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Abstract—The process of engineering and provisioning
service-based systems (SBS) follows a complex and dynamic
lifecycle with different phases and levels of abstraction. We
tackle the problem of making this lifecycle explicit, provid-
ing development time and runtime support for evolutionary
changes in such systems. SBSs are modeled as integrated
ecosystems consisting of four conceptual layers (or phases):
design, implementation, deployment, and runtime. Our work
is driven by the notion that identifying the right changes
(monitoring) and effecting of these changes (adaptation) usually
takes place individually on each layer. While considering
changes on a single layer (e.g., runtime adaptation) is often
sufficient, some cases require systematic escalation to adjacent
layers. We present a generic lifecycle model that provides an
abstracted view of the problem domain and can be mapped
to concrete artifacts on each individual layer. We introduce a
real-life scenario taken from the telecommunications domain,
which serves as the basis for discussion of the challenges and
our solution. Based on the scenario and our experience from a
research project on Virtual Service Platforms, we evaluate three
concrete use cases which illustrate the diversity of evolutionary
changes supported by the approach.

I. INTRODUCTION

Current enterprise applications are usually built on the
notion of a service-oriented architecture (SOA), i.e., they
use and reuse existing infrastructure assets and platform
services while themselves providing services to be used
by other applications. Such service-based systems (SBSs)
are typically built for the long haul. Consequently, adapting
SBSs to changing environments, or simply improving SBSs
to eliminate problems of earlier versions, become central.

While the overall development process of SBSs is by now
well-understood, the design of adaptive systems that evolve
automatically or semi-automatically along with the envi-
ronment they live in is still rather uncharted. Specifically,
little research work exists that feeds runtime monitoring data
back into the artifacts of previous phases of the development
process. There are existing approaches in the field of self-
adaptation that enable explicit feedback-loops in order to
help software systems adjusting their behaviors according to

their perception of the surrounding environment [1], [2]. A
number of studies in the area of log mining aim at supporting
the extraction of off-line log information for analysis and
verification [3]. To the best of our knowledge, none of the
existing approaches targets the reflection of runtime data to
early development phases in order to support the continuous
evolution of software systems. Examples of the reflection
are to validate the configuration options selected during
system modeling or deployment or to verify the assumptions
and rationale of architectural decisions. Without adequate
links between runtime monitoring and design-time artifacts,
targeted improvement and evolution of SBSs become much
more difficult.

In this paper, we present a novel approach to support a
continuous development lifecycle of SBSs. Our approach is
a realization of the model-driven development paradigm that
extends the traditional development process with feedback
loops that can feed runtime information to the corresponding
artifacts of the adequate phase. During the course of the
development phases, software architects and developers use
different models to capture various types of development
artifacts, such as architectural design decision, component
models, or monitoring rules. Based on these models, deploy-
ment configurations, monitoring directives, and adaptation
rules can be automatically generated. At the heart of our ap-
proach, we introduce a lifecycle evolution model to formally
represent the relationships between monitoring information
and the development artifacts. The evolution model can be
(semi-)automatically achieved with reasonable efforts by ex-
tending model-to-model and model-to-code transformation
rules. Monitoring information collected from the running
code can be fed back into the artifacts of each phase to
support on-line or off-line analysis and evolution of all
artifacts of the SBS. The evolution model, on the one hand,
can help to identify which particular artifacts at which phase
may influence a certain unexpected or undesired incident,
for instance, performance reducing, policy violation, and so
forth. On the other hand, the trace links recorded in the



evolution model can significantly enrich the context of the
incident for better understanding and analysis. For instance,
if monitoring unveils a performance problem at runtime, it
is non-trivial to decide if the best way of coping with this
situation is to simply reconfigure the system, or to improve
system design or even architecture.

The rest of this paper is structured as follows. Section II
concretizes the setting of the paper using an illustrative case
study. The main contributions of the paper are discussed in
Sections III and IV. In Section V, we evaluate our approach
using a qualitative discussion, which is based on a case study
from the INDENICA1 project. Section VI discusses related
research. Finally, the paper is concluded in Section VII.

II. ILLUSTRATIVE EXAMPLE

The motivation for this paper is based on a scenario
from the telecommunications services domain. The en-
hanced Telecom Operations Map2 (eTOM) is a widely
adopted industry standard for implementation of business
processes promoted by the TeleManagement Forum (TMF).
Our scenario is condensed from the TMF’s Case Study
Handbook [4] as well as two eTOM-related IBM publi-
cations on practical application of SOA in such systems
[5], [6]. Figure 1 depicts the service delivery process in
Business Process Modeling Notation (BPMN). It consists of
six activities i1, . . . , i6 (referred to as interfaces or abstract
services). Each abstract service activity has alternative sub-
activities which we denote as concrete service implemen-
tations (denoted c1, . . . , c12 in the figure). At runtime the
process selects and executes one concrete service for each
service interface.
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Figure 1. Service-Based Scenario Application

1http://www.indenica.eu
2http://www.tmforum.org/BusinessProcessFramework/1647/home.html

The process is initiated by the abstract service i1 (Handle
Customer Order) which is offered in two variants for stan-
dard and premium users. Depending on the order input, the
process then configures a particular service (IPTV or VoIP).
The third abstract service allocates the resources required
for delivering the service (e.g., a cloud host or storage).
Telecommunication services are typically associated with
Quality of Service (QoS) attributes, which are fine-tuned
by abstract service i4. For instance, this activity configures
parameters in the VoIP device or sets the location URI
(Uniform Resource Identifier) of IPTV endpoints, in corre-
spondence with QoS requirements. If a problem is detected
at runtime, the optional reporting service is executed in
activity i5. Finally, the process terminates after storing
billing information, either for paying partner providers or for
internal accounting if the service was delivered in-house.

A. Service Variants and Evolution
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Figure 2. Scenario Implementation Variants for a Single Provider

When the abstract business process in Figure 1 is mapped
to a concrete infrastructure, several implementation variants
are possible. Two variants are illustrated in Figure 2. In
variant 1, the clients access a load balancer, which forwards
requests to selected virtual machines (VMs). A fixed pool
of worker machines supports the standard QoS, and ad-
ditional VMs are requested from an elastic pool to serve
premium clients. A centralized monitoring infrastructure
collects performance metrics from VMs in both pools. As
the system evolves, we anticipate that the load balancer
becomes a bottleneck and hence gets replaced in variant 2 by
a message-oriented middleware (MOM) to achieve stronger
decoupling. Moreover, the infrastructure becomes decentral-
ized to achieve better locality of the monitoring components
within the VM pools. Providing support for implementation
variants reflects architectural decisions made at design time
or runtime based on given requirements and desired goals.



B. Challenges for Service Delivery and Evolution

The scenario outlined in Section II entails the following
challenges that are typically encountered when engineering
service-based applications:
Architectural Decisions: The process of developing ser-
vice platforms follows recurring architectural design deci-
sions [7], which should be explicit, systematic, and reusable.
View-Based Modeling: The platform models need to cap-
ture the architectural components and processes, thereby
distinguishing multiple external (e.g., service interfaces) and
internal (e.g., monitoring infrastructure) views for different
stakeholders [8].
Cross-Provider Platform Integration: The scenario in-
tegrates service platforms from different providers, hence
requiring well-defined communication interfaces as well as
shared application models.
Platform Monitoring: The service platform is subject to
fluctuations in request load, hence the service delivery pro-
cess is governed by monitoring of QoS (Quality of Service)
metrics [9].
Lifecycle and Adaptation: Based on the monitoring infor-
mation and changes in the environment, the platform needs
to support short-term adaptation [10] (e.g., scale-out due
to load bursts) and long-term evolution (e.g., architectural
reconfiguration).

III. EVOLUTION LIFECYCLE MODEL

In this section we present a novel application evolution
lifecycle model to allow for runtime adaptation of service-
based applications, as well as their controlled evolution in a
unified manner.

A. Application Lifecycle Overview

First, we discuss the application development lifecycle
phases usually implemented by iterative and agile develop-
ment processes, such as the Rational Unified Process [11],
Goal-driven Software Development [12], and Scrum [13].
These approaches facilitate the necessary flexibility required
for implementing complex SBSs. Complementary to these
approaches we suggest to adapt existing software models
and artifacts based on the feedback from monitoring and
adaptation rules at runtime. Figure 3 summarizes the ap-
plication development phases at design time and runtime
into Architectural Design, Modeling/Implementation, De-
ployment/Configuration, and Monitoring/Adaptation. Before
getting into the details of the feedback propagation between
and across the different phases during software evolution,
we briefly discuss each phase in the lifecycle process.

An emerging practice in architectural design is to not only
document solution structures, but explicitly record architec-
tural decisions that led to these structures [14]. Recurring
architectural decisions can be documented in architectural
decision models, thus increasing reuse and minimizing doc-
umentation effort [15].
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Figure 3. Application Lifecycle Overview

In practice, in order to describe software architectures
various architectural views for different stakeholders’ needs
are used [16]. Model-driven techniques allow us to trans-
form actual architectural decisions into architectural views
automatically in a reusable manner [17]. In the modeling
phase, high level views—as the component-and-connector
view—can be refined and enriched to generate lower level
technology and platform-specific views using techniques
such as View-based Modeling Framework (VbMF) [8]. The
view models are used to generate code skeletons, configura-
tion and implementation artifacts for common boilerplate
constructs. The generated code is then augmented with
hand-written code by developers to complete the application
implementation.

After development leads to an application release, a de-
ployment plan is derived, according deployment descriptors
are created, and configuration files are prepared. Deployment
descriptors contain information about where to physically
deploy the application, which dependencies need to be
satisfied for a successful deployment, and how to actually
instantiate the application code [18].

At runtime, the SBS is controlled using previously de-
fined monitoring queries and adaptation rules that allow the
application to react to changes in the environment in order
to maintain desired behavior. In our approach we extend the
notion of adaptation not only to the deployed application
and its configuration, but also to the view models and
architectural decisions from the earlier phases of software
development.



The lifecycle allows for iterations across phases to address
necessary changes in architecture, modeling, implementation
and runtime management according to the used development
method. In the following we introduce an evolution lifecycle
meta model that augments the artifacts produced during each
lifecycle phase to assist application evolution.

B. Lifecycle Model Overview

The lifecycle model is designed to assist application
adaptation decisions using relevant data from artifacts in
each phase to enable reasoning over costs and benefits
of possible application changes. This model contains the
required links between the artifacts of the aforementioned
phases for propagating the feedback and enabling the ap-
propriate adaptation. Results from monitoring are used to
automatically perform adaptations. If automatic adaptation
is not possible, the model provides the system operators
with recommendations about possible escalation strategies
to achieve a given goal. The feedback propagation and
adaptation actions can apply to different phases of the
application lifecycle. For example, configuration files may
change or an alternative application version needs to be
deployed at runtime. If the given goals are still not achieved
this way, a refactoring of the architectural design and a
reconsideration of the existing architectural decisions will
have to take place. In the following, we present the evolution
lifecycle model in more detail and discuss relevant properties
and instances in each lifecycle phase.

bdd Evolution Lifecycle Model
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Figure 4. Lifecycle Evolution Model

An overview of the proposed model is shown in Figure 4.
System state information aggregates observed metrics from
various application artifacts to represent relevant status in-
formation. Application goals are specified along with actions
that can be taken to achieve these goals. Artifacts from
all lifecycle stages are represented along with their adap-
tation and monitoring capabilities. Adaptation capabilities
represent assets of artifacts that can be modified externally.
Similarly, monitoring capabilities provide information about
artifact assets. Actions aggregate possible steps necessary
to achieve a given application goal, specifying required

adaptation capabilities for execution, as well as monitoring
capabilities to verify goal fulfillment.

In the following, we discuss the model elements presented
in Figure 4 in more detail.
State: This class represents possible application states, com-
posed of state properties and their values. If (and only if) a
State entity accurately reflects the current system state, the
activated attribute is set to true; The data is gathered from
monitoring capabilities of artifacts, and low-level monitoring
information is aggregated into higher-level representations
suitable for triggering adaptation decisions.
Goal: Application goals are derived from requirements and
represent system behavior objectives. These objectives are
gathered from nonfunctional requirements and represent
concerns such as response time or service quality. Applica-
tion goals modeled in the evolution lifecycle model augment
the functional requirements implemented in the traditional
development process.
Action: Actions encapsulate high-level measures for achiev-
ing goals. A goal such as ‘minimize response time’ can
have multiple actions associated with it, e.g., add additional
resources, reduce service quality, or change application
architecture. For any given action multiple adaptation ca-
pabilities offered by application artifacts might be suitable.
Adaptation capability: Artifacts in the lifecycle model can
have adaptation capabilities associated, representing means
of changing them. Adaptation capabilities contain indicators
for cost of performing adaptations as well as the supported
degree of automation.
Monitoring capability: Monitoring capabilities represent
relevant properties of artifacts that can be observed and are
aggregated in system states to represent high-level applica-
tion status information.
Artifact: All relevant artifacts produced during the appli-
cation lifecycle are represented in the model, along with
indicators representing their value for the application, cost
of changing them, as well as their name. These indicators
are used to improve adaptation decisions. Artifacts may
be related to other artifacts, which allows us to introduce
dependencies between the artifacts of the different phases,
e.g., between architectural decisions and views, between
design views and deployment descriptors, etc.

An excerpt of the model invariants is printed using Object
Constraint Language (OCL) notation in Listing 1:� �
1 c o n t e x t Dependency inv : s e l f . from . a c t i v a t e d i m p l i e s
2 s e l f . t o . a c t i v a t e d
3

4 c o n t e x t M u t u a l E x c l u s i o n inv : not s e l f . from . a c t i v a t e d
5 or not s e l f . t o . a c t i v a t e d
6

7 c o n t e x t Bind ing inv :
8 s e l f . from . a c t i v a t e d = s e l f . t o . a c t i v a t e d
9

10 c o n t e x t Ac t i on inv : s e l f . r e q u i r e s . f o r A l l ( c |
11 A r t i f a c t . a l l I n s t a n c e s ()−> e x i s t s ( a |
12 a . a d a p t a t i o n C a p a b i l i t y . i n c l u d e s ( c ) ) )� �

Listing 1. Excerpt of Invariants for Lifecycle Model



In the following we discuss specific artifacts used in
different lifecycle stages.

C. Architectural Design

Architectural decision models and architectural decisions
are the basic artifacts produced during the architectural
design phase. An architectural decision model contains
reusable architectural decisions addressing recurring design
issues. An architectural decision contains alternative op-
tions which can be realized using design patterns. One
or more architectural decisions get reflected on the ele-
ments of the architectural design view. The links between
architectural decisions and designs allow us to trace back
affected decisions from a monitoring rule. These links can
be (semi-)automatically established using the mapping tech-
niques presented in [17] for bridging architectural decisions
and design models.
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Figure 5. Architectural Decision Model

In addition, one or more architectural decisions might
have various adaptation capabilities. Imagine, for instance,
the case of a selected option of a low-level decision for
satisfying low response time. The triggering of an adaptation
rule will switch to an alternative option.

D. Modeling and Implementation

In this stage, the design models are created according to
the architecture decision that have been made in the previous
stage. The initial creation of design models can be performed
automatically using the transformation in [17] based on the
architectural decision model and/or manually manipulated
by the developers. We show in Figure 6 an excerpt of the
view-based design models and their relationship with the
architectural decisions. View models are composed of view
elements representing application subsystems, components,
and their interactions. Views are used to capture various
perspectives of modeling software systems and help the
developers focusing on particular aspects of the system
under consideration [8].

The links between view models or view elements and
architectural decisions described in Figure 6 are based
on the mapping techniques mentioned above and actually
derived from the association “related to” shown in Figure 5.
Artifacts created in this phase (i.e., views and view elements)
can furthermore expose appropriate adaptation capabilities,
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Figure 6. View-based Model

specifying the cost of changes as well as the supported
degree of automation. Mature applications can benefit from
all previously implemented design decisions and model ele-
ments by (semi-)automatically reusing components derived
in earlier iterations.

View models can be used to generate code artifacts that
comprises monitoring capabilities to observe all relevant
aspects of the developed application along with adaptation
capabilities to modify behavior at runtime. The modeled
capabilities are mapped to according actions in the lifecycle
evolution model, signifying their influence on the fulfillment
of actions leading to desired goals.

E. Deployment and Configuration

In this stage, the physical deployment structure, as well
as the configuration of the application instance to be run are
created. As shown in Figure 7, code artifacts are bundled in
deployable packages, and deployment descriptors are pop-
ulated with information necessary to instantiate the created
application on physical infrastructure.
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Figure 7. Deployment Model

The created artifacts are represented in the lifecycle
model. Deployable packages include dependency relations
to model elements implemented in the previous phase. De-
ployment descriptors encapsulate relevant information about
component configuration, dependencies, as well as deploy-
ment structure. Deployment-specific monitoring capabilities
are provided, allowing to observe how the application is
instantiated, e.g., how many physical machines are used, and
how components are distributed among them. Furthermore,
adaptation capabilities allow for the modification of the
deployment structure. As mentioned previously, the modeled



monitoring and adaptation capabilities are used by actions
representing objectives to be achieved by the application and
are later used to allow application evolution strategies to
consider changes in the deployment structure.

F. Execution and Runtime Monitoring

After successfully deploying an application, runtime mon-
itoring provides comprehensive data about the fulfillment
of specified application goals. Figure 8 shows monitoring
queries that are executed alongside the SBS are represented
in the lifecycle model and map to according monitoring
capabilities. Monitoring capabilities represent low-level data,
such as response time, number of service calls, and occurred
errors, emitted from the SBS at runtime that is assigned to
appropriate actions by system designers.
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Figure 8. Runtime Model

Similarly, adaptation rules adjusting application behavior
at runtime are modeled to document links to according
adaptation capabilities. As mentioned above, adaptation
capabilities represent changes to the application that can
be performed at runtime, such as modify service quality,
defer background processing, and modify external service
binding. These capabilities are used by actions representing
higher-level objectives that can be achieved by executing
adaptations.

IV. ADAPTATION AND ESCALATION STRATEGY

In this section we discuss how the lifecycle evolution
model is used to enable adaptation and evolution across
the complete development process leading to more efficient,
cost-effective and higher quality applications.

Our objective is to perform adaptation actions to achieve
application goals in the most cost-effective and automatic
way possible. Whenever an application goal violation is
detected, an adaptation strategy is derived from the SBS’s
lifecycle evolution model.

Available adaptation actions are performed automatically
at runtime if possible to adjust the SBS’s behavior towards
the defined goals. Runtime adaptations are usually cheap
and can be performed quickly, allowing for fast reaction
to environmental changes. This is similar to how current
applications perform runtime adaptation. However, the pre-
sented approach is designed to improve on the state of the
art by allowing for incorporation of information from all
phases of the application development lifecycle to enable
more sophisticated, higher quality decisions about SBS

evolution considering not only runtime, but also deployment,
implementation and design aspects.

When runtime adaptation is not sufficient to reach a
defined application behavior goal, modifying the application
deployment might be suitable. The deployment model can
be modified in several ways, e.g. by replicating application
parts, migrating deployable artifacts to different physical ma-
chines, or adjusting deployment configuration. After modi-
fying the deployment model, the adaptation strategy will in-
crementally redeploy the application to minimize downtime.
Deployment adaptation can be executed automatically using
defined adaptation rules.

Algorithm 1 Action selection
Input: S: currently active states
Output: A: actions to execute

Gu currently unfulfilled goals
Aac

g actions achieving goal g
Gac

a goals achieved by action a
aeg escalation action for goal g

1: A← ∅
2: Gu ← {g′ ∈ G|«triggers»(s, g′), s ∈ S}
3: while Gu 6= ∅ do
4: vactions ← empty dictionary
5: for all g ∈ Gu do
6: Aac

g ← {a′ ∈ A|«achieved_by»(g, a′)}
7: if Aac

g = ∅ then
8: A← A ∪ aeg
9: Gu ← Gu \ g

10: end if
11: for all a ∈ Aac

g do
12: ia ← 0
13: Gac

a ← {g′ ∈ G|«achieved_by»(g′, a)}
14: for all ga ∈ Gac

a do
15: ia ← ia + ga.importance
16: end for
17: vactions[a]← ia/a.costs
18: end for
19: end for
20: amax ← argmaxa∈A(vactions[a])
21: Gac

amax
← {g′ ∈ G|«achieved_by»(g′, amax)}

22: Gu ← Gu \Gac
amax

23: A← A ∪ amax

24: end while
25: return A

The process for selecting adaptation actions to be executed
is illustrated in Algorithm 1. The algorithm is periodically
executed and supplied with the set of system states S that
currently hold, and aims to return a set of actions A that
should improve system state towards currently unfulfilled
goals Gu. We first gather the set of goals that are currently



not satisfied, as seen on line 2. Then, the algorithm creates
an associative array mapping available actions to a utility
value incorporating the action’s execution costs as well as
the importance of currently unsatisfied goals (lines 6, 11–
18). The most valuable action amax is added to the set of
actions A to be executed, and goals Gac

amax
that are achieved

by amax are removed from the set of unfulfilled goals Gu

(lines 20–23). If no actions are found to achieve a goal g, a
system-provided escalation action aeg is added to the set of
actions A to be executed to indicate the need for operator
intervention to satisfy goal g (lines 7–10).

If an adaptation triggers an implementation change, adap-
tation costs as specified in the model are updated according
to metrics extracted from the code to improve subsequent
adaptation decisions. Metrics, such as changed lines of code,
code churn, and time taken, are incorporated to accurately
reflect costs of performed adaptation actions.

Similarly, if adaptation decisions lead to changes in view
models, according artifacts in the lifecycle model are up-
dated with the cost of the performed adaptation, including
implementation changes resulting from model changes.

If architectural decisions are changed, the according cost
of change in the lifecycle model includes not only metrics
for necessary changes in application architecture, but also
view models, as well as related implementation changes.

V. DISCUSSION

To provide a hands-on discussion of the presented ap-
proach, we consider three concrete lifecycle use cases related
to the scenario in Section II. The first case (C1) is concerned
with short-term adaptation of the internal monitoring and
adaptation platform of a telecommunications provider. The
second case (C2) deals with more coarse-grained evolution
of the platform architecture, and the third case (C3) shows
how the proposed escalation mechanism is used extend the
model to handle previously unforeseen circumstances.

A. Use Case C1: VM Adaptation

For use case C1, we consider the runtime artifacts in
Figure 9 for an implementation of variant 1 of the previously
introduced scenario application (cf. Figure 2). Deployable
vm1 represents a VM in the “Elastic Pool” handling requests
for premium customers. For the given case, we assume that
vm1 is currently exhibiting unusually high RAM usage. The
worker pool is managed by deployable pool1.

The VM exposes, amongst others, a monitoring capabil-
ity m1 reporting general machine health information, such
as CPU usage, amount of used RAM, and total RAM.
Furthermore, vm1 offers an adaptation capability c1 that
allows to adjust VM features, such as number of virtual
CPUs, available instance storage, and total RAM, at runtime.
Worker pool pool1 exposes an adaptation capability c2
that allows to start and stop worker VMs. Furthermore,
Monitoring state q1 extracts the current RAM usage from

vm1: Deployable m1: Monitoring Capability

q1: Monitoring State

“ram = 0.9”

r1: Adaptation Rule

condition = “if ram>0.8”

a1: Action

action = “increase RAM”
costs = 10

a2: Action

action = “add new VM”
costs = 20

«requires»

c1: Adaptation Capability

“adjust VM features”

«reports»

«triggers»

«achieved by»

c2: Adaptation Capability

“change number of VMs”

«requires»

pool1: Deployable

rejected
due to
higher
costs

Figure 9. Artifacts of Use Case C1

m1 and asserts the ‘current RAM usage too high’ status.
This state triggers adaptation goal r1: “RAM usage should
not be too high”. Goal r1 can be achieved by multiple
actions, mitigating the encountered problem. In our case,
two actions, a1 and a2 are available for execution. Action a1
uses adaptation capability c1 of vm1 to increase the amount
of RAM available to the worker at runtime, whereas action
a2 uses adaptation capability c2 of pool1 to add another
worker VM to the pool to spread the work load over more
machines. Since a1 can be performed much quicker than
a2, we reject a2 in this case and execute a1 to mitigate the
problem.

The system will subsequently monitor state q1, as well as
fulfillment of goal r1 to ensure that the performed adaptation
has the desired effect. If the performed adaptation does not
lead to the removal of q1, and the amount of RAM available
to vm1 cannot be increased further, c1 becomes inactive,
leading to the execution of a2.

B. Case C2: Architectural Refinement

In the second use case, we discuss how our approach can
be used during application design to document and improve
the development of SBSs. The discussion is based on the
scenario introduced in Section II. Consider an enterprise that
uses the presented approach for all their software projects.
During application design for a new customer, stakeholders
face the decision of whether to realize communication
between the load balancer worker components using remote
procedure invocation (Variant 1) or messaging (Variant 2),
as illustrated in Figure 2.

Depending on the application requirements, either variant
might be suitable. Remote procedure invocation allows for
greater control over communication paths and provides for
lower absolute latency. On the other hand, messaging re-
duces coupling between components and enables horizontal
scalability independent of the load balancer component.

The presented approach assists application architects by
storing artifacts from previously created applications in an
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Figure 10. Artifacts of Use Case C2

artifact repository that can be queried for past solutions.
The repository acts as an enterprise-wide application devel-
opment knowledge base documenting experiences gathered
in past projects. In our case, architects specify goals g1
and g2 for the application to be, as shown in Figure 10.
The repository is queried for the created goals and provides
actions for using remote procedure invocation (a1) as well
as messaging (a2), along with according patterns and com-
ponents to be implemented. Furthermore, a constraint c1
applies to patterns rpc and mom, stating mutual exclusion.
Since goals g1 and g2 are conflicting, application architects
provide their decision by setting the importance attributes of
g1 and g2 according to application requirements. If decision
leads to the execution of either a1, action a2 becomes
inactive due to constraint c1. Pattern rpc, component lb,
and deployable lbs are merged into the current application
model from the repository, allowing operators to adjust their
properties to the application at hand.

In the context of product line engineering, the presented
approach can furthermore be used to significantly improve
knowledge transfer and reuse between product variants. Dur-
ing design of a new variant, application architects can reuse
‘application slices’ from previously implemented variants. If
the load balancer component was realized using patterns rpc
and mom in previous variants, the stakeholders’ decision will
lead not only to the inclusion of relevant model elements,
but also the accompanying code artifacts.

C. Case C3: Adaptation Escalation

In the third use case we illustrate the escalation model
employed in our approach to enable cross-stage adaptation,
as well as incorporating operator intervention. As before, we
consider the scenario as described in Section II. We consider
the artifacts shown in Figure 11. The scenario application is
implemented using variant 1 as shown in Figure 2. For the

given case, we assume that the load among the worker VMs
is unevenly distributed due to a bug in the load balancer
component. For brevity, application artifacts representing
worker VMs, pool manager, load balancer, as well as their
monitoring and adaptation capabilities are omitted in the
figure.
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Figure 11. Artifacts of Use Case C3

Worker VMs report their CPU load through monitoring
capabilities as described in case C1, and uneven load distri-
bution activates state s1 in the lower part of Figure 11. We
assume that s1 was put in place by application designers
as a precaution to notice a system state that should not
occur according to the specification. Hence, there is no
mitigation strategy defined for s1, i.e., no adaptation goals
are specified to execute adaptation actions. A generic goal
g1 is provided by the system to indicate that this state, while
not yet handled, should be fixed if it occurs.

Since g1 does not have any candidate actions associated
that could be triggered automatically, the problem is esca-
lated to system operators. Support staff assess the situation
and suspect that the problem cannot be solved using runtime
adaptations, but a faulty deployment could have caused the
problem to appear. The deployment structure is validated
using state s2 that is active if there is a problem with VM
deployment. In our case, deployment is valid and the as-
sociated mitigating actions need not be executed. Operators
now suspect that a bug in the load balancer component is
responsible for the problem. A composite state s3 is created
to represent the facts gathered during problem analysis.
Furthermore, goal g3 is created to document the desired
system state, along with action a3 representing the mainte-
nance effort to fix the bug in the load balancer component.
Additionally, actions to mitigate the problem are queried
from the artifact repository. In our case, action a4 from the
repository is found to also solve the problem, albeit at higher
cost. In addition to fulfilling goal g3, action a4 furthermore



fulfills goal g4, which was not satisfied before due to low
importance. However, facing the problem at hand, a4 is now
the most feasible action to execute due to the increased
benefits of satisfying g3 as well as g4. If a messaging-based
implementation of the load balancer component is already
available from previous application variants (as discussed in
C2), a4 can be applied with minimal operator intervention.
Otherwise, developers are requested to provide the necessary
implementation and relevant application components are re-
deployed.

VI. RELATED WORK

The adaptation of service-oriented systems to rapidly
uncertain and changing environment and settings has been
studied at various levels in the literature. At the component-
level, for instance, FRACTAL [19] relates components with
a set of control capabilities to allow adaptations of com-
ponent properties, addition or deletion of components, etc.
for supporting dynamic configuration of distributed systems.
At the requirements level, Peng et al. [20] address the self-
configuration of software systems by introducing a formal
reasoning procedure at runtime for supporting dynamic
quality trade-off among alternative OR-decomposed goals.

However, existing approaches for self-adaptation of re-
quirements goals and architectural models focus on the
adaptation only at one layer. However, in our approach,
we explore the possibility of performing adaptations at
different layers/phases (Architectural Design, Modeling/Im-
plementation, Deployment/Configuration) for satisfying the
same goal. We achieve this by introducing traceability links
between artifacts of the different layers and by relating the
artifacts to monitoring and adaptation capabilities.

Reconfiguration of software systems at runtime for
achieving specific goals has been studied in many contexts
with focus on the area of service-oriented architectures.
Rainbow framework [21] uses abstract architectural models
for monitoring a system’s runtime properties and proposes
adaptations that can be directly reused at the running system.
Irmert et al. [22] perform adaptations in service-oriented
component models. Their approach utilizes Aspect-Oriented
Programming (AOP) for transparent and atomic replacement
of service implementations at runtime. Samimi et al. [23]
describe an infrastructure for self-adaptive (autonomic) com-
munication services that improve QoS using dynamic ser-
vice instantiation and reconfiguration. Yet, these approaches
concentrate on the reconfiguration and redeployment of the
implementations and do not consider any adaptations at
architectural modeling or design layer.

Similar to our approach, Shen et al. [24] propose a quality-
driven adaptation approach at three different layers: require-
ments, design decisions and runtime architecture. In their
work, the adaptation plans affect all three layers/phases in
a unified manner, that is, the adaptation of the requirements

goal model triggers the corresponding design decision de-
duction and runtime architecture reconfiguration. However,
the adaptation plans in our approach can also be performed
independently at one or more layers, thus providing more
flexibility and alternatives.

VII. CONCLUSION

The systematic evolution of service-based systems is
currently not well supported, particularly when considering
integration of the four conceptual lifecycle layers: design,
implementation, deployment, and runtime. Our proposed
methodology for addressing this problem is to distill the
concepts and artifacts from each layer into a generic lifecycle
model, which allows for specific adaptation within a layer
and at the same time escalation to adjacent layers. Escalation
to a layer of higher abstraction (e.g., change of design
decision as in Figure 11) is typically followed by downward
traversal of the lifecycle phases (e.g., re-generation of code,
re-deployment of components, re-initialization of monitoring
queries). Technically, the process of adaptation is triggered
by monitoring primitives, which can be combined into
aggregated information, and are eventually correlated with
artifacts from the lifecycle model. The correlation between
measurable monitoring metrics and the lifecycle artifacts is
the cornerstone for identification of system dependencies and
possible adaptation actions.

Modeling the set of goals with associated alternative
actions allows to make decisions about the best action to
take in specific situations. While the decision for actions
on lower layers (deployment, runtime) can be done mostly
automatic, more high level decisions (concerning architec-
ture or modeling) are often semi-automatic and require
intervention by human experts. To enable the process of
automatic selection, we propose using a cost/benefit tradeoff
model associated with actions and the respective goals they
achieve. Quantifying the benefit (importance) of goals is
specific to the application domain, whereas costs of actions
can typically be quantified precisely, e.g., man-hours for
implementation, or usage fees for elastic Cloud computing
resources.

The three case studies, presented to illustrate the feasibil-
ity of our approach, highlight runtime adaptation, architec-
ture refinement, as well as adaptation escalation. We argue
that the concept of a generic lifecycle model provides a
solid basis for extended aspects related to reliability and
enforcement of QoS. In our ongoing research we are in-
corporating fault detection techniques [25] to automatically
assert previously unknown fault states when they occur, as
well as adaptation policy improvement [26] to improve on
the modeled rules and augment system control policies. We
also envision that the approach can be integrated with au-
tomated testing [27] to identify incompatible configurations
of activated artifacts.
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