treat
negative/positive values and zero as separate sub-domains:
{{−231, . . . ,−1}, {0}, {1, . . . ,+231 − 1}}. If explicit knowl-
edge about suitable partitioning is available, input value do-
mains can be partitioned manually as part of the prepro-
cessing. However, efficient methods have been proposed to
automatize this procedure (e.g., [6]).

2.3 Learning Rules from Decision Trees
Using the preprocessed trace data, we strive to identify

the attribute values or combinations of attribute values that
are likely responsible for faults in the application. For this
purpose, we utilize decision trees [24], a popular technique
in machine learning. It has the advantage that the decision
making of the resulting trees can be easily comprehended;
their knowledge can be distilled for the purpose of fault
localization. Also, decision tree training with state of the
art algorithms like C4.5 results in comparably fast learning
speeds, compared to other machine learning approaches.
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Figure 1: Exemplary Decision Tree in Two Variants

Figure 1 illustrates decision trees based on the example
traces in Table 1. The figure shows two variants of the same
tree which classifies non-premium services from Provider 3
(tx(i3) = c8). The inner nodes are decision nodes which
divide the traces search space, and the leaf nodes indicate
the trace results. The left-hand side of the figure shows a
regular decision tree where each decision node splits accord-
ing to the possible values of an attribute. The right-hand
side shows the same tree with binary split (i.e., each decision
node has two outgoing edges).

Algorithm 1 Obtain Incompatibility Rules from Decision
Tree
1: EI ← ∅
2: for all fault leaf nodes as n do
3: path← path of nodes from n to root node
4: Etemp ← ∅
5: for all decision node along path as d do
6: c← condition of d
7: if c is true along path then
8: Etemp ← Etemp ∪ c
9: end if

10: end for
11: EI ← EI ∪ Etemp

12: end for
13: for all Ex, Ey ∈ EI do
14: if Ex is covered by Ey then
15: EI ← EI \ Ex

16: end if
17: end for

The decision tree with binary split is used to automatically
derive incompatible attribute values. The basic procedure
is to loop over all fault leaf nodes and create a combina-
tion of attribute assignments along the path from the leaf to
the root node. The detailed algorithm is presented in Algo-
rithm 1. For each fault leaf node, a set Etemp is constructed
which contains the conditions that are true along the path.
The total set of all such condition combinations is denoted
EI . Our approach exploits the simple structure of decision
trees for extracting incompatibility rules; other popular clas-
sification models (e.g., neural networks) have much more
complex internal structures which make it harder to extract
the principal attributes responsible for the output [28].

2.4 Coping with Transient Faults
So far, we have shown how trace data can be collected,

transformed into a decision tree, and used for obtaining
rules which describe which configurations have led to a fault.

The assumption so far was that faults are deterministic and
static. However, in real-life systems which are influenced by
various external factors, we have to be able to cope with
temporary and changing faults. Our approach is hence tai-
lored to react to such irregularities in dynamically changing
environments.

A temporary fault manifests itself in the log data as a
trace t ∈ T whose result r(t) is supposed to be success, but
the actual result is r(t) = fault. Such temporary faults can
lead to a situation of contradicting instances in the data set.
Two trace instances t1, t2 ∈ T contradict each other if all
attributes are equal except for the class attribute:
{(k, v) | (k, v) ∈ t1} = {(k, v) | (k, v) ∈ t2}, r(t1) 6= r(t2).

Fortunately, state-of-the-art decision tree induction algo-
rithms are able to cope with such temporary faults which are
considered as noise in the training data (e.g., [1]). If the rea-
sons for faults within an SBA change permanently, we need a
mechanism to let the machine learning algorithms forget old
traces and train new decision trees based on fresh data. Be-
fore discussing strategies for maintaining multiple decision
trees, we first briefly discuss in Section 2.5 how the accuracy
of an existing classification model is tested over time.

2.5 Assessing the Accuracy of Decision Trees
Let D be the set of decision trees used for obtaining fault

combination rules. We use the function rc : (D × {1, . . . , k})
→ {success, fault}, where k is the highest trace index, to
express how a desicion tree classifies a certain trace. Over a
subset Td ⊆ T of the traces classified by a decision tree d, we
assess its accuracy using established measures true positives
(TP ), true negatives (TN), false positives (FP ), and false
negatives (FN) [2].

From the four basic measures we obtain further metrics to
assess the quality of a decision tree. The precision expresses
how many of the traces identified as faults were actually
faults (TP/(TP + FP )). Recall expresses how many of the
faults were actually identified as such (TP/(TP + FN)).
Finally, the F1 score [9] integrates precision and recall into
a single value (harmonic mean):

F1(d) = 2 ∗ precision·recall
precision+recall

2.6 Maintaining a Pool of Decision Trees
In the following we discuss our approach to cope with

changing fault conditions over time, based on a sample exe-
cution of the system model introduced in Section 2.1.

Figure 2 illustrates a representative sequence of execution
traces ({t1, t2, t3, . . .}); time progresses from the left-hand
side to the right-hand side of the figure. In the top of the
figure the trace results (r(tx)) are printed, where “S” rep-
resents success and “F” represents fault. As the traces ar-
rive with progressing time we utilize deduction algorithms
to learn decision trees from the data. At time point 1, the
decision tree d1 is initialized and starts the training phase.
The learning algorithm has an initial training phase which
is required to collect a sufficient amount of data to gener-
ate rules that pass the required statistical confidence level.
After the initial training phase the quality of the decision
tree rules is assessed by classifying new incoming traces. In
Figure 2 correct classifications are printed in normal text,
while incorrect classifications are printed in bold underlined
font.

We have marked four particularly interesting time points
(a, b, c, d) in Figure 2, which we discuss in the following.
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Figure 2: Maintaining Multiple Trees to Cope with
Changing Faults

1) At time a the tree d1 misclassifies the trace ta as a false
positive. This triggers the parallel training of a new decision
tree d2 based on the traces starting with ta. 2) A false
negative by d2 occurs at time b. However, since this happens
during the initial training phase of d2, we simply regard the
trace tb as useful information for the learner and add it to
the training set. No further action is required. 3) Time
point c contains another false positive misclassification of
d1. In the meantime, F1(d1) had risen due to some correct
classifications, but now the score is pushed down to 0.7.
Again, as in time point a, the generation of a new tree d3
is triggered. 4) At time d the environment seems to have
stabilized and decision tree d3 reached a state with perfect
classification (F1(d3) = 1). At this point, the remaining
decision trees are rejected. The old trees are still stored
for reference, but are not trained with further data to save
computing power.

3. IMPLEMENTATION
Our prototype implementation of the presented fault lo-

calization approach is implemented in Java. We utilize the
open-source machine learning framework Weka4. Weka con-
tains an implementation of the popular C4.5 decision tree
deduction algorithm [25], denoted J48 classifier in Weka.
C4.5 has been applied successfully in many application ar-
eas and is known for its good performance characteristics.

Figure 3 outlines the architecture of the Fault Localization
Platform with the core components. Third-party compo-
nents (Weka) are depicted with light grey background color.
The service-based application submits its log traces (service
bindings plus input messages) to the Logging Interface and
provides a Notification Interface to receive fault localization
updates. The Trace Log Store receives trace data and for-
wards them to the Trace Converter. The Domain Partition
Manager maintains the customizable value partitions for in-
put messages. For instance, if a trace contains an integer
input parameter x = −173 and the chosen domain partition
for x is {negative, zero, positive} then the Trace Converter
transforms the input to x = negative. The transformed

4http://www.cs.waikato.ac.nz/ml/weka/
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Figure 3: Prototype Implementation Architecture

traces are put to the Weka Instances Store. The Decision
Tree Pool utilizes the Weka J48 Classifier to maintain the
set of trees. The Statistics Calculator determines quality
measures for the learned classifiers, and the Training Sched-
uler triggers the adaptation of the tree pool to changing
environments.

4. EVALUATION
In the following we evaluate different aspects of our pro-

posed fault localization approach. We have set up a com-
prehensive evaluation framework as part of Indenica5, a re-
search project aiming at developing a virtual platform for
service computing. The framework provides traces of large
SBAs, against which we run our fault detection algorithms.

4.1 Evaluation Setup
The test traces are generated randomly, with assumed uni-

form distribution of the underlying random generator.

ID |I| |c(i)|, |p(i)|, |d|, |e|, Fault
i ∈ I p(i) ∈ P i ∈ I e ∈ EI Probability

S1 5 5 10 20 {1} 4 ∗ 10−2

S2 5 5 10 20 {2} 2 ∗ 10−3

S3 5 5 10 20 {3} 1 ∗ 10−4

S4 5 5 10 20 {3, 3, 3} 3 ∗ 10−4

S5 10 10 10 100 {3, 4} 1.001 ∗ 10−6

S6 10 10 10 100 {4} 1 ∗ 10−12

Table 2: Fault Probabilities for Exemplary SBA
Model Sizes

Table 2 shows six different SBA instances with corre-
sponding parameter settings that are considered for evalua-
tion. |I| denotes the number of service interfaces, |c(i)| is the
number of concrete implementations of each interface i ∈ I,
|p(i)| represents the number of input parameters per inter-
face, |d(p)| is the domain size for a parameter p ∈ P , and
|EI | is the number of injected incompatibilities that cause

5http://www.indenica.eu/



the faults at runtime. The table also lists for each setting
the probability that a fault occurs in a random execution.

All tests have been performed on machines with two Intel
Xeon E5620 quad-core CPUs, 32 GB RAM, and running
Ubuntu Linux 11.10 with kernel version 3.0.0-16.

4.2 Training Duration
First, we evaluate how many fault traces are required by

the J48 classifier to pass the threshold for reliable fault de-
tection. The scenario SBAs S3, S2, S1 (cf. Table 2) were
used in Figure 4, 20 iterations of the test were executed,
and the figure contains three boxes representing the range
of minimum and maximum values. As shown in Figure 4,
the number of traces required to successfully detect a faulty
configuration depends mostly on the complexity (i.e., prob-
ability) of the fault with regard to the total scenario size.
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Figure 4: Number of Traces Required to Detect
Faults of Different Probabilities

A single fault in the configuration S1 was on average de-
tected after observing between 90 and 190 traces. If we mul-
tiply these values with the fault probability of 4 ∗ 10−2, we
get a range of 4 to 8 fault traces required for the localization.
Also with more complex (unlikely) faults the relative figures
do not appear to change considerably. With a fault proba-
bility of 2 ∗ 10−3 and 1 ∗ 10−4 the faults are detected after
observing 3/16 and 4/7 minimum/maxiumum fault traces,
respectively. The data suggest that there is a strong rela-
tionship between the number of required fault traces and the
fault probability.

4.3 Transient Faults
As discussed in Section 2.6, our fault localization approach

is designed to cope with changing environments, which is
evaluated here. Figure 5 shows the performance in the pres-
ence of changing faults. The evaluation setup is as follows:
Initially a fault combination FC1 (e.g., 〈tx(i2,

′ premium′) =
false, i3 = c8〉) is active. At trace 33000, the implementa-
tion that causes the fault FC1 is repaired, but the fix intro-
duces a new fault FC2 that is fixed at trace 66000. At trace
66000, another fault FC3 occurs, and an attempted fix at
trace 88000 introduces an additional fault FC4, while FC3
remains active. At trace 121000, both FC3 and FC4 are
fixed, but two new faults FC5 and FC6 are introduced to
the system. The occurrence probability for each of the fault
combinations (FC1−FC6) is set to 2∗10−3 (corresponding
to scenario setting S2 in Table 2).
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Figure 5: Fault Localization Accuracy for Dynamic
Environment with Transient Faults

This scenario is designed to mimic a realistic situation,
but serves mainly to highlight several aspects of our solu-
tion. After about 4000 observed execution traces the local-
izer provides a first guess as to the cause of the fault, but the
classification is not yet correct. After around 5200 observed
execution traces, the localizer was able to analyze enough
error traces to provide an accurate localization result. Note
that at that time, only about 6 error traces have been ob-
served, yet the algorithm already produces a correct result.
At trace 33000, the previously detected fault FC1 disap-
pears and is replaced by FC2. Due to the pool of decision
trees maintained by our localizer, FC2 can again be accu-
rately localized roughly 6000 traces later. Similarly, after
FC2 disappears, FC3 is localized roughly 5000 traces after
its introduction.
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The decision tree pool allows for the effective localization
of new faults introduced to the system at any time. At
trace 88000 in Figure 5, FC4 is introduced, and can again
be accurately localized after observing around 5000 traces.
FC3 and FC4 disappear at trace 121000 and are replaced



by simultaneously occurring errors FC5 and FC6. This
situation is more challenging for our approach, as seen in the
rightmost 80000 traces in Figure 5. The spikes between trace
121000 and 150000 represent different localization attempts
that are later invalidated by contradicting execution traces.
Finally, however, the localization stabilizes and both faults
FC5 and FC6 are accurately detected.

We also evaluated the performance of our approach using
different noise levels in the trace logs. Figure 6 analyzes how
the F1 score develops with increasing noise ratio. The figure
contains four lines, one each for the scenario settings S1 −
S4. To ensure that the algorithm actually obtained enough
traces for fault localization, we executed the localization run
after 200000 observed traces.

4.4 Runtime Considerations
Due to the nature of the tackled problem, as well as the us-

age of C4.5 decision trees to generate rules, there are some
practical limitations to the number of traces and scenario
sizes that can be analyzed using our approach within a rea-
sonable time. In the following we provide insights into the
runtime performance in different configurations and discuss
strategies for fine-tuning the performance.
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dow sizes in the scenario S5 for input sizes |d| =
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Figure 7 shows the time needed for to localize faults for
various trace window sizes for the base scenario S5, for input
sizes |d| = {5, 10, 50, 100}. The figure illustrates that the
time needed for a single localization run increases roughly
linearly with increasing window sizes. Larger trace windows
allow the algorithm to find more complex faults. If fast
localization results are needed, the window size must be kept
adequately small, at the cost of the system not being able
to localize faults above a certain complexity.

Furthermore, the frequency of localization runs must be
considered when implementing our approach in systems with
very frequent incoming traces (in the area of hundreds or
thousands of traces per second). Evidently, there is a natu-
ral limit to the number of traces that can be processed per
time unit. Figure 8 shows the localization speed as number
of traces processed per second compared to different fault lo-
calization intervals (i.e., number of traces after which fault
localization is triggered periodically) for different window
sizes (|T |, i.e., number of considered traces).

The data in Figure 8 can be seen as a performance bench-
mark for the machine(s) on which the fault localization is
executed. Executing this test on different machines will re-
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Figure 8: Localization performance in traces per
second for different fault localization intervals and
window sizes, using scenario S5

sult in different performance footprints, which serves as a
decision support for configuring window size and localiza-
tion interval. For instance, if our application produces 1500
traces per second (i.e., processes 1500 requests per second), a
localization interval greater than 400 should be used. Cur-
rently, the selection happens manually, but as part of our
future work we investigate means to fine-tune this configu-
ration automatically.

5. RELATED WORK
In this section we discuss existing approaches related to

reliability, fault detection, and fault localization in SBAs
and distributed systems in general.

5.1 Software Testing
Our work is related to the broad field of software testing

where a plethora of approaches for fault localization have
been proposed. Generally, software testing is the process of
executing a program or systems with the intent of finding
errors [20]. Testing approaches are often divided into white-
and black-box testing. In white-box (or logic-driven) test-
ing the internals of the software under test are visible to
the tester. Black-box (input/output-driven) testing has to
get along with no information about internal structure. Our
problem formulation faces a black-box model in which we
can observe the system behavior but have no details about
the internals. Formal verification of software is an alterna-
tive to testing that is often employed in highly safety-critical
environments.

Canfora et al. [4] provide an extensive overview of test-
ing services and SBAs. The seminal work by Narayanan
and McIlraith [21] was among the first to perform auto-
mated simulation and verification based on a semantic model
of Web services. Another related approach has been pre-
sented in [11], which performs upfront integration testing
with different combinations of concrete service implementa-
tions. Due to the huge search space, even in medium sized
SBAs, their test case generation approach is not able to con-
sider the service input and output data, whereas the efficient
fault localization algorithms used in this work allow us to do
so. Concluding, in software testing a system is actively ex-
ecuted to find problems; in this work, however, we do not
control the software but we monitor its execution to localize
faults and fault reasons at runtime.



5.2 Software Fault Localization
Software fault localization helps to identify bugs in soft-

ware on the source code level. Oftentimes a two-phase proce-
dure is applied: 1) finding suspicious code that may contain
bugs and 2) examining the code and deciding whether it
contains bugs with the goal of fixing them. Research mainly
focused on the former, the identification of suspicious code
parts with prioritization based on its likelihood of containing
bugs [31, 17, 7]. The seminal paper by Hutchins et al. [12]
introduces an evaluation environment suitable for fault lo-
calization (often referred to as the Siemens suite), consisting
of seven base programs (in different versions) that have been
seeded with faults on the source code level. Fundamental
research on statistical bug isolation is presented in [17]. De-
cision branches are modeled as predicates, and conditional
probabilities are used to compute the likelihood that a fail-
ure occurs in a certain branch.

Renieres et al. [26] present a fault localization technique
for identifying suspicious lines of a program’s source code.
Based on the existence of a faulty run of the program and
many correct runs they select the correct run that is most
similar to the faulty one. Proximity is defined based on the
program spectra. Then, traces of the two runs are com-
pared and suspicious program lines are reported. This gen-
eral approach is very common in software fault localization.
Arguing that traditional trace proximity (literal comparison
of traces) is insufficient as faults can be triggered in vari-
ous ways, Liu and Han [19] introduce R-Proximity which
regards two traces as similar if they appear to have roughly
the same fault location. Guo et al. [8] propose a different
similarity metric based on control flow. The metric takes
into account the sequence of statement rather than just the
unordered set. Our work differs from traditional software
fault localization in that we do not analyze program code but
only observe the runtime behavior of services. We also as-
sume that the environment or service implementations may
change during runtime, in contrast to the analysis of static
code. The work in [15] assists humans in localizing software
faults by visualizing test information and highlighting sus-
picious code statements with different color intensity. The
empirical study conducted shows that single faults are ev-
idently easier to find for humans than complex fault com-
binations, which strengthens the motivation for automated
machine learning based fault localization, as studied here.

5.3 Monitoring and Fault Detection
Monitoring and fault detection are key challenges for im-

plementing reliable distributed systems. Fault detectors are
a general concept in distributed systems and aim at iden-
tifying faulty components. In asynchronous systems it is
in fact impossible to implement a perfect fault detector [5],
because faults cannot be distinguished with certainty from
lost or delayed messages. Heartbeat messages can be used
for probabilistic detection of faulty components; in this case
a monitored component or service has the responsibility to
send heartbeats to a remote entity. The fault detector pre-
sented in [27] considers the heartbeat inter-arrival times and
allows for a computation of a component’s faulty behavior
probability based on past behavior. Steinder and Sethi [29]
study fault localization in communication systems using be-
lief networks. The approach is noise resilient and able to
handle spurious events, but if fault conditions change per-
manently, updates in the belief network are arguably slower

than using pooled decision trees. Moreover, their results in-
dicate that fault localization time has exponential growth in
the number of network nodes, whereas our centralized ap-
proach scales near-linearly in the number of traces. Lin et
al. [18] describes a middleware architecture called LIama
that advocates a service bus that can be installed on exist-
ing service-based infrastructures. It collects and monitors
service execution data which enable to incorporate fault de-
tection mechanisms using the data. Such a service bus can
be used to collect the data necessary for our analysis. The
major body of research in the area of monitoring and fault
detection in SBAs deals with topics like SLAs (service-level
agreements) [16] and service compositions rather than com-
patibility issues [22].

5.4 Fault Analysis and Adaptation
Fault analysis derives knowledge from faults that have

been experienced. Adaptation tries to leverage this knowl-
edge to reconfigure the system to overcome faults. Often-
times, domain-specific knowledge is required to efficiently
analyze faults and their origins (e.g., [10]). Zhou et al. [32]
have proposed GAUL, a problem analysis technique for un-
structured system logs. Their approach is based on enter-
prise storage systems, whereas we focus on dynamic service-
based applications. GAUL uses a fuzzy match algorithm
based on string similarity metrics to associate problem oc-
currences with log output lines. The aim of GAUL differs
from our approach since we assume the existence of struc-
tured log files and focus on the localization of faulty con-
figuration parameters. Control of SOAs mostly relies on
static approaches, such as predefined policies [23]. Tech-
niques from artificial intelligence can be used to improve
management policies for SBAs during runtime. For instance,
Markov decision processes represent a possible way for mod-
eling the decision-making problems that arise in controlling
SBAs. Markov decision processes and algorithms to solve
them have been shown effective in reducing the impact of
defects in service implementations by adapting the SBA at
runtime [14, 13]. In this work we focus on fault localization
rather than on how to react in the face of faults.

6. CONCLUSION
In this paper we describe a fault localization technique

that is able to identify which combinations of service bind-
ings and input data cause problems in SBAs. The analysis
is based on log traces, which accumulate during runtime
of the SBA. A decision tree learning algorithm is employed
to construct a tree from which we extract rules, describing
which configurations are likely to lead to faults. For pro-
viding a fine-grained analysis we do not only consider the
service bindings but also data on message level. This allows
to find incompatibilities that go beyond “service A has in-
compatibility issues with service B” leading to rules of the
form “service A has incompatibility issues with service B for
messages of type C”. Such rules can help to safely use partial
functionality of services. We present extensions to our basic
approach that help to cope with dynamic environments and
changing fault patterns. We have conducted experiments
based on scenario traces of realistic size. The results pro-
vide evidence that the employed approach leads to successful
fault localization for dynamically changing conditions, and
is able to cope with the large amounts of data that accumu-
late by considering fine-grained data on message level.



As future work we plan to extend our approach beyond
the pure fault localization aspects; in particular, we will use
the extracted rules for guiding automated reconfiguration
when a fault occurs. Furthermore, we intend to integrate
test coverage mechanisms that help to actively investigate
faults. This can be used for systematic test execution of
insightful configurations and input requests which further
narrow down the search space of possible fault reasons.
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