
Reliable Provisioning of
Data-Centric and Event-Based

Applications in the Cloud
DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

Dipl.-Ing. Waldemar Hummer
Matrikelnummer 0416710

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.-Prof. Dr. Schahram Dustdar

Diese Dissertation haben begutachtet:

(Univ.-Prof. Dr. Schahram Dustdar) (Prof. Dr. Mauro Pezzè)

Wien, 29.01.2014
(Dipl.-Ing. Waldemar Hummer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Reliable Provisioning of
Data-Centric and Event-Based

Applications in the Cloud
DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Dipl.-Ing. Waldemar Hummer
Registration Number 0416710

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.-Prof. Dr. Schahram Dustdar

The dissertation has been reviewed by:

(Univ.-Prof. Dr. Schahram Dustdar) (Prof. Dr. Mauro Pezzè)

Wien, 29.01.2014
(Dipl.-Ing. Waldemar Hummer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Dipl.-Ing. Waldemar Hummer
Josefstädter Straße 14/2/58, 1080 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Waldemar Hummer)

i

Abstract

The past decade of distributed systems research has been shaped, among others, by three ma-
jor trends: Service-Oriented Architecture (SOA) is a popular paradigm for implementing loosely
coupled distributed applications; Event-Based Systems (EBS) are gaining momentum as a means
for encoding complex business logic based on correlated event messages; moreover, Cloud
Computing (CC) has fostered advanced virtualization and resource allocation techniques, fur-
ther shaping the implementation possibilities of SOA and EBS. Distributed computing systems
in general, and applications in the Cloud in particular, are often burdened with stringent re-
quirements concerning reliability and security, dictated by business objectives (e.g., cost-benefit
tradeoffs), contractual agreements (e.g., service level agreements, SLAs), or laws. One approach
to reliability is software testing, which aims at identifying and avoiding software-induced faults
in the first place. A second important aspect of reliability is fault management, which involves
different challenges such as fault detection and runtime adaptation. Additionally, security and
access control play a crucial role, particularly for multi-tenant Cloud environments. Systematic
consideration of these aspects in the software development and validation process is a key con-
cern and requires precise knowledge about the type and nature of potential threats to reliability.

This doctoral thesis tackles the aforementioned challenges and contributes a set of novel
methods and tools for reliable provisioning of data-centric and event-based applications in the
Cloud. The primary types of considered applications are business processes and workflows
which integrate services and particularly data from a plurality of sources, leveraging established
concepts of SOA and EBS. The framework introduced in this thesis provides a robust, scal-
able, and secure execution environment for such applications. The contribution is split up into
three core parts. First, WS-Aggregation is an event-based data processing platform that features
elasticity, optimized load distribution, runtime adaptation, and fault management. Second, the
TeCoS platform is used to perform systematic testing for application bugs and integration issues
such as data incompatibilities. Third, the SeCoS framework enforces access control policies to
assure responsibilities and avoid unauthorized actions. The approach is thoroughly evaluated
and put into perspective with existing work. A multitude of representative experiments have
been conducted with the implemented prototypes, deployed in different commercial and open
source Cloud environments. The large-scale performance tests demonstrate the elasticity under
changing workload patterns. The second class of experiments evaluates the testing approach
by injecting various faults into running application instances. This evaluation shows that the
system correctly identifies faults and reports the achieved test coverage in different configura-
tions. In a third step, the access control enforcement procedure is evaluated for consistency and
performance.

iii

Kurzfassung
Das vergangene Jahrzehnt der Forschung von verteilten Systemen war unter anderem geprägt
von drei Trends: Service-Oriented Architecture (SOA) hat sich als verbreitetes Paradigma für
lose gekoppelte verteilte Applikationen etabliert; Event-basierte Systeme (EBS) ermöglichen
komplexe Applikationslogiken basierend auf korrelierten Event-Daten; darüber hinaus hat Cloud
Computing die Technologien für Virtualisierung und Ressourcen-Allokation vorangetrieben,
wodurch fortgeschrittene Implementierungsmöglichkeiten für SOA und EBS entstehen. Verteilte
Systeme im Allgemeinen, sowie Applikationen in der Cloud im Speziellen, sind häufig stren-
gen Anforderungen an Verlässlichkeit und Sicherheit unterworfen. Die Anforderungen ergeben
sich aus mehreren Gründen wie Geschäftszielen (z.B. Kosten/Nutzen-Abwägungen), vertragli-
chen Verpflichtungen (z.B. Dienstgütevereinbarungen), oder Gesetzen. Software-Testen gilt als
zentraler Ansatz mit dessen Hilfe versucht wird, Fehler zu identifizieren bzw. zu vermeiden.
Ein weiterer wichtiger Aspekt ist Fehler-Management, mit unterschiedlichen Herausforderun-
gen wie Fehler-Identifikation sowie Anpassung des Systems an Laufzeit-Fehler. Zudem haben
Sicherheit und Zugriffskontrolle einen hohen Stellenwert, insbesondere in Cloud-Umgebungen
mit mehreren Mandanten. Die systematische Berücksichtigung dieser Aspekte ist eine zentrale
Problematik, welche präzises Wissen über potenzielle Fehler und Gefährdungen erfordert.

Die vorliegende Dissertation behandelt die ebengenannten Probleme und entwickelt neue
Methoden und Werkzeuge für den verlässlichen Betrieb von datenzentrierten und event-basierten
Applikationen in der Cloud. Die primäre Art der hier untersuchten Anwendungen sind Geschäfts-
prozesse und technische Abläufe, bei denen eine Vielzahl von technischen Services, insbeson-
dere auch Daten, aus verschiedenen Quellen verarbeitet und integriert werden. Das vorgestellte
System bietet eine robuste, skalierbare und sichere Plattform für derartige Applikationen. Die
Forschungsbeiträge werden anhand dreier Teile diskutiert. Das Kernstück ist WS-Aggregation,
eine verteilte Plattform zur Verarbeitung von event-basierten Daten mit Funktionalitäten für
Skalierbarkeit, optimierte Lastverteilung, Laufzeit-Adaptierung, sowie Fehler-Management. Die
TeCoS Plattform bietet Methoden für systematisches Testen und identifiziert Anwendungsfehler
sowie Integrationsprobleme, wie z.B. Daten-Inkompatibilitäten. Mittels Regeln zur Zugriffskon-
trolle stellt die SeCoS Plattform Verantwortlichkeiten sicher und blockiert unerlaubte Zugriffe.
Der gesamte Ansatz wird umfangreich evaluiert und mit existierenden Arbeiten verglichen.
Eine Vielzahl von repräsentativen Experimenten in unterschiedlichen Cloud-Umgebungen de-
monstrieren die Performance, Skalierbarkeit und Elastizität des Systems. Die zweite Art von
Experimenten evaluiert den Test-Ansatz und zeigt durch gezielten Einbau von Fehlern in lau-
fende Applikationen, dass das System korrekt Fehler erkennt. Der dritte Teil der Evaluierung
untersucht den Mechanismus zur Zugriffskontrolle unter den Gesichtspunkten Konsistenz und
Laufzeitverhalten.

v

Acknowledgements

This PhD thesis marks the finish line for roughly a decade of my academic education in Com-
puter Science. Successfully finishing this PhD demanded from me, above all, two main ingre-
dients: a genuine impetus to constantly dig deep into scientific problems and solutions, paired
with an immense level of determination and endurance. Looking back, I firmly believe that this
work would have never been possible without the profound support of many different persons
and the enjoyable circumstances I have been able to work in. It can therefore not be stressed
enough that this thesis is not the achievement of a single person, but also the result of the caring
and considerate environment of people who have all contributed in their individual ways.

First and foremost, I would like to express my gratitude to Prof. Schahram Dustdar who
has greatly guided me throughout the dissertation and provided a highly productive and pleasant
working environment at the Distributed Systems Group. I am also most grateful to Prof. Mauro
Pezzè for serving as the examiner of the thesis. Furthermore, I want to thank all my colleagues
from TUVIE, UNIVIE, and WU for the fruitful discussions and collaborations, most notably
Philipp Leitner, Christian Inzinger, Benjamin Satzger, Alessio Gambi, Patrick Gaubatz, Mark
Strembeck, and Uwe Zdun, and many more colleagues from Vienna and different parts of the
globe who are not all listed here but have also significantly supported and influenced me. I am
also immensely grateful for the outstanding opportunity of collaborating with IBM in the course
of two research internships, which provided me with invaluable personal and technical experi-
ences. My special thanks go to Orna Raz, Onn Shehory and Eitan Farchi from IBM Haifa, as
well as Florian Rosenberg, Fábio Oliveira and Tamar Eilam from IBM T.J. Watson in New York.

My deepest and sincerest thanks are dedicated to my family, particularly my loving parents
who supported me emotionally, intellectually, and financially throughout all these years. My
success will always be equally your success! My beloved sisters Karo and Nora have been most
supportive by always lending an ear for my problems and accompanying me through the highs
and lows. Last but not least, it makes me happy and proud to have shared so many joyful and
unforgettable moments with dear friends and companions, who have always provided the highly
desirable distraction and have greatly shaped me into the person I am today.

Waldemar Hummer
Vienna, December 2013

The research for this thesis has received funding from the European Community’s Seventh Framework
Programme under grant agreements 215483 (S-Cube), 257483 (Indenica), 257574 (FITTEST). The work
is partially supported by the Austrian Science Fund (FWF), grant number P23313-N23 (Audit 4 SOAs).

vii

Table of Contents

Erklärung zur Verfassung der Arbeit i

Abstract iii

Kurzfassung v

Acknowledgements vii

List of Figures xiii

List of Tables xvii

List of Listings xix

Publications xxi

1 Introduction 1
1.1 Problem Statement . 3

1.1.1 Problem Domain and Context . 3
1.1.2 Research Questions . 4

1.2 Scientific Contributions . 6
1.3 Thesis Organization . 9

2 Background 11
2.1 Event-Based Systems and Data Stream Processing 11
2.2 Service-Based Applications . 13

2.2.1 Web Services Business Process Execution Language 14
2.2.2 Dynamic Service Selection and Binding 15

2.3 Cloud Computing . 17
2.3.1 Elastic Computing . 18
2.3.2 Automated Resource Provisioning – DevOps and Infrastructure as Code 19

2.4 Basic Terminology of Dependability – Faults, Errors, Failures 20
2.4.1 Fault Management and Fault Tolerance 22

2.5 Software Testing . 23

ix

2.5.1 Model-Based Testing . 24
2.5.2 Combinatorial Testing . 25
2.5.3 Test Coverage and Adequacy . 25

3 WS-Aggregation: Reliable Event-Based Data Processing with Elastic Runtime
Adaptation 29
3.1 Introduction . 29
3.2 Common Model and Fault Taxonomy for Event-Based Systems 31

3.2.1 Specialized Types of Event-Based Systems 31
3.2.2 Description of the Common Model for Event-Based Systems 32
3.2.3 Modeling the Operation of Event Processing Agents 34
3.2.4 Fault Taxonomy . 36
3.2.5 Discussion of Identified Faults . 39
3.2.6 Relation of the Fault Taxonomy to Other Contributions 45

3.3 Event-Based Continuous Queries in WS-Aggregation 45
3.3.1 Application Scenario . 45
3.3.2 System Architecture . 47
3.3.3 Query Model of WS-Aggregation . 48
3.3.4 Distributed Query Execution . 50
3.3.5 Elastic Scaling Using Cloud Computing 51

3.4 Optimized Query Distribution and Placement of Processing Elements 52
3.4.1 Optimization Target . 53
3.4.2 Optimization Algorithm . 55

3.5 Testing Approach for Reliable Infrastructure Provisioning 56
3.5.1 Background and Motivation . 57
3.5.2 Approach Synopsis . 58
3.5.3 System Model for Infrastructure Automations 58
3.5.4 Test Design . 63

3.6 Implementation . 66
3.6.1 Query Model and WAQL Query Language 66
3.6.2 Aggregator Nodes and Query Processing 68
3.6.3 Migration of Event Buffers and Subscriptions 69
3.6.4 Framework for Testing Infrastructure Automation Scripts 70

3.7 Evaluation . 71
3.7.1 WS-Aggregation Runtime Performance 71
3.7.2 Identified Issues in Real-World Chef Automation Scripts 76

3.8 Related Work . 82
3.8.1 Optimized Event Processing and Placement of Processing Elements . . 82
3.8.2 Fault Models for Event-Based Systems 83
3.8.3 Reliable Infrastructure Provisioning 84

3.9 Conclusions . 85

4 TeCoS: Testing and Fault Localization for Data-Centric Dynamic Service Com-
positions 89

x

4.1 Introduction and Motivation . 89
4.1.1 Approach Synopsis . 91
4.1.2 Roadmap . 92

4.2 Scenario . 92
4.2.1 Sources of Faults in Dynamic Service Compositions 94
4.2.2 Runtime Composition Instances . 95

4.3 Testing of Dynamic Data-Centric Compositions 96
4.3.1 Service Composition Model and Composition Test Model 96
4.3.2 k-Node Data Flow Coverage Metric 98
4.3.3 Mapping the Composition Model to Concrete Platforms 99
4.3.4 Combinatorial Test Design . 101
4.3.5 Determining Faulty Services and Incompatible Configurations 102

4.4 Advanced Fault Localization for Transient and Changing Faults 106
4.4.1 Extended Service Composition Model 106
4.4.2 Trace Data Preparation . 107
4.4.3 Learning Rules from Decision Trees 108
4.4.4 Coping with Transient Faults . 110

4.5 Implementation: The TeCoS Framework . 112
4.5.1 Integration of Target Platforms via Extensible Adapter Mechanism . . . 113
4.5.2 Test Preparation Steps . 114
4.5.3 Transformation to FoCuS Data Model 115
4.5.4 Generating and Executing Tests . 116
4.5.5 Test Oracle . 117
4.5.6 Fault Localization Platform . 117

4.6 Evaluation . 118
4.6.1 Effect of k-Node Coverage Criterion on the Number of Test Cases . . . 119
4.6.2 Performance of Testing WS-BPEL Service Compositions 120
4.6.3 Performance of Testing Event-Based Applications with WS-Aggregation 123
4.6.4 Measures for Determining Incompatible Service Assignments 124
4.6.5 Performance of Fault Localization Approach 127
4.6.6 Discussion of Assumptions, Weaknesses and Limitations 131

4.7 Related Work . 132
4.7.1 Testing of Service-Based Applications 132
4.7.2 Fault Detection and Fault Localization Techniques 134

4.8 Conclusions . 136

5 SeCoS: Automated Enforcement of Access Constraints in Business Processes 139
5.1 Introduction . 139

5.1.1 Motivation . 140
5.1.2 Approach Synopsis . 141

5.2 Scenario . 142
5.2.1 Patient Examination Business Process 142
5.2.2 Entailment Constraints . 143

xi

5.3 Metamodel for Specification of Entailment Constraints in Business Processes . 144
5.3.1 Business Activity RBAC Models . 144
5.3.2 RBAC Modeling for Business Processes 146
5.3.3 RBAC DSL Statements . 147

5.4 Process Model Transformations for Runtime Constraint Enforcement 147
5.4.1 Model Transformations to Enforce Mutual Exclusion Constraints . . . 149
5.4.2 Model Transformations to Enforce Binding Constraints 150
5.4.3 Transformation Rules for Combining Multiple Constraints 151

5.5 Application to SOA and WS-BPEL . 152
5.5.1 Supporting Tasks for IAM Enforcement in WS-BPEL 152
5.5.2 RBAC DSL Integration with WS-BPEL 154
5.5.3 Automatic Transformation of WS-BPEL Definition 155

5.6 Implementation . 156
5.6.1 System Architecture . 157
5.6.2 SAML-based Single Sign-On . 158
5.6.3 Automatic Transformation of WS-BPEL Definition 160
5.6.4 Checking Business Activity Constraints 161

5.7 Evaluation and Discussion . 161
5.7.1 Performance and Scalability . 162
5.7.2 Reaction of the Secured Process to Valid and Invalid Authentication Data 164
5.7.3 WS-BPEL Transformation Algorithm 168
5.7.4 Discussion of Limitations . 169

5.8 Related Work . 170
5.8.1 Security Modeling for Web Service Based Systems 170
5.8.2 DSL-Based Security Modeling . 172
5.8.3 Runtime Enforcement of Constraints in Business Processes 173

5.9 Conclusions . 174

6 Conclusions 177
6.1 Summary of Contributions . 177
6.2 Research Questions Revisited . 178
6.3 Future Work . 181

List of Acronyms 183

Bibliography 187

A Code Listings 219
A.1 RBAC DSL Statements for Patient Examination Process 219
A.2 XQuery Assertion Expressions for Enforcing Access Constraints 220

B Curriculum Vitae 223

xii

List of Figures

1.1 Problem Domain and Application Context . 4
1.2 Overview of System Artifacts and Scientific Contributions 7

2.1 Core Artifacts and Terminology of Event-Based Systems 12
2.2 Different Types of Event Stream Query Windows 13
2.3 Simple WS-BPEL Example Process (Travel Itinerary Planning) 15
2.4 Generic Application Model With Dynamic Service Binding 16
2.5 Layers of the Cloud Computing Stack . 17
2.6 Fault Activation, Error Propagation, and Service Failure 21
2.7 Fault Tolerance Techniques . 22
2.8 Software Testing Research Roadmap . 24

3.1 Sub-Areas of Event-Based Systems . 32
3.2 Excerpt of the Common Model for Event-Based Systems 33
3.3 Internal Structure and Functionality of Event Processing Agents 35
3.4 Elementary Fault Classes . 38
3.5 Fault Sources in Event-Based Systems . 38
3.6 Taxonomy Tree for Faults in Event-Based Systems 39
3.7 Factors of Influence Responsible for Different Faults 41
3.8 Event-Based Continuous Data Processing Scenario 46
3.9 Sample Event Streams and Lifecycle of Event Subscriptions 47
3.10 WS-Aggregation System Architecture . 48
3.11 Illustrative Instantiation of the Model for Distributed Event-Based Queries 49
3.12 Relationship between Optimization Targets . 54
3.13 Example of Solution Encoding in Optimization Algorithm with redmax = 2 55
3.14 Model-Based Testing Process . 58
3.15 Simple State Transition Graph . 60
3.16 Idempotence for Different Task Execution Patterns 62
3.17 Coverage-Specific STG Construction . 64
3.18 Test Execution Pipeline . 65
3.19 Query Model for Continuous Event-Based Data Aggregation 66
3.20 Core Components and Connectors of Aggregator Nodes 68
3.21 Procedure for Migrating Buffer and Event Subscription between Aggregators . . . 69

xiii

3.22 Architecture of the Framework for Testing IaC Automations 70
3.23 Performance Results for Multiple Queries with Varying Event Rates 72
3.24 Duration for Migrating Event Subscriptions for Different Buffer Sizes 74
3.25 Query Network Topology With Different Optimization Weights 75
3.26 Performance Characteristics in Different Settings 77

4.1 End-to-End Testing Approach . 92
4.2 Scenario – Composition Business Logic View and Data Flow View 93
4.3 Data Flows in Scenario . 99
4.4 Mapping between WS-BPEL Model and Composition Model 100
4.5 Mapping between WS-Aggregation Query Model and Composition Model 100
4.6 Analogy Between Fault Contribution/Participation and Precision/Recall 103
4.7 Exemplary Decision Tree in Two Variants . 109
4.8 Maintaining Multiple Trees to Cope with Changing Faults 111
4.9 Architecture of the TeCoS Framework . 112
4.10 Model for Platform-Specific Composition Test Adapters 114
4.11 Architecture of Fault Localization Platform . 118
4.12 Concrete Service Combinations in Medium Scenario 120
4.13 Performance of Distributed Test Execution . 122
4.14 Test Results for the Event-Based Scenario Service Composition 123
4.15 Service Assignments Along Data Flows of Different Lengths 125
4.16 Fault Combination Test Coverage Over Time . 126
4.17 Number of Traces Required to Detect Faults of Different Probabilities 128
4.18 Fault Localization Accuracy for Dynamic Environment with Transient Faults . . . 129
4.19 Noise Resilience – Accuracy in the Presence of Noisy Data 129
4.20 Localization Time for Different Trace Window Sizes 130
4.21 Fault Localization Performance for Different Intervals and Window Sizes 131
4.22 Examplary Data Flow of Structurally Different Service Compositions 132

5.1 Overview of Access Constraint Enforcement Approach 141
5.2 Patient Examination Scenario Modeled as UML Business Activity 143
5.3 Excerpt of RBAC Metamodel and Business Activity Metamodel 146
5.4 Relationship Between Business Process Instance and Security Enforcement Artifacts 148
5.5 Process Transformations to Enforce Mutual Exclusion Constraints 149
5.6 Process Transformations to Enforce Binding Constraints 151
5.7 Generic Transformation Template for Business Action With Multiple Constraints . 152
5.8 Supporting Tasks for IAM Enforcement in WS-BPEL 153
5.9 Example Process in System Architecture . 157
5.10 Identity and Access Control Enforcement Procedure 158
5.11 Artifacts of the Transformation Process . 160
5.12 Process Execution Times – Secured vs Unsecured 162
5.13 Execution Time of Constraint Queries for Increasing Log Data 163
5.14 Resource Consumption for Constraint Queries . 164
5.15 Blocked Task Executions per Test Process Instance (Patient Examination Scenario) 166

xiv

5.16 Execution Time of Secured BPEL Process Instances Over Time 167
5.17 Different Sizes of WS-BPEL Processes Before and After Transformation 168

xv

List of Tables

2.1 Comparison of DBMS and DSMS . 13

3.1 Different Terminology for Similar Concepts . 31
3.2 Description of Symbols and Variables in Event-Based Query Model 48
3.3 System Model for Infrastructure Automations . 59
3.4 Key Automation Tasks of the Scenario . 59
3.5 Aggregated Evaluation Test Results . 78
3.6 Tasks in Chef Cookbook timezone . 79
3.7 Tasks in Chef Cookbook tomcat6 . 79
3.8 Tasks in Chef Cookbook mongodb-10gen . 80
3.9 Non-Idempotent Tasks By Task Type . 81
3.10 Evolution of Non-Idempotent Tasks By Increasing Version 81

4.1 Possible Combinations of Services . 95
4.2 Service Composition Model . 97
4.3 Composition Test Model . 97
4.4 Illustrative Test Results of Scenario Composition Test Cases 104
4.5 Exemplary Service Combinations with Fault Participation and Fault Contribution . 105
4.6 Extensions to the Service Composition Model . 107
4.7 Example Traces with Service Binding and Parameter Values 107
4.8 Mapping from Service Composition Model to FoCuS Model 115
4.9 Optimization of Different Model Sizes . 119
4.10 Performance of Test Scenario . 121
4.11 Performance of Distributed Test Execution . 122
4.12 Fault Probabilities for Exemplary SBA Model Sizes 127

5.1 Semantics of RBAC DSL Statements . 147
5.2 Mapping of RBAC DSL Statements to WS-BPEL DSL Statements 155
5.3 Characteristics of Business Processes Used in the Evaluation 162
5.4 Process Executions with Permutations of TT → (S ×R) Assignments 166
5.5 Operation Sequence Leading to a Constraint Conflict (Deadlock) 167
5.6 Aggregated Test Execution Results of the Five Evaluated Processes 168

xvii

List of Listings

2.1 Declarative Chef Recipe . 19
2.2 Imperative Chef Recipe . 19
3.1 XQuery Language Extension for Data Dependencies 67
4.1 Data Dependency in WS-BPEL Variable Assignment 114
4.2 Instrumented WS-BPEL . 116
5.1 Exemplary SAML Assertion Carrying Subject and Role Information 159
5.2 Exemplary SAML Authorization Decision . 159
5.3 Format of Invocation Data Logged as Events 161
A.1 Exemplary RBAC DSL Statements for Hospital Scenario 219
A.2 XQuery Assertion Expressions for Enforcing Access Constraints 221

xix

Publications

This thesis is based on work previously published in scientific conferences, workshops, journals
and books. These core papers are listed here once, and for brevity are not explicitly referenced
throughout the thesis. Parts of these papers are contained in verbatim. Please refer to Chapter B
in the appendix for a full publication list of the author of this thesis.

• Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. Testing idem-
potence for infrastructure as code. In 14th ACM/IFIP/USENIX Middleware Conference,
pages 368–388, 2013. Best Student Paper Award

• Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. Automated
testing of chef automation scripts. In ACM/IFIP/USENIX Middleware Conference (tool
demo track), 2013

• Waldemar Hummer, Orna Raz, Onn Shehory, Philipp Leitner, and Schahram Dustdar.
Testing of Data-Centric and Event-Based Dynamic Service Compositions. Software Test-
ing, Verification and Reliability (STVR), 23(6):465–497, 2013

• Waldemar Hummer, Patrick Gaubatz, Mark Strembeck, Uwe Zdun, and Schahram Dust-
dar. Enforcement of Entailment Constraints in Distributed Service-Based Business Pro-
cesses. Information and Software Technology (IST), 55(11):1884–1903, 2013

• Waldemar Hummer, Benjamin Satzger, and Schahram Dustdar. Elastic Stream Processing
in the Cloud. Wiley Interdisciplinary Rewiews: Data Mining and Knowledge Discovery,
3(5):333–345, 2013

• Waldemar Hummer, Christian Inzinger, Philipp Leitner, Benjamin Satzger, and Schahram
Dustdar. Deriving a unified fault taxonomy for distributed event-based systems. In 6th
ACM International Conference on Distributed Event-Based Systems (DEBS), pages 167–
178, 2012

• Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. WS-Aggregation: Distributed
Aggregation of Web Services Data. In ACM Symposium On Applied Computing (SAC),
pages 1590–1597, 2011

xxi

• Waldemar Hummer, Orna Raz, Onn Shehory, Philipp Leitner, and Schahram Dustdar. Test
coverage of data-centric dynamic compositions in service-based systems. In 4th Inter-
national Conference on Software Testing, Verification and Validation (ICST’11), pages
40–49, 2011

• Waldemar Hummer, Patrick Gaubatz, Mark Strembeck, Uwe Zdun, and Schahram Dust-
dar. An integrated approach for identity and access management in a SOA context. In 16th
ACM Symposium on Access Control Models and Technologies (SACMAT), pages 21–30,
2011

• Waldemar Hummer, Philipp Leitner, Benjamin Satzger, and Schahram Dustdar. Dynamic
migration of processing elements for optimized query execution in event-based systems.
In 1st International Symposium on Secure Virtual Infrastructures (DOA-SVI’11), OnThe-
Move Federated Conferences, pages 451–468, 2011

• Waldemar Hummer, Benjamin Satzger, Philipp Leitner, Christian Inzinger, and Schahram
Dustdar. Distributed Continuous Queries Over Web Service Event Streams. In 7th IEEE
International Conference on Next Generation Web Services Practices (NWeSP), pages
176–181, 2011

• Waldemar Hummer, Orna Raz, and Schahram Dustdar. Towards Efficient Measuring of
Web Services API Coverage. In 3rd International Workshop on Principles of Engineering
Service-Oriented Systems (PESOS), co-located with ICSE’11, pages 22–28, 2011

• Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. A Step-by-Step Debugging
Technique To Facilitate Mashup Development and Maintenance. In 4th International
Workshop on Web APIs and Services Mashups, co-located with ECOWS’10, 2010

• Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Identifying incompatible service implementations using pooled decision trees. In
28th ACM Symposium on Applied Computing (SAC), DADS Track, pages 485–492, 2013

• Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Towards identifying root causes of faults in service-based applications. In 31st
International Symposium on Reliable Distributed Systems (poster paper), pages 404–405,
2012

xxii

CHAPTER 1
Introduction

Throughout the last years, the world has witnessed a tremendous growth in electronic data,
generated globally by a vast spectrum of different providers. The continuing trend towards
collection and automated processing of data has hit virtually every field of our society: financial
data, health care data, data from the retail sector, data in social networks, open government
data, or sensor data, to name just a few examples. Today, the World Wide Web (WWW) is
the primary channel for data dissemination – via human-readable Web documents as well as
machine-processable Web Services (WS) [364]. The volume and velocity of global data are
growing at exponential rates – Cisco’s Visual Networking Index [152] forecasts a global annual
Internet Protocol (IP) traffic of 1.4 zettabytes in 2017, up from 523 exabytes in 20121.

The sheer amount of data available on the Web has opened up exciting application areas
to provide added value services and to generate higher-level information from raw data. Data
Mining [122] is a prominent research field that deals with selecting, integrating, transforming,
and evaluating data to extract knowledge and patterns of interest. In addition, methods from
Business Process Management (BPM) [338] can be applied to create well-defined workflows
for (semi-)automated data processing by machines and humans. The advances in Event-Based
Systems (EBSs) [97, 207, 237] and Stream Processing [15, 17, 312] provide the technological
foundation for continuous queries over streams of data. The Web is a vivid environment with
new data and service providers joining at rapid pace. Applications for data processing are hence
rarely hard-wired, but rather configured to dynamically select among the best available providers
at runtime. The Service-Oriented Architecture (SOA) [92, 96] is a popular paradigm to support
dynamic service binding, effectively decoupling service consumers from providers. To cope
with large amounts of data, particularly under fluctuating work loads, flexible and reliable sys-
tem architectures for distributed processing are essential. Cloud Computing [10, 48] has gained
significant importance as a means to dynamically allocate and release computing resources to
implement scalable applications in a cost-efficient way.

11 zettabyte = 1021 bytes; 1 exabyte = 1018 bytes

1

Distributed computing systems in general, and data-centric applications in the Cloud in par-
ticular, are often burdened with stringent requirements concerning reliability and security [13],
dictated by business objectives (e.g., cost-benefit tradeoffs), contractual agreements (e.g., Ser-
vice Level Agreements), or laws. Software reliability is defined by the ANSI/IEEE as the “prob-
ability of failure-free software operation for a specified period of time in a specified environ-
ment” [8]. One key approach to reliability is software testing [30], which attempts to identify
and avoid software-induced faults in the first place. In software testing, the application or system
under test is typically probed with a multitude of different inputs generated using a certain strat-
egy (e.g., those inputs that are likely to cause a failure). The notion of test coverage [211, 379]
attempts to quantify the degree of thoroughness of testing and measures the percentage of tested
parts of a program, with respect to code statements, branches, paths, predicates, and more. By
achieving a high test coverage, the likelihood of failures caused by the software decreases, and
hence reliability increases (by tendency). A second important aspect of reliability is adaptabil-
ity and fault-tolerance [165]. A fault tolerant system is able to adapt and re-organize itself
in the presence of (or anticipation of) faults, effectively allowing it to maintain correct func-
tionality and consistent Quality of Service (QoS) over long run times. Fault tolerance or fault
management in a wider sense entails different runtime challenges such as fault detection, isola-
tion, or recovery. Implementing fault handling mechanisms involves anticipation of unforseen
situations and hence requires precise knowledge about the type and nature of faults that may
occur. To avoid runtime failures such as overloaded nodes during load bursts, one particularly
important type of adaptability in the context of event-based data processing is elasticity, i.e.,
the ability of a system to scale up and down dynamically. While scalability is a static property
which tells whether systems can grow in size at all (e.g., can be deployed onto multiple comput-
ing nodes), elasticity is the dynamic property which indicates that the system is able to adapt its
scale dynamically during runtime in response to changes in the environment [2]. Elastic behav-
ior often leads to a multitude of complex internal changes in a system or application, which are
error-prone and hence further increase the necessity of thorough testing and reliability mecha-
nisms. A third challenging aspect for reliable application provisioning in the Cloud is security
and access control. Due to the multi-tenancy inherently encountered in Cloud environments,
blocking unauthorized access to protected resources is crucial. The concept of Role-Based Ac-
cess Control (RBAC) [284] has become the de-facto standard for modeling and enforcement of
authorization policies. Beyond this basic mapping of roles, subjects and permissions there are
more advanced access control concepts which allow complex relationships between different
rights and duties, for instance binding or mutual exclusion of duties [357]. Such concepts are
important in the context of data-centric applications in the Cloud, to avoid fraud and data abuse
(for instance, considering a hospital software with sensitive patient data). However, the current
development support for advanced security features in most Cloud platforms is poor, hence de-
velopers tend to hard-code tailor-made security enforcement procedures, which are complex and
error-prone.

Overall, reliable systems must be shown to function correctly and be able to efficiently
retain continuous functionality in the presence of changes in the environment, such as load
fluctuations or changes in QoS requirements. Cloud environments pose difficult challenges to
application development and operations. The challenges are influenced by business goals (e.g.,

2

SLAs, cost-benefit tradeoffs), technical requirements (e.g., scalability/elasticity, multi-tenancy)
and legal obligations (e.g., security and access control). Provisioning of data-centric and event-
based applications in the Cloud hence requires robust designs, thorough testing, and flexible
adaptation mechanisms.

1.1 Problem Statement

The aforementioned challenges open a broad field of research questions to be solved. To narrow
down the scope of this thesis, a detailed problem statement is given in the following. First, in
order to clarify the problem domain, the concrete context and type of applications considered in
this work are outlined in Section 1.1.1. Second, the core research questions are formulated in
Section 1.1.2.

1.1.1 Problem Domain and Context

The core goal of this thesis is to reliably provision data-centric and event-based applications in
Cloud environments. In a narrow sense, provisioning refers to the set of activities performed
to prepare an application and bring it into a state where it is usable for end users, involving
development (programming), testing, configuration, and deployment. However, in this thesis
we consider end-to-end provisioning in a wider sense [348], also including runtime activities
like monitoring, optimization, adaptation, elastic scaling, and fault management. The term data-
centric means that the primary focus is on applications in which data flow (and data processing)
is an integral part, in contrast to applications that focus mostly on control flow for process or-
chestration, e.g., steering of an industrial production process or similar. The latter class of
applications is considered as well (particularly regarding security and access control), but the
majority of contributions in this thesis are tailored to data-centric applications. The term event-
based indicates that asynchronous processing over continuous streams of event data receives
special attention.

The abstracted overview in Figure 1.1 outlines the problem domain and depicts the core
stakeholders and system resources. The applications under consideration integrate and process
data from a multitude of services, which are accessible via standardized (Web) interfaces and
operate either under external control or within the same Cloud environment as the application.
Various heterogeneous services can be integrated: invokable Remote Procedure Call (RPC) style
Web services (marked with an incoming arrow in the figure), or queryable databases (cylindric
symbol), or Publish/Subscribe (Pub/Sub) based services which continuously publish event data
to the subscribed applications (marked with an outgoing arrow). The services are typically
configured with security and access control measures (indicated by a lock symbol), although
entirely open and unsecured services may also exist. The applications are deployed on an elastic
middleware platform, which is itself deployed on a variable set of Virtual Machines (VMs). The
figure illustrates three active VMs and two grayed out VMs which are currently idle but can be
acquired in the future to handle peak loads.

Two main classes of applications are considered, yet similar concepts apply to both: 1)
purely technical automated workflows where the main focus is to query and integrate data (e.g.,

3

Cloud
Environment

Elastic
VM

Pool

Users / Clients

Applications

deployed
on

Services

S4

S3

notify

Engineers

Developer

Security
Expert

Tester

develop,
configure,
test

use

S1

S2

publish
event
data

invoke

query
Middleware Platform

Figure 1.1: Problem Domain and Application Context

pattern detection over event streams with stock market data), and 2) semi-automated workflows
with human participation, where the users perform part of the activities (e.g., a patient exam-
ination process in a hospital). The human users (subjects) are equipped with responsibilities
and access rights (indicated by a key symbol). The applications are created by different engi-
neers with specialized domain knowledge: developers implement the application business logic,
security experts define access control policies, and testers systematically assess the correct func-
tioning of the applications. The middleware platform is the crucial part which should provide
support for all aspects of the application provisioning: communication with the services, en-
forcement of access control policies, performance monitoring, runtime adaptation and elasticity,
as well as support for test execution.

1.1.2 Research Questions

The contributions of this thesis are aligned along three main research questions (Q1-Q3), which
are introduced and briefly discussed in the following.

Q1: What are suitable methods and a supporting system to reliably execute event-based
data processing applications in the Cloud, leveraging elasticity and dynamic resource
allocation?

The primary concern for event-based data processing applications is to continuously adapt
to fluctuations in the volume and rate at which requests and data items arrive, in order to ensure

4

consistent quality of service (QoS). The recend trend towards Cloud computing has fostered
the advance of elastic computing systems, a new breed of software systems leveraging dynamic
resource allocation to balance (cost) efficiency with QoS guarantees [91]. Under elasticity, the
allocated resources are aligned with the system’s workload: load bursts may require rapid scale-
out, whereas the amount of computing resources during regular operation is reduced to a mini-
mum. The decision when and how to scale involves multiple factors of influence. Deployed in a
distributed environment, the workload should be evenly balanced among an appropriate number
of participating compute nodes, while minimizing the network traffic between nodes. Redun-
dant processing improves on reliability, e.g., in the face of node outages, but adds overhead to the
system, resulting in increased costs. Achieving an optimal tradeoff between these dimensions is
a non-trivial problem which is still actively researched and has not been entirely solved. What
is more, elastic behavior typically induces a series of complex and error-prone reconfigurations
within the computing platform. For data processing systems, such as event processing networks,
the reconfiguration might involve migration of state data, buffers, event subscriptions, and more.
For such systems to operate reliably, potential runtime faults need to be anticipated and sys-
tematically dealt with. While some aspects of the aforementioned challenges have been studied
before (see discussion in Section 2), no solution currently integrates reliable provisioning across
all Cloud layers, covering the infrastructure layer, the platform, as well as the application layer.

Q2: Which testing and fault localization techniques can be applied to ensure reliable pro-
visioning of data-centric and event-based applications in the Cloud?

Data-centric and event-based applications in the Cloud are confronted with various threats
to reliability. In this thesis, our focus is on two distinct aspects. First, from an application
level perspective, combining heterogeneous data sources from multiple providers introduces po-
tential integration issues. As outlined in Section 1.1.1, the processing workflow is typically
broken down into individual steps (activities) which are steered and interconnected by data de-
pendencies. These dependencies are essential for correct functioning of the applications, hence
sensitive runtime errors, such as syntactic and semantic data incompatibilities, have to be an-
ticipated and dealt with. Second, on the platform and Cloud infrastructure layer, the dynamics
of elasticity aggravate the challenge of reliable application provisioning. The key prerequisite
for implementing elasticity is that the underlying infrastructure resources must be deployed and
configured reliably. This requirement is often assumed blindly, but if that assumption breaks
then the elasticity of the system is likely to break. For both aspects, systematic testing by in-
stantiating the application under different configurations is an essential activity to identify bugs
and issues upfront. However, due to the complexity of the problem space, in general not all
potential configurations can be tested. Suitable testing techniques, combined with tailored test
coverage metrics, are required to achieve a certain level of confidence that the application op-
erates properly under different runtime conditions. Since upfront testing cannot anticipate all
potential changes in the environment during operation, additional runtime monitoring must be
employed to detect and localize faults, which can then be fixed by the developers. Despite the
large body of existing work on testing and fault localization, the two particular aspects discussed
here are not yet covered in the scientific literature.

5

Q3: How can security and access control policies be enforced in the context of data pro-
cessing applications and workflows?

Ensuring security and data privacy is an ever-increasing concern in today’s computing land-
scape. The prevalence of sensitive personal electronic data in various areas such as e-health
applications, social networks, or government platforms, has spurred private and public data
protection initiatives, such as the 2012 European Commission’s proposal for a General Data
Protection Regulation [72]. Particularly Cloud environments, which are inherently faced with
multi-tenancy, require systematic techniques to protect data from unauthorized access. Applica-
tions for data processing, such as business process workflows with direct human involvement,
are hence often subject to security constraints and access control policies. Security and ac-
cess control has been an actively researched field with many seminal results, including crypto-
graphic schemes [310], generic access control models (e.g., RBAC), or task-based entailment
constraints [357]. Despite the majurity of the field, there is still a lack for systematic develop-
ment support and platform-level enforcement integrated with state-of-the-art technologies such
as the Web Services Business Process Execution Language (WS-BPEL) [246], allowing users
to define custom access constraints to be enforced at runtime.

1.2 Scientific Contributions

Guided by the research questions formulated in Section 1.1.2, the core contributions are high-
lighted here to provide an outline of the work carried out in the scope of this thesis. Figure 1.2
depicts an overview of the main system artifacts and connects them to the scientific contribu-
tions, which are discussed in more detail in the following.
Contribution 1: Comprehensive fault taxonomy for event-based systems. The first contribu-
tion studies faults and reliability in EBSs. This work is driven by the fact that there is currently
no common understanding of faults in EBSs, which starkly contrasts with other fields where
faults are well-understood, e.g., faults in operating systems [12], faults in object-oriented soft-
ware [36], or faults in service-based applications [43, 59]. An extensive literature review has
been conducted, in which five core sub-areas of EBSs are identified. These areas share many
commonalities, and in fact use slightly different terminology and approaches for very similar
concepts. The commonalities among the five areas are captured in a generic model for EBSs,
which is partly based on previous work (e.g., [236, 304, 351]). The model is used to derive a
taxonomy with 30 distinct faults in EBSs, based on well-established dimensions defined in the
seminal work by Avizienis et al. [13]. The developed taxonomy provides a foundation for imple-
menting fault diagnosis [161] and fault tolerance [163, 165] techniques, which are relevant for
the remaining contributions of this thesis. Contribution 1 has originally been presented in [136].
Contribution 2: Query model and elastic platform for event processing. The second con-
tribution introduces WS-Aggregation, a distributed and elastic platform for event-based data
processing (WS stands for Web services [364], which is the primary technology used for the
underlying data sources). Using a specialized query model and the query language termed Web
services Aggregation Query Language (WAQL), the platform allows to integrate and connect
event-based data sources on the basis of declarative data dependencies. Since applications with

6

Cloud
Environment

In
frastr u

ctu
re

L
ayer

M
id

d
lew

are
P

latfo
rm

 L
aye r

Business Process Engine
(WS-BPEL)WS-Aggregation

A
p

p
lica tio

n
D

efin
iti o

n

Workflow DefinitionEvent-Based Query Definition

Reliiability & SecurityReliiability & Security

Testing Models

Access Constraints

Elastic
VM

Pool

≠

π

⋈

σ

×

×

×

Fault Models

TeCoS (Testing Platform)

SeCoS (Security Enforcement) ×

1011
0

Contribution 2:
Query model
and elastic
platform for

event
processing

Contribution 4:
Testing and fault
localization for

data-centric and
event-based
applications

Contribution 5:
Identity and access management

 in data processing workflows

Contribution 1:
Comprehensive fault

taxonomy for
event-based systems

Contribution 3:
Testing

idempotence
and

convergence of
IaC automation

scripts

Infrastructure-as-Code Automation Scripts

Figure 1.2: Overview of System Artifacts and Scientific Contributions

large dependency graphs are hard to develop and maintain, an integrated debugging framework
supports the developer inspecting and asserting the application state at different times of the ex-
ecution. WS-Aggregation works mainly with Extensible Markup Language (XML) data, hence
the query language is based on XML Query Language (XQuery). WS-Aggregation is tailored
to the Cloud and the built-in elasticity features allow to scale the system dynamically to a mul-
titude of aggregator nodes running on distributed machines. Different optimization approaches
are employed in order to minimize resource utilization and maintain reliable operation of the
platform. For instance, 3-way querying is a possibility to optimize requests by reducing the
amount of data transferred between aggregator nodes. To cope with varying workloads WS-
Aggregation performs dynamic query distribution and optimized placement of processing el-
ements. The optimization algorithm achieves a tradeoff between three dimensions: equal load
distribution, low data transfer, and no duplicate buffering of events. One of the key technological
challenges for supporting runtime adaptations is consistent migration of state data, which is sys-
tematically solved and evaluated within this thesis. Contribution 2 has originally been presented
in [137, 139, 141, 147, 148].

7

Contribution 3: Testing idempotence and convergence of IaC automation scripts. In the
third contribution, the focus is shifted to reliable provisioning on the middleware platform and
infrastructure layer. The runtime adaptations of elastic systems, as exemplified in WS-Aggre-
gation, require instantiation of new VMs which are hooked into the running platform on demand.
These VMs need to be equipped with a particular Operating System (OS) and software stack,
and it is often required to perform custom configurations on each of the newly launched VMs.
These configurations are typically encoded in automation scripts which involve a series of tasks
to bring the machine into a desired state, e.g., installing/updating software packages, starting
services, writing to configuration files, etc. In recent years, the concept of Infrastructure as Code
(IaC) [150, 240] has emerged as a means for systematic development of automation logic, fol-
lowing key principles in software engineering. IaC automations should be robust and repeatable:
if the execution fails at some point, e.g., caused by a temporary network failure while download-
ing software packages, it should be possible to re-run the entire automation until the system
eventually converges to the desired state. One of the cornerstones for robust and repeatable au-
tomation logic is idempotence [74]. An idempotent task is designed to have an effect only upon
the first execution, whereas all subsequent executions should not produce any state changes or
undesired side-effects. This thesis provides a testing framework for IaC automations which is
able to detect idempotence issues. Starting from an abstracted model of the automation defi-
nition, state transition graphs (STGs) are constructed which represent the possible states of the
system along different possible executions. The STG is used to derive test cases with particular
focus on testing idempotence. The prototype implementation targets the popular IaC framework
Chef [240, 253], but the approach is generally applicable. The evaluation has been conducted
based on a large set of publicly available Chef scripts, which has successfully revealed a multi-
tude of non-trivial bugs and idempotence issues. Contribution 3 has been published in [145,146].

Contribution 4: Testing and fault localization for data-centric and event-based applica-
tions. The fourth contribution revolves around identification of faults in data processing ap-
plications. The assumed application model is a Service-Based Application (SBA) that defines
abstract services which are bound to concrete candidate services at runtime. This procedure,
denoted dynamic binding [52], is a common practice in SBAs for runtime switching between
services with favorable properties such as low costs or high QoS. However, integrating data
and services from different providers creates high potential for faults, e.g., syntactic or semantic
data incompatibilities. Two approaches are proposed to deal with such incompatibilities: ex ante
testing, and ex post fault localization. First, the testing method helps to detect data integration
issues up front. Based on the application definition and data dependencies between single ser-
vices, data flow graphs are constructed and used to systematically derive test cases as different
instantiations of the application. The proposed k-node data flow coverage metric allows testers
to steer the testing process and limit the size of test suites. Based on the results gathered during
testing, detailed coverage reports are generated for both the Application Programming Interface
(API) level and the composition level of the entire application. Second, the fault localization
technique detects faults occurring at runtime and attempts to analyze the root cause, i.e., the
sequence of processing steps in the application that is likely responsible for causing a fault. The
execution of applications is monitored and each processed request is stored as a trace file, con-
taining the user input, application output, as well as variations in the internal processing (e.g.,

8

binding of concrete services). Efficient machine learning techniques are employed to process
very large sets of traces. The concepts are implemented in the framework denoted TeCoS (Test
Coverage for SBAs), and have been successfully applied and evaluated based on two distinct
application definition models, WS-Aggregation and WS-BPEL. Contribution 4 has originally
been published in [142–144, 154, 155].
Contribution 5: Modeling and automatic enforcement of access constraints in business pro-
cesses. The fifth contribution introduces SeCoS (Secure Collaboration in SBAs), a framework
for Identity and Access Management (IAM) [107] in service-based applications and business
processes. The approach integrates three main concepts: Single Sign-On (SSO), RBAC, and
task-based entailment constraints [315,357]. SSO fosters security in cross-organizational appli-
cations by allowing users who are registered with one organization to also use protected services
of trusted partners. Using RBAC, security experts are able to define access permissions, group
them into roles, and assign those roles to subjects. The approach in this thesis uses a Policy De-
cision Point (PDP) to intercept any service invocations and check whether the invoking subject
has the required access permissions. Moreover, task-based entailment constraints allow defini-
tion of fine-grained security policies, typically in the form of pairwise relations between tasks
such as mutual exclusion or binding of duty. Within this thesis, the focus is primarily in devis-
ing re-usable concepts to provide convenient development support for applications with access
restricted services. A Domain-Specific Language (DSL) for defining RBAC rules and access
policies is proposed. The DSL artifacts are utilized to enrich business process definitions with
security annotations. During deployment of the application, model transformations are applied
to the annotated process definition, in order to have the process follow the required security en-
forcement procedure. The advantage of this approach based on model transformation is that the
enforcement procedure takes place on the process level and does not pose additional require-
ments on the middleware, i.e., the process execution engine. Comprehensive experiments have
been performed which empirically verify the consistency and analyze the performance overhead
of security enforcement. Contribution 5 has originally been presented in [134, 135].

1.3 Thesis Organization

The remainder of this thesis is structured as follows. Chapter 2 provides background information
and discusses the state of the art in areas related to this thesis. The five contributions outlined
in Section 1.2 are then grouped into three main chapters. Chapter 3, which covers contributions
1, 2, and 3, introduces the data integration and event processing platform WS-Aggregation,
derives the fault taxonomy for EBSs, discusses optimized query distribution and migration of
processing elements, and details the approach for testing idempotence of IaC scripts. The dis-
cussion of the TeCoS platform in Chapter 4 covers contribution 4, including the method for
testing of data-centric and event-based applications, as well as the machine learning based fault
localization technique. Finally, Chapter 5 covers contribution 5 and focuses on automated en-
forcement of access control policies in data processing workflows and business processes. Each
of the three core chapters (Chapters 3, 4, 5) follow a similar structure, including use cases, ap-
proach description, implementation details, evaluation, related work, and conclusions. Finally,
Chapter 6 concludes the thesis with a reflection on the contributions and outlook for future work.

9

CHAPTER 2
Background

This chapter provides background information about well-established concepts and technologies
which form the basis for the work carried out in this thesis.

2.1 Event-Based Systems and Data Stream Processing

Event-Based Systems (EBS) [97, 207, 237] in various fashions have gained considerable mo-
mentum as a means for encoding complex business logic on the basis of correlated, temporally
decoupled event messages. Based on existing models for event and stream computing (most
notably [206,236,304]), the most important terms related to EBS are defined. The core artifacts
and terminology are illustrated in Figure 2.1. Various research sub-areas use slightly different
terminology, hence Figure 2.1 contains alternative terms (in brackets) for the core concepts.
These terms are used interchangeably throughout the thesis.

An event is an object encoding something that is happening for the purpose of computer
processing (e.g., the change of a stock price). Typically, events are of a certain type, have a
timestamp, and contain further specific data. A complex event results from applying processing
steps, like aggregation and filtering, to one or more other events. Events are emitted by (event)
sources and consumed by (event) sinks. An (event or data) stream is a linear sequence of events,
typically ordered by time. Streams are usually considered (potentially) infinite, and a window
[15, 39, 261] is some finite portion of a stream.

To distinguish different types of windows (or window queries), we formalize an event stream
E as a sequence of eventsE = 〈e1, e2, e3, . . .〉. A window query, at each point in time, evaluates
a set of active (or open) windows, denoted W . A window w ∈W is a subsequence of the event
stream, denotedw ⊆ E (based on the notation for subsets). Each windoww has a start condition
(s(w)) and an end condition (e(w)). The window types are illustrated in Figure 2.2 based on
a simple exemplary event stream with “start” and “end” event types. One basic type of query
window is the growing window which binds data values to be available over the entire stream.
Another simple type is the single item window where each single event is considered separately.

11

Node

Node

Node

s1

Processing Platform
(e.g., Cloud Environment)

Data Source
(Producer, Sensor,
Publisher, Emitter)

epa1

Event Stream
(Data Stream,
Tuple Stream)

s3

epa4

s2

epa3

Event
(Tuple, Stream Data
Object, Data Item)

epa2

epa5

Event
Processing

Agent
(Stream

Operator,
Processing
Element)

c2c1 c3Client
(Sink, Consumer,

Subscriber)

Figure 2.1: Core Artifacts and Terminology of Event-Based Systems

The single item window is particularly suitable for stateless operators, which only consider one
event at a time and do not need to store the state of previous items. In tumbling window queries,
new windows are only created if there is currently no other open window (i.e., |W | = 0). With
a sliding window query, a new window is always opened if s(w) holds. Finally, in a landmark
window query, once a window has been opened, it remains open indefinitely (until the end of
the stream is reached or the query is explicitly closed). In contrast to the growing window
which binds some values over the entire stream, landmark windows consider different portions
of the stream over time. More specialized characterizations of window types (e.g., time-based
or count-based) are discussed in [261].

Event processing agents (EPAs) are software modules that consume events, process them,
and output new events. Their behavior is defined by an event processing language, i.e., a high-
level language, for instance based on an SQL dialect. Stream processing, stream computing, and
complex event processing (CEP) are synonyms for performing computations with event streams
as input. The behavior of the processing is define by an event processing network (EPN), a
directed graph consisting of EPAs (as vertices) and event channels (as edges); the latter define
the flow of events. While an EPN solely defines the logical connection between EPAs, the
physical deployment is achieved by mapping EPAs to concrete computing nodes. A data stream
management system (DSMS) is a software system whose main responsibility is the execution of
one or multiple EPNs. It has responsibilities comparable to a traditional database management

12

E
ve

nt
 S

tr
ea

m
 T

im
el

in
e

Event e1: type=“start“

Tumbling
Window

Sliding
Window

Event e2: type=“start“

Event e3: type=“end“

Event e4: type=“start“

Event e5: type=“end“

w1 w2 w1 w2 w3

Growing
Window

w1

Single Item
Window
w2 w3 w4w1 w5

Landmark
Window

w1 w2 w1 w2 w3

Figure 2.2: Different Types of Event Stream Query Windows (based on [39])

system (DBMS), with some notable differences, as shown in Table 2.1.

DBMS DSMS
Persistent relations Transient streams
One-time queries Continuous queries
Random access Sequential access
Optimized access plans can be derived Unpredictable data characteristics and arrival patterns

Table 2.1: Comparison of DBMS and DSMS

The main challenges for stream processing are founded in the variability, unpredictability,
burstiness, and volume of stream rates and data characteristics. Further aspects like changing
processing objectives, e.g., higher quality of data requirements, and changing environmental
circumstances, e.g., increased cost of computing resources, reinforce the challenge. Cloud com-
puting, in particular the Infrastructure as a Service (IaaS) layer [224, 372] (see Section 2.3),
provide a new level of flexibility in resource management, which provides a solid basis for im-
plementing highly elastic stream computing.

2.2 Service-Based Applications

Service-Oriented Computing (SOC) has become a prevalent paradigm for creating loosely cou-
pled distributed applications and workflows. Services, the main building blocks for SOC, con-
stitute individual computing units, made available in a computer network using standardized in-
terface description and message exchange [96, 258]. Service-Based Application (SBA) denotes
an application that is built primarily by means of services, typically by composing a multitude
of services into a business process or workflow. SOA forms the architectural underpinning for
SOC. Conceptually, SOA involves three main actors: 1) service providers implement services
and make them available at a certain location (endpoint) in the network; 2) service registries
store information about services, and providers can publish their services in such registries;
3) service consumers discover (find) services by querying a service registry, bind to the obtained
service references and execute the services’ operations. This model of three collaborating actors
is often referred to as the SOA triangle [231].

13

Today, Web Services [364] represent the most common way of implementing SOAs. The WS
technology stack is defined by a plurality of specifications, most notably Web Services Descrip-
tion Language (WSDL) for description of the service interface, XML Schema Definition (XSD)
for defining input and output data types, and Simple Object Access Protocol (SOAP) as message
exchange protocol. SOAP defines an XML-based message format, split up into a body which
contains the actual invocation data, and an optional header for additional data and cross-cutting
concerns like addressing information, security tokens, or coordination/transaction contexts. The
feature richness of SOAP-based Web services tends to make their execution engines complex
and heavy-weight. The Representational State Transfer (REST) paradigm has been proposed as
a more light-weight alternative [262]. With so-called RESTful services, no predefined message
format is required, each service is treated as a resource addressable via a unique Uniform Re-
source Locator (URL), and the service operations are aligned with the standard operations in the
Hypertext Transfer Protocol (HTTP) [104] (GET, POST, PUT, DELETE, etc).

2.2.1 Web Services Business Process Execution Language

The Web Services Business Process Execution Language (WS-BPEL) [246] is a standardized
language for defining Web service based workflows. The XML-based language provides con-
structs for invocations to external Web services, manipulation of input and output data, as well
as typical workflow constructs for controlling data flow and control flow (e.g., loops, branches,
or parallel flows).

Figure 2.3 illustrates an exemplary travel itinerary process. The process receives as input the
target city and desired date, and returns available flights, hotel rooms, as well as visa information
for the destination country. For brevity, the process follows a simple sequential procedure and
represents only a subset of the activities and control flow structures available in WS-BPEL,
namely receive, assign, flow, invoke, and reply. Variable names start with a dollar sign ($) and
sub-elements of a variable are accessible via XML Path Language (XPath) [362] expressions.
The service invocation getCountry determines the country of the given city, getLocations looks
up the user’s current geographical coordinates (e.g., using Global Positioning System (GPS) on
a mobile device), which are used to find available flights (getFlights). The process additionally
invokes getVisaInfo and getHotels, which can be done in parallel (indicated by the enclosing flow
activity). Input and output values of service invocations are manipulated using assign activities.
Finally, the process returns the collected results to the caller via a reply activity.

WS-BPEL’s combination of high level of abstraction on the one hand (external service calls
make up the largest part of most WS-BPEL processes) and computational universality on the
other hand (BPEL is Turing complete [337]) has led many researchers to study various aspects
of this language and the associated execution model. The research efforts range from dynamic
monitoring [20] and adaptation [233], to analysis of termination and reachability [256], to (unit)
testing [87, 196, 218] of WS-BPEL processes. Testing of (single) Web services is essentially
limited to black-box techniques on the interface level [26, 371]. In contrast, WS-BPEL exposes
(part of) the processing logic and hence allows to apply advanced techniques such as data flow
based testing [222], or group testing [332], amongst others.

14

Receive $request

(book a flight and hotel room
for a specific city and date)

Receive $request

(book a flight and hotel room
for a specific city and date)

 $request/city ► $getCountry_in/city
 $request/city ► $getHotels_in/city
 $request/date ► $getHotels_in/date
 $request/city ► $getFlights_in/city
 $request/date ► $getFlights_in/date

 $request/city ► $getCountry_in/city
 $request/city ► $getHotels_in/city
 $request/date ► $getHotels_in/date
 $request/city ► $getFlights_in/city
 $request/date ► $getFlights_in/date

 $getCountry_out//country ► $getVisaInfo_in/country
 $getLocation_out//coordinates ► $getFlights_in/from_coordinates
 $getCountry_out//country ► $getVisaInfo_in/country
 $getLocation_out//coordinates ► $getFlights_in/from_coordinates

A
s
si

g
n

Invoke getCountry Invoke getLocation

F
lo

w

Invoke getVisaInfo

Invoke getHotelsF
lo

w

A
s
si

g
n

 $getHotels_out//hotels
 ►$response/hotelsA

s
s
.

 $getVisaInfo_out//visaInfo
► $response/visaInfoA

s
s
.

Invoke getFlights
 $getFlights_out//flights
 ►$response/flightsA

s
s
.

Reply $response

(visa info, hotel rooms, flights)

Reply $response

(visa info, hotel rooms, flights)

Figure 2.3: Simple WS-BPEL Example Process (Travel Itinerary Planning)

2.2.2 Dynamic Service Selection and Binding

A central concept for SBAs is the clear separation between interface contracts (e.g., defined us-
ing WSDL) and concrete service implementations. Hence, SBAs typically distinguish between
abstract services which define the design-time capabilities, and concrete services which provide
the actual runtime implementation.

In many industries, the technical interfaces of these abstract services are nowadays gov-
erned by industry standards, specified by bodies such as the TeleManagement Forum1 (TMF),
the Association for Retail Technology Standards2 (ARTS) or the International Air Transport
Association3 (IATA). Standardized interfaces facilitate the integration of services provided by
different business partners into a single SBA. Additionally, as oftentimes a multitude of po-
tential providers are offering implementations of the same standardized interfaces, SBAs are
enabled to dynamically switch providers at runtime, i.e., dynamically select the most suitable
implementation of a given standardized interface based on fluid business requirements.

1http://www.tmforum.org/
2http://www.nrf-arts.org/
3http://www.iata.org/

15

http://www.tmforum.org/
http://www.nrf-arts.org/
http://www.iata.org/

Figure 2.4 illustrates the generic application model with dynamic binding, which we uti-
lize throughout this thesis. For simplification, the terms service (operation-centric, possibly
with human involvement) and data source (data-centric, typically with a purely technical query
interface) are used interchangeably. Abstract services and abstract data sources define the in-
terfaces and schemata, respectively, whereas their concrete counterparts represent the technical
endpoints available to the application. The candidacy assignment determines which concrete
services map to which abstract services. Moreover, the model captures data flow or control flow
defined over pairs of abstract services. Finally, a concrete runtime instantiation in this generic
application model defines bindings between abstract and concrete services. This model can be
directly mapped to various technologies, importantly WS-BPEL and WS-Aggregation, as will
be discussed in more detail in Section 4.3.3.

Candidacy
Assignment

**
Data Flow

or
Control Flow

source

target

Binding

Application
Instantiation

*

Defines
Interfaces

And
Schemata

Abstract Service
or

Data Source

Defines
Technical
Endpoints

Concrete Service
or

Data Source

Figure 2.4: Generic Application Model With Dynamic Service Binding

Dynamic service selection and binding has received considerable attention from the services
research community in the past. In a slightly different context, the concept of dynamic binding
has been applied in object-oriented programming [99], where methods are dynamically looked
up to allow sub-classing for specialized implementations. The early work by Casati et al. [58]
applies dynamic binding to composite Web services and introduces the eFlow framework. In the
Vienna Runtime Environment for Service-oriented Computing (VRESCo) [140, 230], service
bindings are parameterized with queries to evaluate the current QoS of services, and applications
automatically bind to the best service instance available. Several other works have also addressed
dynamic binding or build their contributions on top of this concept [52, 84, 174].

Unfortunately, practice has shown that standardized interfaces alone do not guarantee com-
patibility of services originating from different partners. Many industry standards are prone
to underspecification, while others simply allow multiple alternative (and incompatible) imple-
mentations to co-exist. Consequently, there are practical cases, where SBAs, which should work
correctly in the abstract, fail to function because of unexpected incompatibilities of service im-
plementations chosen at runtime. Tsai et al. [331, 332] have proposed the concept of group
testing to validate the correctness of different combinations of concrete services. This thesis
extends the concept of group testing and proposes an advanced data-flow based testing approach
to identify service integration issues and data incompatibilities (see Chapter 4).

16

2.3 Cloud Computing

Cloud Computing (CC) [10,48,224,341] is an emerging trend in the computing industry, which
focuses on multi-tenant virtualized service and resource provisioning. The National Institute of
Standards and Technology (NIST) defines CC as follows:

» Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction. « [224]

The core motivation behind CC is to leverage economies of scale [10] by consolidating com-
puting resources into large data centers, thereby achieving better utilization and reducing overall
energy consumption and maintenance costs. In fact, Cloud Computing covers multiple concep-
tual levels and involves a variety of different technological underpinnings, hence the term refers
to a business concept rather than a concrete technology. In recent years, a general, abstracted
picture of the CC technology stack has emerged, involving three core layers: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [224, 372]. IaaS
in a narrow sense mostly refers to computational resources, hence the infrastructure layer is often
further sub-divided into additional services such as storage or communications (cf. Figure 2.5).

Figure 2.5: Layers of the Cloud Computing Stack (taken from [372])

The IaaS layer allows dynamic provisioning of low-level computing resources, such as com-
puting machines, storage disks, communication links, network devices, etc. Amazon’s Elastic
Compute Cloud (EC2)4 was among the first public IaaS offerings and remains a dominant player
in this market sector today. Virtualization technologies like Xen [22], VMWare ESX [346] or
KVM [173] allow to run multiple VMs on a single host, effectively isolating each VM’s kernel,
filesystem, network stack, and other parts of the OS. Since the aforementioned virtualization
techniques are considered rather heavy-weight, a more light-weight alternative with increased
performance is container-based OS virtualization [307], where VMs typically execute within

4http://aws.amazon.com/ec2/

17

http://aws.amazon.com/ec2/

the same kernel and filesystem as the host’s OS. Popular implementations of container-based
virtualization include Virtuozzo, Linux VServer, and Linux Containers (LXC).

The PaaS layer builds on the underlying infrastructure and provides a programmable soft-
ware environment, which is used to host and manage multiple applications within a common
platform [184]. Examples of popular PaaS providers to date are Salesforce, Google App En-
gine, or Heroku. Proponents of PaaS argue that development of applications in online cloud
platforms increases productivity and reduces software costs [184]. Compared to traditional soft-
ware engineering approaches and in-house hosting, developers building on PaaS are relieved
from the costly configuration and maintenance of the middleware software which hosts their
applications. Additionally, PaaS providers are able to apply suitable application monitoring and
platform customizations, in order to optimize the deployment topology and utilization of the
underlying infrastructure.

At the topmost layer, SaaS provides software services and applications to the end users.
The users directly interact with the SaaS and are typically not aware of the underlying layers,
in particular the infrastructure and platform on which the applications are running. A popular
example for SaaS is Netflix5, an online video broadcasting service which, at the time of writing,
is among the biggest users of Amazon’s cloud infrastructure67, making up for more than 30% of
the total Internet Service Provider (ISP) traffic in the United States [241].

2.3.1 Elastic Computing

The advanced resource allocation and virtualization capabilities provided by the Cloud have
fostered a new trend towards elastic computing [91]. The term elasticity is well-understood in
physics (e.g., in material sciences [11]) and economics (e.g., price elasticity [325]), among other
fields. In general terms, elasticity denotes the (potential) change of some variables in response
to the change of other variables. In the computing domain, an Elastic System (ES) is a system
which dynamically adjusts key properties in response to external stimuli, i.e., user requests. Ex-
amples of such elasticity properties are number of used resources (resource elasticity), cost of
operation (cost elasticity), or QoS (quality elasticity) [91]. In the scope of this thesis, resource
elasticity is the primary focus of interest. Section 3.4 discusses how the WS-Aggregation plat-
form optimizes runtime configurations by elastically acquiring and releasing computing nodes.

Elasticity, if not properly designed, may result in harmful system behaviors or unexpected
costs [175]. Exposing an ES to operations which change its elasticity state can cause subtle
modifications, which may become, in the worst case, uncontrollable or irreversible. For example,
an ES may start to acquire resources in an uncontrolled way, it may oscillate between alternative
allocations of resources, it may be unable to scale back to its initial configuration, it may fail
to allocate resources on time to provide consistent quality of service (QoS), and more [162].
Reliable provisioning of elastic applications hence requires a rigorous engineering and validation
approach. Our initial work on systematic testing of elastic computing systems can be found
in [108–110], but these results are out of scope and not discussed in detail within this thesis.

5http://www.netflix.com
6http://www.zdnet.com/the-biggest-cloud-app-of-all-netflix-7000014298/

(accessed 2013-12-15)
7http://aws.amazon.com/solutions/case-studies/netflix/ (accessed 2013-12-15)

18

http://www.netflix.com
http://www.zdnet.com/the-biggest-cloud-app-of-all-netflix-7000014298/
http://aws.amazon.com/solutions/case-studies/netflix/

2.3.2 Automated Resource Provisioning – DevOps and Infrastructure as Code

The ever-increasing importance of elasticity for Cloud applications creates a strong demand for
flexible deployment of infrastructure and middleware components, allowing to adaptively scale
applications up and down based on QoS characteristics. A common impediment to this demand
for flexible deployments is the well-known tension between software developers and operators:
the former are constantly pressured to deliver elastic and highly dynamic applications to satisfy
QoS- and cost-related goals, whereas the latter must keep production systems stable at all times.
Not surprisingly, operators are reluctant to accept changes and tend to consume new code slower
than developers would like.

In order to repeatedly deploy middleware and applications to the production environment,
operations teams typically rely on automation logic. As new application releases become avail-
able, this logic may need to be revisited to accommodate new requirements imposed on the pro-
duction infrastructure. Since automation logic is traditionally not developed following the same
rigor of software engineering used by application developers (e.g., modularity, re-usability), au-
tomations tend to never achieve the same level of maturity and quality, incurring an increased
risk of compromising the stability of the deployments.

This state-of-affairs has been fueling the adoption of DevOps [150, 204, 288] practices to
bridge the gap between developers and operators. One of the pillars of DevOps is the notion of
Infrastructure as Code (IaC) [150, 240], which facilitates the development of automation logic
for deploying, configuring, and upgrading inter-related middleware components following key
principles in software engineering. IaC automations are expected to be repeatable by design,
bringing the system to a desired state starting from any arbitrary state. The notion of idempo-
tence has been identified as the foundation for repeatable, robust automations [46,74]. To realize
this model, state-of-the-art IaC tools, such as Chef [253] and Puppet [269], provide developers
with abstractions to express automation steps as idempotent units of work. To illustrate the
execution model of IaC automations, a brief introduction to Chef is provided in the following.� �

1 d i r e c t o r y " / ws−a g g r e g a t i o n " do
2 owner " r o o t "
3 group " r o o t "
4 mode 0755
5 a c t i o n : c r e a t e
6 end
7 package " tomca t6 " do
8 a c t i o n : i n s t a l l
9 end

10 s e r v i c e " tomca t6 " do
11 a c t i o n [: s t a r t , : e n a b l e]
12 end� �
Listing 2.1: Declarative Chef Recipe

� �
1 bash " b u i l d php " do
2 cwd Conf ig [: f i l e _ c a c h e _ p a t h]
3 code <<−EOF
4
5 t a r −zxv f php−#{ v e r s i o n } . t a r . gz
6 cd php−#{ v e r s i o n }
7 . / c o n f i g u r e #{ o p t i o n s }
8 make && make i n s t a l l
9

10 EOF
11 n o t _ i f " which php "
12 end� �
Listing 2.2: Imperative Chef Recipe

In Chef terminology, automation logic is written as recipes, and a cookbook packages related
recipes. Following a declarative paradigm, recipes describe a series of resources that should be
in a particular state. Listing 2.1 shows a sample recipe for the following desired state: directory
“/ws-aggregation” exists with the specified permissions; package “tomcat6” is installed; OS
service “tomcat6” runs and is configured to start at boot time.

19

Each resource type (e.g., package) is implemented by platform-dependent providers that
properly configure the associated resource instances. Chef ensures the implementation of re-
source providers is idempotent. Thus, even if our sample recipe is executed multiple times, it
will not fail trying to create an existing directory. These declarative, idempotent abstractions
provide a uniform mechanism for repeatable execution. Repeatability is essential, as recipes are
run periodically to override out-of-band changes, i.e., prevent drifts from the desired state. In
other words, a recipe is expected to continuously make the system converge to the desired state.

Supporting the most commonly occurring configuration tasks, Chef currently provides more
than 20 declarative resource types whose underlying implementation guarantees idempotent and
repeatable execution. However, given the complexity of certain tasks that operators need to au-
tomate, the available declarative resource types may not provide enough expressiveness. Hence,
Chef also supports traditional imperative scripting embedded in script resource types such as
bash (shell scripts) or ruby_block (Ruby code). Listing 2.2 illustrates an excerpt from a recipe
that installs and configures PHP (taken from Opscode [255]).

This recipe excerpt shows the common scenario of installing software from source code—
unpack, compile, install. The imperative shell statements are in the code block (lines 5–8). As
an attempt to encourage idempotence even for arbitrary scripts, Chef gives users statements such
as not_if (line 11) and only_if to indicate conditional execution. In our sample, PHP will
not be compiled and installed if it is already present in the system. Blindly re-executing those
steps could cause the script to fail; thus, checking if the steps are needed is paramount to avoid
errors upon multiple recipe runs triggered by Chef.

2.4 Basic Terminology of Dependability – Faults, Errors, Failures

The seminal work by Avizienis et al. [13] defines the core terminology related to dependability
and security, which is central to the work in this thesis and hence briefly revisited here. A
fundamental understanding of these basic concepts is a key prerequisite for further discussion of
the contributions achieved within this thesis.

The functionality provided by a certain system or application is denoted service8. A service
is delivered by a service provider and consumed by a service user. Services are delivered at
different levels of granularity; the service provider and user, respectively, can for instance be
a software component that offers a certain functionality for another component, or an entire
enterprise information system that performs computations and queries on behalf of a human
operator. The system boundary where service delivery happens is denoted service interface.
The state of the provider is defined by the internal state (not perceivable by the user) and the
external state (perceivable at the service interface). Under perfect conditions, the system delivers
correct service, i.e., it does what it is intended to do, as described by its functional specification.
A service failure is “an event that occurs when the delivered service deviates from correct
service” [13]. Given the definition of correct service, a failure means that the service does not
comply with the functional specification. A service can also be seen as a sequence of transitions

8Note that the term service is also used as a shortcut for an invokable Web service [364] throughout this thesis.
Hence, depending on the context, service refers either to the provided functionality itself, or to the entity providing
the functionality.

20

in the external state of the system, hence a service failure means that one or more external states
of the system deviate from the correct service state. This deviation in state is denoted an error.
Finally, the cause of an error is denoted a fault.

Faults can have various manifestations and characteristics. First, the origin and occurrence
of a fault can be either internal or external. For instance, an incorrectly encoded algorithm in a
software system is considered an internal fault, whereas an inappropriate interaction of a user
with the system is considered an external fault. Second, faults can be either active or dormant:
a fault is active if it causes an error (i.e., external state that deviates from the correct state),
otherwise the fault is dormant. For a more comprehensive discussion of fault manifestations and
characteristics the interested reader is referred to Avizienis et al. [13].

Figure 2.6: Fault Activation, Error Propagation, and Service Failure (taken from [13])

The process of transforming a dormant fault into an active fault, usually caused by applying
a specific input to a component which contains the dormant fault, is denoted fault activation.
Errors, on the other hand, do not possess this dimension of capability: an error either exists
(i.e., is currently reflected in the system’s state) or does not exist. However, errors can be prop-
agated and successively transformed into other errors. Figure 2.6 (taken from [13]) illustrates
the relationships between faults, errors, and failures, and exemplifies fault activation and error
propagation based on two components A and B which are connected via a service interface.
The dormant fault in Component A, in combination with an external fault, gets activated and
leads to an error in this component. This error gets propagated, possibly multiple times, until it
reaches the service interface connected to Component B, where the propagated error becomes
an input error. The propagation may potentially continue to the next boundary (interface) of
Component B. Figure 2.6 also illustrates that, from an external point of view, the components
deliver correct service up to the point where the error propagates through the service interface,
because only at that point is the external state influenced by the error.

The concepts and terminology discussed in this section are directly applicable to the class
of applications studied in this thesis (cf. Section 1.1.1). Internal and dormant faults might be

21

encoded in the implementation of a data processing platform or in the definition of applications
running on the platform. Since the business logic of data processing workflows typically de-
pends on external data, external faults (e.g., data incompatibilities) need to be anticipated and
dealt with. Moreover, given that the platform middleware is deployed in a Cloud environment
with complex reconfigurations to achieve elasticity, dormant faults may only be revealed if a
particular deployment topology or resource allocation gets activated.

2.4.1 Fault Management and Fault Tolerance

As outlined in Section 2.4, software faults exist in various manifestations and pose a threat to
applications’ reliability. Since the existence of faults can almost never be ruled out entirely
in complex software stacks, systematic dealing with faults becomes a necessity. A distributed
system which is capable of anticipating and gracefully handling the occurrence of faults that
result in failures (e.g., by hiding the failures from other processes) is denoted fault tolerant [321].

Fault Tolerance

Error Detection

Recovery

Error Handling

Fault Handling

Concurrent Detection

Preemptive Detection

Rollback

Rollforward

Compensation

Diagnosis

Isolation

Reconfiguration

Reinitialization

Figure 2.7: Fault Tolerance Techniques (based on [13])

Fault tolerance techniques in distributed systems are commonly divided into different tech-
niques [13, 321], which are illustrated in Figure 2.7 and briefly discussed in the following. The
two main categories of fault tolerance are error detection (i.e., identifying the presence of errors),
and recovery, which is defined as transforming “a system state that contains one or more errors
and (possibly) faults into a state without detected errors and without faults that can be activated
again” [13]. Error detection can be either concurrent (happening during service delivery) or
preemptive (suspends service delivery and checks the system for dormant faults). Recovery can
be further split up into error handling and fault handling. The former eliminates errors that are
currently present in the system state, and the latter prevents faults from getting (re-)activated.
For error handling, we distinguish rollback (resetting the system back to a state without errors),
rollforward (fixing the system by directly removing error states), and compensation (redundant
processing which allows to mask the error). For the category of fault handling, four inter-related
techniques are distinguished: diagnosis identifies the causes of errors; isolation turns a fault into
the dormant state by excluding it (physically or logically) from service delivery; reconfigura-
tion modifies task assignments to move tasks away from faulty components; and reinitializa-
tion records the new configuration (e.g., after isolation or reconfiguration) to permanently block
eliminated faults.

22

Randell postulates that fault tolerance “must be based on the provision of useful redun-
dancy” [274]. The concept of redundancy has various manifestations, tackling different kinds
of potential faults. The straight-forward method for redundancy is replication of programs. As-
suming a program fails due to an error in the underlying operating system or hardware platform,
the computation performed by the failed program can be re-executed by a new instantiation of
the same program, possibly on a different platform. However, simple replication is not sufficient
if the program itself is faulty, i.e., exhibits an implementation that leads to a error or produces
incorrect results. To overcome this issue, N-version programming [64] achieves redundancy by
running multiple implementation variants of a program. The basic conjecture is that independent
programming efforts can “reduce the probability of identical software faults occurring in two
or more versions of the program” [64]. A related approach is agreement [263], where multiple
entities have to reach a consensus for a given problem. Agreement is often used in situations
where either of the participating entities is assumed to be faulty or not trustworthy.

Various aspects of faults in event-based data processing systems have been studied. Par-
adis and Han [260], as well as Ruiz et al. [281], survey fault management in Wireless Sensor
Networks (WSNs). Data delivery in such networks is inherently prone to faults, because com-
munication links are fragile (e.g., unreachability or congestion) and sensor nodes may fail (due
to, e.g., depletion of batteries or physical destruction). In this thesis, hardware faults are not the
primary concern, yet many other fault issues in WSNs also apply to the domain of data-centric
and event-based applications in the Cloud. As part of the contributions in this thesis, we provide
a systematic study and taxonomy of faults in EBSs (see Section 3.2).

2.5 Software Testing

Modern computing systems, and in particular applications in the Cloud, are often burdened
with stringent reliability requirements. Software testing [30, 238] is therefore an integral part of
the software development and quality assurance process. Because testing is a very broad field
that involves a multitude of different aspects, there is no one-size-fits-all definition of the field.
Myers et al. define software testing as “[. . .] the process of executing a program with the intent
of finding errors”. This definition emphasizes the execution of the System Under Test (SUT)
and the core goal of finding programming errors (also denoted bugs). In contrast, Beizer [30]
argues that “Bug prevention is testing’s first goal”, with the rationale that a prevented bug is
better than a detected one.

Different types of testing methodologies and techniques have emerged in the past. In this
section we briefly discuss the core concepts which are relevant within the scope of this the-
sis. Bertolino [34] provides a comprehensive overview and future research directions in soft-
ware testing research. In her roadmap, Bertolino speaks of (past) achievements, (current and
medium-term) challenges, and (long-term or unrealistic) dreams. The achievements include
well-studied fields such as protocol testing, reliability testing, or object-oriented testing. Ongo-
ing challenges, among others, are domain-specific test approaches, on-line testing, and costs of
testing. One of the dreams that the testing community has in mind is 100% automatic testing
– entirely eliminating the need for human involvement in terms of test case selection, manual
test refinement etc. Another dream suggested by Bertolino is test-based modeling; it refers to

23

Figure 2.8: Software Testing Research Roadmap (taken from [34])

a software development approach in which we would abandon the current practice of finding
well-suited testing approaches by exploiting existing modeling frameworks (e.g., Unified Mod-
eling Language (UML) [249]), and instead reverse the approach by focusing on how to define
the model such that the software can be effectively tested.

The following subsections discuss three core concepts: model-based testing (Section 2.5.1),
combinatorial testing (Section 2.5.2), as well as test coverage and adequacy (Section 2.5.3).

2.5.1 Model-Based Testing

In practice, the complexity of software systems and the environment they operate in are often
infeasible to capture entirely. Hence, efficient test methods require suitable abstractions which
are able to accurately capture the crucial aspects of the SUT. Model-based testing (MBT) [334,
335] is the general framework which provides the corresponding methodological underpinnings.
In principle, MBT defines a multi-step process for generating and executing test suites from
abstracted system models [334]. The first step of the process is to establish the test requirements
and derive the system model. The second step is to define the test selection criteria, which aim
at finding test cases that are likely to detect failures (plus their underlying faults). Step three
is to formalize the test selection criteria and materialize them into a test case specification. In
step four, the test case specification and the system model are combined to generate a suite of
executable test cases. The test cases, encoded as test scripts, are executed in step five, and finally
a test report is created by analyzing the test results and comparing expected with actual outputs
provided by the test cases.

24

While the general process is clear-cut, existing MBT approaches largely vary when it comes
to details. The proposed test coverage criteria are highly domain-specific, and the system models
range from, for instance, logic-, graph-, or time-based models, to stochastic and deterministic
models, to discrete and continuous models, and more. Utting et al. [335] establish a compre-
hensive taxonomy for MBT which lists general characteristics of MBT approaches along the
dimensions test model, test generation, and test execution.

2.5.2 Combinatorial Testing

Detecting an implementation error (bug) in a software system is often compared to finding
the proverbial needle in the haystack. Typically, bugs are only revealed if the SUT follows a
certain execution path combined with a specific sequence of internal state transitions. Execu-
tion paths and state transitions are often influenced by parameter input values, which are exter-
nally provided by human users or machines interacting with the system. Combinatorial Testing
(CT) [71, 242] tackles the problem of systematically probing the SUT with combinations of pa-
rameter values, with the aim of triggering (activating) faults. It should be noted that the term
input parameter can be understood in various ways. In a narrow sense, input parameters are the
values that are passed along with a function call, for instance the API parameters of a software
module. In a wider sense, input parameters also constitute features and configuration options of
the SUT. For instance, in the context of SBAs with dynamic binding, the runtime mapping of
abstract to concrete services can be considered as a parameter in the combinatorial space.

The problem of combinatorial explosion leads to the fact that practically no technique can
feasibly provide complete (exhaustive) testing [178,242]. Hence, CT attempts to select a subset
of the parameter combinations to keep test suites easy to manage and execute. Domain knowl-
edge about the SUT (e.g., identifying parameters that certainly never trigger faults [242]) can
help to keep the test sets relatively small, while still covering a large portion of the relevant paths
and state transitions. One of the most common forms of CT is n-way testing [71], where n is
the number of parameters for which groupwise combinations should be covered. For instance,
given a set of parameters P , 2-way (or pairwise) testing generates test inputs such that each pair
(p1, p2) ∈ P ×P of parameters (with p1 6= p2) is covered with all possible value combinations.

The comprehensive survey by Nie and Leung [242] categorizes CT into eight core sub-areas:
modeling (interrelations of parameter values), test case generation, constraints (avoiding invalid
test cases in generation), failure characterization and diagnosis, application of CT, test case pri-
oritization, metric (measuring the effectiveness of fault detection), and evaluation (quantifying
the degree of improvement of software quality). In their study, by far the largest part of surveyed
papers is on test case generation, i.e., efficiently computing a (near-)minimal test suite (also de-
noted covering array) for given requirements. Finding optimal covering arrays is an NP-hard
computational problem [242] and various researchers have proposed different solutions, ranging
from random approaches and greedy algorithms to search heuristics and mathematical methods.

2.5.3 Test Coverage and Adequacy

One of the key issues in software testing is to objectively measure the quality of tests and their
capability to show that a program is in fact error-free if the tests execute successfully [379].

25

Assessing the adequacy of tests has been a long-studied research problem over the previous
decades, largely influenced by the seminal early work of Goodenough and Gerhart [118].

A central principle for measuring test adequacy is test coverage, i.e., the extent to which
a certain aspect of the SUT is covered by the test set. Coverage can be defined over various
criteria; for example, statement coverage denotes the percentage of the total code instructions
that were executed by the tests, and branch coverage is the ratio of executed code branches to
the total number of branches. In general, test data adequacy criteria are defined as a function
C : P × S × T → [0, 1], where P is a set of programs, S is a set of specifications of the
software, and T = 2D is the powerset of test cases over the program inputs D [379]. A value
of C(p, s, t) = r means that the adequacy of testing p against the specification s is of degree r
according to the criterion C. For example, if CCT refers to combinatorial input coverage, then
CCT (p, s, t) = 0.9 iff the tests in t cover 90% of the input parameter combinations in D.

Intuitively, one could assume that increasing test coverage leads to increased reliability, but
the exact relationship is difficult to establish, since it depends on the context of the concrete test
setting. Malaiya et al. [211] study the relations between testing time, coverage, and reliability.
Their evaluation compares the growth rate of different coverage metrics with rising number of
test cases or identified defects. One of the key findings is that, event under 100% test coverage
for a given metric, the SUT need not necessarily be free of defects.

Offutt et al. [252] have devised general coverage criteria for graph-based specifications, for
instance STGs. Four testing goals (with increasing level of coverage) are distinguished to derive
test cases from state-based specifications. Transition coverage means that each transition in the
graph should be covered by (at least) one test case. Full predicate coverage requires that one test
case should exist for each clause on each transition predicate. The transition-pair coverage goal
extends on transition coverage and ensures that for each state node all combinations of incoming
and outgoing transitions are tested. Finally, full sequence coverage requires that each possible
(and relevant) execution path is tested, usually constrained by applying domain knowledge to
ensure a finite set of tests [252].

While the generic coverage criteria by Offutt et al. [252] are simple to apply and verify,
they lack the expressive power to model complex cases of test coverage. Hong et al. [130]
developed a more comprehensive calculus of test coverage and generation based on temporal
logic. Their approach utilizes the branching-time temporal logic named Computational Tree
Logic (CTL). The SUT is modeled using an Extended Finite State Machine (EFSM) which
captures the internal system states and state transitions. Formulas in CTL are constructed from
propositions, modal operators, and (temporal) quantifiers, which allow to impose conditions (or
constraints) over the states of the EFSM. For instance, for a given state s and the terminal state
exit, the formula EF(s ∧ EF exit) expresses a program execution which covers the state s
(possibly covering other states before and after) and eventually reaches the state exit. A finite
sequence of states that satisfies a certain condition formula is denoted a witness of this condition,
and this state sequence forms the materialization of a test case. A test suite is defined as a set
of test cases, that is, a set of “finite executions of the EFSM such that for every formula, the
test suite includes a finite execution which is a witness for the formula” [130]. The problem of
minimal test generation aims at finding the smallest test suite covering all formulas, according
to either 1) the number of test sequences, or 2) the total length of all test sequences.

26

CHAPTER 3
WS-Aggregation: Reliable

Event-Based Data Processing with
Elastic Runtime Adaptation

3.1 Introduction

In recent years, academia and industry have increasingly focused on EBS and Complex Event
Processing (CEP) [97] for Internet-scale data processing and publish-subscribe content delivery.
Today’s massive and continuous information flow requires techniques to efficiently handle large
amounts of data, e.g., in areas such as financial computing, online analytical processing (OLAP),
wireless and pervasive computing, or sensor networks [237]. In most of these application areas,
filtering and combining related information from different event sources is crucial for deriving
knowledge and generating added value on top of the underlying (raw) data. Platforms that are
specialized in continuously querying data from event streams face difficult challenges, particu-
larly with respect to performance and reliability. Evidently, continuous queries that consider a
window of past events (e.g., moving average of historical stock prices in a financial computing
application) require some sort of buffering to keep the relevant events in memory. State-of-the-
art query engines are able to optimize this buffer size and to drop events from the buffer which
are no more needed (e.g., [195]). However, a topic that is less covered in literature is how to
optimize resource usage for a system with multiple continuous queries executing concurrently.
Moreover, to allow for reliable event processing, fault management and fault tolerance are key
concerns for EBS. In order to implement a fault-tolerant eventing platform, precise knowledge
about the type and nature of faults is vital.

This chapter presents WS-Aggregation as the first main contribution of this thesis. WS-
Aggregation is an elastic distributed platform for event-based processing of Web services and
data. The platform allows multiple parallel users to perform continuous queries over heterogene-
ous data sources (cf. Section 1.1.1). The core contributions discussed in this chapter are fourfold.

29

• One of the key challenges addressed in the context of WS-Aggregation is fault manage-
ment and fault tolerance. We perform an extensive literature review which reveals that
there is a plethora of different types of event processing platforms which exhibit simi-
lar characteristics and potential faults. We categorize EBSs into five core sub-areas, and
derive a common system model that covers the key aspects of all sub-areas. Based on
the common system model, different fault classes and fault sources are surveyed and dis-
cussed. Details follow in Section 3.2.

• Second, the query model and basic processing of WS-Aggregation are introduced in Sec-
tion 3.3. WS-Aggregation employs a collaborative computing approach where data pro-
cessing tasks (i.e., queries) are split into multiple sub-tasks, which are then assigned to
one or more aggregator nodes. If a query involves input data from two or more data
sources, each of the inputs may be handled by a different aggregator. Data dependencies
between these inputs are specified declaratively using a specilized query language, termed
WAQL. At runtime, the platform collects all data, orchestrates the data flow between the
aggregator nodes, and asynchronously returns result updates to the clients.

• Throughout various experiments we observed that query distribution and placement of
processing elements has a considerable impact on the performance of the framework. To
study these effects, three main aspects are taken into account. First, computing nodes
have resource limits, and in times of peak loads the system needs to be able to adapt and
reorganize. Second, complex queries over event streams require buffering of a certain
amount of past events, and the required memory should be kept at a minimum. Finally,
if the tasks assigned to collaborating nodes contain inter-dependencies, possibly a lot of
network communication overhead takes place between the aggregator nodes. We propose
an approach which considers all of the above mentioned points and seeks to optimize the
system configuration. Details are discussed in Section 3.4.

• To support the elasticity features of WS-Aggregation, frequent deployment and configura-
tion of new computing nodes is required on the infrastructure layer. If a new VM is started
and integrated into the platform, the software stack needs to be configured: downloading
of software updates, installation of the middleware platform code, starting of services,
writing values into a service registry, etc. The automation scripts implementing this type
of infrastructure management should be resilient to faults, reliably making the system
converge to the desired state. If the automation fails at some point (e.g., due to temporary
network downtime while downloading software updates) it needs to be able to repeat the
failed steps and finish the procedure successfully. In Section 3.5 we devise a generic ap-
proach for functional testing of automation scripts, applicable to WS-Aggregation as well
as other systems where reliable VM deployment and configuration is crucial.

In the remainder of this chapter, we first discuss the concepts of the aforementioned core
contributions in Sections 3.2, 3.3, 3.4, and 3.5, respectively. Selected implementation details are
then highlighted in Section 3.6. Different aspects of the approach and the implemented prototype
are evaluated in Section 3.7. Finally, the approach is put into perspective with the related work
in Section 3.8.

30

3.2 Common Model and Fault Taxonomy for Event-Based Systems

In this section, we establish a model for EBSs, which serves as the basis for discussion. The
goal of the model is to capture specifics of different variants of EBSs. In particular, the model
is derived from various previous publications in five sub-areas, which we briefly discuss in Sec-
tion 3.2.1. The challenge in defining such a reference model is the tradeoff of including as many
aspects and different viewpoints as possible, while at the same time keeping the complexity at a
minimum, providing the necessary level of generality.

3.2.1 Specialized Types of Event-Based Systems

Within this work we have evaluated various publications related to EBSs (published as books,
journal or conference contributions) and have extracted five main sub-areas of this field.

The first principal field involves event-based information dissemination [210,267] and event-
driven programming models [79], including content filtering [167], message oriented middle-
ware [19], notification services [56], message-passing systems [95], or tuple spaces [116]. Ex-
amples where this field plays a key role are emergency control systems, real-time collaboration,
or active databases [220]. Here we collectively refer to this class of systems as Event-Driven
Interaction Paradigms (EDIP). The event-based interaction mode has also gained importance
in software engineering, e.g., for graphical user interface software [323], in the context of spec-
ification of system architecture [209, 212], or under the term implicit invocation [112].

The second field is Event Stream Processing (ESP) [15, 17, 312], which deals with con-
tinuous queries over data streams, often with a focus on high-frequency events and scalability.
Example applications are financial services [21], stock trading platforms [1], or network traffic
management [17].

The third field is Complex Event Processing (CEP) [97, 207, 208], which covers the core
concepts of causal event histories, event patterns, event filtering and event aggregation [208].
Application areas include geospatial event processing [97], RFID-based product monitoring
[347], or online fraud detection [97, 297].

The fourth main area of interest is event-driven Wireless Sensor Networks (WSN) [5, 47,
281], including applications of ubiquitous computing [326], intrusion detection [177], or moni-
toring of environment (temperature) data [281]. Among the key problems in this field are energy-
efficiency, event routing or data aggregation [176].

Concept [236] EDIP ESP CEP WSN EDBPM
event notification tuple event datum invocation

producer publisher source producer sensor service/
activityconsumer subscriber sink consumer sink

event processing service operator agent node
channel channel stream event bus link service bus

derived event merged message event pattern complex event fused information composite service

Table 3.1: Different Terminology for Similar Concepts

31

Figure 3.1: Sub-Areas of Event-Based Systems

The fifth area is Event-Driven Business Process Management (EDBPM) [339, 355], with
popular examples including road tolling systems [97], order and shipment management [280],
or workflows of telecommunication providers [229].

Figure 3.1 contains five elliptic shapes that represent the five mentioned event processing
areas. The intersection of the shapes is a circle containing concepts of the Publish/Subscribe
(Pub/Sub) interaction scheme [98, 103]. Pub/Sub elements are commonly found in all areas
(e.g., events, producers, consumers), although sometimes slightly different terminology is used
in each field. Moreover, there are characteristics and challenges specific to each area, which are
printed in the non-intersecting parts of the figure. To further illustrate some of the commonalities
among the sub-areas, Table 3.1 lists typical terminology referring to similar concepts.

The concept of events plays a role in many other research areas that are rather remotely
related to our choice, for instance interconnect solutions for large scale multiprocessor sys-
tems [68], discrete event systems [272], or events/signals in operating systems [128]. Although
partly applicable to our approach, these areas are not explicitly included in this discussion.

3.2.2 Description of the Common Model for Event-Based Systems

In the following we discuss the artifacts of the common model for EBSs. The model we propose
is based on previous work that has tried to capture common features of event-based systems and
applications, most notably in [236, 304, 351]. The fundamental concepts, artifacts and entities
of the model (printed in bold) are introduced below. The core elements and relationships of the
model are depicted in the form of a UML class diagram in Figure 3.2.

32

Complex-
Event

Event

+ source: Producer
+ destination: Consumer
+ time: Property

composedOf ► *

Type
Property

+ value

EPA

Producer Consumer

instanceOf
▼

payload
▼

EventBus

Channel

*

*

EPN*

Utility-
ServiceDeployment

Machine

Endpoint

+ address *

uses
▼

*

*

«interface»
Subscription

«interface»
Notification

«interface»
Publication

Buffer

+ size: long
*

Subscription

+ filter
+ notifyTo: Consumer
+ expiry: DateTime

*

◄ type

Operator

+ function

◄ connectsCorrelation

+ condition

*
includes▼

◄ stores* *

ProcessInstance

▲
mapsTo

▲
mapsFrom

**

State

*
▼matches

▲
manages

*

*

has
▼

◄ executes

isolatedBy▼
*

*

**

*

*

**

◄ consistsOf

Dependency

◄ from
◄ to *

*

ProcessDefinition*

◄ minedFrom transformedInto ►{XOR}

Figure 3.2: Excerpt of the Common Model for Event-Based Systems

• An event is “anything significant that happens or is contemplated as happening” [236]. Re-
search distinguishes simple events (events which do not represent a set of other events) and
complex events (events that span multiple other events). An event has a certain type and
an arbitrary number of properties. Standard properties are the source, destination and the
time at which the event occurred. Additionally, the event may be associated with application-
specific properties, denoted as event payload.
• Events are typically sent from a producer (often termed source in sensor networks) to one

or more consumers (sink in sensor networks) through a communication channel. Between
the event producer(s) and end-consumer(s) there is an event processing network (EPN) con-
sisting of event processing agents (EPAs) connected by event channels. The channel may be
a direct connection (i.e., the producer is able to contact the consumer(s) directly), or it may
be part of an event bus whose responsibility is to deliver the events accordingly. Typically,
additional functionalities and responsibilities are attributed to the event bus, such as storage,
registry or access control services [236]. For simplicity, we summarize these artifacts under
the term utility services, which the EPN interacts with. Another critical utility service is
time synchronization, required for correct and consistent timestamping of events. In stream
processing, EPNs and data flow dependencies between EPAs are often modeled as a directed
acyclic graph (DAG). However, in general the connections between EPAs may also be cyclic.
• Event consumers register a subscription with a producer to receive notifications about cer-

tain events. The subscription filter specifies which events are of interest, based on the type
and/or payload. Upon receipt of an event, consumers react by performing an (application-
dependent) task, e.g., operating a physical switch, invoking an electronic service, initiating
a business process etc. Subscriptions must be unambiguously identifiable, and consumers
should be addressable. If notifications cannot be directly pushed to consumers (via a pub-
lishing interface), they are requested in pull mode.

33

• Correlation [177, 280] means identifying and grouping events that are logically linked to-
gether (from the application point of view). A correlation condition is a function that deter-
mines for a set of events whether or not they are correlated. In the simplest case, correlation
properties are defined on two or more event types and all instances of these types for which
the properties match are considered correlated [280]. Event isolation aims at dividing the to-
tal set of events into (usually disjoint) sets of correlated events (a typical example is isolation
of business process instances).
• The logic of an event-based business process is specified in a process definition (e.g., using

a graphical notation or some formalization like Petri nets) of which multiple instances can
exist. The process definition is either known a priori and transformed into an EPN, or the
definition is learned by monitoring the EPN using process mining techniques [280, 339].
• Communication between EPAs often (although not necessarily) happens asynchronously and

non-blocking. Events that cannot be processed immediately are put to a buffer (or queue).
Buffers are subject to physical resource restrictions and therefore usually have a limited size
(length).
• Event routing may happen either statically (according to pre-defined routing tables) or dy-

namically (decision based on the characteristics or capabilities of available EPAs). Dynamic
(and resource efficient) routing is a key problem in WSNs [47, 176].
• EPAs process a set of input events and output zero or more (possibly new) events. Thereby,

three stages are distinguished [236]: pattern matching, processing and emission. An EPA
can be at the same time event consumer and producer, and hence it implements the corre-
sponding interfaces. Incoming events are put to one or possibly multiple (depending on the
implementation) input buffers. The operator of an EPA is responsible for generating events
on the output buffers and is specified via a function that maps from inputs to desired outputs
(see details in Section 3.2.3). Additionally, each EPA is associated with a state that reflects
its current allocation of variables, memory, registers, and other state information. We assume
that the state also includes the model instances that are relevant for the EPA, so that the EPA
can reflect on itself at runtime (e.g., which subscriptions it manages). Apart from the general
model entities stored in the state, the notion of state is highly application specific. Hence, we
only assume this generic container and make no further restrictions about its representation,
in order to keep things simple.
• EPAs are deployed on physical machines (or computing nodes), and one machine can host

multiple EPAs. If the deployment changes and the responsibility of hosting an EPA (including
its state) is transferred from one machine to another, we speak of migration of this EPA.

3.2.3 Modeling the Operation of Event Processing Agents

Because a large part of an EPN’s functionality is encoded in the EPAs, they are a primary source
for potential faults. Hence, we discuss the internal structure and modus operandi of EPAs, as
envisioned in the common model, in more detail.

Figure 3.3 depicts a UML component diagram with an EPA connected to two channels. The
state associated with the EPA is maintained by a state manager, which may be implemented
as an actual state machine (automaton) or some other mathematical model. The input router
is responsible for directing the events received via the notification interface to one or more

34

Event Processing Agent (EPA)

Subscription
Interface

Event Channel

Event Channel

Notification
Interface

Publication
Interface

Output Buffers

Buffer

Buffer

Input Buffers

BufferBuffer

BufferBuffer

Operator
Function

Subscription
Manager

.

Incoming Events from Producers

Outgoing Events to Consumers

Input Router State
Manager

Output Router

BufferBuffer

Figure 3.3: Internal Structure and Functionality of Event Processing Agents

input buffers. The EPA also receives requests from the channel via the subscription interface.
A subscription manager is responsible for maintaining subscriptions. More specifically, when
a new request comes in, a new Subscription model element is instantiated and stored in the state
manager. The output router is responsible for forwarding events from the output buffer to sub-
scribed consumers via the channel’s publication interface. The figure contains five exemplary
buffers for illustration, but the dots (“. . . ”) indicate that more buffers are conceivable.

3.2.3.1 Input-Output Operator Function

The operator function mediates between the input/output buffers and the state manager. For-
mally, this function is defined as follows. Let B denote the set of buffers (for both input and
output), E the set of all events, T the temporal domain (all possible event timestamps), and S the
set of possible states. The current content of a buffer is expressed as N→ E, mapping from the
numeric slot position (index) within the buffer to an event (∅, the “empty event”, is also part of
E and hence ∅ signifies an empty buffer slot).

φ : [T → E]n → [T → E]m;n,m ∈ N+ (3.1)

A generic operator function φ, denoted stream transformer, has been previously proposed
in [312]. This function (printed in Equation 3.1) takes a set of timestamp/event pairs as input
and outputs a new set of timestamp/event pairs.

op : (BE × S)→ (BE × S) (3.2)

35

We propose to use a more specific input-output operator function that considers the in-
put/output buffers as well as the state of the EPA. Let BE := P(B × (N → E)) denote the
buffered events, i.e., the buffer allocation at any point in time (P(x) denotes the powerset of x).
We then define the operator function as printed in Equation 3.2. The input of the op function is a
subset of the buffers (BE) together with their content, plus the current state (S) of the EPA. The
output of op is a new content assignment for a subset of the buffers (BE), plus a new assignment
for the EPA state (S).

Upon arrival, new events are added to the corresponding input buffer(s) (existing events are
shifted by one position), and op is executed. The approach provides the expressive power of
event-condition-action (ECA) rules [220], a popular method for CEP specification. Our for-
malization is also in line with the stream transformer definition in [312], since the timestamp is
accessible as an event property in our model.

We illustrate the operator function with a small example in Equation 3.3. The example con-
siders an EPA which receives numeric event values on two input buffers (ib1, ib2) and determines
whether the sum of the values is positive or negative. Let val(e) denote the numeric payload of
an event e ∈ E. The EPA has two output buffers (ob1, ob2). If the sum is positive an event epos is
put to ob1, otherwise the new event eneg on ob2 indicates that the sum is negative. Additionally,
the EPA can be in a state INACTIV E, in which case no output is generated at all.

op({(ib1, {1 7→ e1}), (ib2, {1 7→ e2})}, s) :=

 (∅, s) if s = INACTIV E
({(ob1, {1 7→ epos}), s) else if val(e1) + val(e2) ≥ 0
({(ob2, {1 7→ eneg}), s) else if val(e1) + val(e2) < 0

(3.3)

3.2.3.2 Event Routing Functions

Particularly in WSNs, dynamic event routing is a key challenge [47,176]. Our model, therefore,
contains two router components, which reflect that routing is decoupled from the input/output
operator. Let P denote the set of event producers and C the set of event consumers. The input
router is defined via a function in : (E × P × S) → P(B), which determines for an incoming
event e ∈ E, producer p ∈ P , and current state s ∈ S the subset of input buffers ib ⊆ B to which
e is added. Conversely, the output router is defined via a function out : (E×P(B)×S)→ P(C),
which defines for an outgoing event e ∈ E, coming from a subset of the output buffers ob ⊆ B,
and a current state s ∈ S the consumers c ⊆ C to which e will be forwarded.

3.2.4 Fault Taxonomy

Based on the model defined in Section 3.2.2, we now establish the fault taxonomy for distributed
event based systems (EBSs).

3.2.4.1 Taxonomy Dimensions and Terminology

The influential work by Avizienis et al. [13] studies concepts for dependable and secure com-
puting, and provides a detailed taxonomy framework with multiple fault dimensions (see Sec-
tion 2.4). Despite the high level of detail, their work still provides general applicability and

36

builds a solid basis for extended approaches. For instance, Chan et al. [59] have presented a
fault taxonomy for Web Service Compositiqons that closely builds on the classification in [13].

Firstly, we recite the most relevant terminology from [13] (see also Section 2.4), put into
the context of EBSs. A system delivers correct service if it provides the desired functionality,
which includes the functionality of end producers and consumers as well as the EPN that me-
diates between them. A failure occurs when the system “does not comply with the functional
specification, or because this specification did not adequately describe the system function” [13].
As an example, consider a system that analyzes a stream of stock market events and is supposed
to indicate if the price of a stock “rises significantly”, but no event is generated, even after the
price has risen ten consecutive times. Depending on the system function, this behavior may ei-
ther be a failure caused by incorrect processing, or the failure may be rooted in the fact that the
system detects stock rises with a high statistical confidence of 99.9%, whereas the specification
(implicitly) assumed a 95% confidence interval. When asking for the manifestation of a failure
in the system, we say that a failure is caused by one or more states deviating from the correct
service state. This deviation is denoted as error. The assumed cause of an error, either internal
or external, is called a fault. In the stock price example, a possible error is that an EPA was
unable to store new incoming events, and the probable fault that lead to this error is a buffer
overflow. Note that not all faults cause an error and therefore lead to a system failure: “A fault
is active when it causes an error, otherwise it is dormant” [13].

3.2.4.2 Fault Classes

In [13], 16 elementary fault classes are derived from eight basic viewpoints. We have identified
12 of these fault classes as highly relevant for our purpose. The phase of creation or occur-
rence distinguishes between faults that are introduced at development time or during operation
(execution) of the system. System boundaries refers to the distinction whether a fault is caused
internally within the system or caused by external input received at the service interface or from
the environment. Persistence determines whether the fault is continuous our bounded in time
(i.e., persistent or transient). The dimension indicates faults that affect (or originate in) either
software or hardware. The phenomenological cause of a fault can be either rooted in natural
phenomena (on which humans have limited or no influence) or in active human participation.
The capability dimension acknowledges that some faults are introduced inadvertently (or acci-
dentally), while other faults result from lack of professional competence, strategy or planning.

The other four fault classes in [13] make a distinction between malicious and non-malicious
faults as well as deliberate and non-deliberate faults). These four latter types of faults are par-
ticularly important in the area of security, which is not the core focus here. Hence, our approach
captures the technical manifestations of deliberate and malicious acts (e.g., an overloaded chan-
nel or buffer overflow caused by a denial-of-service attack), but our fault taxonomy does not
explicitly distinguish purely security-related dimensions. In return, we add two important fault
classes concerning the level in solution stack, namely platform faults versus business logic faults.
The former class of faults has its roots in the implementation of the underlying event processing
platform and may potentially affect all of the applications on top of it, whereas the latter fault
class is tightly connected to the specific business applications deployed on the platform. Figure
3.4 contains a schematic view of the seven dimensions and 14 classes used in our fault taxonomy.

37

Faults

Phase of Creation
or Occurrence

System Boundaries

Persistence

Dimension

Phenomenological
Cause

Capability

Level in Solution
Stack

Development Faults
Operational Faults

Platform Faults
Business Logic Faults

Internal Faults
External Faults

Permanent Faults
Transient Faults

Hardware Faults
Software Faults

Natural Faults
Human-Made Faults

Accidental Faults
Incompetence Faults

Non-Deliberate Faults
Deliberate Faults

Figure 3.4: Elementary Fault Classes for Event-Based Systems (based on [13])

3.2.4.3 Fault Sources

Besides classes (types) of faults, our taxonomy also considers the sources of faults, i.e., the
artifacts of the system which are potentially or positively responsible for causing the fault. Fig-
ure 3.5 depicts the six categories of fault sources, which have been extracted and compiled from
earlier work on fault localization [12, 311] and root cause analysis [193]. Where applicable, the
fault source description refers back to elements of the model discussed in Section 3.2.2.

Fault
Sources

Environment

Code Functions

System State

Software Assets

Concepts and
Abstractions

External Input

Machine Hardware
Network Links
Power Supply

Business Events
Utility Services

Operator Function
Routing Function
Deployment Function
Correlation Condition
Subscription Filter

Active Correlations
Subscriptions
Business Logic State

Buffers
Channels
Operating System

Dependencies
Timing
Semantics

Figure 3.5: Fault Sources in Event-Based Systems

The environment refers to the physical platform on which the event-based system operates,
i.e., machines, network links, and power supply. Power supply plays a key role, particularly if

38

the event data are only stored in volatile (non-persistent) memory, which is flushed in case of a
power outage. External input is received from business events and utility services; both types of
inputs can potentially influence the reliable operation of the system. The fault source category
named code functions refers to processing logic encoded as operators, state transitions, queries,
algorithms, etc. Evidently, code functions are at the core of event processing and can intro-
duce faults into the system. The system state includes both the model-related configuration of
the system (e.g., active correlations, subscriptions) and application-specific business logic state
(e.g., state INACTIV E in the example in Section 3.2.3.1). Software assets are self-contained
components that the system builds on, which are known to operate well under controlled con-
ditions but fail under certain circumstances (e.g., buffer overflow of a channel, or kernel error
of an operating system). The concepts and abstractions category captures additional aspects
that play a role in the processing, such as timing aspects or dependencies. The third part of
this category is denoted semantics; for instance, if an event-processing platform performs dy-
namic re-configuration and re-deployment, it must be ensured that the newly configured system
is semantically equivalent to the previous state and still fulfills all requirements.

O
ve

rl
o

ad
ed

 C
h

an
n

el

B
u

ff
er

 O
ve

rf
lo

w

F
au

lt
y

P
ro

ce
ss

 I
so

la
ti

o
n

In
ac

ce
ss

ib
le

 C
o

n
su

m
er

N
o

d
e

F
ai

lu
re

T
ra

n
sf

o
rm

at
io

n
 F

au
lt

E
n

d
p

o
in

t
A

d
d

re
ss

 C
h

an
g

e

R
ac

e
C

o
n

d
it

io
n

T
ra

n
sm

is
si

o
n

 B
it

 F
li

p

U
n

sa
ti

sf
ia

b
le

 D
ep

en
d

en
cy

U
n

co
rr

el
at

ab
le

 E
ve

n
t

P
ro

ce
ss

 M
in

in
g

 F
au

lt

E
ve

n
t

L
o

ss

U
n

sy
n

ch
ro

n
iz

ed
 C

lo
ck

s

U
n

re
ac

h
ab

il
it

y
(N

et
w

o
rk

)

L
in

k
C

o
n

g
es

ti
o

n

P
at

te
rn

 R
ec

o
g

n
it

io
n

 F
au

lt

U
n

re
ac

h
ab

ili
ty

 (
R

o
u

ti
n

g
)

S
ta

te
 M

is
m

at
ch

D
u

p
li

ca
te

 S
u

b
sc

ri
p

ti
o

n

O
u

td
at

ed
 S

u
b

sc
ri

p
ti

o
n

Im
p

ro
p

er
 S

tr
at

if
ic

at
io

n

F
au

lt
y

A
g

g
re

g
at

io
n

D
ea

d
lo

ck
 /

 S
ta

rv
at

io
n

C
yc

li
c

P
ro

ce
ss

in
g

 L
o

g
ic

G
ar

b
le

d
 E

ve
n

t
O

rd
er

U
n

p
ar

se
ab

le
 D

at
a

F
o

rm
at

B
ad

 Q
u

er
y

S
u

b
st

it
u

ti
o

n

U
n

m
at

ch
ab

le
 F

ilt
er

Faults

Platform Business Logic

ExternalInternalInternal

Hu Hu Hu HuHu

SW SW SW SWSWSW

Development Operational

PlatformBusiness Logic

InternalExternal

Perm Trans Trans

SW

Hu

Ac

Perm

In

Perm

InAc

External

AcIn

Trans

Hu

Ac

Hu

SW

Perm

In

Internal

Trans

SW

Hu

In

HW

Na

Ac

Perm

SW

Hu

In

Perm

SW

Hu

In

HW

Na

AcAcAc

Perm … Permanent
Trans … Transient
HW … Hardware
SW … Software
Na … Natural
Hu … Human-Made
Ac … Accidental
In … Incompetence

InAc

M
ig

ra
ti

o
n

 F
ai

lu
re

In

Trans

Figure 3.6: Taxonomy Tree for Faults in Event-Based Systems

3.2.5 Discussion of Identified Faults

In Figure 3.6, we identify and classify 30 fundamental faults (without claim of completeness),
which are the result of literature review guided by combining different fault classes and model
artifacts. The figure depicts a classification tree in which the leaf nodes are fault descriptions,
and each level represents a pair of fault classes from Figure 3.4.

Moreover, Figure 3.7 lists for each of the 30 faults the sources which are likely involved
in the creation of the fault. The matrix contains fault sources on the left-hand side and fault
examples on the top. Each intersection of fault type and matching fault example is marked with

39

a red dot. Note that a fault may potentially be rooted in more than one fault source. We have
attributed each fault to one of the core sub-areas of event-based systems that we identified in
Section 3.2.1 (see “Main Areas Affected” at the bottom of Figure 3.7). This is of course a strong
simplification – in fact, the distinction is not always clear and the areas partly overlap, i.e., faults
may play a role in more than one area.

3.2.5.1 Faults in Publish/Subscribe Systems

Publish/Subscribe is the basis for many types of event-based systems. The main challenges are
related to management of subscriptions, filtering, and dissemination of information [98]. On the
network level, multicast transmission between one producer and multiple subscribers is often
achieved using point-to-point communication primitives. This may easily lead to Overloaded
Channels, which is the first (leftmost) fault example in Figure 3.7. For illustration purposes we
briefly explain the fault classes for this fault (see Figure 3.6). An overloaded channel is an oper-
ational fault, because its phase of creation/occurrence is attributed rather to execution time than
to development time. It is not particularly business logic-specific, but a general platform fault.
The fault usually comes into existence by external influences or inputs. Although it remains ac-
tive for a while, its presence is bounded in time (until the traffic drops to an acceptable level) and
hence we note that it is transient. Moreover, the fault is a software fault and it is human-made.
Concerning the fault capability, a channel overload is considered accidental, especially if the
underlying network is commonly used by multiple external systems.

As subscriptions have an expiry time in our model, it may occur that an event producer
garbage collects an expired subscription, while one of the consumers still retains a reference and
attempts to modify it. This type of fault is denoted Outdated Subscription and can be compared
to a dangling pointer in programming languages. This fault is generally attributed to the platform
and the development phase, because outdated subscription references should be properly garbage
collected. Analogously, a subscription should be kept alive as long as there exist any references
to it. Similarly, a Duplicate Subscription is a development fault because one would expect that
the platform takes care of eliminating such duplicates. Concerning delivery of event messages
in push mode, an Inaccessible Consumer occurs if the endpoint address of the consumer is not
available. This can have several reasons, e.g., the consumer process has no privileges to open a
listening network socket, or network packets are dropped due to firewall rules, etc.

3.2.5.2 Faults in Event-Driven Interactions

Related to the Inaccessible Consumer fault in Pub/Sub is the problem of Endpoint Address
Change, which we attributed to the EDIP category. This fault happens when the logical con-
sumer of an event subscription is moved to a different physical machine or connection with-
out updating its references. A main difference is that an address change is usually permanent,
whereas an inaccessible consumer may be a permanent or temporary (transient) fault.

Another weak point in EDIP (and also Pub/Sub systems) is the evaluation of filters. Popular
implementation variants include topic-based filtering and content-based filtering [98]. While
topic-based filtering is usually straight-forward, content-based filtering is more dynamic and
flexible. For instance, in [167] a content-based Pub/Sub system with routing based on Bloom

40

Environment

External Inputs

Code Functions

System State

Software Assets

Concepts/Abstractions

U
nc

or
re

la
ta

bl
e

E
ve

nt

M
ig

ra
tio

n
F

ai
lu

re

U
nr

ea
ch

ab
ili

ty
 (

R
ou

tin
g)

D
up

lic
at

e
S

ub
sc

rip
tio

n

U
ns

at
is

fia
bl

e
D

ep
en

de
nc

y

U
nr

ea
ch

ab
ili

ty
 (

N
et

w
or

k)

P
at

te
rn

 R
ec

og
ni

tio
n

F
au

lt

E
ve

nt
 L

os
s

B
uf

fe
r

O
ve

rf
lo

w

T
ra

ns
m

is
si

on
 B

it
F

lip

In
ac

ce
ss

ib
le

 C
on

su
m

er

F
au

lty
 P

ro
ce

ss
 I

so
la

tio
n

R
ac

e
C

on
di

tio
n

O
ut

da
te

d
S

ub
sc

rip
tio

n

Im
pr

op
er

 S
tr

at
ifi

ca
tio

n

EDIP CEPMain Areas Affected: Pub/Sub EDBPM

N
od

e
F

ai
lu

re

Li
nk

 C
on

ge
st

io
n

WSN

U
nm

at
ch

ab
le

 F
ilt

er

U
ns

yn
ch

ro
ni

ze
d

C
lo

ck
s

D
ea

dl
oc

k
/

S
ta

rv
at

io
n

S
ta

te
 M

is
m

at
ch

O
ve

rlo
ad

ed
 C

ha
nn

el

B
ad

 Q
ue

ry
 S

ub
st

itu
tio

n

P
ro

ce
ss

 M
in

in
g

F
au

lt

T
ra

ns
fo

rm
at

io
n

F
au

lt

F
au

lty
 A

gg
re

ga
tio

n

U
np

ar
se

ab
le

 D
at

a
F

or
m

at

G
ar

bl
ed

 E
ve

nt
 O

rd
er

C
yc

lic
 P

ro
ce

ss
in

g
Lo

gi
c

Fault Sources

ESP

E
nd

po
in

t A
dd

re
ss

 C
ha

ng
e

Figure 3.7: Factors of Influence Responsible for Different Faults

filters has been proposed. This leaves room for optimizations in the dissemination procedure,
but also opens possibilities for the introduction of new faults. We collectively refer to this class
of problems related to evaluation of subscription filters as Unmatchable Filter.

Event Loss is a potential problem in most event-based systems. In contrast to load shedding
[1, 81], where strategies for deliberate dropping of events are put into action, event loss in CEP
can also happen unintentionally. It is particularly relevant when an event is expected to be
handed from a source to a destination EPA and the global behavior depends on the operator of
each involved EPA along the path. A problem closely related to event loss is Garbled Event
Order. For instance, the Aurora platform implements delayed processing in periods of high
load, which may result in the situation that already emitted results need to be revised [1]. This
feature is prone to errors and it is crucial to restore the correct message order. Applied to our
model, garbled event order may also happen if the input router or output router functions are not
correctly synchronized.

In some cases, event-driven interaction faults are less sophisticated but simply caused by an
Unparseable Data Format of the underlying events. There exists a variety of different character
encodings and document markup languages used to encode the payload (event properties), and
the communication will most likely fail if the event producer and consumer do not utilize the
same standards.

3.2.5.3 Faults in Event Stream Processing

We now focus on faults that are related to the main challenges in event stream processing (ESP)
systems. An obvious and often studied source of problems lies with high frequency and vol-
ume of arriving data items. Resource limitations of the machines on which EPAs are deployed
allow only a certain amount of events (or tuples, as often denoted in stream processing) to be
stored and processed per time unit, depending on the complexity of the performed operation. A
Buffer Overflow occurs if an EPA cannot allocate new memory to buffer an incoming event.
This problem has been intensively studied and different solutions were proposed. One solution
is load shedding [1, 81], where exactness/accuracy in the operator function is sacrificed for con-
tinuous availability by heuristically dropping (or delaying) events that are (deemed to be) of less

41

importance. Partial fault tolerance under high load and the effects of bursty tuple loss have been
intensively studied based on a fault injection framework in [163].

A Node Failure occurs when the event processing system experiences hardware failures or
faults due to “heisenbugs" in the underlying operating system or platform [303]. This type of
fault also plays a key role in WSNs, for instance caused by depletion of batteries. We assume
that the effects of a node failure (e.g., loss of state information) are permanent and cause the EPA
operator to stop functioning immediately. From the viewpoint of the event processing system,
a node failure happens accidentally and cannot be directly attributed to human incompetence.
Evidently, node failure poses a key problem to any type of system that is supposed to operate
reliably. EPA replication is a commonly used technique for reliable operation in the presence of
node failures, which is intensively studied in [303].

Another key issue with parallel processing of events (in particular for ESP, but also in other
areas) is that improperly synchronized code can cause Race Conditions when common re-
sources (e.g., buffer memory) are accessed. Synchronization errors may lead to unexpected
side effects and inconsistent states. These problems are often hard to debug and only revealed
nondeterministically under high load.

Reliable reflection about the system state plays a key role for the operator and routing func-
tion of EPAs. If the actual state of the system is not accurately reflected in the saved state of
an EPA, we speak of a State Mismatch. Two main reasons may be responsible for a state
mismatch: either the output of an EPA’s operator function is faulty and generates a (locally) in-
accurate state, or the state transfer of a global state between multiple EPAs is not transactionally
safe.

Queries over streams that involve multiple nested operations are often decomposed and
rewritten/optimized based on query plans to achieve high performance [1, 370]. The goal is
to map the original query to a new query which has more desirable characteristics (e.g., better
suited for distribution or avoids unnecessary execution steps), while at the same time preserving
the exact semantics of the original query. If the latter condition does not hold, a Bad Query
Substitution fault occurs that may have an effect on the system functionality.

Finally, if the processing graph defined by the dependencies within an EPN contains cycles,
the system may get into a state in which events are “trapped” by getting forwarded indefinitely.
We refer to faults of this type as Cyclic Processing Logic. A possible technique to avoid this
fault is to attach metadata to event messages that circulate in the system, for instance a time-to-
live counter that specifies how many times the event may be passed on to the next EPA.

3.2.5.4 Faults in Complex Event Processing

Complex Event Processing (CEP) is concerned with complex interactions and event patterns
often spanning multiple sources. A complex event is one that is derived or aggregated from
multiple other events. A frequently encountered problem are Pattern Recognition Faults. One
manifestation of this fault is when a relevant pattern exists but is not detected. The other possi-
bility is that a complex event (e.g., credit card fraud [297]) may be mistakenly assumed to exist
although in fact it does not. Pattern recognition is often achieved using event automata [297]
which define states and state transitions. In our model, event automata correspond to the EPA
state combined with its operator function. Pattern recognition faults are hence rooted in the in-

42

correct handling of the EPA’s state by this function. The general case of events being incorrectly
combined into complex (or aggregate) events is denoted as Faulty Aggregation. Aggrega-
tion functions, including simple aggregates (count, sum, average, minimum, maximum, etc.)
or mathematical functions over event sequences (e.g., cross-correlation coefficients), are a vi-
tal foundation for defining and executing CEP business logic [297, 347, 370]. As indicated in
Figure 3.6, faulty aggregation usually affects the business logic (e.g., when combining multiple
correlated “item” events into a single “package” event in a warehouse [347]).

Time-sensitive CEP queries and event composition often rely on synchronized time mea-
surements among the producers, to retain either absolute time difference or relative order of
events [197]. In our model, time is expressed as a special case of the EPA state, which is peri-
odically changed (irrespective of event inputs) and shared among the EPAs. Unsynchronized
Clocks are therefore a source of failure which may cause misbehavior in a CEP system. Syn-
chronization is also a key issue in wireless sensor networks [5].

Stratification [181] is the process of splitting up the EPN dependency graph into indepen-
dent sub-graphs, denoted as stratums, to achieve parallelism and early filtering of events. The
semantics and dependencies of the processing graph must be retained and hence the non-trivial
stratification algorithm in [181] is itself a potential source of faults. The effect of Improper
Stratification could be for instance that events are filtered out too early, or that the wanted
effect of load distribution is not achieved and one node or channel gets overloaded.

CEP systems may run into the problem of an Unsatisfiable Dependency, where an EPA
is in a state in which it expects a certain event to arrive but this event cannot be delivered, e.g.,
caused by event loss or a cyclic dependency. Note that we have to make a subtle distinction here:
the processing graph of an EPN can in fact be cyclic (e.g., an EPA may consume and process
events that were emitted by itself); however, the causal dependency of correlated or complex
events must not be cyclic. This fault should be considered with close attention, because a single
unsatisfiable dependency can bring the entire system to a halt/deadlock (see also discussion of
business process deadlocks in Section 3.2.5.6). Wherever possible, the platform should provide
means for statically checking circular dependencies in the event processing business logic.

3.2.5.5 Faults in Sensor Networks

WSNs consist of a collection of densely deployed sensor nodes whose purpose is to sense and
process information from the environment [5]. The key challenges intrinsic to WSNs arise from
the circumstance that sensor nodes are limited in power, often prone to failures, and connected
by unreliable communication channels. Moreover, the position of sensor nodes is not static and
the topology of a WSN changes frequently. An adaptive and fault-tolerant routing mechanism is
therefore required.

Figure 3.6 contains two fault cases that are related to Unreachability. Firstly, unreachability
on the Network level means that a sink is unable to receive any messages from a source node,
either because its communication link is down, the signal is noisy, or the node is out of range of
any other nodes and hence there is no physical path from source to sink. If there is a possible
path between two nodes, but a packet (or message) does not find its way to the receiver, we
speak of a Routing related unreachability, also denoted path fault [327]. For instance, a possible
reason may be that the routing algorithm partitions a set of network nodes into multiple routing

43

domains, which are connected by a single coordinator. If this coordinator fails to work properly,
the sub-networks become disjoint and messages from one domain cannot reach another domain.

Since positions of nodes and topologies in WSNs can change frequently, tasks and node
responsibilities are often assigned dynamically. If a task is migrated from one node to another,
the operator logic as well as the EPA state need to be marshalled and transmitted over the net-
work. The duration of transmission is a critical time window because during that time it must
be ensured that no events are either lost or double-processed [141]. Moreover, all dependencies
to other nodes need to be updated as soon as the task has been transferred. If this complex
procedure does not complete transactionally safe, we speak of Migration Failure.

Hardware constraints play an important role in WSNs. Due to unreliable transmitters or
noisy signals, it is possible that Transmission Bit Flips occur. A bit flip simply means that
part of the data has changed its representation (e.g., from “0” to “1”) during transmission and
that neither side of the communication realized this error. Various error-detection codes (like
checksums or parity bits) have been proposed to avoid transmission errors in WSNs, and there
is an obvious tradeoff between degree of error-robustness and computational complexity [5].

Link Congestion occurs if network links operate beyond capacity, induced by high amounts
of data or too many senders writing to the same medium. Media access control (MAC) tech-
niques like Carrier Sense Multiple Access (CSMA) regulate the access to a commonly used
transmission medium, but there is a practical limitation to the number of devices served by the
same network [5]. A link congestion is different from an overloaded channel, because network
links may be shared with external systems, whereas channels are considered an internal platform
component.

3.2.5.6 Faults in Event-Driven BPM

Event-driven business process management (EDBPM) is concerned with utilizing events to steer
the orchestration of workflows and services. EDBPM can be approached from different sides:
the process definition is either known explicitly and can be transformed into an EPN (e.g., [194]),
or the process has an implicit model that is discovered from event logs (also denoted process min-
ing) [339], or the challenge is to measure the fit between event logs and the process model [279].
Algorithms in these areas are complex and often make probabilistic assumptions, and hence pose
a potential source of faults. A Process Mining Fault implicates that the (probabilistic) assump-
tions in the algorithm to derive a process model are inaccurate, whereas a Transformation
Fault denotes an incorrect mapping from the original process definition to tasks on the eventing
platform.

When a process or sub-process is triggered by an event, the process engine needs to be
able to correlate the event to previous or currently active process instances. An Uncorrelatable
Event occurs if the process to which the event seems to belong either does not yet exist, or does
not exist anymore (because it has been finished or forcibly terminated), or has never existed
(caused by faulty correlation). Note that an event which triggers an entirely new instance (and is
hence not in a correlation with a previous process) does not fall into this fault category, because
that reflects a regular situation. Another correlation-related defect is Faulty Process Isolation,
which means that a set of events representing a model process instance does not correspond to
reality or the actual business case. Faulty isolation is particularly problematic in process mining,

44

because most algorithms that learn the structure of processes rely on the fact that the instances
from which they learn are correct.

Process Deadlock and Starvation are defects related to the business logic which prevent
the process from continuing its execution. In a deadlock the process arrives at a state in which
the process definition allows neither termination nor moving into any successor state [336], for
instance because it is waiting for a particular event. Starvation principally means that processes
are competing for a resource and one process with less priority is discriminated against com-
petitors. As an example, imagine two consumers c1 and c2 which are supposed to receive events
of type t1 with a fair distribution (e.g., strictly alternating order). If the event router happens to
favor c1, then c2 may starve and wait forever or time out after not receiving an event for a while.

3.2.6 Relation of the Fault Taxonomy to Other Contributions

The fault taxonomy discussed in this section builds the basis for other contributions in this the-
sis. The query model of WS-Aggregation, discussed in Section 3.3.3, is capable of detecting and
resolving Unsatisfiable Dependencies and Cyclic Processing Logic. In Section 3.4, we tackle
in particular the issues of Overloaded Channels, Buffer Overflow and Node Failure by con-
tinuously monitoring and optimizing the placement of processing elements (i.e., EPAs) in the
WS-Aggregation platform. Migration Failure is explicitly addressed in Section 3.6.3, where we
introduce a transactional scheme for migration of event buffers and subscriptions. Additionally,
if the migration involves deployment of a new VM host in the Cloud, Section 3.5 tackles reli-
able provisioning and configuration on the infrastructure level. In Chapter 4 we introduce our
approach for functional testing of data-centric and event-based applications, which addresses
integration issues and incompatibilities on the business logic level, such as Unmatchable Filter,
Uncorrelatable Event and Pattern Recognition Fault.

3.3 Event-Based Continuous Queries in WS-Aggregation

This section introduces the query model and architecture of the WS-Aggregation platform. We
first introduce an application scenario in Section 3.3.1 which illustrates the processing of inter-
dependent event data streams and serves as the basis for further discussion. Next, we outline
the system architecture of WS-Aggregation in Section 3.3.2. The query model is detailed in
Section 3.3.3, and the approach for distributed query execution is discussed in Section 3.3.4.
Section 3.3.5 briefly discusses the Cloud-based elasticity mechanism employed in the platform.

3.3.1 Application Scenario

To illustrate the query model of WS-Aggregation we consider a simple scenario from the fi-
nancial computing domain, in which Web services provide live data about companies and stock
prices. The aim is to combine the information in an XML document that is actively updated
when the underlying data change. Figure 3.8 illustrates, on a high level of abstraction, how data
and events are received and processed.

We distinguish three basic types of receiving data from the sources: (1) the StockPrice and
StockTrade services allow to subscribe for certain events transmitted using WS-Eventing, (2) the

45

News Feed
(Atom)

Data
Monitor

monitor

Event
Manager

send
events

generate
events

Web Service
Invoker

create/update
subscriptions

Active Query
Coordinator

Client 2

send incremental
updates

Sub-
scription

Company
Info Service

Sub-
scription

StockPrice
Service

propagate
results

generate requests

D
a

ta
/E

ve
nt

 S
o

u
rc

e
s

A
g

g
re

g
at

io
n

 P
la

tfo
rm

request

R
es

ul
t /

 C
lie

n
ts

StockTrade
Service

Stock Company News Price Status Max. Bids

GM G. Motors GM... 35.21 ↑ rising 1.8 Mio.

F Ford - 15.23 ~ -

TM Toyota - 45.05 ~ -

Sub-
scription

Client 1

Figure 3.8: Event-Based Continuous Data Processing Scenario

News feed is regularly monitored for changes, (3) the Company Info service contains rarely
changing, static data. The clients specify a query to receive aggregated data that are incre-
mentally updated as the query executes. The aggregation platform mediates between the data
providers and consumers, and coordinates the query execution. The required core components
from a high-level perspective are as follows. An Event Manager (EM) maintains subscriptions
with the target services and receives events. The Web Service Invoker (SI) is responsible for
performing synchronous service requests, and a Data Monitor (DM) repeatedly retrieves data
from the monitored resource and generates an event to report any changes. The collected results
from EM, DM and SI are fed into the Active Query Coordinator (AQC), which updates all de-
pendencies and generates new requests as needed. To the clients the platform appears as a single
entity, but in fact the system is distributed over several computing nodes, be it for performance
reasons or due to higher-level constraints (e.g., the StockPrice and StockTrade services should
report to physically separated endpoints).

The resulting document contains a table with the current stock prices and general company
information. Furthermore, the result indicates when a stock has three or more consecutive price
rises, in which case the largest bid volume is displayed. If the platform detects that a stock has
risen and traders are placing high volume bids (e.g., ≥ 1 million), the table should display live
news about these companies.

3.3.1.1 Interdependent Event Streams

Figure 3.9 illustrates two sample event streams of the StockPrice and StockTrade services. Ini-
tially, a subscription for StockPrice exists, and the service continuously sends stock price events.
When three consecutive rises are detected for GM (bold text), the Event Manager requests a new
subscription with the StockTrade service to receive all bids and asks for GM placed on the mar-

46

ket. Finally, this subscription is destroyed when five consecutive ticks (also in bold text) are
below the last price of the rising sequence (35.27).

<tick stock=“GM“ price=“35.25“/>
<tick stock=“GM“ price=“35.20“/>
<tick stock=“F“ price=“15.21“/>
<tick stock=“F“ price=“15.23“/>
<tick stock=“GM“ price=“35.23“/>
<tick stock=“TM“ price=“45.05“/>
<tick stock=“GM“ price=“35.24“/>
<tick stock=“GM“ price=“35.27“/>

3 Consecutive Rises

StockPrice
Service

Event Subscription:
Stock Ticks for

Automobile Industry

StockTrade
Service

. . .

<ask amount=“900K“ .../>
<bid amount=“1M“ .../>
<ask amount=“120K“ .../>
<bid amount=“410K“ .../>
<bid amount=“1.8M“ .../>
<ask amount=“800K“ .../>
<bid amount=“1.2M“ .../>
<ask amount=“2.3M ...“/>

Event Subscription:
Bids/Asks for GM

<tick stock=“GM“ price=“35.25“/>
<tick stock=“VOW“ price=“111.23“/>
<tick stock=“GM“ price=“35.24“/>
<tick stock=“VOW“ price=“111.15“/>
<tick stock=“GM“ price=“35.26“/>
<tick stock=“F“ price=“35.23“/>
<tick stock=“TM“ price=“35.20“/>
<tick stock=“GM“ price=“35.21“/>
<tick stock=“F“ price=“15.19“/>
<tick stock=“GM“ price=“35.17“/>

End Subscription

Omitted: SOAP
Envelopes of

Event Messages
E

ve
nt

 T
im

el
in

e

5 Consecutive
Values Below
High Price

Figure 3.9: Sample Event Streams and Lifecycle of Event Subscriptions

3.3.2 System Architecture

The coarse-grained system architecture of WS-Aggregation is illustrated in Figure 3.10. The
gateway service (G) acts as the single endpoint the clients communicate with. A variable num-
ber of aggregator nodes (A) serve incoming query requests. Each aggregator retrieves data from
one or more target services (s1, . . . , s6). The aggregators are depicted in a cloud because they
are invisible to the clients and may be added to and removed from the system transparently. In
basic processing mode, a query that spans multiple data services is handled by a single aggrega-
tor node. The advantage of this approach lies in its simplicity and the low internal coordination
overhead. However, to optimize the internal performance characteristics, WS-Aggregation fo-
cuses on distributed processing for obtaining the final results. As illustrated in Figure 3.10,
distributed aggregation makes use of a tree topology among aggregator nodes where the root
node in the topology is denoted master aggregator, AM . Each aggregator retrieves data from
one or more target services and passes the collected, intermediate results on to its parent node.

WS-Aggregation builds on the SOA paradigm and focuses on the use of a service reg-
istry, which fosters a decoupled and flexible architecture. We utilize the VRESCo service reg-
istry [140,230] to publish the endpoint information of the gateway, aggregator and data services.
Clients use the registry to discover the gateway instance, and the gateway finds all active aggre-
gator nodes contained therein. New aggregator nodes can be seamlessly integrated and existing
nodes can be taken off the system. The aggregators themselves determine the endpoints of the
data services, for which purpose the registry allows to query services by feature. Faulty or non-

47

Client

S2

A

S3

S4

S5

Client S5
A

S6

AM

A

S4

S3

A

S1 S2

A

A

G
A

S6 G

A Aggregator
S Data Service

G Gateway

Registry

Basic Processing Distributed Processing

S1
Registry

Figure 3.10: WS-Aggregation System Architecture

responsive aggregators are automatically unregistered when detected by the gateway or a partner
aggregator. Furthermore, the VRESCo registry stores metadata such as QoS or physical location
of services, which serves as the decision basis for optimized query distribution (see Section 3.4).

3.3.3 Query Model of WS-Aggregation

In the following we establish the model for distributed processing of event-based continuous
queries that is applied in WS-Aggregation. The model builds the foundation for the concepts
discussed in the remainder of this chapter.

Symbol Description
A = {a1, a2, . . . , an} Set of deployed aggregator nodes.

Q = {q1, q2, . . . , qm} Queries that are handled by the platform at some point in time.

I = {i1, i2, . . . , ik} Set of all inputs over all queries.

inputs : Q→ P(I) Function that returns all inputs of a query.

deps : Q→ P(I × I) Function that returns all data dependencies of a query.

S = {s1, s2, . . . , sl} Data sources that emit events over which queries are executed.

source : I → S Function to determine the data source targeted by an input.

query : I → Q Function to determine the query an input belongs to.

buf : A→ P(S) Function to determine which data sources an aggregator buffers.

Table 3.2: Description of Symbols and Variables in Event-Based Query Model

Table 3.2 summarizes the symbols and variables that are used in the formalization. In
our model, a number of aggregator nodes (A) are collectively responsible to execute multi-
ple continuous user queries (Q). Each query processes one or more inputs (I) from external
data sources (S). The function inputs maps queries to inputs (P(I) denotes the power set
of I), and the function source returns the data source targeted by an input. The actual process-
ing logic of the query is application specific and not directly relevant for our purpose. How-
ever, we consider that a query q may contain data dependencies among any two of its inputs

48

ix, iy ∈ inputs(q), ix 6= iy. A dependency (ix, iy) ∈ deps(q) means that iy can only be pro-
cessed after certain data from ix have been received, because the data are required either 1) by
the request to initiate the event stream from the data source underlying iy, or 2) by a prepro-
cessing query that prepares (e.g., groups, filters, aggregates) the incoming events for iy. Such
dependencies are often seen in continuous queries over multiple data streams [17], where sub-
scriptions are dynamically created (or destroyed) when a specific pattern or result is produced
by the currently active streams. An example could be a sensor emitting temperature data in a
smart home environment, which only gets activated as soon as another sensor emits an event that
a person has entered the room.

Although we use the terms service and data source interchangeably, strictly speaking the
notion of data source is narrower, because every entry in S is identified by a pair (epr, filter),
where epr is the Endpoint Reference [359] (location) of the service and the filter expression
determines which types of events should be returned. That is, different data sources may be
accessed under the same service endpoint. The filter may be empty, in which case events of all
types are returned.

The reason for abstracting inputs from data sources is that different queries may require
different data from one and the same source. As an example, assume a data source which every
second emits an event with the market price of two stocks, and two queries which compute the
Pearson correlation as well as the Spearman correlation of the historical prices. This means that
each of the inputs needs to be processed (computed) separately, but the same underlying event
buffer can be used for both inputs. We use the function buf to determine the data sources from
which an aggregator “currently” (at some point in time) receives and buffers events.

Aggregator Node a1

Data
Source

s1

 . . .
Event Buffer

Aggregator Node a2

 . . .
Event Buffer

Query q1

Data
Source

s3 Query q2

Input i5

Input i1

Input i3
Prepro-
cessor

Prepro-
cessor

Data
Source

s2

 . . .
Event Buffer

Input i2

(Aggregator-)Internal Data Flow (Aggregator-)External Data Flow

Client for
Query q1

Client for
Query q2

 . . .
Event Buffer

Input i4

Figure 3.11: Illustrative Instantiation of the Model for Distributed Event-Based Queries

The key aspects of the processing model are illustrated in Figure 3.11, which depicts two
aggregator nodes (a1,a2) executing two queries (q1,q2) consisting of five inputs (i1,. . . ,i5) in
total. The query execution happens in two steps: firstly, the incoming events are buffered and
preprocessed to become the actual inputs (e.g., average value of previous stock prices), and
secondly the inputs are joined and combined as defined in the query specification. Dashed lines
in the figure indicate aggregator-internal data flow, whereas solid lines stand for data exchanged

49

with external machines. Aggregator a1 orchestrates the execution of query q1 and notifies the
client of new results. We hence denote a1 as the master aggregator for q1 (analogously, a2 is the
master of q2). The data source s3 provides data for one single input (i5), whereas inputs i1/i3
and i2/i4 are based on the events from s1 and s2, respectively. Observe that the events from
s2 are buffered both on a1 and on a2, which we denote buffer duplication. In Figure 3.11, an
arrow pointing from an input ix to iy indicates a data dependency, i.e., that ix provides some data
which are required by iy. In the case of i1 and i2, this passing of data happens locally, whereas
i3 and i4 are handled by different aggregators and hence data are transmitted over the network.
We see that assigning i3 to node a1 has the advantage that the events from s1 are buffered only
once (for both i1 and i3), but is disadvantageous with respect to network traffic between the two
aggregators a1 and a2. Conversely, s2 is buffered on both aggregators, reducing the network
traffic but requiring more memory. Section 3.4 deals with this tradeoff in more detail and further
refines the optimization problem that we strive to solve.

3.3.4 Distributed Query Execution

To serve a large number of simultaneous active queries, the platform employs a scalable dis-
tributed processing model with several loosely coupled aggregator nodes working collabora-
tively. In addition to performance reasons, query distribution may also be required or desired
from a higher-level (business) perspective. For instance, the data may have to be physically
separated according to business policies. Moreover, if multiple data sources are spread over a
large geographical distance, the aggregation can be organized in a location-based hierarchical
structure, e.g., with regional and national nodes (for details see [139]).

Hence, the fundamental design principle of WS-Aggregation is that multiple aggregator
machines collaboratively process the queries and events requested by the clients. The set of
available aggregators is stored in a central service registry, which allows to dynamically se-
lect a subset of aggregators responsible for executing each individual query. The overall re-
quest is then split up into smaller (“atomic") parts that can be processed by a single node (see
generateRequests function in Algorithm 1). However, the single parts are not completely iso-
lated units, because of data dependencies which exist between them (see query model in Sec-
tion 3.3.3). Each time a new event is received and added to the result store (onEvent function
in Algorithm 1), the dependencies are updated and possibly new request inputs are generated.
Note that several inputs, possibly from different aggregation queries, can be affected by an event
in the onEvent function.

Line 8 in function generateRequests indicates that a responsible aggregator is determined for
each input. WS-Aggregation supports different configurable distribution strategies, and allows to
either specify fixed input-to-aggregator mappings or to assign inputs automatically. In the latter
case, the platform performs load balancing. In general, new inputs are assigned to aggregators
with the lowest load, based on a combination of Central Processing Unit (CPU) utilization,
memory usage, and number of active queries. The second important distribution goal is to
bundle (co-locate) inputs with the same underlying event stream. Consider two inputs i1 and
i2 which receive the same ticks from StockPrice, but use a different preparation query to filter
certain information. If these inputs are handled by some aggregator a, a shared event buffer can
be used and redundancies are avoided to save memory. Of course, this approach does not scale

50

Algorithm 1 Processing of Active Query with Dependencies
1: results← new result store (variable for aggregation results)
2: function generateRequests(AggregationQuery r)
3: while r contains independent inputs do
4: I ← determine independent inputs in r
5: for all i ∈ I do
6: G← generate actual inputs from i
7: for all input ∈ G do
8: aggr ← determine aggregator to handle input
9: if aggr is self then

10: result← invoke input on input.target
11: result← apply preparation query to result
12: add result to results, update dependencies
13: else
14: delegate request with input to aggr
15: end if
16: end for
17: end for
18: end while
19: end function

1: function onEvent(Event e) /* called for each incoming event data item */
2: add e to event buffer of e
3: for all EventingInput i affected by e do
4: result← apply preparation query of i to event buffer of e
5: add result to results, notify clients, update dependencies
6: generateRequests(i.aggregationQuery) /* issue new requests */
7: end for
8: end function

infinitely, and inputs are assigned to new aggregators if the load of a reaches a certain threshold.
Optimized load balancing is discussed in detail in Section 3.4 and evaluated in Section 3.7.

3.3.5 Elastic Scaling Using Cloud Computing

To cope with fluctuations in the work load (e.g., handling high volumes of data during load
bursts), WS-Aggregation takes advantage of dynamic Cloud resource provisioning to elastically
scale the platform up and down. To that end, each aggregator exposes metadata about the current
stress level of the machine it is running on, and new machines are requested if all nodes are fully
loaded. Conversely, if the nodes operate below a certain stress threshold, the queries can be
rearranged to release machines back to the Cloud.

The notion of stress level covers various parameters – it may include CPU and memory
usage, list of open files and sockets, length of request queues, number of threads and other
metrics. For simplification, we assume that the individual parts of the stress level function are
added up and normalized, resulting in a function stress : A→ [0, 1]. Every aggregator provides
a metadata interface which can be used to retrieve monitoring information and performance
characteristics of the underlying machine. The upper bound of the stress level (value 1) is used
to express that an aggregator is currently working at its limit and cannot be assigned new tasks.

51

In order to achieve optimized query distribution (details see Section 3.4), the nodes’ stress
levels are continuously monitored. To determine whether a reconfiguration can be applied, it
must be ensured that no aggregator node operates beyond a configurable upper-bound stress
level λ (e.g., λ = 0.9). This criterion allows inputs to be removed from machines with high
stress level, and may prohibit the assignment of new query inputs. If the algorithm fails to find
a valid solution under the given constraints, new machines are dynamically acquired from the
Cloud environment and the optimization is restarted.

3.4 Optimized Query Distribution and Placement of Processing
Elements

This section provides a detailed solution for the problem of optimized query distribution and
placement of processing elements employed in WS-Aggregation. The basis for optimization
is the current assignment of inputs to aggregators at some point in time, cur : I → P(A),
where P(A) denotes the powerset of A. We define that cur(i) = ∅ iff input i has not (yet)
been assigned to any aggregator node. For now, we assume that each input is only handled
by one aggregator, hence |cur(i)| ≤ 1, ∀i ∈ I , although WS-Aggregation also allows to assign
inputs redundantly to multiple aggregators for fail-safety. The desired result is a new assignment
new : I → P(A) in which all inputs are assigned to some aggregator, |new(i)| = 1, ∀i ∈ I .
The difference between cur and new constitutes all inputs that need to be migrated from one
aggregator to another, denoted as M := {i ∈ I | cur(i) 6= ∅ ∧ cur(i) 6= new(i)}.

Migrating a query input may require to migrate/duplicate the event buffer of the underlying
data source, if such a buffer does not yet exist on the target aggregator. The technical procedure
of migrating event buffers and subscriptions is detailed in Section 3.6.3. The (computational)
cost associated with this operation is proportional to the size of the buffer in bytes, expressed as
size : S × (A ∪ {∅}) → N. For instance, the buffer size for a source s on an aggregator a is
referenced as size(s, a). If the aggregator is undefined (∅), then the buffer size function returns
zero: size(s, ∅) = 0, ∀s ∈ S. The costs for migration of an input i from its current aggregator
to a new node (function migr) only apply when the data source of i is not yet buffered on the
new node, as expressed in Equation 3.4.

migr(i) :=

{
size(source(i), cur(i)), if source(i) 6∈ buf(new(i))

0, otherwise
(3.4)

In order to decide on actions for load balancing, we need to introduce some notion to ex-
press the current load of an aggregator node. In earlier work [148] we observed that the main
influencing factor for the aggregators’ workload in WS-Aggregation is the number of inputs
and the data transfer rate of the underlying event streams. The transfer rate of data streams
is therefore continuously measured and averaged over a given time interval (e.g., 1 minute).
Every aggregator provides a metadata interface which can be used to retrieve this monitoring
information as a function rate : (S ∪ I) → R, measured in kilobytes per second (kB/s). The
rate(s) of a data stream s ∈ S is the transfer rate of external events arriving at the platform,

52

and rate(i) for an input i ∈ I is the internal rate of events after the stream has passed the pre-
processor. Based on the data transfer rate, we define the load function for an aggregator a ∈ A
as load(a) :=

∑
s∈buf(a)

∑
i∈Is rate(s) · c(i), where Is denotes the set of all inputs targeting s,

i.e., Is := {i ∈ I | source(i) = s}, and c : I → R is an indicator for the computational
overhead of the preprocessing operation that transforms the data source s into the input i. The
computational overhead depends on the processing logic and can be determined by monitoring.
If no information on the running time of a processing step is available, then c(i) defaults to 1.
For simplification, the assumption here is that n data streams with a rate of m kB/s generate the
same load as a single data stream with a rate of n∗m kB/s. We denote the minimum load among
all aggregators as minload := min(

⋃
a∈A load(a)), and the difference between minload and

the load of an aggregator a as ldiff(a) := load(a)−minload.
To obtain a notion of the data flow, in particular the network traffic caused by external data

flows between aggregator nodes (see Figure 3.11), Equation 3.5 defines the flow between two
inputs i1, i2 ∈ I . If the inputs are not dependent from each other or if both inputs are handled by
the same aggregator, the flow is 0. Otherwise, flow amounts to the data transfer rate (rate(i1)),
measured in kB/s.

flow(i1, i2) :=

{
rate(i1), if (i1, i2) ∈ deps(query(i1)) ∧ new(i1) 6= new(i2)

0, otherwise
(3.5)

Finally, Equation 3.6 introduces dupl to express buffer duplication. The idea is that each
data source s ∈ S needs to be buffered by at least one aggregator, but additional aggregators
may also buffer events from the same source (see Figure 3.11). The function dupl(s) hence
subtracts 1 from the total number of aggregators buffering events from s.

dupl(s) := |{a ∈ A | s ∈ buf(a)}| − 1 (3.6)

3.4.1 Optimization Target

We now combine the information given so far in a single target function to obtain a measure
for the costs of the current system configuration and the potential benefits of moving to a new
configuration. Overall, we strive to achieve a tradeoff between three dimensions: balancing
the load among aggregator nodes (L), avoiding duplicate buffering of events (D), while at the
same time minimizing the data transfer between nodes (T). The goal of L is to keep each node
responsive and to account for fluctuations in the frequency and size of incoming event data. The
D dimension attempts to minimize the globally consumed memory, and T aims at a reduction of
the time and resources used for marshalling/transmitting/unmarshalling of data.

Figure 3.12 illustrates the tradeoff relationship as a “Magic Triangle”: each pair of goals can
be fulfilled separately, but the three goals cannot fully be satisfied in combination. For instance,
a way to achieve a balanced load for all aggregators (L) in combination with no duplicate data
source buffers (D) is to assign each source to a single aggregator. However, if a single query
contains several interdependent data sources on different aggregators (which is likely to occur
in this case), the aggregators possibly need to frequently transfer data. Conversely, to achieve

53

Load Distribution (L)

No Duplicate
Buffers (D)

Low Data
Transfer (T)

One aggregator
for each source

One aggregator
for each query

[All on one
aggregator]

Figure 3.12: Relationship between Optimization Targets

load distribution (L) together with low data transfer (T), each query with all its inputs could be
assigned to a single aggregator, but we observe that duplicate buffers come into existence if any
two queries on different aggregators use the same underlying data source. Finally, to achieve
both T and D at the same time, all the processing could be assigned to one single aggregator.
As indicated by the brackets in Figure 3.12, this possibility is generally excluded since we are
striving for a distributed and scalable solution.

The optimization target function F ′ in Equation 3.7 contains the three components that are
to be minimized. Note that the three parts have different value ranges. Therefore, the target
function includes user-defined weights (wL,wT ,wD) to offset the differences of the value ranges,
and to specify which of the parts should have more impact on the optimization target.

F ′ := wL ∗
∑
a∈A

ldiff(a) + wT ∗
∑

i1,i2∈I

flow(i1, i2) + wD ∗
∑
s∈S

dupl(s)→ min! (3.7)

The optimization target in Equation 3.7 only considers how favorable a new system config-
uration (i.e., assignment of inputs to aggregators) is, but not how (computationally) expensive it
is to reach the new setup. To account for the costs of migrating query inputs, we make use of
the migr function defined earlier in Section 3.4 and use a weight parameter wM to determine its
influence. The final optimization target function F is printed in Equation 3.8. Note that the ad-
ditional one-time costs for migration in F are conceptually different from the cost components
in F ′ which apply continuously during the lifetime of the queries.

F := F ′ + wM ∗
∑
i∈M

migr(i)→ min! (3.8)

Depending on the result of the optimization (i.e., the new assignment of inputs to aggrega-
tors, function new), for each input i ∈ I there are three possibilities with regards to migration:

1. If new(i) = cur(i) then there is nothing to do.

2. If new(i) 6= cur(i) ∧ source(i) ∈ buf(new(i)) then the new aggregator a = new(i)
needs to be instructed to handle input i, but no migration is required because the target
buffer already exists on a.

54

3. If new(i) 6= cur(i) ∧ source(i) 6∈ buf(new(i)) then we need to perform full migration
(or duplication) of the event buffer and corresponding subscription.

3.4.2 Optimization Algorithm

The problem of finding an optimal input-to-aggregator assignment introduced in Section 3.4 is
a hard computational problem, and the search space under the given constraints is prohibitively
large, i.e., computing exact solutions may be infeasible for non-trivial optimizations with a high
number of inputs and aggregators. A formal proof of the problem’s intractability is out of the
scope of this thesis, but we observe the combinatorial explosion as the algorithm needs to eval-
uate O(|A||I|∗redmax) potentially optimal solutions, where redmax := max(

⋃
q∈Q red(q)) de-

notes the maximum level of redundancy. In particular, pruning the solution space is hard to
apply because during the search no solution can be easily identified as being suboptimal no mat-
ter what other solutions are derived from it. We therefore apply a metaheuristic and use Variable
Neighborhood Search (VNS) [123] to approximate a near-optimal solution. The basic principle
of VNS is to keep track of the best recorded solution x and to iterate over a predefined set of
neighborhood structures which generate new solutions that are similar to x (for more details,
see [123]). VNS has been successfully applied in a vast field of problem domains; one example
is the multiplayer scheduling problem with communication delays [123], which has similarities
to our problem. Figure 3.13 illustrates the encoding of a solution with 3 queries, 10 inputs and a
maximum redundancy level of redmax = 2.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

a2 a5 a1 a3 a1 a3 a3 a2 a4 a4

a1 a5

Queries: q2q1 q3

Inputs:

Aggregators:

Figure 3.13: Example of Solution Encoding in Optimization Algorithm with redmax = 2

3.4.2.1 Search Neighborhoods

The definition of neighborhoods in the VNS algorithm allows to guide the search through the
space of possible solutions. In the following list of Neighborhoods (NHs), temp : I → A
denotes the input-to-aggregator assignment of a temporary solution evaluated by the algorithm,
and temp′ : I → A denotes a solution which has been derived from temp as specified by
the NH.

• avoid duplicate buffers NH: This NH takes a random data source s ∈ S, determines
all its inputs Is := {i ∈ I | source(i) = s} and the aggregators responsible for them,
As :=

⋃
i∈Is temp(i). The NH then generates |As| new solutions, in which all inputs in

Is are assigned to one of the responsible aggregators: |
⋃

i∈Is temp
′(i)| = 1 ∧ ∀i ∈ Is :

temp′(i) ∈ As. When this neighborhood gets applied, the newly generated solutions will
by tendency have less duplicate buffers.

55

• bundle dependent inputs NH: This NH selects a random query q ∈ Q and generates
new solutions in which all interdependent inputs of q are placed on the same aggregator
node. More specifically, for each newly generated solution temp′ the following holds:
∀(i1, i2) ∈ deps(q) : temp′(i1) = temp′(i2). Note that also transitive dependencies are
affected by this criterion. The effect of this neighborhood is a reduced data traffic between
aggregators.

• equal data load per aggregator NH: This NH selects the two aggregators amax, amin ∈
A with load(amax) = max(

⋃
a∈A load(a)) and load(amin) = min(

⋃
a∈A load(a)), and

generates a new solution by moving the input with the smallest data rate from amax to
amin. More formally, let Imax := {i ∈ I | temp(i) = amax} denote the set of inputs that
are assigned to aggregator amax in the temp solution, then the following holds in every
solution derived from it: temp′(argmini∈Imax rate(i)) = amin.

• random aggregator swap NH: This NH simply selects a random subset of inputs Ix ⊆ I
and assigns a new aggregator to each of these inputs, ∀i ∈ Ix : temp′(i) 6= temp(i). The
purpose of this NH is to perform jumps in the search space to escape from local optima.

VNS continuously considers neighborhood solutions to improve the current best solution
until a termination criterion is reached. The criterion is either based on running time or solution
quality. Furthermore, the algorithm only considers valid solutions with respect to the hard con-
straints. If a better solution than the current setting is found, the required reconfiguration steps
are executed. The system thereby stays responsive and continues to execute the affected event-
based queries. The effect of different configurations in the optimization procedure is evaluated
in detail in Section 3.7.1.4.

3.5 Testing Approach for Reliable Infrastructure Provisioning

The implementation of elastically scaling applications in the Cloud requires mechanisms to fre-
quently integrate new and remove existing computing resources in the system, as exemplified by
aggregator nodes that dynamically join and leave the WS-Aggregation platform. Reliable de-
ployment and configuration of computing resources on the infrastructure level, implemented via
IaC automation scripts (see Section 2.3.2), is the fundamental prerequisite that enables advanced
strategies for elasticity in the first place.

The notion of idempotence has been identified as the foundation for repeatable, robust au-
tomations [46, 74]. Idempotent tasks can be executed multiple times always yielding the same
result. Idempotence is a requirement for convergence [74], the ability to reach a desired state un-
der different circumstances in potentially multiple iterations. The algebraic foundations of these
concepts are well-studied; however, despite (1) their importance as key elements of DevOps
automations and (2) the critical role of automations to enable frequent deployment of complex
infrastructures, testing of idempotence in real systems has received little attention. To the best of
our knowledge, no work to date has studied the practical implications of idempotence or sought
to support developers ascertain that their automations idempotently make the system converge.

56

We tackle this problem and propose a framework for systematic testing of IaC automation
code. Based on a formal model of the problem domain and well-defined test coverage goals,
our framework constructs a State Transition Graph (STG) of the automation code under test.
The resulting STG is used to derive test cases with the specific goal of detecting idempotence
issues. Our prototype implementation is based on Chef, although the approach is designed for
general applicability. We rely on Aspect-Oriented Programming (AOP) to seamlessly hook the
test execution harness into Chef, with practically no configuration effort required. Since efficient
execution of test cases is a key issue, our prototype runs test cases in parallel and utilizes Linux
containers (LXC) as light-weight VM environments that can be instantiated within seconds.

Section 3.5.1 provides background on IaC automations and the Chef framework, and high-
lights typical threats to idempotence. Section 3.5.2 outlines the end-to-end overview of our test-
ing approach. Section 3.5.3 formally models the considered SUT, and Section 3.5.4 discusses
STG-based test generation and execution. The approach is extensively evaluated in Section 3.7.2
based on roughly 300 publicly available [255], real-world Chef cookbooks.

3.5.1 Background and Motivation

In this section we briefly revisit the principles behind modern IaC tools and the importance of
testing IaC automations for idempotence. Although we couch our discussion in the context of
Chef [253], the same principles apply to all such tools.

Idempotence is critical to the correctness of recipes in light of Chef’s model of continuous
execution and desired-state convergence. Nonetheless, we identify several challenges faced by
automation authors when it comes to ensuring that a recipe as a whole is idempotent and can
make the system converge to a desired state irrespective of the system’s state at the time the
recipe execution was initiated. Because of the following challenges, IaC automation authors
need support for idempotence and convergence testing.

First, for imperative script resources (such as the example illustrated in Section 2.3.2), the
user has the burden of implementing the script in an idempotent way. The user has to decide the
appropriate granularity at which idempotence must be enforced so that desired-state convergence
can be achieved with no failures or undesirable side effects. This is not trivial for recipes with
long code blocks or multiple script resources.

Second, the need to use script resources, not surprisingly, occurs often. For instance, out of
665 cookbooks available in the Opscode community [255], we found that 364 (more than 50%)
had to use at least one script resource. What is more, out of 7077 resources that we extracted
from all cookbooks, almost 15% were script resources.

Third, although Chef guarantees that the declarative resource types (e.g., directory) are
idempotent, there is no guarantee that a sequence of multiple instances as a whole is idempotent,
as outlined in [74]. Recall that a recipe typically contains a series of several resource instances
of different types, and the entire recipe is re-executed periodically.

Finally, if recipes depend on an external component (e.g., a download server), writing the
recipe to achieve overall idempotence may become harder due to unforeseen interactions with
the external component (e.g., server may be down).

57

3.5.2 Approach Synopsis

Our work proposes an approach and framework for testing IaC automations (e.g., Chef recipes).
To that end, we follow a model-based testing approach [335], according to the process outlined
in Figure 3.14. The process contains five main steps with different input and output artifacts.
Our test model consists of two main parts: first, a system model of the automation under test and
the environment it operates in, including the involved tasks, parameters, system states, desired
state changes, etc; second, an STG model which can be directly derived from the system model.

Generate
STG Model

Define/Extract
System Model

Derive
Test Cases

IaC Scripts,
Metadata

Execute
Tests

Coverage
Configuration

Analyze
Results

Test
Report

Environment
Specification

Figure 3.14: Model-Based Testing Process

The input to the first step in Figure 3.14 consists of the IaC scripts, and additional metadata.
The scripts are parsed to obtain the basic system model. IaC frameworks like Chef allow to
automatically extract most required data, and additional metadata can be provided to complete
the model (e.g., precise value domains for automation parameters). Given the sequence of tasks
and their expected state transitions, an STG is constructed which models the possible state tran-
sitions that result from executing the automation in different configurations and starting from
arbitrary initial states. The third task in the process derives test case specifications, taking into
account user-defined coverage criteria. The test cases are then materialized and executed in the
real system in step four. During test execution, the system is monitored for state changes by in-
tercepting the automation tasks. Test analysis is applied to the collected data in step five, which
identifies idempotence issues based on well-defined criteria, and generates a detailed test report.

3.5.3 System Model for Infrastructure Automations

This section introduces a model for the IaC problem domain, as well as a formal definition of
idempotence, as considered in this thesis. Our model and definitions in this section provide the
foundations for both our test generation method and the semantics of our test execution engine.

Table 3.3 describes each model element and the used symbols. P denotes the powerset of
a given set. We use the notation x[i] to refer to the ith item of a tuple x, and idx(j, x) gives
the (one-based) index of the first occurrence of item j in tuple x or ∅ if j does not exist in x.
Moreover, XN :=

⋃
n∈NX

n denotes the set of all tuples (with any length) over the set X .

3.5.3.1 Automation and Automation Tasks

An automation consists of multiple tasks (A), with dependencies (D) between them. We assume
a total ordering of tasks, i.e., ∀a1, a2 ∈ A : (a1 6= a2) ⇐⇒ ((a1, a2) ∈ D) ⊕ ((a2, a1) ∈ D).
An automation is executed in one or multiple automation runs (R), which in turn consist of a
multitude of task executions (E).

58

Symbol Description
K,V Set of possible state property keys (K) and values (V).
d : K → P(V) Domain of possible values for a given state property key.
P := K × V Possible property assignments. ∀ (k, v) ∈ P : v ∈ d(k)
S ⊆ [K → V] Set of possible system states. The state is defined by (a subset

of) the state properties and their values.
A = {a1, a2, .., an} Set of tasks (or activities) the automation consists of.
D ⊆ P(A×A) Task dependency relationship: task a1 must be executed before

task a2 iff (a1, a2) ∈ D.
R = {r1, r2, .., rm} Set of all historical automation runs.
E = {e1, e2, .., el} Set of all historical task executions.
r : E → R Maps task executions to automation runs.
e : (A ∪R)→ EN List of task executions for a task or automation run.
o : E → {success, error} Whether a task execution yielded a success output.
succ, pred : A→ A ∪∅ Task’s successor or predecessor within an automation.
st, ft : (E ∪R)→ N Returns the start time (st) and finish time (ft), e.g., as Unix

timestamp.
t : (S ×A)→ S Expected state transition of each task. Pre-state maps to post-

state.
c : EN → [S → S] History of actual state changes effected by a list of task execu-

tions.
pre, post : A→ P(S)
pre, post : E → S

Return all potential (for a task) or concrete (for a task execution)
pre-states (pre) and post-states (post).

Table 3.3: System Model for Infrastructure Automations

For clarity, we relate the above concepts to a concrete Chef scenario. Consider a Chef recipe
that starts and configures a new aggregator node in WS-Aggregation, including installation of
the required software dependencies MySQL1, Sun Java JDK2, and Maven3. For simplicity,
we assume that our sample recipe defines four resource instances corresponding to the tasks
described in Table 3.4.

Task Parameters
a1 Install MySQL -
a2 Set MySQL password p2 = root password
a3 Install/Update Java & Maven p3 = operating system distribution (e.g., ’debian’)
a4 Deploy WS-Aggregation middleware p4 = installation path (e.g., ’/wsaggr’)

Table 3.4: Key Automation Tasks of the Scenario

1http://www.mysql.com/
2http://www.oracle.com/technetwork/java/javase/downloads/
3http://maven.apache.org/

59

http://www.mysql.com/
http://www.oracle.com/technetwork/java/javase/downloads/
http://maven.apache.org/

A Chef recipe corresponds to an automation, and each resource in the recipe is a task. Given
our model and the recipe summarized in Table 3.4, we have A = {a1, a2, a3, a4}. Note that
a1 could be a package resource to install MySQL, similar to the package resource shown in the
recipe of Listing 2.1, whereas a3 could be implemented by a script resource similar to the one
shown in Listing 2.2 (see Section 2.3.2). Table 3.4 also shows the input parameters consumed
by each task.

As discussed previously in Section 2.3.2, an automation (Chef recipe) should make the sys-
tem converge to a desired state. Each task leads to a state transition, converting the system
from a pre-state to a post-state. A system state s ∈ S consists of a number of system prop-
erties, defined as (key,value) pairs. For our scenario, let us assume we track the state of open
ports and OS services installed, such that K = {‘open_ports’, ‘services’}. Also, suppose
that, prior to the automation run, the initial system state is given by s0 = {(‘open_ports’,
{22}), (‘services’, {‘ssh’, ‘acpid’})}, i.e., port 22 is open and two OS services (ssh and
acpid) are running. After task a1’s execution, the system will transition to a new state s1 =
{(‘open_ports’, {22, 3306}), (‘services’, {‘ssh’, ‘acpid’, ‘mysql’})}, i.e., task a1 installs the
mysql service which will be started and open port 3306. Our prototype testing framework
tracks the following pieces of state: network routes, OS services, open ports, mounted file sys-
tems, file contents and permissions, OS users and groups, cron jobs, installed packages, and
consumed resources.

We distinguish the expected state transition (expressed via function t) and the actual state
change (function c) that took place after executing a task. The expected state transitions are used
to build an STG (Section 3.5.3.2), whereas the actual state changes are monitored and used for
test result analysis.

3.5.3.2 State Transition Graph

The system model established so far in this section can be directly translated into an STG which
we then use for test generation. The STG = (VG, TG) is a directed graph, where VG represents
the possible system states, and TG is the set of edges representing the expected state transitions.

Task
t1

Task
t2

Task
t3

pre(t1) post(t1)
= pre(t2)

post(t2)
= pre(t3)

post(t3)
= pre(t4)

Task
t4

post(t4)

(T,F, ,∗ ∗) (T,T,F,∗)

(T,T,T,
{'/wsaggr'})

(T,∗, ,∗ ∗) (T,T, ,∗ ∗) (T,T,T,∗)

(T,T,T,'-')

State (4 properties):

Transition:

(my, pw, mvn, wsa)

Test Parameters

(F,∗, ,∗ ∗)

(T,T,T,
'/wsaggr')

Possible Values of State Properties

my ∈ {T,F} … MySQL installed?
pw ∈ {T,F} … Password configured?
mvn ∈ {T,F} … Java/Maven installed?
wsa … WS-Aggregation local directory

STG Elements

p2 ∈ { 'pw1' }
p3 ∈ { 'debian' }
p4 ∈ { '/wsaggr' }

task=a1Transition
Predicates:

task=a2 ∧
p2='pw1'

task=a3 ∧
p3='debian'

task=t4 ∧
p4='/wsaggr'

Figure 3.15: Simple State Transition Graph (corresponding to Table 3.4)

Figure 3.15 depicts an STG which contains the pre-states and post-states of the four tasks
used in our scenario. For illustration, four properties are encoded in each state: my (MySQL
installed?), pw (password configured?), mvn (Java and Maven installed?), and wsa (local in-

60

stallation path of WS-Aggregation, “-” if not installed). For space limitations, branches (e.g.,
based on which operating system is used) are not included in the graph. We use a wildcard
symbol (∗) as a placeholder for arbitrary values. The wildcard accommodates the fact that we
are only interested in a subset of the system state at different points of the graph. In particular,
the pre-states of each task should contain all possible value combinations of the properties the
task (potentially) changes. For instance, the automation should succeed regardless of whether
MySQL is already installed or not. Hence, the pre-states of task t1 contain both values my = F
and my = T . Note that instead of the wildcard symbol we could also expand the graph and add
one state for each possible value, which is not possible here for space limitations.

3.5.3.3 Idempotence of Automation Tasks

Following [74], a task a ∈ A is idempotent with respect to an equivalence relation ≈ and a
sequence operator ◦ if repeating a has the same effect as executing it once, a ◦ a ≈ a. Applied
to our model, we define the conditions under which a task is considered idempotent based on the
evidence provided by historical task executions (see Definition 3). As the basis for our definition,
we introduce the notion of non-conflicting system states in Definition 1.

Definition 1 A state property assignment (k, v2) ∈ P is non-conflicting with another assign-
ment (k, v1) ∈ P , denoted nonConf((k, v1), (k, v2)), if either 1) v1 = v2 or 2) v1 indicates a
state which eventually leads to state v2.

That is, non-conflicting state is used to express state properties which are currently in tran-
sition. As an example, consider that k denotes the status of the Apache server. Clearly, for two
state values v1 = v2 = ‘running’, (k, v2) is non-conflicting with (k, v1). If v1 indicates that
the server is currently starting up (v1 = ‘booting’), then (k, v2) is also non-conflicting with
(k, v1). The notion of non-conflicting state properties accounts for long-running automations
which are repeatedly executed until the target state is eventually reached. In general, domain-
specific knowledge is required to define concrete non-conflicting properties. By default, we
consider state properties as non-conflicting if they are equal. Moreover, if we use a wildcard
symbol (∗) to denote that the value of k is unknown, then (k, vx) is considered non-conflicting
with (k, ∗) for any vx ∈ V .

Definition 2 A state s2 ∈ S is non-conflicting with some other state s1 ∈ S if ∀(k1, v1) ∈ s1,
(k2, v2) ∈ s2 : (k1 = k2) =⇒ nonConf((k1, v1), (k2, v2)).

Put simply, non-conflicting states require that all state properties in one state be non-conflicting
with corresponding state properties in the other state. Based on the notion of non-conflicting
states, Definition 3 introduces idempotent tasks.

Definition 3 An automation task a ∈ A is considered idempotent with respect to its historical
executions e(a) = 〈e1, e2, . . . , en〉 iff for each two executions ex, ey ∈ e(a) the following holds:
(ft(ex) ≤ st(ey) ∧ o(ex) = success)⇒
(o(ey) = success ∧ (c(〈ey〉) = ∅ ∨ nonConf(post(ey), pre(ey))))

61

In verbal terms, if a task execution ex ∈ e(a) succeeds at some point, then all following
executions (ey) must yield a successful result, and either (1) effect no state change, or (2) effect
a state change where the post-state is non-conflicting with the pre-state. Equivalently, we define
idempotence for task sequences (Definition 4).

Definition 4 A task sequence aseq = 〈a1, a2, ..., an〉 ∈ An is considered idempotent iff for each
two sequences of subsequent task executions e′seq, e

′′
seq ∈ (e(a1) × e(a2) × ... × e(an)) the

following holds:
ft(e′seq[n]) ≤ st(e′′seq[1])⇒
((∀i ∈ {1, . . . , n} : o(e′seq[i]) = success⇒ o(e′′seq[i]) = success) ∧
(c(e′′seq) = ∅ ∨ nonConf(post(e′′seq[i]), pre(e′′seq[i]))))

Note that our notion of idempotence basically corresponds to the definition in [74], with
two subtle differences: first, we not only consider the post-state of tasks, but also distinguish
between successful/unsuccessful task executions; second, we do not require post-states to be
strictly equal, but allow for non-conflicting states.

Task a1: success
{(k,v1) (k,v↦ 2)}

Task a1: success
{}

Task a1: success
{}

Idempotent?

✓

Task a1: error
{}

Task a1: success
{(k,v1) (k,v↦ 2)}

Task a1: success
{} ✓

Task a1: success
{(k,v1) (k,v↦ 2)}

Task a1: success
{(k,v2) (k,v↦ 3)}

Task a1: success
{}

Task a1: success
{(k,v1) (k,v↦ 2)}

Task a1: error
{}

Task a1: success
{}

Only if (k,v3) is
 non-conflicting

with (k,v2)

Figure 3.16: Idempotence for Different Task Execution Patterns

Figure 3.16 illustrates idempotence of four distinct task execution sequences. Each execution
is represented by a rounded rectangle which contains the result and set of state changes. For
simplicity, the figure is based on a single task a1, but the same principle applies also to task
sequences. Sequence 1 is clearly idempotent, since all executions are successful and the state
change from pre-state (k, v1) to post-state (k, v2) only happens on first execution. Sequence 2
is idempotent, even though it contains an unsuccessful execution in the beginning. This is an
important case that accounts for repeatedly executed automations which initially fail until a
certain requirement is fulfilled (e.g., WS-Aggregation aggregator node waits until MySQL is
configured on another host). Sequence 3 is non-idempotent (even though no state changes take
place after the first execution), because an execution with error follows a successful one. As
a typical example, consider a task which moves a file using command “mv X Y”. On second
execution, the task returns an error code, because file X does not exist anymore. In sequence 4,
idempotence depends on whether (k, v3) represents a state property value that is non-conflicting
with (k, v2). For instance, assume k = ‘service.mysql’ denotes whether MySQL is started.
If v2 = ‘booting’ and v3 = ‘started’, then a1 is considered idempotent. Otherwise, if v2 =
‘booting’ and v3 = ‘stopped’, then v3 is conflicting with v2, and hence a1 is not idempotent.

62

3.5.4 Test Design

This section details the approach for testing idempotence of IaC automations. Section 3.5.4.1
discusses how test cases are derived from a graph representation of the possible system states
and transitions, thereby considering customizable test coverage goals. The procedure for ap-
plying the coverage configuration to concrete graph instances is discussed in Section 3.5.4.2.
Section 3.5.4.3 covers details about the test execution in isolated virtualized environments, as
well as test parallelization and distribution.

3.5.4.1 Coverage Goals for STG-Based Test Generation

We observe that the illustrative STG in Figure 3.15 represents a baseline vanilla case. Our aim is
to transform and “perturb” this baseline execution sequence is in various ways, simulating dif-
ferent starting states and repeated executions of task sequences, which a robust and idempotent
automation should be able to handle. Hence, based on the system model (Section 3.5.3) and a
user-defined coverage configuration, we systematically perform graph transformations to con-
struct an STG for the automation which is then used for test case generation. The tester controls
different coverage goals which have an influence on the size of the graph and the set of gener-
ated test cases. Graph models for testing IaC may contain complex branches (e.g., for different
test input parameters) and are in general cyclic (to account for repeated execution). However,
in order to efficiently apply test generation to the STG, we prefer to work with an acyclic graph
(see below).

In the following we briefly introduce the five test coverage parameters (denoted idemN ,
repeatN , restart, forcePre, and graph) which are applied in our approach.
idemN : This coverage parameter specifies a set of task sequence lengths for which idempotence
should be tested. The possible values range from idemN = 1 (idempotence of only single
tasks) to idemN = |A| (maximum sequence length covering all automation tasks). Evidently,
higher values produce more test cases, but lower values entail the risk that problems related to
dependencies between “distant" tasks (tasks that are far apart in the task sequence) are potentially
not detected (see discussion in Section 3.7.2.2).
repeatN : This parameter controls the number of times each task is (at least) repeated. If the
automation is supposed to converge after a single run (most Chef recipes are designed that way,
see our evaluation in Section 3.7.2), it is usually sufficient to have repeatN = 1, because many
idempotence related problems are already detected after executing a task (or task sequence)
twice. However, certain scenarios might require higher values for repeatN , in particular au-
tomations which are designed to be continuously repeated in order to eventually converge. The
tester then has to use domain knowledge to set a reasonable boundary for the number of repeti-
tions to test.
restart: The boolean parameter restart determines whether tasks are arbitrarily repeated in the
middle of the automation (restart = false), or the whole automation always gets restarted from
scratch (restart = true). Consider our scenario automation with task sequence 〈a1, a2, a3, a4〉.
If we require idemN = 3 with restart = true, then the test cases could for instance include
the task sequences 〈a1, a1, ...〉, 〈a1, a2, a1, ...〉, 〈a1, a2, a3, a1, ...〉. If restart = false, we have
additional test cases, including 〈a1, a2, a3, a2, a3, ...〉, 〈a1, a2, a3, a4, a2, a3, ...〉, etc.

63

forcePre: This parameter specifies whether the constructed graph should enforce that all pre-
states for each task are considered. If forcePre = true, then for each task a ∈ A and each po-
tential pre-state s ∈ pre(a) there needs to exist a node in the STG (as illustrated in Figure 3.15).
Note that the potential pre-states should also include all post-states, because of repeated task
execution. Contrary, forcePre = false indicates that a wildcard can be used for each pre-
state, which would reduce the states in Figure 3.15 from 9 to 5. The latter (forcePre = false)
is a good baseline case if pre-states are unknown or hard to produce. In fact, enforcing a cer-
tain pre-state either involves executing the task (if the desired pre-state matches a corresponding
post-state) or accessing the system state directly, which is far from trivial.
graph: This parameter refers to the STG-based coverage goal that should be achieved. In [252],
four testing goals (with increasing level of coverage) are distinguished to derive test cases from
state-based specifications. Transition coverage, full predicate coverage (one test case for each
clause on each transition predicate, cf. Figure 3.15), transition-pair coverage (for each state
node, all combinations of incoming and outgoing transitions are tested), and full sequence cover-
age (each possible and relevant execution path is tested, usually constrained by applying domain
knowledge to ensure a finite set of tests [252]). By default, we utilize transition coverage on a
cycle-free graph. Details are discussed in Section 3.5.4.1.

3.5.4.2 Coverage-Specific STG Construction

In Figure 3.17, graph construction is illustrated by means of an STG which is gradually enriched
and modified as new coverage parameters are defined. The STG is again based on our scenario
(labels with state properties and transition predicates are left out). First, forcePre = false
reduces the number of states as compared to Figure 3.15. Then, we require that task sequences
of any length should be tested for idempotence (idemN = {1, 2, 3, 4}), which introduces new
transitions and cycles into the graph. The configuration restart = true removes part of the
transitions, cycles still remain. After the fourth configuration step, repeatN = 1, we have de-
termined the maximum number of iterations and construct an acyclic graph.

forcePre = false

idemN = {1,2,3,4}

restart = true

repeatN = 1

graph = transition(Construct 5 task sequences by following all paths)

Figure 3.17: Coverage-Specific STG Construction

To satisfy the graph = transition criterion in the last step, we perform a deep graph search
to find any paths from the start node to the terminal node. The procedure is trivial, since the
graph is already acyclic at this point. Each generated execution path corresponds to one test

64

case, and the transition predicates along the path correspond to the inputs for each task (e.g.,
MySQL password parameter p2, cf. Figure 3.15). For brevity, our scenario does not illustrate
the use of alternative task parameter inputs, but it is easy to see how input parameters can be
mapped to transition predicates. As part of our future work, we consider combining our approach
with combinatorial testing techniques [242] to cover different input parameters. It should be
noted, though, that (user-defined) input parameters in the context of testing IaC are way less
important than in traditional software testing, since the core “input” to automation scripts is
typically defined by the characteristics of the environment they operate in.

3.5.4.3 Test Execution

The coverage-specific graph-based test model constructed in Section 3.5.4.1 is used to generate
executable test automations. The key information for each test case is 1) the input parameters
consumed by the tasks, and 2) the configuration of tasks to be repeated. For 1), default parame-
ters can be provided along with the metadata in the system model (cf. Figure 3.14). Moreover,
most scripts in IaC frameworks like Chef define reasonable default values suitable for most pur-
poses. For 2), given the path specification for a test case, we traverse along the path and generate
a list of task sequences that are to be repeated by the test case.

Testing Host 2

Testing Host 1
Test Case 1:

Test Case 2:

Test Case 3:

Test Case 4:

Test Case 5:

…

Init. Test Execution

Init. Test Execution

Init. Test Execution

Init. Test Execution

Maximum
Parallel
Test
Executions

Init. Test Execution

Idle TimeTest Initialization Delay

Figure 3.18: Test Execution Pipeline

Since our tests rely on extraction of state information, it is vital that each test be executed in a
clean and isolated environment. At the same time, tests should be parallelized for efficient usage
of computing resources. VM containers provide the right level of virtualization abstraction for
this purpose. A VM operates within a host operating system and encapsulates the filesystem,
networking stack, process space, and other state relevant parts of the system. Details about VM
containers in our implementation are given in Section 3.6.4.

Having an isolated VM for each test case, the execution can be managed in a testing pipeline,
which is illustrated in Figure 3.18. Before the actual execution, each test container is provided
with a short initialization time with exclusive resource access for booting the system, initializing
the automation environment and configuring all parameters. Test execution is then parallelized
in two dimensions: a (bounded) number of test containers can run in parallel on a single host,
and the test cases are distributed to multiple testing hosts.

65

3.6 Implementation

This section covers selected implementation details of the WS-Aggregation prototype that has
been developed in the course of this thesis. First, Section 3.6.1 discusses how the query model
is implemented with a specialized query language based on XQuery. Section 3.6.2 outlines the
internal architecture of WS-Aggregation aggregator nodes and the distributed processing logic
for continuous event-based queries. In Section 3.6.3, we introduce the approach for migration
of event buffers and subscriptions between aggregator nodes. Section 3.6.4 details the imple-
mentation of our framework for testing reliable infrastructure provisioning, and discusses the
integration with the Chef platform.

3.6.1 Query Model and WAQL Query Language

A simplified version of the WS-Aggregation query model is illustrated as a UML class diagram
in Figure 3.19. The central entity AggregationQuery specifies the Endpoint Reference (End-
point Reference (EPR)) used to receive result updates (notifyTo). An aggregation query contains
multiple Inputs (identified by ID) that determine how data from external sources are retrieved
and inserted into the active query. The EventingInput entity creates event subscriptions with
an optional filter that is evaluated by the target Web service as defined in WS-Addressing. On
the other hand, RequestInput is used for documents retrieved in a request-response manner. In
both cases, the target EPR specifies the location of the service. The interval attribute allows to
continuously monitor a Web service or document for changes.

EventingInput

+ filter: any

RequestInput

+ interval: Long
+ body: any

AggregationQuery

+ notifyTo: EPR

QueryExpression
+ expr: String

finalizationQuery

terminationQuery

preparationQuery

1..*

DataDependency

+ extractPath: XPath

fromInput

Input

+ ID: String
+ target: EPR

requiredData *

0..10..1

0..1

Figure 3.19: Query Model for Continuous Event-Based Data Aggregation

WS-Aggregation employs a specialized query language named WAQL (Web services Ag-
gregation Query Language), which is built on XQuery 3.0 [361] and adds some convenience
extensions, e.g., to express data dependencies between query inputs. The model in Figure 3.19
contains three types of QueryExpressions. A preparationQuery expression may be used to pre-
pare and transform the result of an Input immediately as it arrives at the platform. In the case
of a RequestInput, the preparation query performs a one-time transformation (e.g., extracting
certain information of interest), whereas to “prepare” an EventingInput a window query is con-
tinuously executed on the event stream to yield new results. To specify the condition for ending
an event subscription, an EventingInput is associated with a terminationQuery. When this query

66

yields a true result, the target service is automatically invoked with a WS-Eventing Unsubscribe
message to destroy the subscription. Finally, the finalizationQuery combines all the prepared
results and constructs the final output document.

3.6.1.1 XQuery Extension for Input Data Dependencies

A core feature in the query model is the concept of data dependencies between two inputs i1
and i2, which signifies that i2 can only be “activated” if certain data from i1 are available to be
inserted into i2. Activation in this context means that the input becomes usable only when all
data dependencies are resolved. The query model in Figure 3.19 associates an Input (receiving
input), via the association class DataDependency, with an arbitrary number of required data
from other Inputs (providing inputs) of the same query. The attribute extractPath is an XPath
which points to the data in the providing input. If the optional association fromInput is set, the
data will be extracted from a specific Input; otherwise, if fromInput is unknown, the platform
continuously matches extractPath against the available inputs and extracts data when this XPath
evaluates to true.� �
[new] DataDependency : : = " $ " Name? " { " Pa thExpr " } "
[new] EscapeDol lar : : = " $$ "
[1 2 5] Pr imaryExpr : : = DataDependency | . . .
[1 4 5] CommonContent : : = DataDependency | EscapeDol lar | . . .
[2 0 4] E lemen tCon ten tCha r : : = Char − [{}<&$]
[2 0 5] Q u o t A t t r C o n t e n t C h a r : : = Char − ["{}<&$]
[2 0 6] A p o s A t t r C o n t e n t C h a r : : = Char − [’{} <&$]� �

Listing 3.1: XQuery Language Extension for Data Dependencies

We propose an XQuery language extension to account for simple modeling of data depen-
dencies as proposed in this thesis. The modifications are printed in Extended Backus-Naur Form
(EBNF) syntax in Listing 3.1. The new construct is named DataDependency and consists of a
dollar sign (“$”), an optional Name token referencing the ID of the providing input, and an
XPath expression (PathExpr) specifying the extractPath in curly brackets (“{”, “}”). To express
that a string “${foo}” should be interpreted as a verbatim string and not as a data dependency,
a double dollar sign (EscapeDollar) is used for escaping (“$${foo}”). The DataDependency
token is added to the definition of PrimaryExpr (rule 125 in the current version of XQuery 3.0)
and CommonContent (rule 145). Furthermore, to satisfy parser consistency of the syntax rules,
the single dollar sign needs to be appended to the list of “exceptional” (non-content) characters
(rules 204 to 206).

For the actual XQuery processing, we use the light-weight and high-performance MXQuery4

engine. The implementation of the Preprocessor and XQuery language extension for data de-
pendencies is based on JavaCC5, a parser generator for Java. The EBNF syntax rules of XQuery
were extended with the modifications in Listing 3.1 and transformed into the format of JavaCC.
The parser generated by JavaCC reads in the extended XQuery expressions and creates an in-
memory representation (abstract syntax tree), which is used to extract the data dependencies.

4http://mxquery.org/
5https://javacc.java.net/

67

http://mxquery.org/
https://javacc.java.net/

3.6.2 Aggregator Nodes and Query Processing

WS-Aggregation is implemented in Java using Web services [364] technology, and largely builds
on WS-Eventing [360] as a standardized means to manage subscriptions for event notification
messages. The platform is designed for loose coupling and elasticity – aggregators may dynami-
cally join and leave the system, and collaborative query execution across multiple aggregators is
initiated in an ad-hoc manner. The endpoint references of currently available aggregator nodes
are deployed in a service registry.

«component»
Aggregator Node

Query Engine

Prepro-
cessor

XQuery
Engine

Request
Distributor

Aggregation
Interface

Metadata
Interface

Management
Interface

Target Service
Invoker

Performance
Monitor

Configurator

Multicast
Engine

Eventing
Interface

Event
Store

Active Query
Coordinator

WS-Eventing
Service

Web Service
or Resource

Active Query
Subscriber

Figure 3.20: Core Components and Connectors of Aggregator Nodes

The internal architecture of aggregator nodes is depicted in Figure 3.20. From an external
viewpoint, an aggregator is solely defined by its Web service interfaces. Specialized imple-
mentations can be plugged into the platform, and aggregators register themselves in the service
registry. The WS-Eventing compliant Eventing Interface is used to receive events from data
services. the Event Store buffers and forwards the events to the Query Engine which consists
of the Preprocessor (responsible for processing the XQuery data dependency extensions) and a
third-party (hence depicted in gray) XQuery Engine. The Active Query Coordinator (AQC), ac-
cessible from the Aggregation Interface, maintains aggregation queries, determines which data
dependencies are fulfilled and activates new inputs.

The AQC forwards activated inputs to the Request Distributor, which implements config-
urable query distribution strategies. Moreover, the AQC uses the Eventing Interface of partner
aggregators to propagate WindowQueryEvents. To communicate with other nodes, the Request
Distributor makes use of the Multicast Engine, which contacts the Aggregation Interface (to
delegate the execution of inputs) or the Metadata Interface (to receive metadata such as perfor-
mance monitoring data) of the partners. Results are pushed to the clients (Active Query Sub-
scribers) by the AQC. Alternatively, clients can poll for new results, which is useful for clients
that cannot directly receive push-style notifications (e.g., Web browsers).

68

3.6.3 Migration of Event Buffers and Subscriptions

One of the technical challenges in our prototype is the implementation of event buffer migra-
tion, which becomes necessary when the result of the optimization (see Section 3.4) mandates
that certain query inputs be moved between aggregators. The challenge is that transmitting the
contents of a buffer over the network is a time-consuming operation, and new events for this
buffer may arrive while the transmission is still active. At this point, it must be ensured that
the arriving events are temporarily buffered and later forwarded to the target aggregator node.
Therefore, transactionally migrating an event buffer while keeping the buffer state consistent at
both the sending and the receiving node is a non-trivial task.

a1:Aggregator a2:Aggregator s:DataSource:Optimizer

(3) Get Buffer for s

(2) New Temporary
Buffer for s

(1) Inherit Buffer
for s from a2

Send Event

Send Event

Send EventForward Event

b:Buffer

(4) Update Subscription
with new Receiver a1

Send Event

(5) Merge b with
Temporary Buffer

Send Event

Figure 3.21: Procedure for Migrating Buffer and Event Subscription between Aggregators

Figure 3.21 contains a UML sequence diagram which highlights the key aspects of our so-
lution. It involves the optimizer component which instructs an aggregator a1 to inherit (become
the new owner of) the event subscription for data source s together with the previously buffered
events from aggregator a2 (point (1) in the figure). Data source d continuously sends events
to the currently active subscriber. Before requesting transmission of the buffer contents from
a2 (3), a1 creates a temporary buffer (2). Depending on the buffer size, the transmission may
consume a considerable amount of time, and the events arriving at a2 are now forwarded to a1
and stored in the temporary buffer. The next step is to update the event subscription with the new
receiver a1 (4). Depending on the capabilities of the data source (e.g., a WS-Eventing service),
this can either be achieved by a single renew operation, or by a combination of an unsubscribe
and a subscribe invocation. However, the prerequisite for keeping the event data consistent is
that this operation executes atomically, i.e., at no point in time both a1 and a2 may receive the
events. Finally, after the transmission has finished, the received buffer b is merged with the
temporary buffer (5). If the execution fails at some point, e.g., due to connectivity problems, a
rollback procedure is initiated and the entire process is repeated.

69

3.6.4 Framework for Testing Infrastructure Automation Scripts

In the following we briefly discuss the prototypical implementation of our framework for testing
IaC automation scripts. Figure 3.22 illustrates the architecture from the perspective of a single
testing host. A Web user interface guides the test execution. Each host contains a test manager
to receive requests for new test case executions. The test manager materializes the test cases and
creates new containers for each test to execute.

Testing Host

Test Container 'proto' Database

Software
Repositories

Test Container 'tc1'

Test Container 'tc2'

T
ra

ns
pa

re
nt

 H
T

T
P

 P
ro

xy

Test Container 'tcN'

Automation
Parameters

Automation
Scripts

. . .

Test
Manager

invoke

generate

initialize

download

save test data

Test
Agent

forward state/results

execute &
intercept

Test
Queue

User
Interface

load
datastart

tests

C-O-W
File-

system

Figure 3.22: Architecture of the Framework for Testing IaC Automations

The framework parallelizes the execution in two dimensions: firstly, multiple testing hosts
are started from a pre-configured virtual machine image; secondly, each testing host contains
several containers, which each execute one test case in parallel. We utilize the highly efficient
Linux containers6 (LXC). Each container has a dedicated root directory within the testing host’s
file system. We use the notion of prototype container templates (denoted ’proto’ in Figure 3.22)
to provide a clean operating environment for each test case. Each prototype contains a base
operating system (Ubuntu 12.04 and Fedora 16 in our case) and basic services such as a Secure
Shell (SSH) daemon. Instead of duplicating the entire filesystem for each test container, we
use a btrfs7 copy-on-write (C-O-W) shared filesystem, which allows to spawn new instances
efficiently within few seconds. To avoid unnecessary re-downloading of external resources (e.g.,
software packages), each testing host is equipped with a Squid8 proxy server.

The test agent within each container is responsible for launching the automation scripts and
reporting the results back to the test manager which stores them in a database. During test
execution, our framework uses aquarium9, an Aspect Oriented Programming (AOP) library for
Ruby, to intercept the execution of Chef automation scripts and extract the relevant system state.

6http://lxc.sourceforge.net/
7https://btrfs.wiki.kernel.org/
8http://www.squid-cache.org/
9http://aquarium.rubyforge.org/

70

http://lxc.sourceforge.net/
https://btrfs.wiki.kernel.org/
http://www.squid-cache.org/
http://aquarium.rubyforge.org/

Chef’s execution model makes that task fairly easy: an aspect that we defined uses a method
join point run_action in the class Chef::Runner. The aspects then records the state
snapshots before and after each task. If an exception is raised during the test execution, the
details are stored in the testing DB. Finally, after each task execution we check whether any task
needs to be repeated at this time (based on the test case specification).

We have defined an extensible mechanism to define which Chef resources can lead to which
state changes. For example, the user Chef resource may add a user. Whenever this resource is
executed we record whether a user was actually added in the OS. As part of the interception, we
leverage this mapping to determine the corresponding system state in the container via Chef’s in-
ternal discovery tool Ohai. We extended Ohai with our own plugins to capture the level of detail
we required. To support more fine-grained capturing of state changes in the system, we utilize a
patched version of strace10 which is able to intercept Unix operating system calls and the state
changes associated with these calls. This allows to capture detailed state changes of arbitrary
script tasks, even of complex multi-step configuration tasks such as configuring, compiling and
installing a software package (cf. Listing 2.1).

3.7 Evaluation

This section evaluates different aspects of the contributions discussed in the context of WS-
Aggregation. The evaluation is divided into two main parts. First, Section 3.7.1 evaluates the
runtime performance of WS-Aggregation, focusing on elastic Cloud deployment, migration of
event buffers, and evolution of query topologies. Second, Section 3.7.2 evaluates the testing
framework for infrastructure automations, based on publicly available Chef automation scripts.

3.7.1 WS-Aggregation Runtime Performance

To evaluate the performance of WS-Aggregation, we have set up several experiments in private
and public Cloud environments, notably Eucalyptus11, OpenStack12 and Amazon EC213.

Our performance experiments focus on three aspects: first, the time required to migrate
event buffers and subscriptions between aggregators (Section 3.7.1.2); second, evolution of the
network topology for different optimization parameters (Section 3.7.1.3); third, performance
characteristics of optimization weights (Section 3.7.1.4).

3.7.1.1 End-To-End Framework Performance

To evaluate the end-to-end performance, we have set up a comprehensive test environment in
Amazon EC2. An initial number of 15 aggregator nodes was launched at the start of the experi-
ment. During execution, the framework was configured to deploy up to five additional instances,
which is achieved using the Web services based API of EC2. Furthermore, we deployed the four
scenario Web services from Section 3.3.1, which provide randomized test data.

10http://sourceforge.net/projects/strace/
11http://www.eucalyptus.com/
12http://www.openstack.org/
13http://aws.amazon.com/ec2

71

http://sourceforge.net/projects/strace/
http://www.eucalyptus.com/
http://www.openstack.org/
http://aws.amazon.com/ec2

 0 1 2 3

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00

T
im

e
(s

ec
on

ds
)

In
te

rv
al

 (
se

c)

 0

 5
0

 1
0
0

 1
5
0

A
ct

iv
e

Q
ue

rie
s

 0

 5
0
0

 1
0
0
0

 1
5
0
0

C
lie

nt
 U

pd
at

es
 0

 0
.2

 0
.4

 0
.6

 0
.8 1

C
P

U
 U

sa
ge

 R
an

ge

 0

 1
0
0

 2
0
0

 3
0
0

 4
0
0

Ja
va

 H
ea

p
U

sa
ge

 R
an

ge
 (

M
B

)

 0 5

 1
0

 1
5

 2
0

A
ct

iv
e

A
gg

re
ga

to
rs

Fi
gu

re
3.

23
:P

er
fo

rm
an

ce
R

es
ul

ts
fo

rM
ul

tip
le

Q
ue

ri
es

w
ith

V
ar

yi
ng

E
ve

nt
R

at
es

72

Figure 3.23 illustrates the results of the scenario execution. The x-axis shows the time in sec-
onds. The lowermost part of the figure plots the interval in which the StockPrice and StockTrade
services publish events to the platform. Over time, various test clients deployed outside of EC2
(average latency of 60ms) have requested and terminated multiple (up to 125 simultaneous) ex-
ecutions of the scenario aggregation in different variants (sub-plot Active Queries). The number
of Client Updates per ten seconds (up to 1500 around time point 900) is largely influenced by a
combination of event Interval (between 0.5 and 3 sec.) and Active Queries, and also depends on
the random test data and the state of each active query.

The framework monitors the resource consumption using Java Management Extensions
(JMX). Heap memory and CPU consumption are shown in Figure 3.23 with the range (mini-
mum to maximum) and the trendline of the maximum over all active aggregators. The platform
heuristically distributes the total load, based on CPU/memory usage, active aggregators and
queries. Up to second 50, the queries are handled by only two aggregators, because the aim is
to bundle queries for one event stream on the same aggregator. However, after 60 seconds, ad-
ditional aggregators are involved to avoid performance deterioration due to the increasing load.
When ten aggregators are active, the platform requests new machines in addition to the 15 initial
instances. The startup (roughly 40 seconds) includes EC2 overhead and the time to initialize and
add the new aggregator to the registry. As the active queries decrease, some aggregators become
idle (e.g., time 400). The timeout for releasing unused resources is configurable – it should be
at least several minutes because aggregators may become used again (e.g., time 410) and most
Cloud instances are billed by a fixed time unit (e.g., full hours).

We observe that the load is stable and equally distributed (small CPU and memory ranges)
when the number of active queries only slightly changes (e.g., between time 400-600 or 700-900);
however, rapid changes in the active queries cause load peaks, as event stores are initialized or
terminated and many objects need to be allocated or freed, respectively. Note that the memory
consumption grows particularly at the beginning, because the nodes perform internal caching.
A factor that evidently raises memory management issues is the need to store past events for
evaluation of query windows. Fortunately, the MXQuery query engine employs sophisticated
algorithms to free unused input buffer items, and we have run several complex queries with
literally millions of events without running into memory leaks.

3.7.1.2 Migration of Event Buffers and Subscriptions

Next, we briefly evaluate the time required to migrate event buffers and subscriptions, which
is required to switch from the current configuration of a query network topology (i.e., assign-
ment of inputs to aggregators) to a new (optimized) configuration. To measure the actual time
required, we have executed various buffer migrations with different buffer sizes. Each data point
in the scatter plot in Figure 3.24 represents a combination of buffer size and migration duration.
The duration measures the gross time needed for the old aggregator a1 to contact the new ag-
gregator a2, transmitting the buffer, feeding the buffer contents into the query engine on a2, and
freeing the resources on a1.

A linear regression curve is also plotted, which shows an approximate trendline (variance of
residuals was 0.2735). Note that the numbers in the figure represent the net buffer size, that is,
the actual accumulated size of the events as they were transported over the network (serialized

73

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 0 500 1000 1500 2000 2500 3000

D
ur

at
io

n
(s

ec
)

Event Buffer Size (KB)

Migration Duration
Linear Regression

Figure 3.24: Duration for Migrating Event Subscriptions for Different Buffer Sizes

as XML). The gross buffer size, which we evaluate in Section 3.7.1.4, is the amount of Java heap
space that is consumed by the objects representing the buffer, plus any auxiliary objects (e.g.,
indexes for fast access).

3.7.1.3 Evolution of Query Network Topology

The following experiments study the effects of applying the optimization discussed in Section
3.4. In particular, we investigate the evolution of the network topology (i.e., connections between
aggregators and data sources) for different parameter weights. We deployed 10 data sources
(each emitting 1 event per second with an XML payload size of 250 bytes) and 7 aggregator
nodes, and started 30 eventing queries in 3 consecutive steps (in each step, 10 queries are added).
Each query instantiation has the following processing logic:

∗ Each query q consists of 3 inputs (i1q ,i2q ,i3q). The inputs’ underlying data sources are se-
lected in round robin order. That is, starting with the fourth query, some inputs target
the same data source (because in total 10 data sources are available) and the buffer can
therefore be shared.

∗ The events arriving from the data sources are preprocessed in a way that each group of
10 events is aggregated. The contents of these 10 events collectively form the input that
becomes available to the query.

∗ Since we are interested in inter-aggregator traffic, each instance of the test query contains
a data dependency between the inputs i1q and i2q . This means that, if these two inputs are
handled by different nodes, the results from i1q are forwarded over the network to the node
responsible for i2q .

∗ Finally, the query simply combines the preprocessed inputs into a single document, and
the client continuously receives the new data.

74

10 Queries 20 Queries 30 Queries
Before Opt. After Opt. Before Opt. After Opt. Before Opt. After Opt.

(a) wD = 1, wL = 0, wT = 0

(b) wD = 0, wL = 1, wT = 0

(c) wD = 0, wL = 0, wT = 1

(d) wD = 1, wL = 1, wT = 1; wM = 1

Figure 3.25: Query Network Topology With Different Optimization Weights

Figure 3.25 graphically illustrates how the network topology evolves over time for different
parameter settings. Each of the subfigures ((a)-(d)) contains six snapshots of the system config-
uration: for each of the 3 steps in the execution (10/20/30 queries), a snapshot of the system con-
figuration is recorded before and after the optimization is applied. In each step, the optimization
algorithm runs for 30 seconds, and the best found solution is applied. Data sources are depicted
as circles, aggregators are represented by triangles, and the nodes with data flow are connected
by a line. The size of the nodes and lines determines the load: the bigger a circle, the more event
subscriptions are executed on this data source; the bigger a triangle, the more data this aggrega-
tor is buffering; the thicker a line, the more data is transferred over the link. Furthermore, the
aggregators’ colors determine the stress level (green-yellow-red for low-medium-high).

75

Clearly, the different optimization weights result in very distinct topological patterns. A
characteristic outcome of emphasizing the wD parameter (Figure 3.25(a)) is that few aggrega-
tors handle many event subscriptions and are hence loaded with a high data transfer rate. If the
goal of preventing duplicate buffering is fully achieved, then there are at most |S| active aggre-
gators (and possibly less, as in Figure 3.25(a)), however, there is usually some inter-aggregator
traffic required. In Figure 3.25(b) only the weight wL is activated, which results in a more dense
network graph. The inputs are spread over the aggregators, and in many cases multiple aggre-
gators are subscribed with the same event source. Also in the case where wT is set to 1, the
resulting network graph becomes very dense. We observe that in Figure 3.25(c) there are no
inter-aggregator connections, i.e., this setting tends to turn the network topology into a bipartite
graph with the data sources in one set and the aggregator nodes in the second set. Finally, in
Figure 3.25(d) all weights, including the penalty weight for migration (wM) are set to 1. Note
that the weights are subject to further customization, because setting equal weights favors pa-
rameters that have higher absolute values. Future work will evaluate the effect of automatically
setting the weights and normalizing the units of the optimization dimensions (D,L,T,M).

3.7.1.4 Performance Characteristics of Optimization Parameters

We now use the same experiment setup as in Section 3.7.1.3 and evaluate in more detail how
the performance characteristics evolve over time when optimization is applied. Again, 10 data
sources and 7 aggregator nodes were deployed, and multiple queries were successively added.

This time we took a snapshot 30 seconds after each query has been added for execution.
The 4 subplots in Figure 3.26 illustrate the test results as a trendline over the number of active
queries (x axis). To slightly flatten the curves, each experiment has been executed in 5 iterations
and the numbers in the figures are mean values. The gross heap size of event buffer objects
(Figure 3.26(a)) is determined using the Java instrumentation toolkit (java.lang.instrument) by
recursively following all object references.

Figure 3.26(a) shows that the global memory usage is particularly high (up to 600MB for
20 queries) for wL = 1 and also for wT = 1. Figure 3.26(b) depicts the inter-aggregator
transfer, which in our experiments was quite high for wD = 1, and near zero for the other
configurations. The box plots in Figure 3.26(c) show the minimum and maximum event rates
over all aggregators. We see that the absolute values and the range difference are high for wD =
1 and wT = 1, but, as expected, considerably lower for the load difference minimizing setting
wL = 1. Finally, the combined event frequency of all aggregators is plotted in Figure 3.26(d).

3.7.2 Identified Issues in Real-World Chef Automation Scripts

This section evaluates the testing framework for reliable infrastructure provisioning (Section 3.5),
which is employed as part of the elasticity features in WS-Aggregation. To assess the effective-
ness of our approach, we have performed a comprehensive evaluation, based on publicly avail-
able Chef cookbooks maintained by the Opscode community. This large code base of real-world
automation scripts allows us to obtain highly representative and reproducible results.

Out of the 665 executable Opscode Chef cookbooks (as of February 2013), we selected a
representative sample of 161 cookbooks, some tested in different versions (see Section 3.7.2.4),

76

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18 20

M
eg

ab
yt

es

Nr. of Active Queries

wD=1,wL=0,wT=0
wD=0,wL=1,wT=0
wD=0,wL=0,wT=1
wD=1,wL=1,wT=1

(a) Global Size of All Event Buffers

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

K
ilo

by
te

s/
S

ec
on

d

Nr. of Active Queries

wD=1,wL=0,wT=0
wD=0,wL=1,wT=0
wD=0,wL=0,wT=1
wD=1,wL=1,wT=1

(b) Inter-Aggregator Data Transfer

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K
ilo

by
te

s/
S

ec
on

d

Nr. of Active Queries

wD=1,wL=0,wT=0
wD=0,wL=1,wT=0
wD=0,wL=0,wT=1
wD=1,wL=1,wT=1

(c) Minimum/Maximum Event Data Rates

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

E
ve

nt
s/

M
in

ut
e

Nr. of Active Queries

wD=1,wL=0,wT=0
wD=0,wL=1,wT=0
wD=0,wL=0,wT=1
wD=1,wL=1,wT=1

(d) Global Event Frequency

Figure 3.26: Performance Characteristics in Different Settings

resulting in a total of 298 tested cookbooks. Our selection criteria were based on 1) popularity
in terms of number of downloads, 2) achieving a mix of recipes using imperative scripting (e.g.,
bash, execute) and declarative resources (e.g., service, file).

In Section 3.7.2.1 we present aggregated test results over the set of automation scripts used
for evaluation, Section 3.7.2.2 discusses some interesting cases in more detail, in Section 3.7.2.3
we contrast the test results for different task types, and Section 3.7.2.4 analyzes the evolution of
different versions of popular Chef cookbooks.

3.7.2.1 Aggregated Test Results

Here we briefly summarize the test results achieved from applying our testing approach to the se-
lected Opscode Chef cookbooks. For space limitations, we can only highlight the core findings,
but we provide a Web page14 with accompanying material and detailed test results. Table 3.5
gives an overview of the overall evaluation results. The “min/max/total” values indicate the min-
imum/maximum value over all individual cookbooks, and the total number for all cookbooks.

We have tested a total of 337 cookbooks, selected by high popularity (download count)
and number of imperative tasks (script resources). Cookbooks were tested in their most recent

14http://dsg.tuwien.ac.at/testIaC/

77

http://dsg.tuwien.ac.at/testIaC/

version, and for the 20 most popular cookbooks we tested (up to) 10 versions into the past, in
order to assess their evolution with respect to idempotence (see Section 3.7.2.4). As part of
the selection process, we manually filtered cookbooks that are not of interest or not suitable
for testing: for instance, cookbook application defines only attributes and no tasks, or
cookbook pxe_install_server downloads an entire 700MB Ubuntu image file.

Tested Cookbooks 298
Number of Test Cases 3671
Number of Tasks (min/max/total) 1 / 103 / 4112
Total Task Executions 187986
Captured State Changes 164117
Total Non-Idempotent Tasks 263
Cookbooks With Non-Idempotent Tasks 92
Overall Net Execution Time 25.7 CPU-days
Overall Gross Execution Time 44.07 CPU-days

Table 3.5: Aggregated Evaluation Test Results

The 298 tested cookbooks contain 4112 tasks in total. In our test coverage goal, task se-
quences of arbitrary length are tested ({1, .., |A|}), tasks are repeated at most once (repeatN =
1), and the entire automation is always restarted from the first task (restart = true). Based on
this coverage, a total of 3671 test cases (i.e., individual instantiations with different test config-
urations) were executed. 187986 task executions have been registered in the test database, and
164117 state property changes were registered as a direct result of the task executions. The test
execution occupied our hardware for an overall gross time of 44.07 CPU-days. If we extract
the overhead of our system, which includes mostly capturing of system state and computation
of state changes, the overall net time is 25.7 CPU-days. Due to parallelization (4 testing hosts,
max. 5 containers per host) the tests actually finished in much shorter time (roughly 5 days).

The test execution and analysis has led to the identification of 263 non-idempotent tasks.
Recall from Section 3.5.3 that a task is considered non-idempotent if any repeated executions
lead to a state change or yield a different success result than the first execution of this task.

3.7.2.2 Selected Result Details

To provide a more detailed picture, we discuss interesting cases of non-idempotent recipes. We
explain for each case how our approach detected the idempotence issue. We also discuss how we
tracked down the actual problem, to verify the results and understand the underlying implemen-
tation bug. It should be noted, however, that our focus is on problem detection, not debugging
or root cause analysis. However, using the comprehensive data gathered during testing, our
framework has also helped us tremendously to find the root of these problems.

Chef Cookbook timezone: A short illustrative cookbook is timezone v0.0.1 which con-
figures the system’s time zone. Table 3.6 lists the three tasks: a1 installs the package tzdata,
a2 writes “UTC” to the configuration file, and a3 reconfigures the package tzdata. All three

78

tasks write to /etc/timezone. Clearly, tasks a2, a3 are not idempotent, e.g., considering the
sequence 〈a1, a2, a3, a1, a2, a3〉. On second execution, a1 has no effect (package is already in-
stalled), but a2, a3 are re-executed, effectively overwriting each other’s state changes. Note that
〈a1, a2〉 and 〈a1, a2, a3〉 are idempotent as a sequence; however, a perfectly idempotent automa-
tion would ensure that tasks do not alternatingly overwrite changes. Moreover, the overhead of
re-executing tasks a2, a3 can be avoided, which is crucial for frequently repeated automations.

Task Resource Type Description
a1 package Installs tzdata, writes ”Etc/UTC” to /etc/timezone

a2 template Writes timezone value “UTC” to /etc/timezone

a3 bash Runs dpkg-reconfigure tzdata, again writes
”Etc/UTC” to /etc/timezone

Table 3.6: Tasks in Chef Cookbook timezone

Chef Cookbook tomcat6: In the popular cookbook tomcat6 v0.5.4 (> 2000 downloads),
we identified a non-trivial idempotence bug related to incorrect file permissions. The version
number indicates that the cookbook has undergone a number of revisions and fixes, but this
issue was apparently not detected.

Task Resource Type Description
.
a9 directory Creates directory /etc/tomcat6/

.
a16 bash Copies files to /etc/tomcat6/ as user tomcat; only

executed if /etc/tomcat6/tomcat6.conf does not
exist.

.
a22 file Writes to /etc/tomcat6/logging.properties as

user root.
a23 service Enables the service tomcat (i.e., automatic start at boot)
a23 file Creates file /etc/tomcat6/tomcat6.conf
.

Table 3.7: Tasks in Chef Cookbook tomcat6

The crucial tasks are outlined in Table 3.7 (the entire automation consists of 25 tasks). Ap-
plying the test coverage settings from Section 3.7.2.1, the test suite for this cookbook consists
of 23 test cases, out of which two test cases (denoted t1, t2) failed. Test t1 is configured to run
task sequence 〈a1, ..., a21, a1, ..., a25〉 (simulating that the automation is terminated and repeated
after task a21), and test t2 is configured with task sequence 〈a1, ..., a22, a1, ..., a25〉 (restarting
after task a22). Both test cases failed at the second execution of task a16, denoted e(a16)[2] in
our model, which copies configuration files to a directory previously created by task a9. In the
following we clarify why and how this fault happens.

79

The reason why t1 and t2 failed when executing e(a16)[2] is that at the time of execution the
file /etc/tomcat6/logging.properties is owned by user root, and a16 attempts to write
to the same file as user tomcat (resulting in “permission denied” from the operating system).
We observe that task a22 also writes to the same file, but in contrast to task a16 not as user
tomcat, but as user root. At execution e(a22)[1], the content of the file gets updated and
the file ownership is set to root. Hence, the cookbook developer has introduced an implicit
dependency between tasks a16 and a22, which leads to idempotence problems. Note that the
other 21 test cases did not fail. Clearly, all test cases in which the automation is restarted before
the execution of task a22 are not affected by the bug, since the ownership of the file does not
get overwritten. The remaining test cases in which the automation was restarted after a22 (i.e.,
after a23, a24, and a25) did not fail due a conditional statement not_if which ensures that a16
is only executed if the file /etc/tomcat6/tomcat6.conf does not exist.

Chef Cookbook mongodb-10gen: The third interesting case we discuss is the cookbook
mongodb-10gen (installs MongoDB), for which our framework allowed us to detect an idem-
potence bug in the Chef implementation itself. The relevant tasks are illustrated in Table 3.8: a11
installs package mongodb-10gen, a12 creates a directory, and a13 creates another sub-directory
and places configuration files in it. If installed properly, the package mongodb-10gen creates
user and group mongodb on the system. However, since the cookbook does not configure the
repository properly, this package cannot be installed, i.e., task a11 failed in our tests. Now, as
task a12 is executed, it attempts to create a directory with user/group mongodb, which both do
not exist at that time. Let us assume the test case with task sequence 〈a1, . . . , a13, a1, . . . , a13〉.
As it turns out, the first execution of a13 incorrectly creates /data/mongodb with user/group
set to root (instead of mongodb). On the second execution of a12, Chef tries to set the direc-
tory’s ownership and reports an error that user mongodb does not exist. This behavior is clearly
against Chef’s notion of idempotence, because the error should have been reported on the first
task execution already. In fact, if the cookbook is run only once, this configuration error would
not be detected, but may lead to permission problems at runtime. We submitted a bug report
(Opscode ticket CHEF-4236) which has been confirmed and fixed by the Chef developers15.

Task Resource Type Description
.
a11 package Installs package mongodb-10gen
a12 directory Creates directory /data

a13 remote_directory Creates directory /data/mongodb as user/group
mongodb/mongodb and copies configuration files into it.

Table 3.8: Tasks in Chef Cookbook mongodb-10gen

Lessons Learned The key take-away message of these illustrative real-world examples is that
automations may contain complex implicit dependencies, which IaC developers are often not

15https://tickets.opscode.com/browse/CHEF-4236

80

https://tickets.opscode.com/browse/CHEF-4236

aware of, but which can be efficiently tested by our approach. For instance, the conditional
not_if in a16 of recipe tomcat6 was introduced to avoid that the config file gets overwrit-
ten, but the developer was apparently not aware that this change breaks the idempotence and
convergence of the automation. This example demonstrates nicely that some idempotence and
convergence problems (particularly those involving dependencies among multiple tasks) cannot
be avoided solely by providing declarative and idempotent resource implementations (e.g., as
provided in Chef) and hence require systematic testing.

3.7.2.3 Idempotence for Different Task Types

Table 3.9 shows the number of identified non-idempotent tasks (denoted #NI) for different task
types. The task types correspond to the Chef resources used in the evaluated cookbooks. The
set of scripting tasks (execute, bash, script, ruby_block) makes up for 90 of the total
263 non-idempotent tasks, which confirms our suspicion that these tasks are error-prone. In-
terestingly, the service task type also shows many non-idempotent occurrences. Looking
further into this issue, we observed that service tasks often contain custom code commands
to start/restart/enable services, which are prone to idempotence problems.

Task Type #NI Task Type #NI Task Type #NI
service 66 directory 10 link 3
execute 44 remote_file 10 bluepill_service 2
package 30 gem_package 7 cookbook_file 2
bash 27 file 5 git 2
template 19 python_pip 5 user 2
script 15 ruby_block 4 apt_package 1

Table 3.9: Non-Idempotent Tasks By Task Type

3.7.2.4 Idempotence for Different Cookbook Versions

We analyzed the evolution of the 20 most popular Chef cookbooks. Table 3.10 lists the results,
leaving out cookbooks with empty default recipes (application, openssl, users) and
those for which we were unable to find any idempotence issues: java, postgresql, mysql,

build-essential, runit, nodejs, git, ntp, graylog2, python, revealcloud.

Cookbook i-9 i-8 i-7 i-6 i-5 i-4 i-3 i-2 i-1 i
apache2 (i=1.4.2) 1 1 1 0 0 0 0 0 0 0
nagios (i=3.1.0) 1 1 0 0 0 0 0 0 0 0
zabbix (i=0.0.40) 2 2 2 2 2 2 2 2 2 2
php (i=1.1.4) 1 1 0 0 0 0 0 0 0 0
tomcat6 (i=0.5.4) 3 3 3 3 3 3 2 1
riak (i=1.2.1) 1 1 1 1 1 1 0 0 0 0

Table 3.10: Evolution of Non-Idempotent Tasks By Increasing Version

81

We observe that, for the cookbooks under test, new releases fixed idempotence issues, or at
least did not introduce new issues. Our tool automatically determines these data, hence we argue
that it can be used to thoroughly test automations for regressions and new bugs.

3.8 Related Work

In the following we put the contributions presented in this chapter into perspective with previous
research. Our discussion focuses on related work in the areas of optimized event processing,
placement of processing elements, fault management for event-based systems, as well as reliable
infrastructure provisioning.

3.8.1 Optimized Event Processing and Placement of Processing Elements

Due to the large number of its application areas, event processing has attracted the interest of
both industry and research [207, 343]. Important topics in CEP include pattern matching over
event streams [3], aggregation of events [217] or event specification [77]. In this thesis, the focus
is on optimizing the distributed execution of continuous queries over event streams. Hence, we
concentrate on some related work in this area in the remainder of this section.

Optimized placement of query processing elements and operators has previously been stud-
ied in the area of distributed stream processing systems. Pietzuch et al. [266] present an ap-
proach for network-aware operator placement on geographically dispersed machines. Bonfils
and Bonnet [38] discuss exploration and adaptation techniques for optimized placement of op-
erator nodes in sensor networks. Our work is also related to query plan creation and multi query
optimization, which are core fields in database research. In traditional centralized databases,
permutations of join-orders in the query tree are considered in order to compute an optimal ex-
ecution plan for a single query [160]. Roy et al. [278] present an extension to the AND-OR
Directed Acyclic Graph (DAG) representation, which models alternative execution plans for
multi-query scenarios. Based on the AND-OR DAG, a thorough analysis of different algorithms
for multi-query optimizing has been carried out. Zhu et al. [380] study exchangeable query plans
and investigate ways to migrate between (sub-)plans.

Seshadri et al. [301, 302] have identified the problem that evaluating continuous queries at a
single central node is often infeasible. Our approach builds on their solution which involves a
cost-benefit utility model that expresses the total costs as a combination of communication and
processing costs. Although the approaches target a similar goal, we see some key differences
between their and our work. Firstly, their approach builds on hierarchical network partition-
s/clusters, whereas WS-Aggregation is loosely coupled and collaborations are initiated in an
ad-hoc fashion. Secondly, their work does not tackle runtime migration of query plans and
deployments, which is a core focus in this thesis. In fact, WS-Aggregation is a self-adaptive
system [42] which implements the Monitor-Analyze-Plan-Execute (MAPE) loop known from
Autonomic Computing [171]. In that sense, the purpose of our optimization algorithm is not
to determine an optimal query deployment up front, but to apply reconfigurations as the system
involves. Chen et al. [65] describe a way to offer continuous stream analytics as a cloud ser-
vice using multiple engines for providing scalability. Each engine is responsible for parts of the

82

input stream. The partitioning is based on the contents of the data, e.g., each engine could be
responsible for data generated in a certain geographical region.

Several previous publications have discussed issues and solutions related to active queries for
internet-scale content delivery. For instance, Li et al. [202] presented the OpenCQ framework
for continuous querying of data sources. In OpenCQ a continuous query is a query enriched
with a trigger condition and a stop condition. Similarly, the NiagaraCQ system [62] implements
internet-scale continuous event processing. Wu et al. [370] present another approach to dealing
with high loads in event streams, tailored to the domain of real-time processing of RFID data.
Numerous contributions in the field of query processing over data streams have been produced
as part of the Stanford Stream Data Manager (STREAM) project [234]. The most important
ones range from a specialized query language, to resource allocation in limited environments, to
scheduling algorithms for reducing inter-operator queuing. Their work largely focuses on how
to approximate query answers when high system load prohibits exact query execution. Query
approximation and load shedding under insufficient available resources is also discussed in [14].
Our approach does not support approximation, but exploits the advantages of Cloud Computing
to allocate new resources for dynamic migration of query processing elements.

Furthermore, database research has uncovered that special types of queries deserve special
treatment and can be further optimized, such as k-nearest neighbor queries [37] or queries over
streams that adhere to certain patterns or constraints [16]. WS-Aggregation also considers a
special form of 3-way distributed query optimization, which has been presented in [139].

3.8.2 Fault Models for Event-Based Systems

Fowler and Qasemizadeh [106] present a common event model for integrated sensor networks.
The model distinguishes four ontologies (event, object, property and time ontology) to represent
different aspects of event data. In contrast to our approach their model only focuses on the in-
formation associated with an event and does not consider processing logic or topology of EPNs.
Other seminal work in the area of models and taxonomies for event-based systems, particular
targeting event-based programming systems, has been published by Meier and Cahill [223].

Hadzilacos and Toueg [121] present a comprehensive study of interaction-related faults and
fault-tolerance in distributed systems. Various concepts of reliable message delivery are covered,
with core focus on message broadcasts. Based on a formal framework, the authors discuss issues
such as timeliness or correct ordering of messages. The work is highly influential for event-based
systems, particularly for fault types concerning event channels in our proposed model.

Westermann and Jain [351] study commonalities in event-based multimedia applications and
discuss features that a common event model should contain. Although the features are largely
tailored to multimedia, some aspects apply to event-based systems in general, such as com-
mon base representation, application integration, common event management infrastructure,
and common event exploration and visualization tools. We extend their ideas and argue that
integration of different views on event-based systems is vital to improve system dependability.
Our model does not yet capture some aspects proposed in [351], most notably uncertainty sup-
port, and experiential aspects, which are described as “ways of exploring and experiencing a
course of events to let them [the users] gain insights into how the events evolved”.

83

Fault taxonomies for SOA have been discussed in [43] and [59]. The taxonomies are tailored
to issues related to service-based computing and Web services (e.g., service discovery, binding,
or composition), whereas we focus on specifics of event-based systems.

The authors of [163] have recently proposed a fault injection framework for assessing Par-
tial Fault Tolerance (PFT) of stream processing applications. Their work is tailored to high-
frequency data streams and bursty tuple loss. In PFT, there is not only a notion of absolute faults
but also of output quality degradation. The level of quality loss is measured using an application-
specific output score function. In future work, we also strive to extend our model and approach
to support PFT and output quality metrics.

Other researchers’ studies focus on the development of software and investigate faults pri-
marily on the source code level. In [90] three main types of faults are identified: missing, wrong
and extraneous code constructs. The classification was applied to diff and patch files of open
source projects. The metrics indicate that simple programmer mistakes account for a large por-
tion of faults. For general mistakes like faulty synchronization their approach is certainly appli-
cable in event processing platforms, but with complex interactions in place the relation between
failure and responsible artifact becomes hard to assess. A common fault model as presented here
can greatly simplify this search.

The work of Steinder and Sethi [311] surveys approaches and techniques for fault localiza-
tion in computer networks, largely focusing on graph-theoretic fault propagation models like
dependency networks and causality graphs. Their contribution provides much more general
granularity than our work and parts of the faults discussed here are covered by their approach
(e.g., detecting circular dependencies in EPNs). While general fault models have their justifi-
cation, we argue that it is the fine granularity and domain-specific knowledge that adds to the
strength of our approach.

3.8.3 Reliable Infrastructure Provisioning

Existing work has identified the importance of idempotence for building reliable distributed
systems [125] and database systems [126]. Over the last years, the importance of building
testable system administration [46] based on convergent models [74, 329] became more preva-
lent. cfengine [374] was among the first tools in this space. More recently, other IaC frameworks
such aszamboni:12 Chef [253] or Puppet [269] heavily rely on these concepts. However, auto-
mated and systematic testing of IaC for verifying idempotence and convergence has received
little attention, despite the increasing trend of automating multi-node system deployments (i.e.,
continuous delivery [133]) and placement of virtual infrastructures in the Cloud [117].

Existing IaC test frameworks allow developers to manually write test code using common
Behavior-Driven Development (BDD) techniques. ChefSpec [342] or Cucumber-puppet [180]
allow to encode the desired behavior for verifying individual automation tasks (unit testing).
Test Kitchen [254] goes one step further by enabling testing of multi-node system deployments.
It provisions isolated test environments using VMs which execute the automation under test
and verify the results using the provided test framework primitives. This kind of testing is a
manual and labor intensive process. Our framework takes a different approach by systematically
generating test cases for IaC and executing them in a scalable virtualized environment (LXC) to
detect faults and idempotence issues.

84

Extensive research is conducted on automated software debugging and testing techniques,
including model-based testing [268] or symbolic execution [49, 70], as well as their application
to specialized problem areas, for instance control flow based [239] or data flow based [144]
testing approaches. Most existing work and tools, however, are not directly applicable to the
domain of IaC, for two main reasons: (i) IaC exposes fairly different characteristics than tradi-
tional software systems, i.e., idempotence and convergence; (ii) IaC needs to be tested in real
environments to ensure that system state changes triggered by automation scripts can be asserted
accordingly. Such tests are hard to simulate, hence symbolic execution would have little practi-
cal value. Even though dry-run capabilities exist (e.g, Chef’s why-run capability), they cannot
replace systematic testing. The applicability of automated testing is a key requirement identified
by other approaches [45, 50, 340], whether the test target is system software or IaC.

Existing approaches for middleware testing have largely focused on performance and effi-
ciency. Casale et al. [57] use automatic stress testing for multi-tier systems. Their work places
bursty requests on system resources to identify performance bottlenecks as well as latency and
throughput degradations. Other work focuses on testing middleware for elasticity [109, 110],
which is becoming a key property for Cloud applications. Bucur et al. [45] propose an automated
software testing approach that parallelizes symbolic executions for efficiency. The system under
test can interact with the environment via a “symbolic system call” layer that implements a set
of common POSIX16 primitives. Their approach could potentially enhance our work and may
speed up the performance, but requires a complete implementation of the system call layer.

Other approaches deal with finding and fixing configuration errors [319,354]. Faults caused
by configuration errors are often introduced during deployment and remain dormant until acti-
vated by a particular action. Detecting such errors is challenging, but tools like AutoBash [319]
or Chronus [354] can effectively help. A natural extension would be to also take into account
the IaC scripts to find the configuration parameter that potentially caused the problem. Burg
et al. [340] propose automated system tests using declarative VMs. Declarative specifications
describe external dependencies (e.g., access to external services) together with imperative test
scripts. Their tool then builds and instantiates the VM necessary to run the script. Our approach
leverages pre-built LXC containers; dynamic creation of declarative specifications would be
possible but building a VM is more costly than bringing up an LXC container.

3.9 Conclusions

This chapter presented WS-Aggregation, a platform for continuous processing of event-based
Web services and data. The platform provides a specialized query model focusing on declarative
definition of data dependencies between event streams or other query inputs. The system is
designed for scalability and distributed query execution, and allows elastic deployment in the
Cloud. Reliability and fault management is a central focus in WS-Aggregation; in the following
we briefly revisit the different challenges that have been addressed in this chapter.

First, the emerging research field of distributed event-based systems has not yet come to
a common and unified understanding of faults. We have taken a step ahead in this direction

16Portable Operating System Interface (POSIX)

85

and present a unified fault taxonomy based on a common model for event-based systems. The
taxonomy provides dimensions to obtain a comprehensive allround picture of the system artifacts
as well as potential manifestations and sources of faults. We have discussed 30 concrete fault
instances that cover all fault types and elements of our common model.

Second, the elasticity features in WS-Aggregation require reliable resource provisioning
on the infrastructure level. Given the IaC model of periodic re-executions, idempotence is a
critical property which ensures repeatability and allows automations to start executing from
arbitrary initial or intermediate states. We propose an approach for model-based testing of IaC
automations, aiming to verify whether they can repeatedly make the target system converge to
a desired state in an idempotent manner. Our extensive evaluation with real-world IaC scripts
from the OpsCode community revealed that the approach effectively detects non-idempotence.
Out of roughly 300 tested Chef scripts, almost a third were identified as non-idempotent. In
addition, we were able to detect and report a bug in the Chef implementation itself.

Third, the placement of event processing elements plays a key role for the performance and
reliability (e.g., coping with load bursts) of distributed data processing. Our proposed approach
performs dynamic migration of event buffers and subscriptions to optimize the global resource
usage within the platform. The core idea is that event buffers can be reused if multiple query
inputs operate on the same data stream. We identified a non-trivial tradeoff that can be expressed
as a “magic triangle” with three optimization dimensions: balanced load distribution among the
processing nodes, minimal network traffic, and avoidance of event buffer duplication. Variable
Neighborhood Search (VNS) has proven effective for solving this hard optimization problem.

We have exemplified our solution on the basis of several experiments carried out with the
WS-Aggregation framework. The platform integrates well with the Cloud computing paradigm
and allows for elastic scaling based on the current system load and the volume of event data.
Our evaluation has illustrated how different optimization parameters can be applied to influence
the evolution of the network topology over time. Furthermore, we have evaluated how different
performance characteristics evolve in different settings. The experience we have gained in the
various experiments conducted has shown that the (short-term) costs of migration or duplication
are often outweighed by the (long-term) benefits gained in performance and robustness.

86

CHAPTER 4
TeCoS: Testing and Fault Localization

for Data-Centric Dynamic Service
Compositions

4.1 Introduction and Motivation

During the last years, the Service-Oriented Architecture (SOA) [258] paradigm has gained con-
siderable importance as a means for creating loosely coupled distributed applications. Services,
the main building blocks of SOA, constitute atomic, autonomous computing units with well-
defined interfaces, which encapsulate business logic to provide a certain functionality. Today,
Web services [364] are the most commonly used implementation technology for service-based
applications (SBAs). One of the defining characteristics of services is their composability, i.e.,
the possibility to combine individual services into service compositions1 [92]. The de-facto
standard for creating composite SBAs with Web services is the Business Process Execution
Language for Web Services [246] (WS-BPEL). WS-BPEL uses an XML-based syntax to de-
fine the individual activities of the SBA and the control flow between them. The mechanism
of dynamic binding in SBAs allows to define a required service interface (abstract service) at
design time and to select a concrete service endpoint from a set of concrete candidate services
at runtime.

Business- or safety-critical SBAs require thorough testing, not only of the single participants
but particularly of the services in their interplay [328]. Initial testing of a dynamic service com-
position plays a key role for its reliability and performance at runtime. Firstly, the tests may
reveal that a concrete service s cannot be integrated, because the results it yields are incompat-
ible with any other service that processes some data produced by s. This incompatibility may
be hard to determine with certainty, but testing can indicate potential points of failure. Assume

1Note: Throughout this chapter, the term “service composition” is used as a shortcut for “composite service-
based application”, i.e., a service-based application composed of multiple interconnected services.

89

a composition is tested n times, each time with a different combination of concrete services. If
the test fails x times (x < n), and in all these cases the concrete service s was involved, there
is possibly an integration problem with s, which can then be further investigated. Secondly, the
test outcome can assist in the service selection process, as it enables operators to favor well-
performing service combinations and avoid configurations for which tests failed. Furthermore,
upfront testing makes it safer and possibly faster to move to a new binding when a new concrete
service becomes available. The practical relevance of integration testing of dynamic service
compositions is evidenced by ongoing efforts towards definition of standard service interfaces
for various industries. For instance, the TeleManagement Forum (TMF2) has released an exten-
sive set of best practices and interfaces for the telecommunications domain, allowing providers
to implement standardized business processes and to expose their services to the outside world.
The high level of adoption of these standards is illustrated in the TMF’s 2009 Case Study Hand-
book [324] which presents 30 real-world solutions from renowned providers. Similar types of
standards and interfaces are used in the airline industry (IATA3), the retail industry (ARTS 4),
and many others.

In practice, testing dynamic composite SBAs is a challenging task for two main reasons.
First, traditional white-box testing procedures are only available if the tester has access to the
source code or a model of the service processing logic. However, as a general characteristic
of service-oriented software engineering, the implementation of services beyond the interface is
usually hidden from service users. In the case of Web services, the interface is provided in the
form of a WSDL [365] service description document, combined with XML Schema definitions
of the operation inputs and outputs. Second, dynamic service binding is combinatorial in the
number of concrete services. That is, for any nontrivial composition, the number of possible
combinations may be prohibitively large.

For the first problem, several testing techniques and coverage criteria have been proposed on
the service interface level, e.g., [26, 251]. Moreover, recent studies attempt to enable white-box
testing approaches for SBAs by creating testable services that reflect and report on the degree
of test coverage without revealing the actual service internals [24, 94]. The second problem is
considered one of the main challenges in service testing [51], and has previously been addressed
in group testing of services [331, 332]. These works present very basic high-level service com-
position models and propose test case generation for progressive unit and integration testing.
Our work builds on their approach, and provides techniques for restricting the combinations of
services, as well as applying the generated tests to concrete Web service composition technology.

This thesis chapter focuses on integration testing of dynamic service compositions with an
emphasis on data-flow centric coverage goals. We propose coverage criteria which target the
inter-invocation data dependencies in dynamic service compositions. We show that such de-
pendencies are important to test because of their potential effect on the correct behavior of the
composition. We provide a detailed problem formulation, and present a practical, ready-to-use
solution that is both based on existing tooling for software testing and applied to actual Web
service technology. The major contributions of our work are fourfold:

2TeleManagement Forum; http://www.tmforum.org
3International Air Transport Association; http://www.iata.org
4Association for Retail Technology Standards; http://www.nrf-arts.org

90

http://www.tmforum.org
http://www.iata.org
http://www.nrf-arts.org

• We illustrate and formalize a data-centric view of service compositions in a high-level,
abstract way. We introduce k-node data flow coverage as a novel metric expressing to
what extent the data dependencies of a dynamic composition are tested. Based on this test
coverage metric, we formulate the problem of finding a minimal number of test cases for
a service composition as a Combinatorial Optimization Problem (COP). The outcome of
the COP is a set of concrete test instantiations of the compositions, which ensures that all
relevant data dependencies are covered (hard constraints). Limiting the level of desired
coverage via the k-node coverage metric helps to significantly reduce the search space
of service combinations. Additionally, testers can assign weights to give precedence to
services that are known to be less reliable (soft constraints). Details follow in Section 4.3.

• In order to solve the COP, we make use of FoCuS [151], a tool for coverage analysis
and combinatorial test design. We provide an automated transformation from the ser-
vice composition model to the FoCuS data model. The input to FoCuS is constructed
from the composition definition (e.g., WS-BPEL) and meta information about the avail-
able services. At this point, we further narrow down the search space by specifying past
instantiations of the composition, which constitute existing solutions and can be ignored
by the solver. The near-optimal solution computed by FoCuS is then transformed back
into the service composition model to construct and execute actual test cases. Details are
discussed throughout Section 4.3 and Section 4.5.

• We discuss our approach for analyzing the test results in order to identify faulty services
and incompatible service combinations. To assess the outcome of a set of test executions
(denoted traces), we introduce two statistical metrics, fault participation and fault con-
tribution, which are similar to recall and precision in machine learning or information
retrieval (see Section 4.3.5). However, to allow fault localization throughout the evolu-
tionary lifetime of an SBA, we need to consider more complex situations with noisy data,
induced by temporary faults or changing fault conditions. To achieve this, we utilize ma-
chine learning and propose a noise resilient fault localization technique based on pooled
decision trees. The detailed fault localization approach is presented in Section 4.4.

• Section 4.5 discusses the TeCoS framework, which is a prototype implementation of the
presented approach. TeCoS stores meta information about SBAs, logs invocation traces,
and measures different coverage metrics. This combined information is used to generate
and execute service composition test cases. We illustrate the support for different types of
SBAs by means of a customizable adapter mechanism, which executes the test cases on
target platforms. Our evaluation in Section 4.6 analyzes various performance characteris-
tics, and demonstrates the end-to-end practicability of the solution.

4.1.1 Approach Synopsis

In this section, we discuss our solution from a high level perspective. Details of the compris-
ing concepts and elements are presented in the proceeding sections. Figure 4.1 depicts the
end-to-end view, including all activities, required inputs, and generated outputs. The input to the
first activity is a service composition definition document. This activity converts the input doc-
ument into a corresponding data flow model, providing an abstraction of the data dependencies
between the individual service invocations of the composition (see Section 4.3 for details).

91

7. Analyze
Test

Results

7. Analyze
Test

Results

2. Determine
Candidate
Services

2. Determine
Candidate
Services

1. Create
Data Flow

View

1. Create
Data Flow

View

3. Transform
to FoCuS

Model

3. Transform
to FoCuS

Model

Composition
Definition

Composition
Test Case

5.
Generate

Test Cases

5.
Generate

Test Cases

Test
Input/Output

6.
Execute

Test Cases

6.
Execute

Test Cases

Existing Exe-
cution Traces

Test Report

Registry Data,
WSDL Docs.

4.
Optimization

(FoCuS)

4.
Optimization

(FoCuS)

Composition
Constraints

Figure 4.1: End-to-End Testing Approach

The second activity determines the candidate services for each abstract service identified in
the data flow view. Then, in the third activity, the combined information is transformed into a
model that complies with the FoCuS API. This activity optionally allows to specify existing ex-
ecution traces of the composition, which are considered as an existing solution by the solver and
hence narrow down the search space. The fourth activity is the optimization process (executed
by FoCuS), which computes a near-optimal solution for the model produced by activity three.
In addition, the optimizer (FoCuS) receives as input a list of additional composition constraints
that specify which services should or should not be used in combination in the generated test
cases. In activity five, this solution, together with test input/output combinations, is used to gen-
erate the concrete test cases for the composition. These tests are then deployed and executed
by activity six. Finally, activity seven analyzes the results, determines incompatibilities and po-
tential points of failure, and summarizes the findings in a test report. Within this process, only
the composition definition and the test input/output are defined manually by the composition
developer/tester (depicted in gray in the figure). Other documents and all of the seven activities
are automated and require no human involvement.

4.1.2 Roadmap

The remainder of this chapter is organized as follows. In Section 4.2 we introduce an illustrative
scenario which serves as the basis for discussion. Section 4.3 introduces a formal model for
dynamic data-centric service compositions, defines the coverage goal we aim for, and discusses
the combinatorial test design. In Section 4.4 we detail the advanced fault localization approach
based on pooled decision trees. Section 4.5 discusses implementation details and outlines the
features of the TeCoS framework. Section 4.6 contains a thorough evaluation covering various
performance and quality aspects, and Section 4.7 points to related work in the areas of testing
and fault localization for SBAs. Section 4.8 concludes with an outlook for future work.

4.2 Scenario

We base the description of dynamic data-centric compositions on an illustrative scenario of a
tourist who plans a city trip and requests vacant hotel rooms, available flights and visa regulations
for the target destination. This functionality is implemented as a composite Web service using
WS-BPEL and WS-Aggregation (see Chapter 3). WS-BPEL is used to model and execute the

92

business process logic of the composition, whereas the WS-Aggregation platform is tailored to
event-based processing of Web service data with continuous queries and high data throughput.

NotifyNotify

Receive $inReceive $in

$in/city ► $a1_in/city
$in/city ► $a3_in/city
$in/date ► $a4_in/date

$in/city ► $a1_in/city
$in/city ► $a3_in/city
$in/date ► $a4_in/date

 $a1_out//country ► $a2_in/country
 $a1_out//country ► $a3_in/country
 $a5_out//coord. ► $a6_in/coord.

 $a1_out//country ► $a2_in/country
 $a1_out//country ► $a3_in/country
 $a5_out//coord. ► $a6_in/coord.A

s
si

g
n

Control Flow Data Flow

Invoke a1 Invoke a5

F
lo

w

Invoke a2

Invoke a3

F
lo

w

A
s

si
g

n

Receive $n

Subscribe a4, a6Subscribe a4, a6

BPEL Process WS-Aggregation Query

Receive a4Receive a4

Receive a6Receive a6

F
o

r
2

0
se

c

Assign $n//rooms ► $out/rooms
$n//flights ► $out/flights

OO

OO

Execute QueryExecute Query

OO new
result

a1

a2

a3

a5

a6

//country

in

out

//country

S2

S1

S5

S1

S4

S3

S8

S7

S6

S2

a4

/city

/city

/city

//rooms

++

Reply $outReply $out

//hotels

//flight

//coordi nates

//visaInfo

 $a3_out//hotels
 ►$a4_in/hotelsA

s
s

.

 $a2_out//visaInfo
 ►$out/visaInfoA

ss
.

Data Flow View

/date

Figure 4.2: Scenario – Composition Business Logic View (left) and Data Flow View (right)

Figure 4.2 depicts the corresponding service composition: the left part of the figure contains
a graphical representation of the WS-BPEL process and the WS-Aggregation query processing
steps (in BPMN notation [250]), and the right part illustrates the data flow between the services
of the process. While the WS-BPEL process and WS-Aggregation query are defined by the
composition developer, the data flow view can be generated automatically.

The scenario composition receives an input (in) and uses six abstract services {a1, ..., a6}
to produce the output (out). The input contains two elements, city and date. In WS-BPEL,
an abstract service is defined as an invoke activity, which is associated with input and output
variables, e.g., $a1_in and $a1_out for service a1. The assign activities copy the required
output of one abstract service to the input variable of another service. The respective source and
destination are defined via XPath [362] expressions.

Service a1 determines the country of the given city, a2 returns the visa information of this
country. Services a3 and a4 retrieve existing hotels in the specified city/country and available
hotel rooms, respectively. Finally, a5 looks up the user’s current geographical coordinates (e.g.,
using GPS on a mobile device), which are used to find available flights with service a6. While
the WS-BPEL process largely follows a sequential procedure, WS-Aggregation maintains event
subscriptions to receive asynchronous notification events from the services a4 (if new rooms be-
come available) and a6 (if new flight information is available) and performs continuous queries
over these events.

93

In the left part of Figure 4.2, arrows indicate the control flow between the activities. The
structured flow activities in WS-BPEL signify that the contained activities execute in parallel.
The for activity defines a loop that executes for 20 seconds and collects notifications received
from WS-Aggregation. The diamond shapes represent split and merge nodes, denoted as gate-
ways in BPMN. A diamond with a plus sign (“+”) represents a parallel gateway (all outgoing
paths are executed), and a diamond with a circle is an inclusive gateway (any combination of
paths may be taken, zero to all).

The right part of Figure 4.2 shows the composition business logic view transformed into the
composition data flow view. The data flow view used here is a simplified version of the WS-
BPEL data dependencies model presented in [377]. Whereas their approach models the actual
structure of the WS-BPEL process, our view abstracts from the composition process and is ag-
nostic of control flow instruments, such as the WS-BPEL flow or for activities. Therefore,
our approach lends itself to model data flows in heterogeneous service composition environ-
ments (WS-BPEL and WS-Aggregation in our case). The arrows signify the data flow between
services. An arrow pointing from a service ax to ay, labeled with an XPath expression, means
that a part of the output of ax becomes (part of) the input of ay. As an additional information, we
included the concrete service endpoints in the figure. A dashed rounded box around an abstract
service defines the concrete services that can deliver the desired functionality, e.g., the abstract
service a1 is implemented by the concrete Web services s1 and s2. At runtime, the composition
is instantiated by selecting for each abstract service one of a set of concrete candidate services,
often denoted as dynamic binding [85]. The service selection process usually happens based on
non-functional and QoS [226] (Quality of Service) parameters.

In our scenario we define that the endpoint for a3 and a4 must always be the same con-
crete service (one out of s1,s4,s5). As an example, using s1 for a3 and s4 for a4 would result
in an incompatibility and is not allowed. Note that such constraints are defined as additional
information, and are not directly (graphically) reflected in the data flow view.

4.2.1 Sources of Faults in Dynamic Service Compositions

Even in the case that all concrete candidate services have been tested individually (unit testing),
the challenge is to ensure that they also function correctly in their interplay (integration testing).
The services in our scenario depend on one another, both directly and transitively, via data flow
dependencies. If the services are not properly tested in combination, these dependencies can lead
to undesired behavior and defects in the composition. The following list contains an excerpt of
potential composition faults which raise the necessity of end-to-end integration testing:

∗ Syntactic Data Incompatibility: The coordinates returned by the geographic service (ab-
stract service a5 in the composition) are encoded as strings. Assume that the concrete
service s2 uses the notation 51◦ 28’ 38" N, whereas s6 uses a dash as delimiter, i.e.,
51:28:38:N. If the concrete flight services s7 and s8 (a6 in the composition) are not able
to parse both formats correctly, the combination will likely lead to an exception or a faulty
composition result.

∗ Semantic Data Incompatibility: Assume that the data formats of s2 and s6 are syntacti-
cally identical, e.g., both use the format 51:28:38:N to encode the geographic latitude.

94

Although the reference point most frequently used today is the Greenwich Meridian, in
principle the meridian is a matter of convention and historically different meridians have
been used (e.g., Paris Meridian). Evidently, if two services do not follow the same seman-
tic data conventions, the composition becomes faulty. Similar problems can occur if the
date and time is handled differently by concrete service. For instance, time zones are a
key issue in international trade.

∗ Security Enforcement Problem: Security and data privacy are key requirement for service
compositions [55, 134]. Assume that the service level agreements (SLAs) between user
and composition provider mandate that sensitive data (e.g., location) are not transmitted
in plain text. Therefore, service a5 in the composition uses cryptography to encrypt the
coordinates before they are passed to service a6. If the concrete service receiving the
data (s7 or s8) has no matching key for decryption, the composition fails and no flight
information is received.

∗ Network Partitions: Also the physical deployment of the services must be taken into ac-
count. Assume that the network is partitioned, i.e., the services are deployed in different
domains with local IP addresses that are not accessible across the network. This is particu-
larly relevant in decentralized compositions where the services interact directly with each
other. Moreover, in the centralized execution model of WS-BPEL, it must be ensured that
no concrete services are selected which are inaccessible by the composition engine.

4.2.2 Runtime Composition Instances

Dynamic binding is used to select concrete candidate services at execution time. Table 4.1 lists
the possible combinations of concrete services for the scenario composition. The column titles
contain the composition’s abstract services, and each combination has an identifier (#). Each
table value represents a concrete service that is used within a certain combination (row) for a
certain abstract service (column). In total, 24 combinations exist for the scenario composition.

a1 a2 a3 a4 a5 a6 # a1 a2 a3 a4 a5 a6
c1 s1 s3 s1 s1 s2 s7 c13 s1 s3 s1 s1 s2 s8
c2 s2 s3 s1 s1 s2 s7 c14 s2 s3 s1 s1 s2 s8
c3 s1 s3 s4 s4 s2 s7 c15 s1 s3 s4 s4 s2 s8
c4 s2 s3 s4 s4 s2 s7 c16 s2 s3 s4 s4 s2 s8
c5 s1 s3 s5 s5 s2 s7 c17 s1 s3 s5 s5 s2 s8
c6 s2 s3 s5 s5 s2 s7 c18 s2 s3 s5 s5 s2 s8
c7 s1 s3 s1 s1 s6 s7 c19 s1 s3 s1 s1 s6 s8
c8 s2 s3 s1 s1 s6 s7 c20 s2 s3 s1 s1 s6 s8
c9 s1 s3 s4 s4 s6 s7 c21 s1 s3 s4 s4 s6 s8
c10 s2 s3 s4 s4 s6 s7 c22 s2 s3 s4 s4 s6 s8
c11 s1 s3 s5 s5 s6 s7 c23 s1 s3 s5 s5 s6 s8
c12 s2 s3 s5 s5 s6 s7 c24 s2 s3 s5 s5 s6 s8

Table 4.1: Possible Combinations of Services
(Compositions printed in bold cover all combinations of service pairs connected by data flows.)

95

Services with data dependencies have a direct influence on one another and create a potential
point of failure (as outlined in Section 4.2.1). Hence, for a composition to be tested thoroughly,
all concrete service combinations need to be taken into account for service pairs connected
by a data flow. Finding the smallest set of test compositions to satisfy this criterion is a hard
computational problem (more details are given in Section 4.3.4). For our scenario, the size of
this set is 6 (the largest combination set results from pairing all services of a1 with all of a3),
and one possible solution is the set {c4, c12, c13, c17, c20, c21} (bold print in Table 4.1). Although
this example can be easily solved optimally, for problem instances with additional real-world
constraints (e.g., that two specific services must never be used in combination), it becomes harder
to determine the minimum size of the solution set, and finding an optimal solution becomes
infeasible for larger instances.

4.3 Testing of Dynamic Data-Centric Compositions

In this section we establish the key concepts and terminology which build the foundations for
testing of dynamic data-centric service compositions. We formalize a unified and platform-
independent service composition model in Section 4.3.1. Based on the composition model we
define the test coverage goal that should be achieved in Section 4.3.2. Section 4.3.3 illustrates
how the platform-independent composition model is mapped to the concrete platforms WS-
BPEL and WS-Aggregation.

4.3.1 Service Composition Model and Composition Test Model

We formally define the service composition model and the composition test model, which serve
as the basis for the remaining parts of this chapter. Table 4.2 describes the elements of the
service composition model. The left column contains symbols and variable names, the middle
column defines the respective symbol, and the right column provides examples in reference to
the scenario.

Table 4.3 lists the core elements of the composition test model. The set of test composition
instances T is a subset of all possible composition instances. The goal we aim for is to keep the
size of T small, in order to reduce the effort for test execution. The occurrence count function
o indicates the frequency of binding between abstract and concrete services. Finally, we use the
function r to map a composition instance to a test result. For simplicity we assume that there are
two result states, success and failed. The mechanism to determine whether a test case has failed
or passed is often termed test oracle [277]. Details about test oracles in our approach are given
in Section 4.5.5.

Symbol Description Example
T ⊆ C Set of actual test composition instances to

be executed. This is the encoding of a so-
lution and the goal is to minimize its size.

Tmin =
{c4, c12, c13,
c17, c20, c21}

96

Symbol Description Example
A = {a1, ..., an} Set of abstract services that are used in the

composition definition.
A = {a1, ..., a6}

S = {s1, ..., sm} Set of concrete services available in the
service-based system.

S = {s1, ..., s8}

s : A→ P(S) Function that returns for an abstract service
all concrete services providing the required
functionality. P(S) denotes the power set
of S.

s(a3) =
{s1, s4, s5}

F ⊆ A×A Set of direct data flows (dependencies) be-
tween two services. Possible data flows
spanning more than two services can be de-
rived from F (see Section 4.3.2).

F = {(a1, a2),
(a1, a3), (a3, a4),
(a5, a6)}

C ⊆ [A→ S] Domain of all possible runtime composi-
tion instances. The composition function
A → S maps abstract services to concrete
services.

C = {c1, c2, .., c24}
(cf. Table 4.1)

R+, R− ⊆
P((A→ S)×(A→ S))

Restrictions in the use and combination of
concrete services. Service assignments in
R+ must always be used in combination:
∀c ∈ C, (r1, r2) ∈ R+ : r1 ∈ c⇔ r2 ∈ c.
Services in R− must not be combined:
∀c ∈ C, (r1, r2) ∈ R− : r1 6∈ c ∨ r2 6∈ c.

R+ = {
(a3 7→ s1, a4 7→ s1),
(a3 7→ s4, a4 7→ s4),
(a3 7→ s5, a4 7→ s5)
}

c ∈ C Concrete runtime composition instance. c4: a1 7→s2,
a2 7→s3, a3 7→s4,
a4 7→s4, a5 7→s2,
a6 7→s7

Table 4.2: Service Composition Model

o(sx, ay)
def
=

|{c ∈ T : c(ay) = sx}|
Occurrences of concrete service sx as im-
plementation of an abstract service ay in
any of the compositions in set T .

o(s2, a5) = 3
(cf. Table 4.1)

r : C → R,
R = {success, failed}

Function that determines the test result
(success, failed) for a given composition
instance. This function performs the task
of a test oracle [277].

r(c20) = failed
(assuming that ser-
vices s2, s6 have
data incompatibility)

Table 4.3: Composition Test Model

Additionally, we define the minimum (Equation 4.1) and maximum (Equation 4.2) number
of uses of any concrete service for a specific abstract service ay ∈ A across all compositions
in the test set T . The difference between min(ay) and max(ay) indicates how uniformly the

97

test cases in T are generated. For instance, if we consider the test set {c4, c12, c13, c17, c20, c21}
from Table 4.1, then min(a1) = max(a1) = 3 because both concrete services s1 and s3 are
used three times for a1. However, the concrete services for a6 are less uniformly distributed:
min(a6) = 2,max(a6) = 4.

min(ay)
def
= min({o(sx, ay) : sx ∈ s(ay)}), ay ∈ A (4.1)

max(ay)
def
= max({o(sx, ay) : sx ∈ s(ay)}), ay ∈ A (4.2)

4.3.2 k-Node Data Flow Coverage Metric

Before proceeding with details of the combinatorial test design, we take a closer look at data
dependencies. The data flow view of compositions allows for an analysis of the dependencies
between services and possible points of failures. As already mentioned in Section 4.2.1, services
with direct data dependencies are prone to errors. However, indirect dependencies in a sequence,
e.g., a1 → a3 → a4, should be considered as well. In this example, there are two possible
dependencies: firstly, if a3 passes on to a4 some part of the (unchanged) input it received from
a1, then a hidden, but direct, dependency between a1 and a4 is established; secondly, a3 may
operate differently depending on which service is chosen for a1, and the output of a3 affects a4.
Hence, we generalize the coverage metrics for dynamic service compositions and introduce the
k-node data flow.

Definition 5 A k-node data flow dk is a sequence 〈a1dk, a2dk, . . . , akdk〉 of abstract services, where
a1dk, a

2
dk, . . . , a

k
dk ∈ A, such that ∀j ∈ {1, .., k − 1} : (ajdk, a

j+1
dk) ∈ F . In the special case where

k = 1, the list contains only one element: 〈a1d〉. Fk = {d1k, d2k, . . . , dlk} denotes the set of all
k-node data flows in a service composition definition.

Definition 6 A data flow coverage cvg(dk) ∈ P(Sk) of a k-node data flow dk denotes the set of
possible concrete service assignments along the path of dk. More precisely, cvg(dk) is a set of
concrete service sequences of length k, such that all possible service assignments with respect
to dk are covered: ∀s1dk ∈ s(a1dk), ..., skdk ∈ s(akdk) : 〈s1dk, ..., skdk〉 ∈ cvg(dk). For each of the
service combinations 〈s1dk, ..., skdk〉 ∈ cvg(dk) the output of service sidk becomes input of service
si+1
dk , i ∈ {1, . . . , k − 1}.

Definition 7 An SBA is k-coverage tested if, for all j-node data flows dj , j ∈ {1, .., k}, there
exist test cases such that all service combinations of cvg(dj) are covered.

Definition 7, stated in other words, asserts that a composition is k-coverage tested if all
data flow paths of length of at most k have been tested with all possible service combinations.
Figure 4.3 illustrates this for a value of k = 3 in our scenario: inter-service dependencies of
the data flow view are depicted as trees, and all paths of length 2 and 3 (outlined with light
gray background) need to be covered. Note that the k-coverage criterion is only reasonably
applicable if the underlying services have been unit tested with appropriate verification and
validation techniques. Also, k-node data flow coverage does not take into account the different

98

a1

a2a3

a5

a6

a4

3-Node
Data Flow

2-Node
Data Flow

a5
s2
s6
s2
s6

a6
s7
s7
s8
s8

d2 . . . cvg(d2)

Figure 4.3: Data Flows in Scenario

content of the data passed between concrete services. Hence, the effectiveness of the metric
relies on the input data that is used to execute the test cases. The question of which test input is
suitable depends on both the service interfaces (e.g., extreme values) and the problem domain.
For systematic methods to generation of appropriate test inputs we refer to previous work, e.g.,
[7, 251, 273].

4.3.3 Mapping the Composition Model to Concrete Platforms

To generate executable tests for our service composition, the platform-specific composition
model (query model) must be mapped to the platform-independent composition model (as de-
fined in Section 4.3.1). Reversely, after the test cases have been generated, the concrete com-
position service bindings must be mapped back to the platform for execution. In the following
we discuss the mapping between our composition model and concrete platform models, for
WS-BPEL (Section 4.3.3.1) and WS-Aggregation (Section 4.3.3.2). Section 4.5 provides more
details about the implementation of the mapping and how the approach is extensible to support
further composition paradigms.

4.3.3.1 Mapping for WS-BPEL

The mapping between the WS-BPEL model (more precisely, the relevant parts thereof) and our
composition model is depicted in Figure 4.4.

A WS-BPEL business process consists of multiple activities which define the processing
logic. For our purpose, the activities invoke and copy are most relevant. An invoke activity
performs a Web service invocation, taking the value of an input variable and storing the result
to an output variable. The copy activity uses XPath expressions to process the results received
from an invocation and to assign values between output and input variables. In this respect,
invoke corresponds to abstract service in our composition model, and copy represents a data
flow. Concrete services are implemented as Web services which are addressable using a unique
EPR [359]. The port type of a Web service defines the set of abstract operations and the mes-
sages involved [363]. Hence, the port type provides the basis for service candidacy assignment
(function s : A→ S) in the composition model. Finally, the partner link concept is used in WS-
BPEL to model the required relationships between services and partner processes. At runtime,
a partner link is bound to the location (EPR) of a Web service, which corresponds to the service
binding in the composition model.

99

Business
Process

Partner Link

Copy

+ from: XPath
+ to: XPath

Invoke

+ operation: String

Web Service

+ location: EPR

*

*

Data Flow (F)
maps to

Abstract Service (A)
maps to

Concrete Service (S)
maps to

Service Candidacy
Assignment (s)

*

*

from to

BPEL Model (excerpt) Composition Model

maps to

* *

Service Binding

Composition
Instantiation (C)maps to

*

Activity

Variable

inputVariable

outputVariable

XPath
+ expression: String

*

*

*

Port Type

*references

consists of

defines

Figure 4.4: Mapping between WS-BPEL Model and Composition Model

4.3.3.2 Mapping for WS-Aggregation

The relationship between the WS-Aggregation query model [139, 148] and the composition
model is illustrated in Figure 4.5.

Aggregation Query

+ notifyTo: EPR

Query Expression
+ expr: String

finalization-
Query

preparation-
Query

1..*

Data Dependency

+ extractPath: XPath

fromInput

Input

+ ID: String

requiredData *
0..1

Feature

+ name: String

Web Service

+ location: EPR

target

*

*

Data Flow (F)
maps to

Abstract Service (A)
maps to

Concrete Service (S)
maps to

Service Candidacy
Assignment (s)

*

*

from to

WS-Aggregation Query Model Composition Model

maps to

* *

Service Binding

Composition
Instantiation (C)

boundService

maps to
*

Figure 4.5: Mapping between WS-Aggregation Query Model and Composition Model

The core artifact in the query model is the aggregation query, which consists of multiple
input elements that represent the data received from event streams of external Web services. The
attribute notifyTo contains the EPR of the client that receives the results from the platform in
push mode. For each input, a preparation query filters, preprocesses and aggregates the received
events. A finalization query is used to combine the data into a single result document. The
distinction of abstract and concrete services is achieved by an association between features and
Web services: each input targets a certain feature (which maps to an abstract service), and each
feature is provided by several Web services (which map to concrete services). This corresponds
to the service candidacy assignment (function s : A→ S) in the composition model. Moreover,

100

inputs are associated with one or more instances of data dependency. A dependency between
two inputs i1 and i2 indicates that certain data (specified via extractPath) need to be extracted
from the results of i2 and inserted into i1. The internal query processor of WS-Aggregation
automatically distributes the execution of inputs among the deployed aggregator nodes, resolves
dependencies and takes care of proper correlation of the involved event streams. Clearly, input
data dependencies can be mapped directly to data flows in the composition model. Finally, a
service binding in our model translates to the runtime binding of a Web service for a specific
input in WS-Aggregation.

4.3.4 Combinatorial Test Design

Finding the minimal set of composition test cases, taking into account k-node data flow coverage
and all of the model’s constraints, is a computational problem in the area of combinatorial test
design [71, 242], which is known to be NP-hard [66]. The number of possible compositions is
exponential in the number of services. It is simple to construct any valid solution, as well as to
determine the validity of existing solutions, however, no polynomial-time algorithm exists that
can guarantee to deliver the optimal solution. The size difference between 1) a (near-)optimal
solution and 2) a test set obtained by full enumeration (cf. Table 4.1) or a simple construction
heuristic can be significant. The implication is that in case of 1) the test generation takes longer
and the test set executes faster, whereas for 2) the test set can be generated fast and executing the
test takes longer due to the increased size of the solution. Note that we speak of near-optimality,
because in any case we seek for a practicable approach that executes in acceptable time. The
optimization details for finding minimal sets of test cases for service compositions are discussed
in the following.

Our goal is to keep the required testing effort minimal. Hence, the universal objective func-
tion attempts to minimize the number of composition test cases to execute, which is expressed
in Equation 4.3.

|T | → min (4.3)

In addition to this universally valid criterion, it is advantageous to specify preferences con-
cerning service reuse. A composition tester who has knowledge about the quality of the individ-
ual services may give precedence to certain concrete services. Applied to the scenario, consider
that s1 is known to be well-tested, whereas s2 is published by a less reliable provider. We in-
troduce the additional symbol p(sx, a) ∈ (0, 1) to specify the desired probability that service sx
should be bound to abstract service a in the test cases (e.g., p(s1, a1) = 0.2, p(s2, a1) = 0.8).
Based on that, our alternative objective function minimizes the total deviation between the actual
and the expected occurrences of all concrete services in the generated test cases (Equation 4.4).
Note that the special case in which all probabilities are equal, ∀a ∈ A : ∀sx, sy ∈ s(a) :
p(sx, a) = p(sy, a), expresses that all services should be tested with the same intensity. Further
note that the extreme values 0.0 and 1.0 are not in the value domain of p(sx, a); the effect of 0%
or 100% probability can be achieved by completely removing the service sx from the candidate
list s(a), or by removing all other services from the candidate list, respectively.

101

|T |+
∑
a∈A

∑
sy∈s(a)

o(sy ,a)

|s(a)| − p(sy, a) → min (4.4)

Equation 4.3 is the default optimization target, if there is no known reason for preferring
the testing of some concrete services over others. If there is a reason for a preference, it can
be easily expressed by using probabilities with Equation 4.4. Both of the alternative objective
functions defined above are subject to the following hard constraints:

c(a) 6= ∅, ∀c ∈ T, a ∈ A (4.5)⋃
c∈C,a∈A

c(a) =
⋃
a∈A

s(a) (4.6)

∀ j ∈ {1, .., k} :
∀ dj ∈ Fj :

∀ s1dj ∈ s(a1dj), ..., s
j
dj ∈ s(ajdj) :

∃ c ∈ T : c(a1dj) = s1dj ∧ ... ∧ c(ajdj) = sjdj (4.7)

Equation 4.5 signifies that a composition must bind one concrete service to each abstract
service. Equation 4.6 expresses that each concrete service that implements one of the abstract
services needs to be used at least once in the final set of compositions. Finally, Equation 4.7
ensures that the service composition is k-coverage tested, i.e., that all services with direct and
indirect data dependencies (up to flows of length k), are tested with all combinations of concrete
services. Note that there is a logical connection between the criteria in Equations 4.6 and 4.7,
as follows. According to Equation 4.7, the composition is k-coverage tested (for k ≥ 1). This
trivially implies that the composition is 1-coverage tested. Now, 1-coverage tested means that
every single abstract service is tested (at least once) with each of its concrete candidates, which
corresponds to the semantics of Equation 4.6. So, in fact Equation 4.6 is an indirect implication
of Equation 4.7; however, both equations have been included here for clarity.

4.3.5 Determining Faulty Services and Incompatible Configurations

So far, we have discussed that the composition model is used to compute a (minimal) set T
of composition test cases. The detailed procedure for generating and executing the tests will
be addressed later in Section 4.5. For now, we assume that the tests have been executed and
for each instantiation c ∈ T , a test outcome has been recorded. The test results contain data
for non-functional properties, such as the processing time, as well as the functional test data,
which informs about whether the test case has succeeded or failed. Recall from Section 4.3.1
that the functional result of a single test case is expressed as a boolean function r : C →
{success, failed}.

102

4.3.5.1 The Fault Participation and Fault Contribution Metrics

Having determined the functional test result of each composition instance, we are able to ana-
lyze which service or which combination of services have caused tests to fail. In fact, we are
interested not only in detecting the existence of a fault, but in determining faulty concrete ser-
vices or incompatible combinations thereof. Let x : A → S denote an assignment of concrete
services to abstract services, which represents any subset of the service bindings applied in a
composition c ∈ C, that is, x ⊆ c. For instance, take the function values of the scenario com-
position c4 in set-of-pairs notation, c4 = {(a1, s2),(a2, s3),(a3, s4),(a4, s4),(a5, s2),(a6, s7)}.
One possible subset of this composition would be a binding x = {(a4, s4),(a5, s2)}. Note
that x is also a subset of c3, c15 and c16. The function succ : P(C) → P(C) returns for
a set of service compositions Y ∈ P(C) those for which a successful test result has been
recorded: succ(Y) := {c ∈ Y | r(c) = success}. Analogously, the set of failed test
compositions in Y is fail(Y) := {c ∈ Y | r(c) = failed}. Finally, we use the func-
tion match : ((A→ S)× P(C))→ P(C), (x, Y) 7→ {c ∈ Y | ∀(a, s) ∈ x : c(a) = s} to de-
termine all compositions in a set Y , which contain all assignments defined by a binding x.

We then utilize the following two indicators:

∗ The fault participation rate part(x, T) of a binding x denotes the percentage of failed
compositions in T that contain all bindings defined by x (in relation to all failed compo-
sitions in T):

part(x, T) := |fail(match(x,T))|
|fail(T)|

∗ The fault contribution rate cont(x, T) of a binding x denotes the percentage of compo-
sitions in T matching x that failed in the test (in relation to all compositions in T match-
ing x):

cont(x, T) := |fail(match(x,T))|
|match(x,T)|

Information Retrieval Test Result Analysis

#(Relevant Docs in Answer Set)

#(Answer Set)
Precision =

#(Relevant Docs in Answer Set)

#(Relevant Docs)
Recall =

#(Failed Tests with Assignment x)

#(Tests with Assignment x)
Contribution =

#(Failed Tests with Assignment x)

#(Failed Tests)
Participation =

Figure 4.6: Analogy Between Fault Contribution/Participation and Precision/Recall

The fault participation expresses the degree to which binding x has been “involved” in the
faulty compositions. A higher value of part(x, T) indicates that x is likely (partly) responsible
for the fault. On the other hand, fault contribution expresses the degree to which the test cases
containing x have led to a faulty result. That is, cont(x, T) indicates whether there have been
any successful results for tests including x. Note that these indicators are related to precision
and recall [18], two measures often used in machine learning and in Information Retrieval (IR).

103

a1 a2 a3 a4 a5 a6 Result
c4 s1 s3 s1 s1 s2 s8 Failed

Mini- c13 s2 s3 s4 s4 s2 s7 Succeeded
mal c17 s1 s3 s5 s5 s2 s8 Failed
Test c20 s2 s3 s1 s1 s6 s8 Succeeded
Set c21 s1 s3 s4 s4 s6 s8 Succeeded

c12 s2 s3 s5 s5 s6 s7 Succeeded
Addi- c2 s2 s3 s1 s1 s2 s7 Succeeded
tional c10 s2 s3 s4 s4 s6 s7 Succeeded
Tests c16 s2 s3 s4 s4 s2 s8 Failed

Table 4.4: Illustrative Test Results of Scenario Composition Test Cases T (cf. Table 4.1)

We can draw an analogy between document search in IR and finding incompatible bindings in
services testing, which is illustrated in Figure 4.6. The precision of a performed search in IR
expresses the fraction of retrieved documents that are relevant with respect to the search criteria.
Similarly, fault contribution considers the fraction of test cases that are “relevant”, i.e., failed.
On the other hand, recall answers the question to which degree the relevant documents have been
found by a search. Likewise, fault participation relates the failed test results of a certain service
assignment to the set of all relevant (failed) test cases. To obtain a one-dimensional measure,
precision and recall are often combined into a harmonic mean, denoted F measure [18] (or F
score), which is also conceivable as an alternative for part and cont.

Table 4.4 lists example test results for different test cases of the scenario composition, based
on which we discuss the relevance of the indicators part and cont in more detail. The first six
entries in the table represent the minimal set of test cases that is required to satisfy the k-node
data flow coverage criterion (k=3). For illustration purposes, we have injected an incompatibil-
ity between the concrete services s2 and s8 with respect to the data flow between the abstract
services a5 and a6. The goal is to detect this incompatibility based on the test results (Failed
or Succeeded) of the individual test cases, which is illustrated in Table 4.5. This table con-
tains the values for part and cont for six randomly chosen sample bindings. The number of
bindings for which we have to compute the indicators depends on the number of abstract and
concrete services, as well as the number and length of the composition’s data flow paths. In the
case of our example, 34 distinct combinations of bindings exist (13 bindings for single services,
15 bindings along the four different 2-node data flows, and 6 bindings along the 3-node data
flow). Six out of the 34 binding combinations are printed in Table 4.5. The most interesting
cases are those for which cont equals 1, which in this example occurs, as expected, only for
the faulty service combination x : a5 7→ s2, a6 7→ s8. Additionally, for this combination also
the value of part is 1, because the example contains only a single faulty service combination,
and hence no other combination participates in all faulty test cases. Technically, the binding
x : a2 7→ s3, a5 7→ s2, a6 7→ s8 also has a value of 1 for both indicators, which results from
the fact that s3 is the only concrete service available for a2. Our evaluation in Section 4.6.4
discusses how the test indicators evolve if multiple service combinations are causing faults in a
composition.

104

Combination x :
a1 7→ s1 a2 7→ s3 a5 7→ s2 a1 7→ s2, a5 7→ s2, a1 7→ s2,

a2 7→ s3 a6 7→ s8 a3 7→ s1, . . .
a4 7→ s1

Values for Minimal Test Set:
part(x,T) 1.0 1.0 1.0 0.0 1.0 0.0 . . .
cont(x,T) 0.6667 0.3333 0.6667 0.0 1.0 0.0 . . .

Values for Minimal Test Set and Additional Tests:
part(x,T) 0.6667 1.0 1.0 0.3333 1.0 0.0 . . .
cont(x,T) 0.6667 0.3333 0.6 0.1667 1.0 0.0 . . .

Table 4.5: Exemplary Service Combinations for the Scenarios (6 out of 34 Total Combinations)
with Fault Participation and Fault Contribution

4.3.5.2 Additional Tests Beyond the k-Coverage Minimal Test Set

The described technique is suitable to automatically analyze the test results and point the tester
towards faults in the service composition. Note that the discussed indicators depend on the num-
ber of test results at hand. In general, a higher number of test cases provides stronger evidence.
For instance, after executing the first test composition (c4), which failed, trivially all service
assignments of this composition have participated in and contributed to 100% of the faults. Ta-
ble 4.5 also illustrates that the values change when additional tests (c2,c10,c16) are executed on
top of the minimal test set with respect to k-node test coverage. For instance, part(x, T) is 1.0
for x : a1 7→ s1, and the minimal test set of six compositions, but we can exclude x from the
potentially problematic assignments as the value drops to 0.6667 after executing the additional
tests. Conversely, the assignment x : a1 7→ s2, x : a2 7→ s3 is not associated with any failed
results in the minimal test set, but shows a failed result in the additional tests. This example
shows that the minimal test set is generally sufficient for a meaningful test result analysis, but
evidently additional test data leads to more precise localization possibilities. In any case, the
coverage criterion ensures that all crucial service combinations are tested with respect to direct
and transitive data dependencies.

4.3.5.3 Limitations and Advanced Fault Localization Techniques

It should be noted that the fault localization based on the contribution/participation metrics has
some limitations. First, it is easier to detect a single data flow incompatibility than to analyze
faults in compositions that contain several combinations of incompatible services. The reason
is that if multiple incompatibilities exist, the part or cont values will likely never reach a value
of 1, and these cases require the tester to define a threshold value or to investigate those service
combinations with high part or cont values manually. This aspect is evaluated in more detail in
Section 4.6. Moreover, this method of test result analysis is reliable only if we can assume that
faults happen deterministically, in the sense that any faulty service assignment x always leads to
a failed result in all test cases it participates in: |fail(match(x, T))| > 0 ⇒ |match(x, T)| =
|fail(match(x, T))|. Formulated differently, this means that all tests have to be repeatable, and
indeterministic transient faults may lead to incorrect analysis results.

105

To overcome these limitations, we have developed a more sophisticated fault localization
technique which is able to deal with transient faults and changing fault conditions. The details
are discussed in Section 4.4.

4.4 Advanced Fault Localization for Transient and Changing
Faults

This section extends on the testing approach discussed in Section 4.3 and studies advanced
patterns of real-world fault conditions in SBAs. We introduce a novel fault localization technique
which is capable of handling transient faults and changing fault conditions. The fault localization
discussed here fulfills two purposes: first, it integrates with the upfront testing approach and
allows for detailed result analysis of generated test executions; second, it can be applied in the
production environment of an SBA to identify and localize faults during run time.

Section 4.4.1 refines the model of SBAs under test, extending the previous model from
Section 4.3.1 with services’ input/output parameters as well as the notion of execution traces.
Sections 4.4.2 and 4.4.3 discuss preprocessing and machine learning techniques used to learn
rules which describe the reasons for faults based on the collected trace data.

4.4.1 Extended Service Composition Model

We extend the service composition model from Section 4.3.1 with the notion of service param-
eters and execution traces (see Table 4.6). The domain of possible input parameters P , each
defined by name (N) and domain of possible data values (D) is represented by P = N × D.
Function p returns all inputs required by an abstract service, and function d returns the value
domain for a given parameter. Moreover, we define T = 〈t1, . . . , tk〉 as the sequence of logged
execution traces tx : K → V in chronological order, mapping the set of keys (K) to values
(V). For each key-value mapping, abstract services (A) map to concrete services (S), whereas
parameter names (N) map to values in the parameter domain (D).

Symbol Description Example
N Set of service parameter names. N = {custID, premium, . . .}
D Domain of service parameter val-

ues.
D = {′joe123′, ′aliceXY ′,
true, false, . . .}

P = N ×D Domain of possible service param-
eters.

P = {(custID,′ joe123′),
(custID,′ aliceXY ′), . . .}

d : N → P(D) Returns the value domain for a
given parameter.

d(custID) =
{′joe123′,′ aliceXY ′}

p : A→ P(N) Returns all input parameters re-
quired by an abstract service.

p(a1) = {custID}
p(a2) = {premium}

K = A ∪N Set of keys encoding an execution
trace, consisting of abstract ser-
vices and parameter names.

K = {a1, a2, . . . , custID,
premium, . . .}

106

V = S ∪D Set of values encoding an execu-
tion trace, consisting of concrete
services and parameter values.

V = {s1, s2, . . . , ′joe123′,
′aliceXY ′, true, false, . . .}

T = 〈t1, . . . , tk〉
tx : K → V

Sequence of logged execution
traces in chronological order.
Each trace is encoded as a
mapping from keys to values.

T = {{a1 7→ s1, custID 7→
′joe123′, . . .}, . . .}

Table 4.6: Extensions to the Service Composition Model

Table 4.6 contains the respective symbols and a brief example for each model artifact. For
instance, the table lists an abstract service a1 which is implemented by concrete services s1
and s2. Service a1 requires as parameter a customer identifier (custID) that can take values
′bob123′ or ′aliceXY ′.

Summarizing the model, the core idea of our approach is to analyze log traces of SBA
executions for fault localization. We consider two classes of properties as part of the traces: 1)
runtime binding of abstract to concrete services, 2) service input parameters, i.e., data provided
by the user to the application as well as data flowing between services.

4.4.2 Trace Data Preparation

Table 4.7 lists an excerpt of six exemplary traces for an imaginative customer-oriented SBA.
The table contains multiple rows which represent the traces (t1, . . . , t6); the columns contain the
bindings for the abstract services (a1, a2, a3, . . .), parameter values (custID, premium, . . .),
and the success result of the trace (r(x)). Two exemplary parameters for a customer service
are in the table: tx(custID) denotes the identifier of a customer, and the boolean parameter
tx(premium) specifies whether we are dealing with a regular customer or a high-paying pre-
mium customer.

We follow the typical machine learning terminology and denote the column titles as at-
tributes and the rows starting from the second row as instances. The first attribute (tx) is the
instance identifier, and r(x) is denoted class attribute.

tx tx(a1) tx(a2) tx(a3) .. tx(custID) tx(premium) .. r(x)

t1 s1 s3 s7 .. ′joe123′ false .. success

t2 s2 s4 s6 .. ′aliceXY ′ true .. success

t3 s1 s5 s8 .. ′joe123′ false .. failed

t4 s2 s5 s8 .. ′bob456′ true .. success

t5 s2 s4 s7 .. ′aliceXY ′ true .. success

t6 s1 s4 s8 .. ′lindaABC ′ false .. failed

..

Table 4.7: Example Traces with Service Binding and Parameter Values

107

The number of trace attributes and combinations of attribute values can grow very large. To
estimate the number of possible traces for a medium sized application, consider an SBA using
10 abstract services (|A| = 10), 3 candidates per abstract service (|s(ax)| = 3 ∀ax ∈ A), 3 input
parameters per service (|p(ax)| = 3 ∀ax ∈ A), and 100 possible data values per parameter
(|d| = 100 ∀ax ∈ A, (n, d) ∈ p(ax)). The total number of possible execution traces in this
SBA is 310 ∗ 100310 = 5.9049 ∗ 1064. Efficient localization of faults in such large problem
spaces evidently poses a huge algorithmic challenge. Even more problematically, the problem
space becomes infinite if the service parameters use non-finite data domains (e.g., String). The
first step towards feasible fault analysis is to reduce the problem space to the most relevant
information. We propose a two-step approach:

1. Identifying (ir)relevant attributes: The first manual preprocessing step is to decide, based on
domain knowledge about the SBA, which attributes are relevant for fault localization. For in-
stance, in an e-commerce scenario we can assume that a unique customer identifier (custID)
does not have a direct influence on whether the execution succeeds or fails. Per default, all
attributes are deemed relevant, but removing part of the attributes from the execution traces
helps to reduce the search space.

2. Partitioning of data domains: Research on software testing and dependability has shown that
faults in programs are often not solely incurred by a single input value, but usually depend
on a range of values with common characteristics [353]. Partition testing strategies there-
fore divide the domain of values into multiple sub-domains and treat all values within a sub-
domain as equal. As a simple example, consider a service parameter with type Integer
(i.e., {−231, ..,+231 − 1}), a valid partitioning would be to treat negative/positive values and
zero as separate sub-domains: {{−231, ..,−1}, {0}, {1, ..,+231− 1}}. If explicit knowledge
about suitable partitioning is available, input value domains can be partitioned manually as
part of the preprocessing. However, efficient methods have been proposed to automatize this
procedure (e.g., [67]).

4.4.3 Learning Rules from Decision Trees

Using the preprocessed trace data, we strive to identify the attribute values or combinations of
attribute values that are likely responsible for faults in the application. For this purpose, we
utilize decision trees [270], a popular technique in machine learning. This has the advantage
that the decision making of the resulting trees can be easily comprehended; their knowledge
can be distilled for the purpose of fault localization. Also, decision tree training with state of
the art algorithms like C4.5 [270] results in comparably fast learning speeds, compared to other
machine learning approaches.

Figure 4.7 illustrates decision trees based on the example traces in Table 4.7. The figure
shows two variants of the same tree which classifies non-premium customers with a specific
service binding (tx(a3) = s8). The inner nodes are decision nodes which divide the traces
search space, and the leaf nodes indicate the trace results. The left-hand side of the figure shows
a regular decision tree where each decision node splits according to the possible values of an
attribute. The right-hand side shows the same tree with binary split (i.e., each decision node has
two outgoing edges).

108

tx(premium)
= false ?

tx(a3) = s8 ? success

true false

success failed

false true

tx(premium)
= ?

tx(a3) = ? success

false true

success failed

s6 s8

success

s7

Regular With Binary Split

Figure 4.7: Exemplary Decision Tree in Two Variants

The decision tree with binary split is used to automatically derive incompatible attribute
values. The basic procedure is to loop over all failed leaf nodes and create a combination of
attribute assignments along the path from the leaf to the root node. The detailed algorithm is
presented in Algorithm 2. For each failed leaf node, a set Etemp is constructed which contains
the conditions that are true along the path. The total set of all such condition combinations
is denoted EI . Our approach exploits the simple structure of decision trees for extracting in-
compatibility rules; other popular classification models (e.g., neural networks) have much more
complex internal structures which make it harder to extract the principal attributes responsible
for the output [298].

Algorithm 2 Obtain Incompatibility Rules from Decision Tree
1: EI ← ∅
2: for all failed leaf nodes as n do
3: path← path of nodes from n to root node
4: Etemp ← ∅
5: for all decision node along path as d do
6: c← condition of d
7: if c is true along path then
8: Etemp ← Etemp ∪ c
9: end if

10: end for
11: EI ← EI ∪ Etemp

12: end for
13: for all Ex, Ey ∈ EI do
14: if Ex is covered by Ey then
15: EI ← EI \ Ex

16: end if
17: end for

109

4.4.4 Coping with Transient Faults

So far, we have shown how trace data can be collected, transformed into a decision tree, and used
for obtaining rules which describe which configurations have led to a fault. The assumption so
far was that faults are deterministic and static. However, in real-life systems which are influenced
by various external factors, we have to be able to cope with temporary and changing faults. Our
approach is hence tailored to react to such irregularities in dynamically changing environments.

A temporary fault manifests itself in the log data as a trace t ∈ T whose result r(t) is
supposed to be success, but the actual result is r(t) = failed. Such temporary faults can lead
to a situation of contradicting instances in the data set. Two trace instances t1, t2 ∈ T contradict
each other if all attributes are equal except for the class attribute:
{(k, v) | (k, v) ∈ t1} = {(k, v) | (k, v) ∈ t2}, r(t1) 6= r(t2).

Fortunately, state-of-the-art decision tree induction algorithms are able to cope with such
temporary faults which are considered as noise in the training data (e.g., [4]). If the reasons for
faults within an SBA change permanently, we need a mechanism to let the machine learning
algorithms forget old traces and train new decision trees based on fresh data. Before discussing
strategies for maintaining multiple decision trees in Section 4.4.4.2, we first briefly discuss in
Section 4.4.4.1 how the accuracy of an existing classification model is tested over time.

4.4.4.1 Assessing the Accuracy of Decision Trees

LetD be the set of decision trees used for obtaining fault combination rules. We use the function
rc : (D × {1, . . . , k}) → {success, failed}, where k is the highest trace index, to express
how a desicion tree classifies a certain trace. Over a subset Td ⊆ T of the traces classified by
a decision tree d, we assess its accuracy using established measures true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) [18]:

• True Positives: TP (Td) = {tx ∈ Td | rc(d, x) = failed ∧ r(x) = failed}
• True Negatives: TN(Td) = {tx ∈ Td | rc(d, x) = success ∧ r(x) = success}
• False Positives: FP (Td) = {tx ∈ Td | rc(d, x) = failed ∧ r(x) = success}
• False Negatives: FN(Td) = {tx ∈ Td | rc(d, x) = success ∧ r(x) = failed}

From the four basic measures we obtain further metrics to assess the quality of a decision
tree. The precision expresses how many of the traces identified as faults were actually faults
(TP/(TP + FP)). Recall expresses how many of the faults were actually identified as such
(TP/(TP +FN)). Finally, the F1 score [131] integrates precision and recall into a single value
(harmonic mean):

F1(d) = 2 ∗ precision·recall
precision+recall

4.4.4.2 Maintaining a Pool of Decision Trees

In the following we discuss our approach to cope with changing fault conditions over time, based
on a sample execution of the system model introduced in Section 4.4.1.

Figure 4.8 illustrates a representative sequence of execution traces ({t1, t2, t3, . . .}); time
progresses from the left-hand side to the right-hand side of the figure. In the top of the figure the

110

 S F ... S ... F S ... S S F ... S S F ...

time

r(x) =

t1 t2 ta tb

 - F ... F ... F S ... F S F ... S

 - - ... 0.0 ... 0.8 0.82 … 0.7 0.71 0.72 … 0.74

S … Success S/F … Correct Classification
F … Fault S/F … Incorrect Classification

Misclassification (FP) Triggers Training of New Tree

tc

 1 2 ... a … b … c … d …

td

Initial Training Phase

rc(d1,x) =

F1(d1) =

 - ... S S ... S S F ... S

 - ... - - … 0.98 0.99 0.99 … 0.99

 - F S ... S S F ...

 - - - ... 1.0 1.0 1.0

rc(d2,x) =

F1(d2) =

Perfect Score Causes Removal of Other Trees

rc(d3,x) =

F1(d3) =

Figure 4.8: Maintaining Multiple Trees to Cope with Changing Faults

trace results (r(tx)) are printed, where “S” represents success and “F” represents failed. As the
traces arrive with progressing time we utilize deduction algorithms to learn decision trees from
the data. At time point 1, the decision tree d1 is initialized and starts the training phase. The
learning algorithm has an initial training phase which is required to collect a sufficient amount of
data to generate rules that pass the required statistical confidence level. After the initial training
phase the quality of the decision tree rules is assessed by classifying new incoming traces. In
Figure 4.8 correct classifications are printed in normal text, while incorrect classifications are
printed in bold underlined font.

We have marked four particularly interesting time points (a, b, c, d) in Figure 4.8, which we
discuss in the following.

1. At time a the tree d1 misclassifies the trace ta as a false positive. This triggers the parallel
training of a new decision tree d2 based on the traces starting with ta.

2. A false negative by d2 occurs at time b. However, since this happens during the initial training
phase of d2, we simply regard the trace tb as useful information for the learner and add it to
the training set. No further action is required.

3. Time point c contains another false positive misclassification of d1. In the meantime, F1(d1)
had risen due to some correct classifications, but now the score is pushed down to 0.7. Again,
as in time point a, the generation of a new tree d3 is triggered.

4. At time d the environment seems to have stabilized and decision tree d3 reached a state with
perfect classification (F1(d3) = 1). At this point, the remaining decision trees are rejected.
The old trees are still stored for reference, but are not trained with further data to save com-
puting power.

111

4.5 Implementation: The TeCoS Framework

The work discussed in this chapter is integrated into the TeCoS (Test Coverage for Service-
based systems) framework, which we briefly present in the following. TeCoS aims at providing
a holistic view of SBAs by providing various coverage metrics, thereby operating both on the
level of the service API and on the service composition level. In previous work (not covered in
detail within this thesis), we have presented how TeCoS collects and stores invocation messages
at runtime in order to compute API coverage metrics of single services [142], whereas in this
thesis the focus is on achieving test coverage for composed services. The task of TeCoS is
to provide the data necessary to construct the composition model, as well as to generate and
execute the composition test cases. Figure 4.9 sketches the TeCoS architecture in the context of
an exemplary service composition. The Web services are provided and hosted by three service
providers. A service integrator defines and publishes the composition on top of the services,
e.g., as a WS-BPEL process or a WS-Aggregation query. End users invoke the composition, and
may also make use of the atomic services (s1, ..., s8).

The TeCoS Service Broker is a centralized entity that offers a Service Registry to store ser-
vice metadata, and a Tracing Service which is responsible for logging invocations that occur in
the SBA, both for the atomic services and for the composite service (e.g., WS-BPEL process).
Our implementation provides an invocation interceptor that is easily plugged into the Java Web
services framework. The traces and coverage data can be inspected via the Web User Interface.
Here, we do not consider data protection and privacy issues in much detail, but service providers
and integrators may choose to host their own instances of the Tracing Service and receive events
about newly added data from the broker. For privacy and access control related issues in ser-
vice compositions, we direct the reader to Chapter 5 of this thesis. The core component, which
orchestrates the testing process is the Test Manager (TM). The TM repetitively invokes the Com-
posite Web Service (WS), and each repetition covers one test case. For instance, if the Composite
WS is implemented in WS-BPEL, the process definition is instrumented in such a way that it
dynamically retrieves from the TM the EPR of the services to invoke (see Section 4.5.4). A ser-
vice EPR uniquely identifies a service instance and contains the technical information required
to invoke the service, such as the service name and its location URL.

Tracing ServiceTracing Service

Log
Invocations

Publish Events

Service
End User

Invoke
Service Requests
Events & Logging

Tracing
Service

Service
Registry

Discover
Services

Web User
Interface

WS S1 WS S3 WS S6

WS S2 WS S5 WS S7

WS S4 WS S8

Service Provider 3

Service Provider 2

Service Provider 1

Service Integrator

TeCoS Service Broker

Test
Manager

Test Composite
WS

Get EPR

Figure 4.9: Architecture of the TeCoS Framework

112

TeCoS logs every execution of the service composition in order to collect traces that can be
used in the FoCuS solver as described in Section 4.5.3. A crucial point about logging a composite
service is to correlate the single invocations performed by one of its runtime instances. Consider
two users invoking the WS-BPEL process simultaneously. The order of the subsequent service
invocations performed by the two process instances is indeterministic, and hence the exchanged
messages need to carry additional information to allow for identification of process instances.
Similar to the solution proposed in [205], we use WS-BPEL code instrumentation to inject
unique identifiers in the exchanged messages. SOAP is the messaging protocol used by Web
services. Whereas the SOAP body carries the payload of the message, the SOAP header is used
to transmit additional information. We use the SOAP header to include the identifier of the
WS-BPEL process instance in each invocation it carries out.

In the following we describe the implemented end-to-end solution in more detail, particu-
larly focusing on how test cases are generated and executed in WS-BPEL and WS-Aggregation.
Section 4.5.1 shows how target composition platforms can be plugged into TeCoS by means of
an adapter mechanism. To further discuss the details of the single steps that have been outlined
earlier in Figure 4.1, we divide the procedure of the end-to-end approach into three parts: the
test preparation activities before the optimization takes place (Section 4.5.2), the activity where
FoCuS obtains the optimized solution (Section 4.5.3), and the part after optimization where the
tests are generated, executed and analyzed (Section 4.5.4). Finally, Section 4.5.6 covers imple-
mentation details of the fault localization platform discussed in Section 4.4.

4.5.1 Integration of Target Platforms via Extensible Adapter Mechanism

The testing approach and coverage criterion proposed in this thesis are applicable to various
service composition techniques. The basic requirement is that the composition model needs to
provide a mapping between abstract and concrete services and that compositions can be instan-
tiated with a particular service assignment. Two sample techniques, WS-BPEL and WS-Aggre-
gation, have been exemplified, and as part of our ongoing work we are integrating additional
platforms. For instance, in the emerging field of service mashups [32] the Enterprise Mashup
Markup Language [6] (EMML) is one recommended way of building light-weight service com-
positions. Another example is Windows Workflow Foundation [73], a programming model for
service-based business processes.

TeCoS provides a flexible adapter mechanism to map the combinatorial test design to con-
crete composition platforms. The model for these platform-specific test adapters is depicted
as a UML class diagram in Figure 4.10. The core interface is TestAdapter, which defines
methods to initialize an adapter for a certain composition definition (initialize), deter-
mine the list of candidate services for an abstract service (getServices), construct a request
for a certain composition instance (constructRequest), and execute a single test request
(executeTest). The final report is composed of one test result for each composition instance,
containing the output data, a boolean flag indicating whether the test has failed, and a collection
of QoS metrics that are particularly interesting for testing the quality of event-based composi-
tions. Specialized adapters implement the interface TestAdapter and provide an extension of
the CompositionDefinition class. The remaining classes in Figure 4.10 are agnostic of
concrete platforms and define the generic composition model with dynamic service assignment.

113

CompositionDefinition

«interface»
TestAdapter

+ initialize(c : CompositionDefinition)
+ getServices(a : AbstractService)

: List<ConcreteService>
+ constructRequest(i : CompositionInstance)

: TestRequest
+ executeTest(r : TestRequest) : TestResult

WSAggregation-
TestAdapter

BPEL-
TestAdapter

CompositionInstance

TestRequest

WSAggregation-
Query

BPEL-
Process

*
instanceOf

TestResult

+ outputData
+ isFailed
+ QoSData

AbstractService

ServiceAssignment

*

ConcreteService

*

*

TestReport*

Figure 4.10: Model for Platform-Specific Composition Test Adapters

4.5.2 Test Preparation Steps

The first step in the test preparation is to create the data flow view from the composition defi-
nition, which in our scenarios are a WS-BPEL document and a WS-Aggregation query, respec-
tively. In WS-Aggregation, the data flow view can be directly derived from the user request.
Each composition query is composed of multiple inputs (which correspond to the abstract ser-
vices) that receive data from concrete services [139]. The query model allows to define data
dependencies between inputs which directly map to the data flows between services as consid-
ered in this thesis.� �

1 < b p e l : a s s i g n xmlns : b p e l =" . . . ">
2 < b p e l : copy >
3 < b p e l : from > $a3_ou t . p a r t 1 / / h o t e l [$ i] < / b p e l : from >
4 < b p e l : to > $ a4 _ i n . p a r t 1 / / h o t e l < / b p e l : to >
5 </ b p e l : copy >
6 </ b p e l : a s s i g n >� �

Listing 4.1: Data Dependency in WS-BPEL Variable Assignment

For WS-BPEL, all assign activities are analyzed to filter those assignments that copy from
an invocation input to an invocation output variable. To detect indirect assignments via auxiliary
variables, the assign activities are analyzed recursively. A sample assign activity is printed
in Listing 4.1, $a3_out and $a4_in denote the variable names pointing to the input and
output messages, followed by a dot (“.”) and the target WSDL message part. We can ignore
all assignments which do not create an inter-invocation data dependency (e.g., those that assign
constant values, increase counter variables etc). As we know the pattern for variable names,
$a3_out and $a4_in can be extracted using regular expressions and we have determined a
data dependency. Note that this method only works reliably if every invocation in WS-BPEL has
its own pair of input/output variables. This is usually the case and otherwise a warning message
is issued.

The second test preparation step is determining the concrete candidate services. The service
registry contains references to available Web services and their WSDL interface descriptions.
The WSDLs are retrieved and parsed and we loop over all invoke activities in the WS-BPEL

114

process: a service becomes a candidate if it implements the portType required by an invoca-
tion. In WS-Aggregation, the definition of abstract and concrete services is directly incorporated
into the query model. Each query input (i.e., abstract service) targets a certain feature which is
basically a string describing the capability of the service that has to provide this input. The
service registry contains the mapping between features and concrete candidate services.

The third and last preparatory step is to combine all the gathered information and transform
it into the FoCuS data model. As mentioned earlier in this section, TeCoS provides the logging
data of previous executions of the composition under test. From the pool of logged invocations
we filter those that carry the same process instance identifier (ID) in the SOAP header, and
provide this data as FoCuS traces.

4.5.3 Transformation to FoCuS Data Model

FoCuS [151] implements algorithms for combinatorial test design and is used for optimization
of our target function in Section 3.4.1. Note that FoCuS is only one possibility to achieve the
optimization step in our end-to-end approach. We have also experimented with other techniques
such as Constraint Programming [9] using the Choco5 solver, but FoCuS has turned out to per-
form best, even for very large scenarios. In the following, we briefly describe the mapping from
the service composition model to the data model used by FoCuS (see Table 4.8).

Service Composition Model FoCuS Model
abstract service attribute
concrete service value
interrelated services restriction
incompatible services restriction
occurrence precedence attribute weights
uniform service reuse attribute weights (=1)
existing execution trace

Table 4.8: Mapping from Service Composition Model to FoCuS Model

FoCuS uses the notion of attributes and values. Each abstract service in our model maps to
an attribute in FoCuS. The values of the attributes are the concrete services that implement the
required interface. To that end, each service is identified by a unique integer number.

FoCuS allows to impose custom restrictions on the attributes values. We use restrictions to
express that two or more services should 1) never or 2) always be used together. For instance,
in the presented scenario, the services a3 and a4 are interrelated in the sense that they should be
executed by the same concrete service instance, so we add a FoCuS restriction for the attributes’
equality: a3 == a4. For service combinations that are known to be incompatible (and should
hence not occur together in a test case), we add inequality restrictions.

Constraints concerning the uniform reuse of services or precedence of certain service in-
stances (Equation 4.4) are expressed in FoCuS using attribute weights. Weights express the
ideal distribution of attribute values, and are a possibility to influence the value computation. Ex-
pressed in terms of the service composition model, if the candidate services s(a) = {s1a, s2a, .., s

j
a}

5http://www.emn.fr/z-info/choco-solver/

115

http://www.emn.fr/z-info/choco-solver/

of an abstract service a have weights w(s1a), w(s
2
a), .., w(s

j
a) ∈ R, then the (ideal) probability

that service sxa is chosen for testing abstract service a is w(sxa)∑
s
y
a∈s(a)

w(sya)
. Note that FoCuS takes

weights into consideration during optimization, but gives no guarantee about value distribution.
Finally, FoCuS offers the possibility to provide data about existing previous traces. Traces

constitute a subset of solutions that should not (or need not) be considered. The algorithm
then attempts to cover all remaining value combinations. Adding traces can help reduce the
complexity of the problem and the runtime of the algorithm. Section 4.5 gives more information
about how the traces are collected.

4.5.4 Generating and Executing Tests

After FoCuS has finished generating a feasible solution for the given model, the automated
test execution starts. The goal is to prepare the composition under test to bind to the services
determined in the test cases. The solution in WS-Aggregation is straight-forward, as the query
model allows to specify the concrete services to be used along with the request. That is, for
each of the generated test cases a request reflecting the respective service assignment is sent to
the platform. In WS-BPEL, hardcoding the concrete services in the process definition would
require the re-deployment of a large number of process instances, which is time-consuming and
often infeasible for large test sets. Therefore, we aim at deploying only a single process instance
that is able to dynamically look up and bind to the correct EPRs at runtime. This is achieved by
instrumenting additional commands into the process definition.

� �
< p r o c e s s >

< i m p o r t l o c a t i o n =" . . " . . / >
. .
< p a r t n e r L i n k s >

< p a r t n e r L i n k name="TMS" . . / >
. .

</ p a r t n e r L i n k s >
. .
< v a r i a b l e s >

< v a r i a b l e
name=" i n s t a n c e I D " . . / >

< v a r i a b l e name=" . . " . . / >
. .

</ v a r i a b l e s >
. .
< sequence >

< a s s i g n name=" a1 " > . . < / a s s i g n >
< i nv ok e o p e r a t i o n =" getEPR "

p a r t n e r L i n k ="TMS" . . / >
< a s s i g n name=" a2 " > . . < / a s s i g n >
< i nv ok e . . / >

</ sequence >
. .

</ p r o c e s s >� �
Listing 4.2: Instrumented WS-BPEL

1: add import elements for WSDL and XSD imports
2: tms← new partnerLink for Test Manager Service
3: instanceID← new variable, initialized as GUID
4: for all invoke activities i do
5: pl← partnerLink of invocation i

/* First, add statements to request EPR from Test
Manager Service and to set dynamic partner link. */

6: define variables eprINi and eprOUTi
7: add assign a1: eprINi ← name of pl
8: add invoke i1: eprOUTi ← tms.getEPR(eprINi)
9: add assign a2: pl← eprOUTi

/* Second, add statements to set WS-BPEL instance
ID in SOAP headers for invocation i. */

10: hdr← new header element for invocation i

11: add assign a3: hdr← instanceID

12: s← new sequence: a1 || i1 || a2 || a3 || i
13: replace invocation i with sequence s

14: end for

Algorithm 3: WS-BPEL Instrumentation Algorithm

116

The corresponding algorithm is sketched in Algorithm 14. To illustrate the structure of an
instrumented WS-BPEL process, the rough skeleton of an example process is printed in Listing
4.2 (dots “..” in the listing indicate that parts have been left out for clarity). After adding the
required global definitions and generating a Globally Unique Identifier (GUID) in lines 1-3,
the algorithm loops over all invoke activities and ensures 1) that the correct EPR for this
invocation is retrieved from the Test Manager Service (lines 6-9), and 2) that the process ID is
sent along with the invocation (lines 10-11).

The instrumented WS-BPEL process is then deployed to the target WS-BPEL engine. Via
the getEPR(String partnerLinkName) service method the Test Manager (TM) pro-
vides the EPR information according to the current test case. The mapping between abstract
and concrete services is stored in a service registry, implemented using the VRESCo SOA run-
time environment [230]. The TM uses the specified test inputs and repetitively executes the
WS-BPEL process. The result of each composition execution is matched against the expected
output, which is specified by the composition developer (service integrator) in the form of XPath
expressions.

4.5.5 Test Oracle

Test oracle [277] denotes the mechanism to determine whether a result is acceptable and whether
a test case has failed or passed. In the case of synchronous (request-response) compositions, the
test oracle is defined as a set of assertions over the result data returned by the composition.
In the current implementation of TeCoS these assertions are defined as XPath expressions that
are required to evaluate to a positive Boolean result (true). The oracle evaluates the XPath
expressions and simply compares the result to the expected output defined by the tester.

The test oracle becomes more sophisticated for event-based continuous queries. The correct
functioning of compositions in WS-Aggregation depends not only on a single result document,
but on the timing and sequence of multiple arriving results. Hence, the assertions are defined
and evaluated over a multitude of data records. In fact, the oracle definition can itself be seen as
a query over the sequence of received result documents, and this sequence has to fulfill certain
criteria. For instance, in our scenario we expect that, over time, hotel room availability and flight
data will be available for each hotel and location provided to WS-Aggregation. Moreover, we
can assume that the final results arrive with roughly the same frequency as the highest frequency
of any of the event inputs. If no result is received for a long time period, the tester would define
this as an indicator that the composition test case is failed.

4.5.6 Fault Localization Platform

Our prototype implementation of the presented fault localization approach is implemented in
Java. We utilize the open-source machine learning framework Weka6. Weka contains an imple-
mentation of the popular C4.5 decision tree deduction algorithm [271], denoted J48 classifier
in Weka. C4.5 has been applied successfully in many application areas and is known for its
excellent performance characteristics.

6http://www.cs.waikato.ac.nz/ml/weka/

117

http://www.cs.waikato.ac.nz/ml/weka/

Fault Localization Platform

Service-Based Application
(e.g., Telco Service Delivery Process)

Trace
Log Store

Weka

Weka
Instances

Store

Trace Converter

Domain
Partition
Manager

Logging
Interface

Decision Tree Pool

Training
Scheduler

J48
Classifier

Statistics
Calculator

Fault
Localizer

Notification
Interface

Figure 4.11: Architecture of Fault Localization Platform

Figure 4.11 outlines the architecture of the Fault Localization Platform with the core compo-
nents. Third-party components (Weka) are depicted with light grey background color. The SBA
submits its log traces (service bindings plus input messages) to the Logging Interface and pro-
vides a Notification Interface to receive fault localization updates. The Trace Log Store receives
trace data and forwards them to the Trace Converter. The Domain Partition Manager maintains
the customizable value partitions for input messages. For instance, if a trace contains an integer
input parameter x = −173 and the chosen domain partition for x is {negative, zero, positive}
then the Trace Converter transforms the input to x = negative. Transformed traces are put to
the Weka Instances Store. The Decision Tree Pool utilizes Weka’s J48 Classifier to maintain the
set of trees. The Statistics Calculator determines quality measures for the trained classifiers, and
the Training Scheduler triggers adaptation of the tree pool to changing environments.

4.6 Evaluation

To evaluate different performance aspects of the proposed approach, we have set up multiple
experimental evaluations in a private Cloud Computing environment, managed by an installation
of Eucalyptus7.

Our experiments focus on five aspects: first, the effect of the k-node coverage criterion on
the size of the test case set (Section 4.6.1); second, the performance of testing WS-BPEL in-
stances of different sizes (Section 4.6.2); third, the performance of testing long-running and
event-based compositions in WS-Aggregation (Section 4.6.3); fourth, the effectiveness of iden-
tifying incompatible service assignments and the evolution of the respective indicators over time

7http://www.eucalyptus.com/

118

http://www.eucalyptus.com/

(Section 4.6.4); fifth, the performance of fault localization under noisy trace data, including
transient faults and changing fault conditions (Section 4.6.5).

The experiments in Sections 4.6.1 and 4.6.2 have been run on a single machine with Quad
Core 2.8GHz CPU, 3GB memory, running Ubuntu Linux 9.10 (kernel version 2.6.31-22). For
the distributed performance tests in Sections 4.6.2.1 and 4.6.3, multiple cloud VM instances with
slightly weaker performance characteristics have been used. Each VM is equipped with 2GB of
main memory and one virtual CPU core with 2.33 GHz (comparable to the small instance type
in Amazon EC28).

4.6.1 Effect of k-Node Coverage Criterion on the Number of Test Cases

First, we investigate the effect of the k-node data flow coverage criterion on the number of gener-
ated test cases. Consider three imaginative composition scenarios (S=small/M=medium/L=large),
see Table 4.9. S/M/L have, respectively, 6/10/20 abstract services, with 5/10/20 concrete services
per abstract service, and different data flows of length 2/3/4.

Small Medium Large
Abstract Services 6 10 20
Concr. S./Abstr. S. 5 10 20
2-Node Data Flows 2 5 10
3-Node Data Flows 1 2 5
4-Node Data Flows - 1 2
Min. |T | for k = 4 125 10000 160000
Min. |T | for k = 3 125 1000 8000
Min. |T | for k = 2 25 100 400
Min. |T | for k = 1 5 10 20
FoCuS Results min max min max min max
Execution Time (seconds) 0.15 0.48 2.91 3.84 742.9 939.3
Test Cases (|T |) 125 125 10K 10K 160003 160008
Occurrence Differences 35 48 557 623 5148 5935

Table 4.9: Optimization of Different Model Sizes

The lower bound of generated test cases, min(|T |), varies with the value of k. For the
special case of k = 1, min(|T |) equals the maximum number of concrete services per one
abstract service, max(|s(ax)|), ax ∈ A. In general, min(|T |) = max(|s(ax)|)k, provided that
the composition contains any data flow of length k. Note that these bounds are only valid if 1)
the composition is free of constraints (e.g., that some abstract services must or must not bind to
a specific concrete service), and 2) no previous execution traces exist. We applied the FoCuS
optimization to the three scenario sizes (see Table 4.9). The FoCuS optimization was repeated
20 times and the table lists the minimum and maximum execution times (seconds), the number
of generated test cases and the total service occurrence differences (

∑
a∈A(max(a)−min(a))).

|T | of the FoCuS result is optimal for S and M, and close to min(|T |) for L.

8http://aws.amazon.com/ec2

119

http://aws.amazon.com/ec2

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

T
e

s
t

C
a

s
e

s

Number of Concrete Services per Abstract Service

Upper Bound
Lower Bound, k=4
Lower Bound, k=3
Lower Bound, k=2

Figure 4.12: Concrete Service Combinations in Medium Scenario (cf. Table 4.9)

Figure 4.12 illustrates the upper and lower bound of |T | in the Medium scenario with in-
creasing number of concrete services. The upper bound represents the number of all possible
combinations, which reaches the (infeasible) value of 1010 (note the logarithmic scale of the
y-axis). Applying the k-node data flow coverage goal (k ∈ {2, 3, 4}) drastically decreases the
lower bound of the number of test cases. For instance, 10 individual tests need to be executed for
a coverage of k=1. Covering k=2 requires 100 test cases, and for k=3 we need data from at least
1000 tests. Arguably, the reduction in the lower bound on the number of test cases delivered
by the k-node approach is not surprising, because that approach limits data flow path length.
Although this argument is valid, it does not invalidate our approach and its importance, as the
k-node approach is very effective in practice, as we demonstrate across this section.

4.6.2 Performance of Testing WS-BPEL Service Compositions

To evaluate the end-to-end performance of our testing approach, we have implemented and tested
the scenario presented in Section 4.2. The scenario WS-BPEL process is deployed in a Glass-
fish9 server. To simulate the services, we make use of Genesis [170], a test bed generator for
Web services. We generated (pseudo-)random data for the composition input (date and city pa-
rameters in the scenario) as well as for the output of the individual services. For each input and
output parameter, values are chosen randomly from a set of predefined possible values. How-
ever, in our setup the actual values are only relevant in those cases where data incompatibilities
are injected, e.g., different formats for the geographic coordinates, as discussed in Section 4.2.1.

Table 4.10 lists the execution time of each step in the end-to-end testing lifecycle (all val-
ues are in milliseconds). Firstly, creating the data flow view from the composition definition
(WS-BPEL file and WS-Aggregation query) took 151ms. This duration depends mainly on the
number of Assign tasks contained in the WS-BPEL process. Finding the candidate services
took 1205ms. This value depends on the number of services in the registry. We had 30 regis-
tered services, and 13 were identified as candidates (see scenario). Converting the composition
model to FoCuS took 13ms, and the FoCuS algorithm terminated after 644ms. Initialization of
WS-Aggregation finished after 353ms. The largest part of the preparation is WS-BPEL instru-
mentation and deployment (around 10 seconds).

9https://glassfish.dev.java.net/

120

https://glassfish.dev.java.net/

Test Preparation # Dynamic EPR Process Logic Total
Data Flow View 151 c4 240.0 408.0 648.0
Find Candidates 1205 c12 280.0 390.0 670.0
Convert Model 13 c13 410.0 331.0 741.0
FoCuS Solver 644 c17 250.0 487.0 737.0
Initialize WS-Aggregation 353 c21 320.0 303.0 623.0
Deploy WS-BPEL 10275 c20 230.0 386.0 616.0
Sum 12641 Avg 288.3 384.2 672.5

Table 4.10: Performance of Test Scenario (Durations in Milliseconds)

The other values on the right side of the table are time measurements of the six test cases
generated. To compute the WS-BPEL overhead caused by the instrumented code, we slightly
extended the scenario process to have it measure the timestamps before and after the execution of
each service invocation. These timestamps are sent to the Test Manager Service at the end of the
execution to calculate test case duration end-to-end. The total time is comprised of two elements:
setting dynamic EPR according to the test case, which took 288.3ms on average; executing the
actual business logic, which depends on the domain, and in our case was on average 384.2ms.
The average total time per test case was 672.5ms. Note that the “Process Logic” execution time
is scenario-specific, whereas the “Dynamic EPR” time is near-constant and does not depend on
the process logic.

4.6.2.1 Large-Scale Execution of WS-BPEL Tests

Whereas the six test cases of our scenario (see c4, c12, c13, c17, c20, c21 in Section 4.6.2) can
easily be executed sequentially, larger test suites require a parallel execution strategy. In the
following we evaluate parallel execution of WS-BPEL composition tests in TeCoS. Again, we
use our scenario composition definition, but this time we leave out the WS-Aggregation part
(a4 and a6 are implemented in WS-BPEL and the composition does not wait for 20 seconds),
and we provide 10 concrete services per abstract service (to increase the size of the testing
problem). Moreover, we drop the requirement that a3 and a4 must always bind to the same
concrete service. FoCuS generated a minimum of 1000 test instances for this problem (this
value corresponds to all combinations of the 3-node data flow in the scenario). We executed these
tests in different distributed settings with varying number of w parallel test worker clients (w ∈
{10, 30, 50, 100, 150, 200}). A worker is a client program that invokes the service composition
under test. The clients are distributed among multiple compute nodes in our Cloud Computing
environment; each node hosts 10 clients. Table 4.11 breaks down the test processing times for
deployment and actual execution of each test case. The total duration of a test case consists of
the actual WS-BPEL process logic plus the overhead for dynamically exchanging EPRs with
the TeCoS test manager service. For space reasons, we have only included the values for w ∈
{10, 30, 50, 100}, but the remaining results for w ∈ {150, 200} are plotted in Figure 4.13.

As expected, the average deployment time of the process is almost the same regardless of
the number of active clients. The fluctuation in the duration of the process logic is application
dependent, but in our case the services used by the process are implemented to facilitate a high

121

10 Clients 30 Clients 50 Clients 100 Clients
min. avg. max. min. avg. max. min. avg. max. min. avg. max.

Deploy WS-BPEL 10103 10103.0 10103 10112 11009.7 12723 9961 10500.0 12313 9362 10196.4 12326

Process Logic 367 795.8 4699 316 1292.0 4120 396 1429.3 2736 390 1830.1 3089
Dynamic EPRs 50 278.4 490 40 447.8 1490 40 469.1 1290 50 580.8 1270
Test Case Total 607 1074.2 4749 356 1739.8 4600 446 1898.4 3246 460 2411.0 3789

Test Suite Total 157057 110760 78334 58375

Table 4.11: Performance of Distributed Test Execution (Durations in Milliseconds)

level of concurrency. That is, a single execution of the process takes roughly the same amount
of time in all settings (around 800-1800 milliseconds on average). The slight fluctuations of
processing time in the business logic mostly depend on the caching/optimization strategy of the
WS-BPEL engine (the first request usually takes longer than the requests to follow). The as-
signment of dynamic EPRs is fastest in the case of 10 clients, because of the synchronization
overhead required when multiple clients access the TeCoS test manager service for EPR infor-
mation. However, this overhead does not seem to grow strongly (the difference between 30, 50
and 100 clients is negligible).

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140

E
x
e

c
u

te
d

 T
e

s
ts

Time (seconds)

10 Clients
30 Clients
50 Clients

100 Clients
150 Clients
200 Clients

0
20
40
60
80

100
120
140
160

 10 30 50 100 150 200

T
im

e
 (

s
e
c
o
n
d
s
)

Test Clients

Total Test Suite

Figure 4.13: Performance of Distributed Test Execution

A core observation in Table 4.11 and Figure 4.13 is the degree by which the execution
becomes faster as additional test clients are added. The left plot in Figure 4.13 depicts the
number of executed tests against the time required for execution, for different numbers of parallel
test clients. We can observe that deploying additional clients is especially beneficial when only
few clients are active. For instance, executing the 1000 tests took 133 seconds for 10 clients, but
only 87 seconds for 30 clients and 54 seconds for 50 clients. However, the marginal time benefit
of adding another client decreases as the total number of clients increases, up to the point where
additional clients have no effect at all, which is the case in our experiment when moving from
150 to 200 clients. The reason for this is that the composed services allow only a certain level
of parallel requests. Besides faster execution of the total test suite, parallelized test execution
has the benefit that the composition is, to a certain degree, stress tested (or load tested), which
is a key issue for service compositions and applications that serve multiple concurrent users.
However, this is not the core focus of our approach, and systematic approaches for stress testing
have been discussed elsewhere (see, e.g., [89]).

122

4.6.3 Performance of Testing Event-Based Applications with WS-Aggregation

In the following, we discuss characteristics of testing composite services with continuous and
event-based processing using the WS-Aggregation framework. The continuous event-based
composition results in WS-Aggregation illustrate nicely the way in which the test indicators
evolve over time. To that effect, we implemented the scenario composition discussed in Sec-
tion 4.2, but with two minor modifications: firstly, to increase the size of the problem search
space (from 24 to 4096 possible composition instantiations), 4 candidate services are provided
for each of the 6 abstract services, and the requirement that a3 and a4 need to bind to the same
concrete service is dropped; secondly, to illustrate more long-running compositions, the WS-
Aggregation queries are not terminated after 20 seconds, but keep running until the complete
test suite is finished. We then deliberately inject faults and incompatible service bindings, exe-
cute the test cases, and measure various test indicators, which are discussed in the following. The
following results are obtained from a composition with two fault combinations along data flow
paths of length 2 ({a5 7→ s2, a6 7→ s7} and {a1 7→ s1, a2 7→ s3}) and one fault combination
along a data flow path of length 3 ({a1 7→ s1, a3 7→ s1, a4 7→ s1}).

 0

 3000

 6000

 9000

 12000

 0 100 200 300 400 500 600 700

Time (seconds)

Total Received Results

 0

 75

 150

 225

 300 Results Per Faulty Composition (min.,max.)

 0
 5

 10
 15
 20
 25 Compositions with Faulty Results

 0

 20

 40

 60

 80 Number Of Active Compositions

Figure 4.14: Test Results for the Event-Based Scenario Service Composition

The minimal test case set computed by FoCuS contains 64 combinations, and our experiment
successively starts one test case after the other, leaving 10 seconds time between each two test
cases. On the one hand, this interval gives WS-Aggregation time to initialize and distribute
the execution to the available computing nodes, and on the other hand this repeated procedure
allows us to take a snapshot after each added test case and to compare the values. Figure 4.14
shows how the number of compositions and results evolves over time. The values presented
in the figure are taken from one typical and representative end-to-end test run. We do not use
averaged values over multiple distinct and isolated test runs because the combinations computed
by FoCuS are nondeterministic and the results discussed here depend on the order in which the
specific test cases are added to the system.

123

Figure 4.14 contains four plots that illustrate the characteristics of a typical test execution of
an event-based continuous service composition. The uppermost plot shows how the number of
active compositions increases as one instance is added every 10 seconds. Note that the test suite
executes more than the minimal set of 64 compositions, because we have added 10 additional
instances (i.e., in total 74 test cases are executed) to evaluate the effectiveness of test result
analysis later in Section 4.6.4. The lowermost plot in Figure 4.14 draws a trendline of the total
number of results that have been received as event notification messages from the composition.
This curve climbs slowly in the beginning, but the slope gets steeper as more compositions
are active. At time point 740 roughly 11000 result events have been received in total. The
second plot from the top of the figure contains the number of compositions from which the
TeCoS framework has received faulty results, i.e., results with unexpected output data. The third
plot from the top depicts the range of results per faulty composition. This value is zero at the
beginning (until second 20) and starts to rise as the first faulty composition is activated at time
point 30. Up to time point 130, the minimum and maximum are equal (because there is only
one faulty composition), and from second 90 onwards the minimum and maximum span up an
actual interval range (printed as a box in the figure).

Computing and analyzing the number of received composition results (both correct and
faulty) is important to obtain a measure for performance-related QoS data. Not shown in the
figure are the QoS metrics that are contained in the TeCoS test report, some of which are: event
throughput (average number of received events per time unit), regularity (fluctuations in the in-
terval of received events) or duplication (whether or not duplicate events haven been received).
These metrics allow a composition tester not only to identify incompatible service combinations,
but to favor one composition configuration over another for QoS reasons. A detailed discussion
of QoS aspects is out of scope of this thesis, and more details can be found, e.g., in [187, 373].

4.6.4 Measures for Determining Incompatible Service Assignments

After having discussed the composition test generation and execution in the previous sections,
we now evaluate the mechanism for actually detecting faulty and incompatible service assign-
ments in TeCoS. Again, we take the test setup of the event-based composition scenario of Sec-
tion 4.6.3 (composition with 3 faulty service combinations along data flow paths of length 2 and
3, respectively). In the following, T denotes the set of composition test cases (same notation as
in Section 4.3.5), which contains 74 test cases in our experiment (64 cases in the minimal set
computed by FoCuS, plus 10 additional tests).

Recall from Section 4.3.5 that a service assignment x is defined as x : A → S, and
let X ∈ P([A→ S]) be the set of all service assignments for which the fault contribution
evaluates to 1. More formally, ∀x ∈ X : cont(x, T) = 1. The general idea is that, given
the knowledge of succeeded and failed test compositions at any point in time, the service as-
signments in X which have always led to a fault are deemed incompatible. However, we will
see that, as new test results become available, a service assignment which is assumed to be
incompatible at some point in time does not necessarily stay in this state.

Figure 4.15 plots the number of incompatible service assignments over time. The three
curves in the figure represent the number of incompatible service bindings along data flow paths
of length 1, 2 and 3 (denoted curve I, curve II and curve III). The special case of a 1-node data

124

flow (curve I) actually represents a single-service binding. Up to time point 20, there are no
faulty compositions, hence no incompatible service assignments exist. At second 30, the first
faulty composition is recorded, and curve I takes value 2, curve II jumps to a value of 3, and
curve II reaches value 1. From second 30 onwards, all three curves show a rising trend until they
reach a peak value (2 for curve I, 7 for curve II, and 13 for curve III) and from then on start to
decrease. Curve I drops to 0 at time 150, which means that after the 15th test case we detect
that no single service is solely responsible for the faulty behavior (i.e., the fault has to involve a
combination of 2 or more services).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800

N
u
m

b
e
r

o
f
C

a
n
d
id

a
te

s

Time (seconds)

Incompatible Single-Service Assignments
Incompatible Services Assignments on 2-Node Data Flows
Incompatible Services Assignments on 3-Node Data Flows

Figure 4.15: Incompatible Service Assignments Along Data Flows of Different Lengths.
The minimal set (64 tests in this example) ensures that all desired combinations are covered; the
10 additional tests (seconds 650-740) further narrow down the fault localization result.

We observe that the curves in Figure 4.15 rise and drop over time. The reason for a rise
is that a new test case has failed which contains one or more bindings which have not been
tested before. Conversely, a drop happens if some binding that previously failed in all test cases
is now contained in a successful test case. Overall, it is desirable to narrow down the faulty
service combinations as far as possible, i.e., we aim to see the curves at a low level. After
executing the minimal set of 64 test cases, at time point 640, curve II has a value of 3, and
curve III stands at value 13. We see that the following additional 10 test cases contribute further
to the fault localization. This aspect is discussed in Section 4.6.4.1. Another aspect to consider
is the number of incompatible service combinations. In this section we so far considered a
composition scenario with 3 injected data flow faults; Section 4.6.4.2 discusses evaluation results
with different faulty data flow combinations.

4.6.4.1 Additional Tests Beyond the k-Coverage Minimal Test Set

In our approach we distinguish between fault detection and fault localization. Generally, the
test framework first executes all test cases computed by FoCuS, because they are the minimum
requirement to meet the data flow based coverage goal, which ensures that faults are detected.
To localize the origins of faults, the minimal test set may not provide sufficiently precise results
(depending on the configuration). The reason for this is as follows. Since the k-node coverage
goal attempts to minimize the number of test cases, the longest data flows within a composition
are usually represented by only a single test case per possible service combination. That is,

125

within the minimal test set (64 test cases in our experiment) each service combination along the
maximum length data flow (3-node data flow in our experiment) is necessarily considered faulty
if it is being used in a faulty composition. We can observe this by comparing Figure 4.14 and
Figure 4.15: up to time point 640, the number of compositions with faulty results is equal to the
number of incompatible service assignments on 3-node data flows in Figure 4.15.

Hence, the tester can decide to include additional tests in the test set T (for illustration,
10 additional tests were run in our experiment). As outlined in Section 4.3.5, the selection of
additional tests is crucial. At this point we generally strive for a reduction of the size of X , i.e.,
identifying service combinations that so far only participated in failed test, but do not necessarily
always lead to a fault. Therefore, we heuristically construct a new test composition c ∈ C
by picking a (so far deemed to be faulty) service assignment x ∈ X and filling in concrete
services (from previously observed successful compositions) for the remaining abstract services
not included in x. By continuously executing such additional test cases, we expect to find a
successful composition instance that contains x, in which case x is removed from X . For our
example, this effect is shown between time points 650 and 740 where ten additional test cases
are executed that bring down curve II and curve III to a value of 2 and 6, respectively. While
curve-II has now reached its minimum (i.e., the actual expected value), curve-III may be further
reduced by executing additional test cases.

4.6.4.2 Coping with Multiple Faulty Service Combinations

To illustrate how our approach copes with multiple faulty service combinations, we have run five
versions of the experiment mentioned in this section, with increasing number of injected fault
combinations (1,2,3,4,5) along (non-overlapping) data flow paths of length 2 and 3.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

F
a
u
lt
s
 C

o
v
e
re

d
 b

y
 T

e
s
ts

 (
%

)

Time (seconds)

1 Faulty Service Combination
2 Faulty Service Combinations
3 Faulty Service Combinations
4 Faulty Service Combinations
5 Faulty Service Combinations

Figure 4.16: Fault Combination Test Coverage Over Time

Figure 4.16 illustrates the percentage of faults (i.e., faulty concrete service combinations)
that are covered by the tests over time. The percentage increases as new test cases are executed.
For instance, the single fault combination is covered after time point 250 and the percentage
jumps from 0% to 100%; for 2 faulty service combinations, the first combination is tested at
time point 70, and the second fault is covered by the test case at time point 150. The core
observation in Figure 4.16 is that eventually all curves reach 100% on or before time point 640,

126

where the last test case of the minimal test set is executed. This is deterministically reproducible
because k-node coverage ensures that all relevant data flow paths are covered by the tests.

4.6.5 Performance of Fault Localization Approach

In the following we evaluate different aspects of our proposed fault localization approach. We
have set up a comprehensive evaluation framework as part of Indenica10, a research project
aiming at developing a virtual platform for service computing. The framework provides traces
of large SBAs, against which we run our fault detection algorithms.

4.6.5.1 Evaluation Setup

The test traces are generated randomly, with assumed uniform distribution of the underlying
random generator. Table 4.12 shows six different SBA instances with corresponding parameter
settings that are considered for evaluation. |A| denotes the number of abstract services, |s(a)| is
the number of concrete services of each abstract service a ∈ A, |p(a)| represents the number of
input parameters per abstract service, |d(p)| is the domain size for a parameter p ∈ P , and |EI |
is the number of incompatibilities (cf. Section 4.4.3) which are injected to cause runtime faults.
The table also lists for each setting the probability that a fault occurs in a random execution.

ID |A| |s(a)|, a ∈ A |p(a)|, p(a) ∈ P |d(n)|, n ∈ N |e|, e ∈ EI Fault Probability
S1 5 5 10 20 {1} 4 ∗ 10−2
S2 5 5 10 20 {2} 2 ∗ 10−3
S3 5 5 10 20 {3} 1 ∗ 10−4
S4 5 5 10 20 {3, 3, 3} 3 ∗ 10−4
S5 10 10 10 100 {3, 4} 1.001 ∗ 10−6
S6 10 10 10 100 {4} 1 ∗ 10−12

Table 4.12: Fault Probabilities for Exemplary SBA Model Sizes

The tests have been performed on machines with two Intel Xeon E5620 quad-core CPUs,
32 GB RAM, running Ubuntu Linux 11.10 with kernel version 3.0.0-16.

4.6.5.2 Training Duration

First, we evaluate how many fault traces are required by the J48 classifier to pass the threshold for
reliable fault detection. The scenario SBAs S3, S2, S1 (cf. Table 4.12) were used in Figure 4.17,
20 iterations of the test were executed, and the figure contains three boxes representing the range
of minimum and maximum values. As shown in Figure 4.17, the number of traces required to
successfully detect a faulty configuration depends mostly on the complexity (i.e., probability) of
the fault with regard to the total scenario size.

A single fault in configuration S1 was on average detected after observing between 90 and
190 traces. Multiplying these values with the fault probability of 4∗10−2, we get a range of 4 to

10http://www.indenica.eu/

127

http://www.indenica.eu/

 10

 100

 1000

 10000

 100000

 0.0001 0.002 0.04

#
T

ra
c
e

s

Fault Probability

Figure 4.17: Number of Traces Required to Detect Faults of Different Probabilities

8 fault traces required for localization. Also with more complex (unlikely) faults the relative fig-
ures do not appear to change considerably. With fault probabilities of 2∗10−3 and 1∗10−4 faults
are detected after observing 3/16 and 4/7 minimum/maximum fault traces, respectively. The data
suggest a strong relationship between number of required fault traces and fault probability.

4.6.5.3 Coping with Transient Faults

As discussed in Section 4.4.4.2, our fault localization approach is designed to cope with chang-
ing environments, which is evaluated here.

Figure 4.18 shows the performance in the presence of changing faults. The evaluation setup
is as follows: Initially a fault combination FC1 (e.g., 〈tx(premium) = false, tx(a3) = s8〉)
is active. At trace 33000, the implementation that causes the fault FC1 is repaired, but the fix
introduces a new fault FC2 that is fixed at trace 66000. At trace 66000, another fault FC3
occurs, and an attempted fix at trace 88000 introduces fault FC4, while FC3 remains active.
At trace 121000, both FC3 and FC4 are fixed, but two new faults FC5 and FC6 are intro-
duced to the system. The occurrence probability for all six fault combinations is set to 2 ∗ 10−3
(corresponding to scenario S2 in Table 4.12).

This scenario is designed to mimic a realistic situation, but serves mainly to highlight several
aspects of our solution. After about 4000 observed execution traces the localizer provides a first
guess as to the cause of the fault, but the classification is not yet correct. After around 5200
observed execution traces, the localizer was able to analyze enough error traces to provide an
accurate localization result. Note that at that time, only about 6 error traces have been observed,
yet the algorithm already produces a correct result. At trace 33000, the previously detected fault
FC1 disappears and is replaced by FC2. Due to the pool of decision trees maintained by our
localizer, FC2 can again be accurately localized roughly 6000 traces later. Similarly, after FC2
disappears, FC3 is localized roughly 5000 traces after its introduction.

The decision tree pool allows for the effective localization of new faults introduced to the
system at any time. At trace 88000 in Figure 4.18, FC4 is introduced, and can again be accu-
rately localized after observing around 5000 traces. FC3 and FC4 disappear at trace 121000

128

 0

 0.2

 0.4

 0.6

 0.8

 1

F1 Score

0 40000 80000 120000 160000 200000

#Traces

Active Range of Fault Combination 6

Active Range of Fault Combination 5

Active Range of Fault Combination 4

Active Range of Fault Combination 3

Active Range of Fault Combination 2

Active Range of Fault Combination 1

Figure 4.18: Fault Localization Accuracy for Dynamic Environment with Transient Faults

and are replaced by simultaneously occurring errors FC5 and FC6. This situation is more
challenging for our approach, as seen in the rightmost 80000 traces in Figure 4.18. The spikes
between trace 121000 and 150000 represent different localization attempts that are later inval-
idated by contradicting execution traces. Finally, however, the localization stabilizes and both
faults FC5 and FC6 are accurately detected.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.005 0.01 0.015 0.02

F1
 S

co
re

Noise Ratio

p=0.04
p=0.002

p=0.0003
p=0.0001

Figure 4.19: Noise Resilience – Accuracy in the Presence of Noisy Data

We also evaluated the performance of our approach using different noise levels in the trace

129

logs. Figure 4.19 analyzes how F1 develops with increasing noise ratio. The figure contains four
lines for the scenario settings S1 − S4. To ensure that the algorithm actually obtained enough
traces for fault localization, we executed the localization run after 200000 observed traces.

4.6.5.4 Runtime Considerations

Due to the nature of the tackled problem, as well as the usage of C4.5 decision trees to generate
rules, there are some practical limitations to the number of traces and scenario sizes that can be
analyzed using our approach within a reasonable time. In the following we provide insights into
the runtime performance in different configurations and discuss strategies for fine-tuning.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 250000 500000 750000 1e+06

L
o
c
a
liz

a
ti
o
n
 T

im
e
 (

m
s
)

#Traces

5 Values per Input Part
10 Values per Input Part
50 Values per Input Part

100 Values per Input Part

Figure 4.20: Localization Time for Different Trace Window Sizes (S5, |d| = {5, 10, 50, 100})

Figure 4.20 shows the time needed for to localize faults for various trace window sizes for
the base scenario S5, for input sizes |d| = {5, 10, 50, 100}. The figure illustrates that the time
needed for a single localization run increases roughly linearly with increasing window sizes.
Larger trace windows allow the algorithm to find more complex faults. If fast localization results
are needed, the window size must be kept adequately small, at the cost of the system not being
able to localize faults above a certain complexity.

Furthermore, the frequency of localization runs must be considered when implementing our
approach in systems with very frequent incoming traces (in the area of hundreds or thousands
of traces per second). Evidently, there is a natural limit to the number of traces that can be
processed per time unit. Figure 4.21 shows the localization speed as number of traces processed
per second compared to different fault localization intervals (i.e., number of traces after which
fault localization is triggered periodically) for different window sizes (|T |).

The data in Figure 4.21 can be seen as a performance benchmark for the machine(s) on
which the fault localization is executed. Executing this test on different machines will result in
different performance footprints, which serves as a decision support for configuring window size
and localization interval. For instance, if our application produces 1500 traces per second (i.e.,
processes 1500 requests per second), a localization interval greater than 400 should be used.
Currently, the selection happens manually, but as part of our future work we investigate means
to fine-tune this configuration automatically.

130

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

c
e

s
s
e

d
 T

ra
c
e

s
 p

e
r

S
e

c
o

n
d

Fault Localization Interval (# Traces)

Window Size = 50000 Traces
Window Size = 100000 Traces
Window Size = 200000 Traces
Window Size = 300000 Traces

Figure 4.21: Fault Localization Performance for Different Intervals and Window Sizes (S5)

4.6.6 Discussion of Assumptions, Weaknesses and Limitations

In this section we summarize the main assumptions, weaknesses and current limitations of the
approach discussed in this chapter. This summary also points to open research questions which
may be of interest for future investigation.

∗ Long-running business processes with humans: The focus of the presented testing ap-
proach is on data-centric, technical Web services and processes with short waiting time
between activities. Our approach is arguably not well suited for lengthy service com-
positions and business processes possibly involving human tasks (e.g., credit application
process, product assembly process).

∗ Testing with real services: The presented framework aims at integration testing of compo-
sitions with real (production use) services. The approach is hence best suited for technical
services that are free of charge or only associated with a small fee. Integration of ex-
pensive services from external providers is not the intended scope. We point out that
related approaches which perform online testing of services [35, 54, 119, 127] use similar
assumptions. For instance, [119] utilizes online testing for service discovery, binding, and
composition. Critical security features like authentication and authorization are also best
tested in the services’ real execution environment [35, 134]. A possible extension to our
approach would be to utilize mock testing services which simulate or proxy the actual
services. However, some faults and side effects may only be reliably discovered on the
basis of the real services.

∗ Long transitive data dependencies: The k-node data flow coverage criterion is an instru-
ment to limit the size of the test case set. However, the effectiveness of the measure
depends on the composition structure. Whereas our approach is well-suited for most real-
life data flow graphs (e.g., Composition 1 on the left side of Figure 4.22), for certain corner
cases k-node coverage cannot be applied as effectively (e.g., Composition 2 on the right
side of Figure 4.22). As part of our future work we are further investigating the impact of
structural features.

131

a1

a4

a3

a6

a1 a2 a3

a2

a5

a4a6 a5

a9a7 a8 . . .

a8

a7

a9 . . .

. . .

. . .

Composition 1 Composition 2

Figure 4.22: Examplary Data Flow of Structurally Different Service Compositions

∗ Implicit data dependencies: Moreover, our test model considers only data dependencies
on the service composition level. Our approach is currently not able to detect implicit
dependencies in the environment, e.g., caused by two services reading/writing from/to
the same distributed file system. However, in Section 3.5 we have proposed techniques
for capturing such system-level changes (e.g., write operations on the filesystem), and
in future work we plan to integrate these implicit dependencies into the testing approach
discussed here.

∗ Lack of semantic information: Currently, our approach lacks semantic information such
as knowledge about the internal implementation of services. In particular, a model of
the service-internal data flow would help to generate even more accurate test cases. To
achieve this task we envision the use of testable services [24, 94] which expose metadata
without discovering the actual service internals.

4.7 Related Work

Testing of SBAs and service compositions has been intensively studied in the previous years. In
this section, we discuss some of the related work in these areas in detail.

4.7.1 Testing of Service-Based Applications

Earlier works have placed the research areas of service-oriented computing and software test-
ing into perspective, and identified the characteristics and challenges that apply to testing single
services and services in combination [44, 51]. An overview and timeline of different testing
approaches for service compositions has recently been given by Hazlifah et al. [282]. Our ap-
proach is also influenced by early works that introduced data flow oriented program testing (e.g.,
by Laski/Korel [183] or Rapps/Weyuker [275]), as well as by authors who have proposed data
flow analysis as a suitable means to generate test cases for testing Web services (e.g., Heckel
and Mariani [124]). Also Liu et al. [200] have addressed the problem of data-flow based testing
of Web applications, although their focus is more on analyzing Hypertext Markup Language
(HTML)/XML documents and navigation relations across HTTP requests.

In [111], a method to generate test case specifications for WS-BPEL compositions is in-
troduced. Whereas their approach attempts to cover all transitions of (explicit) links between

132

invocations, we focus on direct and indirect data dependencies and ensure k-node data flow
coverage.

The data flow-based validation of Web services compositions presented by Bartolini et al
[25] has similarities with our approach. The paper names categories of data validation problems
(e.g., redundant or lost data) and their relevance for Web service compositions. Data flows in
Web service compositions are modeled using Data Flow Diagrams (DFDs). In addition, the
authors propose the usage of a data fault model to seed faults (e.g., some value that is out of its
domain range) into the data flow model and to establish fault coverage criteria. The DFD can be
used either stand-alone to measure structural coverage along data flow paths, or in combination
with a WS-BPEL description for checking whether the composition conforms to the data flow
requirements. This is contrary to our method: whereas DFDs are defined manually to statically
validate the WS-BPEL process, we auto-generate the data flow view and create test cases for
dynamic integration testing.

Mei et al. [222] propose a WS-BPEL data flow testing approach which aims at identifying
defects in service compositions that are caused by faulty (or ambiguous) XPath expressions se-
lecting a different XML element at runtime than the one that the composition developer intended
to be selected. The paper introduces the XPath rewriting graph (XRG) to model XPath on a con-
ceptual level. Based on XRG, different test coverage criteria are defined, which mandate that all
possible variants of the XPaths in a WS-BPEL process shall be tested. Other than our work, the
paper does not consider dynamic binding or indirect data dependencies in the form of k-node
data flows.

In [82], a method for testing orchestrated services is shown. Service orchestrations, e.g.,
expressed in WS-BPEL, are transformed into an abstracted graph model. Testers define trap
properties expressed as LTL formulas, which indicate impossible execution traces that should
never occur. Model checking is used to generate a counter-examples tree, containing all paths
that violate a certain trap property. Testers can further specify which traces are more relevant,
which helps pruning the counter-examples tree. This approach is different to ours, as it aims at
covering invocation traces of compositions with fixed concrete services. Additionally, it strongly
involves the human tester and requires domain knowledge and more manual adjustments in
preparation of the test.

Tarhini et al. [322] present an approach for testing Web service based applications, which
involves test case generation for several testing steps. Firstly, candidate services are identified
based on boundary value testing analysis [30]. Secondly, the candidates are individually tested,
making use of a state machine based model of the service internals. Finally, at the integration
level, service compositions are tested by covering all possible paths defined in the composition
model. A major difference to our work is that services are selected during development time and
dynamic binding is not considered.

The authors of [381] present another minimum coverage method for composite services. A
description model is introduced, which defines both individual Web services and relationships
among these services. Other approaches use Petri nets [83] or extended types of finite state
machines [182] to model Web service compositions (or, more generally component and process
interactions [87]) in order to generate tests based on these models.

Testing of dynamic service compositions is related to integration testing in component-based

133

systems [213, 214, 352]. The comprehensive survey in [164] discusses various issues in integra-
tion testing of component based systems, some of which are also closely related to testing service
compositions. The work of Piel et al. [265] is largely centered around realizing and testing vir-
tual components in component models. Virtual components enclose a set of real components
that are to be tested in combination. Certain structures of virtual components have similarity
with service combinations defined by the k-node data flow criterion, but virtual components
suffer from problems such as ill-formed empty data flows, which cannot occur in our approach.

The nature of event-based systems and service compositions poses difficult challenges to
testing and debugging [29, 295]. For instance, event correlation is necessary to ensure that in-
coming event messages are associated with the correct processing element, but this mechanism
has proven to be complex and often error-prone (e.g., [23,201]). Additionally, event-based com-
positions evolve over time and require a means to dynamically initiate new or terminate existing
event streams, which is another potential point of failure. Additionally, QoS characteristics are
a key concern, particularly when the event processing platform operates under high load. While
some of the above mentioned points have previously been tackled in isolation, we utilize TeCoS
to test dynamic event-based service compositions end-to-end, as a whole.

Finally, there is a large field of related work in the areas of test result analysis, fault diagno-
sis [63], and fault localization [358]. Tu et al. [333] discuss fault diagnosis in large graph-based
systems and present efficient algorithms for finding potential failure sources from the set of graph
nodes that report an alarm. Our approach to analyzing test results is related to their work, as we
also consider the dependency graph to determine faulty service assignments that have caused a
set of compositions to fail. Software fault localization (e.g., [149, 169, 276, 358]) is a research
area whose primary target is to find faults or bugs on the source code level, and the techniques
are partly applicable to dynamic service compositions as well. Other seminal work in the area of
fault localization has been recently presented by Masri [216]. The technique attempts to identify
faulty program statements based on information flow coverage data of historical program exe-
cutions. In essence, the likelihood of a statement being faulty is determined by contrasting the
percentage of failed to passed executions. We build on this approach and, in order to eliminate
false positives and false negatives, additionally define the metrics fault contribution and fault
participation which are based on precision and recall known from information retrieval [18].

4.7.2 Fault Detection and Fault Localization Techniques

Fault detection and localization is an active research field that continues to produce sophis-
ticated ongoing results. For instance, approaches in the area of software fault localization
(e.g., [149, 169, 276, 358]), whose primary target are faults/bugs on the software source code
level, are partly applicable to service compositions as well. In particular, the metrics termed
hue and suspiciousness in [169] are related to the fault participation and fault contribution met-
rics defined here. Another related fault localization method has recently been applied in [216],
which, similar to our approach, uses coverage metrics based on information flow. The approach
ranks source code statements regarding their likelihood of being faulty, and this ranking is “pri-
marily determined by contrasting the percentage of failing runs to the percentage of passing
runs that induced it” [216].

134

Software fault localization helps to identify bugs in software on the source code level. Of-
tentimes a two-phase procedure is applied: 1) finding suspicious code that may contain bugs
and 2) examining the code and deciding whether it contains bugs with the goal of fixing them.
Research mainly focused on the former, the identification of suspicious code parts with prior-
itization based on its likelihood of containing bugs [358]. The seminal paper by Hutchins et
al. [149] introduces an evaluation environment for fault localization (often referred to as the
Siemens suite), consisting of seven base programs (in different versions) that have been seeded
with faults on the source code level. Renieres et al. [276] present a fault localization technique
for identifying suspicious lines of a program’s source code. Based on the existence of a faulty
run of the program and many correct runs they select the correct run that is most similar to the
faulty one. Proximity is defined based on the program dependence graph. Then, they compare
the two runs and produce a report of suspicious program lines. This general functionality is very
common in software fault localization. Guo et al. [120] propose a different similarity metric
based on control flow. The metric takes into account the sequence of statement instances rather
than just the according set. Our work differs from traditional software fault localization in that
we do not analyze program code but assume to only be able to observe the external behavior of
services. We also assume that the environment or service implementations may change during
runtime, in contrast to the analysis of static code.

Monitoring and fault detection are key challenges for implementing reliable distributed sys-
tems, including SBAs. Fault detectors are a general concept in distributed systems and aim at
identify faulty components. In asynchronous systems it is in fact impossible to implement a
perfect fault detector [60], because faults cannot be distinguished with certainty from lost or
delayed messages. Heartbeat messages can be used for probabilistic detection of faulty compo-
nents; in this case a monitored component or service has the responsibility to send heartbeats
to a remote entity. The fault detector presented in [287] considers the heartbeat inter-arrival
times and allows for a computation of a component’s faulty behavior probability based on past
behavior. Lin et al. [199] describes a middleware architecture called LIama that advocates a ser-
vice bus that users can install on existing service-based infrastructures. It collects and monitors
service execution data which enable to incorporate fault detection mechanisms using the data.
Such a service bus can be used to collect the data necessary for our analysis. The major body of
research in the area of monitoring and fault detection in SBAs deals with topics like SLAs and
service compositions rather than compatibility issues [259].

Fault analysis derives knowledge from faults that have been experienced. Adaptation tries
to leverage this knowledge to reconfigure the system to overcome faults. Zhou et al. [378] have
proposed GAUL, an problem analysis technique for unstructured system logs. Their approach is
based on enterprise storage systems, whereas we focus on dynamic service-based applications.
At its core, GAUL uses a fuzzy match algorithm based on string similarity metrics to associate
problem occurrences with log output lines. The aim of GAUL differs from our approach since
we assume the existence of structured log files and focus on the localization of faulty config-
uration parameters. Control of SOAs mostly relies on static approaches, such as predefined
policies [264]. Techniques from artificial intelligence can be used to improve management poli-
cies for SBAs during runtime. Markov decision processes, for instance, represent a possible
way for modeling the decision-making problems that arise in controlling SBAs. Markov deci-

135

sion processes and algorithms to solve them have been shown effective in reducing the impact
of defects in service implementations by adapting the SBA at runtime [154]. In this work we
focus on fault localization rather than on how to react in the face of faults.

4.8 Conclusions

In this chapter we have discussed the problem of testing and fault localization for data-centric
and event-based applications, and presented a suitable mechanism which is implemented as part
of the TeCoS framework.

The first major contribution of this chapter is about a systematic testing method. The key
problem addressed here is that applications combining services and data from different providers
may result in unforeseen incompatibilities at runtime, hence requiring thorough integration test-
ing. We use an abstracted view of applications that takes into account the data flow occurring
between individual service invocations. Based on an illustrative scenario, we presented our
model of data-centric compositions and formalized the k-node data flow coverage criterion. The
data flow view is suited to abstract from the actual composition technology, and the framework
provides a plug-in mechanism to implement test adapters for concrete target platforms. Two
such adapters have been implemented and evaluated, one for the de-facto standard service com-
position language WS-BPEL and the other for the data processing platform WS-Aggregation,
which has been introduced in Chapter 3 of this thesis.

The second contribution of this chapter is a fault localization technique that is able to identify
which combinations of service bindings and input data cause problems in SBAs. The analysis
is based on log traces, which accumulate during runtime of the SBA. A decision tree learning
algorithm is employed to construct a tree from which we extract rules, describing which config-
urations are likely to lead to faults. For providing a fine-grained analysis we do not only consider
the service bindings but also data on message level. This allows to find incompatibilities that
go beyond “service A is incompatible with service B” leading to rules of the form “service A
has incompatibility issues with service B for messages of type C”. Such rules can help to safely
use partial functionality of services. We present extensions to our basic approach that help to
cope with dynamic environments and changing fault patterns. We have conducted experiments
based on a real-world industry scenario of realistic size. The results provide evidence that the
employed approach leads to successful fault localization for dynamically changing conditions,
and is able to cope with the large amounts of data that accumulate by considering fine-grained
data on message level.

As part of our ongoing work on TeCoS we strive to unify the orthogonal fields of interface-
based service testing and service composition testing. Furthermore, we envision potential future
research directions by integrating the concept of testable services into our approach. It will
be interesting to see whether different coverage data (e.g., line/branch coverage) exposed by
testable services can be utilized to further narrow down the search for faults in dynamic data-
centric compositions. Moreover, we are extending the framework to support further service
composition techniques, particularly focusing on emerging fields such as data-centric service
mashups [32] and interactions in mixed service-oriented systems [290]. We also plan to im-
prove the test generation algorithm and to provide the tester with augmented control over the

136

characteristics of the test optimization and execution. Finally, we are currently integrating the
presented testing approach with our work on fault modeling in event-based systems [136] (see
Section 3.2). The core idea is to obtain a more complete picture of the processing logic of event-
based service compositions (including event correlation, input-output functions, or deployment
topologies), in order to perform systematic tests which aim at identifying common sources of
faults.

Additionally, as future work we plan to extend our approach beyond the pure fault localiza-
tion aspects. In particular, we will use the extracted rules for guiding automated reconfiguration
when a fault occurs. Furthermore, we intend to integrate test coverage mechanisms that help to
actively investigate faults. This can be used for systematic test execution of insightful configura-
tions and input requests which further narrow down the search space of possible fault reasons.

137

CHAPTER 5
SeCoS: Automated Enforcement of

Access Constraints in Business
Processes

5.1 Introduction

The SOA metaphor has been elaborated by different communities to address different problem
areas such as enterprise application integration or business process management (see, e.g., [88,
132,259]). Today, Web services [364] are a commonly used technology which serves as a foun-
dation of SOAs, as well as distributed business processes. A distributed business process is an
intra-organizational or cross-organizational business process executed in a distributed comput-
ing environment (such as SOA). Mission- or safety-critical business processes often require the
definition and enforcement of process-related security policies. For example, such requirements
result from internal business rules of an organization, or service-level agreements (SLAs) [187]
with customers. Particularly for applications which process potentially sensitive data and op-
erate in Cloud environments with multiple tenants, enforcement of security and access control
is imperative. In addition, numerous regulations and Information Technology (IT) standards
exist that pose compliance requirements for the corresponding systems. In particular, IT sys-
tems must comply with laws and regulations such as the Basel II/III Accords, the International
Financial Reporting Standards (IFRS), or the Sarbanes-Oxley Act (SOX). For instance, one im-
portant part of SOX compliance is to provide adequate support for definition and enforcement
of process-related security policies (see, e.g., [53, 80, 232]).

Role-based access control (RBAC) [101,284] is a de-facto standard for access control in both
research and industry. In the context of RBAC, roles are used to model different job positions
and scopes of duty within an information system. These roles are equipped with the permissions
to perform their respective tasks. Human users and other active entities (subjects) are assigned
to roles according to their work profile [313, 314]. A process-related RBAC model [316, 345]

139

enables the definition of permissions and entailment constraints for the tasks that are included in
business processes. A task-based entailment constraint places some restriction on the subjects
who can perform a task x given that a certain subject has performed another task y. Entailment
constraints are an important means to assist the specification and enforcement of compliant
business processes [33, 40, 69, 315, 320, 357].

Mutual exclusion and binding constraints are typical examples of entailment constraints.
Mutual exclusion constraints can be subdivided in Static Mutual Exclusion (SME) and Dynamic
Mutual Exclusion (DME) constraints. An SME constraint defines that two tasks (e.g. “Order
Supplies” and “Approve Payment”) must never be assigned to the same role and must never
be performed by the same subject (to prevent fraud and abuse). This constraint is global with
respect to all process instances in an information system. In contrast, DME refers to individual
process instances and can be enforced by defining that two tasks must never be performed by
the same subject in the same process instance.

In contrast to mutual exclusion constraints, binding constraints define that two bound tasks
must be performed by the same entity. In particular, a Subject-Binding constraint defines that
the same individual who performed the first task must also perform the bound task(s). Similarly,
a Role-Binding constraint defines that bound tasks must be performed by members of the same
role but not necessarily by the same individual.

5.1.1 Motivation

As outlined above, RBAC and entailment constraints are an important means to assist the speci-
fication of business processes and control their execution. Yet, the runtime enforcement of such
constraints in distributed SOA business processes is complex, and currently there is still a lack
of straightforward solutions to achieve this task. The complexity arises from the fact that the
tasks of distributed business processes are performed on independent, loosely coupled nodes in
a network. The advantage of loose coupling is that the different nodes (i.e., services) can execute
their tasks independently of other nodes. However, the enforcement of access constraints in a
distributed system often requires knowledge that is not available to a single node.

Moreover, to enforce access control policies in a software system, the resulting policy mod-
els must also be mapped to the implementation level. To account for different platforms and
implementation styles, it is important to first establish the enforcement on a generic and concep-
tual level, in order to map it to concrete platforms (e.g., SOA, as in our case).

Evidently, enforcement of RBAC policies and constraints has an impact on the execution
time of business processes. Depending on the complexity of the constraints and the amount of
data that needs to be evaluated, the impact will be more or less severe. While the theory behind
RBAC and entailment constraints in business processes has been intensively studied in the past,
less attention has been devoted to the runtime enforcement, including performance impacts, of
such constraints.

With respect to the rising importance of process-aware information systems, paired with an
ever-increasing trend to move applications into Cloud environments, the correct and efficient
implementation of consistency checks in these systems is an important issue. Therefore, the
consistency and runtime performance needs to be evaluated thoroughly in order to ensure the
efficient execution of business processes that are subject to access constraints.

140

5.1.2 Approach Synopsis

In general, distributed business processes involve stakeholders with different background and ex-
pertise. A technical RBAC model may be well-suited for software architects and developers, but
for non-technical domain experts an abstracted view is desirable. In the context of model-driven
development (MDD) [296, 299, 309], a systematic approach for DSL development has emerged
in recent years (see, e.g., [228, 308, 318, 376]). A DSL is a tailor-made (computer) language
for a specific problem domain. To ensure compliance between models and software platforms,
models defined in a DSL are mapped to code artifacts via automated model-transformations
(see, e.g., [227,300,375]). In our approach, the use of a DSL for RBAC constraints allows us to
abstract from technical details and involve domain experts in the security modeling procedure.

RBAC
DSL

Security
Experts

author
statements

expresses

Design Time

IT Architect/
Developer

subject to

RBAC Model
Constraints

Web
Services

annotated
with

implements

writes

Business
Process
Instance

Execution Time

created by model
transformation

 User

Deployment Time

Business
Process
Definition

Business Process
Definition with IAM

Tasks

invokes

instantiated as

IAM
Tasks

enforce

utilizes

executes

PEP

Figure 5.1: Overview of Access Constraint Enforcement Approach

Figure 5.1 depicts a high-level overview of our approach, including the involved stakehold-
ers, system artifacts, and relationships between them. At design time, the security experts author
RBAC DSL statements to define the RBAC model and entailment constraints. IT specialists im-
plement Web services and define business processes on top of the services. At deployment time,
the process definition files are automatically enriched with tasks for IAM (identity and access
management) that conform to the corresponding entailment constraints. The business process
is instantiated and executed by human individuals, and the IAM tasks ensure that the process
conforms to the constraints defined in the RBAC model. A Policy Enforcement Point (PEP)
component intercepts all service invocations to block unauthorized access (see also [134]).

For the sake of platform independence, we model business processes using UML activity
diagrams [249]. In particular, we use the BusinessActivities extension [316], which enables the
definition of process-related RBAC models via extended UML activity models. Based on the
generic solution, we discuss a concrete instantiation and show how the approach is mapped to
the Web services technology stack, including WS-BPEL [246].

141

The remainder of this chapter is structured as follows. In Section 5.2, we present a motivating
scenario. Section 5.3 introduces a generic metamodel for specification of process-related RBAC
models including entailment constraints. Section 5.4 describes the transformation procedure that
enriches the process definitions with IAM tasks to enforce runtime-compliance. In Section 5.5,
we present a concrete WS-BPEL based instantiation of our approach. Implementation-related
details are given in Section 5.6, and in Section 5.7 we evaluate different aspects of our solution.
Section 5.8 discusses related work, and Section 5.9 concludes with an outlook for future work.

5.2 Scenario

We illustrate the concepts of this chapter based on a scenario taken from the e-health domain.
The scenario models the workflow of orthopedic hospitals which treat fractures and other serious
injuries. The hospitals are supported by an IT infrastructure organized in a SOA, implemented
using Web services. The SOA provides Web services for patient data, connects the departments
of different hospitals, and facilitates the routine processes. Because the treatment of patients is a
critical task and the personal data constitute sensitive information, security must be ensured and
a tailored domain-specific RBAC model needs to be enforced. Task-based entailment constraints
in the form of mutual exclusion and binding constraints are a crucial part of the system.

5.2.1 Patient Examination Business Process

A core procedure in the hospital is the patient examination, illustrated in Figure 5.2 as a Business
Activity [316] model. We assume that this procedure is implemented using a business process
engine and that the actions (tasks) represent the invocations of services. The arrows between
the actions indicate the control flow of the process. All tasks are backed by technical services,
however, part of the tasks are not purely technical but involve some human labor or interaction.

The top part of the figure shows the BusinessActivity model of the process, and the bottom
part contains an excerpt of the RBAC definitions that apply to the scenario. We define three
types of roles (Staff, Physician, Patient), each with a list of tasks they are permitted to execute,
and four subjects (John, Jane, Bob, Alice), each with roles assigned to them. The names of
permitted tasks of a role are displayed after the string “Task:”, following the grahical notation
in [316]. Role inheritance hierarchies are modeled using the role-to-role assignment (rrAssign)
relationship (senior-roles inherit the permissions of junior-roles, e.g., Physician inherits from
Staff). The role-to-subject assignment (rsAssign) association is used to assign roles to subjects.

The first step in the examination process (see Figure 5.2) is to retrieve the personal data
of the patient. To demonstrate the cross-organizational character of this scenario, suppose that
the patient has never been treated in our example hospital (H1) before, but has already received
medical treatment in a partner hospital (H2). Consequently, H1 obtains the patient’s personal
data via the Web services of H2. Secondly, the patient is assigned to a physician. After the pa-
tient has been assigned, the physician requests an x-ray image from the responsible department.
The physician then decides whether additional data are required (e.g., information about similar
fractions or injuries in the past). If so, the business process requests historical data from partner
hospitals which also participate in the SOA. For privacy reasons, the historical data are only

142

Get Personal Data

Get Patient History
From Partner Hospital

Patient Examination Process

«structured»
(LoopNode)

«structured» Reception

Assign Physician

«structured» Examination

Get Critical History

Obtain X-Ray Image[is emergency]

[more data required]

Decide On Treatment

B Staff

Task: Get Personal Data,
Assign Physician,
Obtain X-Ray Image

R

Physician

Task: Get Critical History,
Get Expert Opinion,
Decide On Treatment

R

BA

B

RBind: Assign Physician RBind: Get Personal Data

B

DME: Get Expert Opinion
SBind: Decide on Treatment

John S

Bob S

«rsAssign»

[else]

Patient

Task: Get Patient History
From Partner Hospital,
Get Critical History

R

Alice S

«rsAssign»

Get Expert Opinion B

DME: Get Critical History
SME: Get Patient History

From Partner Hospital

B

B

SBind:Get Patient History
From Partner Hospital

SME: Get Expert Opinion

SBind: Get Critical History

Jane S

«rsAssign» «rsAssign»

J «rrAssign»

Figure 5.2: Patient Examination Scenario Modeled as UML Business Activity

disclosed to the patient herself, and the Get Patient History service task has to execute under
the role Patient (see Figure 5.2). Another situation that requires additional data is the case of an
emergency. If the emergency demands for immediate surgery, it is important to determine his-
torical data about any critical conditions or diseases that might interfere with the surgery (task
Get Critical History). To avoid that a single physician takes wrong decisions in an emergency,
it is mandatory to get the opinion of a second expert. Finally, the task Decide On Treatment
completes the examination and triggers the (physical) treatment.

5.2.2 Entailment Constraints

We support four types of entailment constraints which we briefly discuss in the following. The
scenario process in Figure 5.2 contains examples for each type of constraint.

• Static Mutual Exclusion (SME): The SME constraint between Get Expert Opinion and Get
Patient History from Partner Hospital defines that the two tasks must never be executed by
the same subject or role, across all process instances. This constraint is reasonable as we need
to explicitly separate the permissions of patients and physicians.
• Dynamic Mutual Exclusion (DME): The DME constraint for Get Critical History and Get

Expert Opinion requires that, for each instance of the process, these two tasks are executed by
different subjects. This ensures that the treatment decision in an emergency clearly depends
on the medical assessment of two individual physicians.

143

• Subject Binding (SBind): An example SBind constraint is the Get Patient History From
Partner Hospital task, which executes multiple times in a loop. To ensure that each iteration
is done by the same subject, the SBind attribute reflexively links to the same task. A second
subject binding exists between Get Critical History and Decide on Treatment.
• Role Binding (RBind): The process defines a role-binding constraint which demands that the

Get Personal Data and Assign Physician are performed by the same role (although potentially
different subjects).

5.3 Metamodel for Specification of Entailment Constraints in
Business Processes

This section gives an overview of the generic metamodel for specification of process-related
RBAC models including entailment constraints. To provide a self-contained view, Section 5.3.1
repeats the core definitions from [316], which form the basis for our approach. In Section 5.3.2,
we introduce the textual RBAC DSL which allows to define entailment constraints in a simple
textual syntax and enables a seamless mapping of UML-based process-related RBAC models
(see [316]) to the implementation level.

5.3.1 Business Activity RBAC Models

Definition 8 (Business Activity RBAC Model) A Business Activity RBAC Model BRM =
(E,Q,D) where E = S ∪ R ∪ PT ∪ PI ∪ TT ∪ TI refers to pairwise disjoint sets of the
metamodel, Q = rh∪ tra∪rsa∪ptd∪pi∪ ti∪es∪er to mappings that establish relationships,
and D = sb ∪ rb ∪ sme ∪ dme to binding and mutual exclusion constraints, such that:

∗ For the sets of the metamodel:

– An element of S is called Subject. S 6= ∅.
– An element of R is called Role. R 6= ∅.
– An element of PT is called Process Type. PT 6= ∅.
– An element of PI is called Process Instance.

– An element of TT is called Task Type. TT 6= ∅.
– An element of TI is called Task Instance.

In the list below, we iteratively define the partial mappings of the Business Activity RBAC
Model and provide corresponding formalizations (P refers to the power set, for further details
see [316]):

1. The mapping rh : R → P(R) is called role hierarchy. For rh(rs) = Rj we call rs
senior role and Rj the set of direct junior roles. The transitive closure rh∗ defines the
inheritance in the role hierarchy such that rh∗(rs) = Rj∗ includes all direct and transitive
junior roles that the senior role rs inherits from. The role hierarchy is cycle-free, i.e. for
each r ∈ R : rh∗(r) ∩ {r} = ∅.

144

2. The mapping tra : R → P(TT) is called task-to-role assignment. For tra(r) = Tr
we call r ∈ R role and Tr ⊆ TT is called the set of tasks assigned to r. The mapping
tra−1 : TT → P(R) returns the set of roles a task is assigned to (the set of roles owning
a task).
This assignment implies a mapping task ownership town : R → P(TT), such that for
each role r ∈ R the tasks inherited from its junior roles are included, i.e. town(r) =⋃

rinh∈rh∗(r) tra(rinh) ∪ tra(r). The mapping town−1 : TT → P(R) returns the set of
roles a task is assigned to (directly or transitively via a role hierarchy).

3. The mapping rsa : S → P(R) is called role-to-subject assignment. For rsa(s) = Rs

we call s ∈ S subject and Rs ⊆ R the set of roles assigned to this subject (the set of roles
owned by s). The mapping rsa−1 : R→ P(S) returns all subjects assigned to a role (the
set of subjects owning a role).
This assignment implies a mapping role ownership rown : S → P(R), such that
for each subject s ∈ S all direct and inherited roles are included, i.e. rown(s) =⋃

r∈rsa(s) rh
∗(r) ∪ rsa(s). The mapping rown−1 : R → P(S) returns all subjects

assigned to a role (directy or transitively via a role hierarchy).

4. The mapping ptd : PT → P(TT) is called process type definition. For ptd(pT) = TpT
we call pT ∈ PT process type and TpT ⊆ TT the set of task types associated with pT .

5. The mapping pi : PT → P(PI) is called process instantiation. For pi(pT) = Pi we call
pT ∈ PT process type and Pi ⊆ PI the set of process instances instantiated from process
type pT .

6. The mapping ti : (TT × PI) → P(TI) is called task instantiation. For ti(tT , pI) = Ti
we call Ti ⊆ TI set of task instances, tT ∈ TT is called task type and pI ∈ PI is called
process instance.

7. Because role-to-subject assignment is a many-to-many relation (see Def. 8.3), more than
one subject may be able to execute instances of a certain task type. The mapping es :
TI → S is called executing-subject mapping. For es(t) = s we call s ∈ S the executing
subject and t ∈ TI is called executed task instance.

8. Via the role hierarchy, different roles may posses the permission to perform a certain task
type (see Def. 8.1 and Def. 8.2). The mapping er : TI → R is called executing-role
mapping. For er(t) = r we call r ∈ R the executing role and t ∈ TI is called executed
task instance.

9. The mapping sb : TT → P(TT) is called subject-binding. For sb(t1) = Tsb we call
t1 ∈ TT the subject binding task and Tsb ⊆ TT the set of subject bound tasks.

10. The mapping rb : TT → P(TT) is called role-binding. For rb(t1) = Trb we call t1 ∈ TT
the role binding task and Trb ⊆ TT the set of role bound tasks.

11. The mapping sme : TT → P(TT) is called static mutual exclusion. For sme(t1) = Tsme

with Tsme ⊆ TT we call each pair t1 ∈ TT and tx ∈ Tsme statically mutual exclusive tasks.

145

12. The mapping dme : TT → P(TT) is called dynamic mutual exclusion. For dme(t1) =
Tdme with Tdme ⊆ TT we call each pair t1 ∈ TT and tx ∈ Tdme dynamically mutual
exclusive tasks.

5.3.2 RBAC Modeling for Business Processes

Figure 5.3 depicts the core RBAC metamodel and its connection with the core elements of
the BusinessActivity metamodel. In particular, Figure 5.3 outlines how we extended our DSL
from [134] to include process-related RBAC entailment constraints (see [316]). The different
model elements are described below.

Permission

seniorRole

Subject

+ name
+ allPermissions()

Resource

+ name

Operation

+ name

*

*

dynamicExclusion

staticExclusion

subjectBinding

roleBinding

0..*

RBAC
Model

Core
Model
For
Business
Activity
RBAC
Constraints

Role

+ name
*

*

TaskInstance

1..*

executingSubject

*

instanceOf

ProcessType

*

instanceOf

executingRole

*

*

*

ProcessInstance

+ instanceID

TaskType

+ taskName

Figure 5.3: Excerpt of RBAC Metamodel and Business Activity Metamodel

A ProcessInstance has a unique instanceID, a ProcessType, and is composed
of multiple TaskInstance objects which are again instances of a certain TaskType. The
class TaskType has a name and four reflexive associations that define mutual exclusion and
binding constraints. Subjects are identified by a name attribute and are associated with an
arbitrary number of Roles, which are themselves associated with Permissions to execute
certain Operations. A TaskType in the BusinessActivity metamodel corresponds to an
Operation in the RBAC metamodel. Roles may inherit permissions from other roles (as-
sociation seniorRole). In our approach, we directly associate Web service instances with
Resources. That is, a subject that attempts to invoke a Web service operation op on a ser-
vice resource res must be associated with a role that holds a permission to execute op on res.
A detailed description of the BusinessActivity metamodel and corresponding Object Constraint
Language (OCL) constraints can be found in [316]. We utilize the core parts of this model

146

and focus on the mapping of the RBAC constraints to a textual DSL and to business process
execution platforms, as illustrated for WS-BPEL in Section 5.5.

5.3.3 RBAC DSL Statements

Our RBAC DSL is implemented as an embedded DSL [376] and is based on the scripting lan-
guage Ruby as host programming language. We now briefly discuss how the model elements
are mapped to language constructs provided by the DSL (see also Section 5.3.1 and Figure 5.3).
Table 5.1 lists the basic DSL statements (left column) and the corresponding effect (right col-
umn). In the table, keywords of the DSL syntax are printed in bold typewriter font, and
placeholders for custom (scenario-specific) expressions are printed in italics.

RBAC DSL Statement Effect
RESOURCE name [description] Define new resource
OPERATION name [description] Define new operation
SUBJECT name [description] Define new subject
ROLE name [description] Define new role
ASSIGN subject role Assign role to subject
INHERIT juniorRole seniorRole Let senior role inherit a junior role
PERMIT role operation resource Allow a role to execute a certain operation on a

specific resource
TASK name operation resource Define operation-to-task mapping
DME task1 task2 Define dynamic mutual exclusion (DME)
SME task1 task2 Define static mutual exclusion (SME)
RBIND task1 task2 Define role-binding (RBind)
SBIND task1 task2 Define subject-binding (SBind)

Table 5.1: Semantics of RBAC DSL Statements

The RBAC DSL statements RESOURCE, OPERATION, SUBJECT and ROLE are used to
create resources, operations, subjects and roles with the respective name and optional description
attributes. ASSIGN creates an association between a subject and a role. INHERIT takes two
parameters, a junior-role and a senior-role name, and causes the senior-role to inherit all permis-
sions of the junior-role. PERMIT expresses the permission for a role to execute a certain oper-
ation on a resource. DME and SME allow the specification of dynamically or statically mutual
exclusive operations. Using RBIND and SBIND, two operations are subjected to role-binding
or subject-binding constraints. Finally, the TASK statement is used to establish a mapping from
our RBAC DSL to implementation level artifacts. More precisely, operations are mapped to
concrete WS-BPEL tasks (see Section 5.5.2). The complete access control configuration for the
patient examination scenario, expressed via RBAC DSL statements, is printed in Appendix A.1.

5.4 Process Model Transformations for Runtime Constraint
Enforcement

To enforce the RBAC constraints at runtime, the business process needs to follow a special
procedure. If the process executes a secured task, it needs to provide a valid authentication

147

token for the active user. For instance, this token contains information which subject (e.g.,
“Jane”) executes an operation, and under which role (e.g., “Staff”) this individual operates. In
this section, we discuss our approach for automatically obtaining these authentication tokens to
enforce security at runtime.

Figure 5.4 illustrates which artifacts are utilized by the instances of the business process. We
follow the concepts of the Security Assertion Markup Language (SAML) framework [245] and
provide the authentication data with the aid of an Identity Provider (IdP) service. An IdP is a
service provider that maintains identity information for users and provides user authentication to
other services. The IdP is a reusable standard component; its sole responsibility is to authenticate
the user and to issue an AuthData document which asserts the user’s identity (subject and role).
As such, the IdP has no knowledge about the process structure and RBAC constraints. Hence,
we utilize the decoupled RBAC Manager Service which keeps track of the state of the process
instances. The RBAC Manager Service knows the process structure and decides, based on the
RBAC constraints, which subject or role is responsible for the next task (see also [315]).

Business Process
Instance

requests
assertion

Responsibility

+ subject: String
+ role: String

issues *
uses for
service invocations

Identity Provider
Service (IdP)

+ getAuthenticationData(
responsibility : Responsibility)

: AuthData

*

RBAC Manager Service

+ getResponsibility(
instanceID: String,
taskName: String)

: Responsibility

requests
responsibility

for tasks
AuthData

determines
for each task *

Figure 5.4: Relationship Between Business Process Instance and Security Enforcement Artifacts

Combining the functionality of getResponsibility and getAuthenticationData
(see Figure 5.4) constitutes the core protocol for obtaining authentication tokens that enable the
enforcement of task-based entailment constraints in a BusinessActivity. This recurring proto-
col is executed for each secured task; hence, it need not be implemented manually, but should
ideally be generated automatically on top of the business process model that is defined by the de-
veloper. We therefore aim at providing automatic transformations to convert the domain-specific
extensions for mutual exclusion and binding constraints in BusinessActivity models into regular
activity models which perform the required IAM tasks. This transformation is required as an in-
termediate step towards the generation of corresponding definitions that are directly deployable
and executable (e.g., by WS-BPEL engines). In the following, we describe the transformation
procedure in detail and discuss different implementation and runtime aspects.

148

5.4.1 Model Transformations to Enforce Mutual Exclusion Constraints

Here we discuss the detailed procedure for runtime enforcement of mutual exclusion constraints.
The design-time BusinessActivity models are transformed into deployable standard activity
models that comply with this procedure. The necessary transformations are illustrated in Fig-
ure 5.5. Tasks representing invocations to external Web services are printed in grey, while struc-
tured activities and tasks with local processing logic are depicted with a white background.

Get Authentication Data

Automatic Transformation

Process Design Model Process Deployment Model

«structured»

Add Authentication to Request

AuthData

AuthData

taskName

'BusinessAction_X'

. . .

BusinessAction X

DME: BusinessAction Y

B

. . .

BusinessAction X

Check Mutual Exclusion

AuthDataDME

'BusinessAction_Y'

Log Invocation

taskName

[check unsuccessful]

AuthData

taskName

[else]

«structured»

taskName instanceID

...

(a) Transformation for DME Constraints

Process Design Model Process Deployment Model

Get Authentication Data

Automatic Transformation

«structured»

Add Authentication to Request

AuthData

AuthData

taskName

'BusinessAction_X'

. . .

BusinessAction X

SME: BusinessAction Y

B

. . .

BusinessAction X

Check Mutual Exclusion

AuthDataSME

'BusinessAction_Y'

Log Invocation

taskName

[check unsuccessful]

global

'true'

AuthData

taskName

[else]

«structured»

taskName instanceID

...

(b) Transformation for SME Constraints

Figure 5.5: Process Transformations to Enforce Mutual Exclusion Constraints

149

The transformed activity models with mutual exclusion constraints in Figure 5.5 contain
four additional tasks. All four tasks are UML CallBehaviorActions [249] (indicated by the rake-
style symbol) which consist of multiple sub-tasks. The internal processing logic depends on the
concrete target platform; later in Section 5.5.1 we discuss the detailed logic for WS-BPEL.

The task Get Authentication Data invokes the IdP service to obtain the authentication data
token (AuthData) to be used for later invocation of the BusinessAction. The second inserted
task is Check Mutual Exclusion, which is responsible for checking whether the provided authen-
tication data are valid with respect to the mutual exclusion constraint. A UML value pin [249]
holding the name of the corresponding task provides the input for the pin DME (Figure 5.5(a))
or the pin SME (Figure 5.5(b)), respectively. Additionally, the Check Mutual Exclusion task re-
ceives as input the name of the task to-be-executed (taskName, which is known from the original
process definition), and the AuthData (received from the IdP service). The decision node is used
to determine whether Check Mutual Exclusion has returned a successful result. If the result is
unsuccessful (i.e., a constraint violation has been detected) the control flow points back to Get
Authentication Data to ask the IdP again for a valid authentication data token. Otherwise, if
the result is successful, the task Add Authentication to Request appends the user credentials in
AuthData to the request message for the target Web service operation. The fourth inserted task
is Log Invocation, which adds a new log record that holds the name of the task (taskName) and
the AuthData of the authenticated user. The input pin global determines whether the log entry
is stored in a local variable of the process instance (value null) or in a global variable accessible
from all process instances (value ’true’).

5.4.2 Model Transformations to Enforce Binding Constraints

The approach for transforming binding constraints in BusinessActions (illustrated in Figure 5.6)
is similar to the transformation for mutual exclusion constraints presented in Section 5.4.1. The
transformed process model first requests authentication data from the IdP service. The task
Check Binding Constraints then checks the resulting AuthData with respect to role-bindings
(RBind, Figure 5.6(a)) and subject-bindings (SBind, Figure 5.6(b)). The process asks for new
user credentials and repeats the procedure if the binding constraint is not fulfilled.

Note that the entailment constraints are checked directly inside the process, not by the IdP
service. Even though the AuthData (subject, role) obtained from the IdP is trusted and assumed
to properly represent the user executing the process, the AuthData may be invalid with respect
to entailment constraints. Hence, the branch “check unsuccessful” indicates that the process
instance asks for a different user to login and execute the task. As the log of previous tasks
is stored locally by each process instance (except for SME constraints, where log entries are
also stored globally), the Check Binding and Check Mutual Exclusion tasks are required directly
inside the process logic and are not outsourced to external services. This approach is able to deal
with deadlock situations (evaluated in Section 5.7.2).

In certain deployments, the platform providers (e.g., hospital management) may be interested
in tracking failed authorizations. For brevity, such mechanisms are not included in Figures 5.5
and 5.6, but extending the approach with notifications is straight-forward.

150

Process Design Model Process Deployment Model

Get Authentication Data

BusinessAction X

Automatic Transformation

BusinessAction X

RBind: BusinessAction Y

B

«structured»

Add Authentication to Request

AuthData

AuthData

taskName

'BusinessAction_X'

Check Binding Constraints

AuthDataRBind

'BusinessAction_Y'. . .

. . .

[else]

Log Invocation

taskName AuthData

[check unsuccessful]

«structured»

taskName instanceID

...

(a) Transformation for Role Binding

Process Design Model Process Deployment Model

Get Authentication Data

BusinessAction X

Automatic Transformation

BusinessAction X

SBind: BusinessAction Y

B

«structured»

Add Authentication to Request

AuthData

AuthData

taskName

'BusinessAction_X'

Check Binding Constraints

AuthDataSBind

'BusinessAction_Y'
. . .

. . .

[check unsuccessful]

[else]

Log Invocation

taskName AuthData

«structured»

taskName instanceID

...

(b) Transformation for Subject Binding

Figure 5.6: Process Transformations to Enforce Binding Constraints

5.4.3 Transformation Rules for Combining Multiple Constraints

So far, the transformation rules for the four different types of entailment constraints in Busines-
sActivities (role-binding, subject-binding, SME, DME) have been discussed in isolation. How-

151

ever, as the scenario in Section 5.2 illustrates, BusinessActions can possibly be associated with
multiple constraints (e.g., Get Critical History). Therefore, we need to analyze how the trans-
formation rules can be combined while still maintaining the constraints’ semantics. A simple
approach would be to successively apply the atomic transformations for each BusinessAction
and each of the constraints associated with it. However, this approach is not suited and may lead
to incorrect results. For instance, if we consider the task Get Critical History with the associated
DME and SBind constraints, the process might end up requesting the authentication data twice,
which is not desired. Therefore, multiple constraints belonging to the same task are always
considered as a single unit (see also [315]).

Figure 5.7 depicts the transformation template for a generic sample BusinessAction X with
multiple constraints c1, c2, . . . , cn.

Process Design Model Process Deployment Model

Get Authentication Data

Add Authentication to Request

BusinessAction X B

Constraint c1
Constraint c2
…
Constraint cn

BusinessAction X

Check Constraint c1

Log Invocation

[c1 violated]

Check Constraint c2

[c2 violated]

. . .

[else]

Check Constraint cn

[cn violated]

[else]

[else]

Automatic Transformation

Figure 5.7: Generic Transformation Template for Business Action With Multiple Constraints

5.5 Application to SOA and WS-BPEL

This section discusses details of the process transformation from Section 5.4 and illustrates how
the approach is applied to SOA, particularly WS-BPEL and the Web services framework.

5.5.1 Supporting Tasks for IAM Enforcement in WS-BPEL

In the following we discuss the internal logic of the five supporting IAM tasks used in the
transformed activity models for the enforcement of mutual exclusion (Section 5.4.1) and binding
constraints (Section 5.4.2).

152

Log Invocation Locally

Log
Invocation

AuthDatataskName

taskName AuthData

[isNull(global)]

global

Log Invocation Globally

taskName AuthData

[else]

(a) Log Invocation

Get Responsibility

Perform IdP Authentication Request

 Get Authentication Data

instanceID

taskName

taskName

Responsibility

instanceID

AuthData

AuthData

Responsibility

(b) Get Authentication Data

Create WS-Security Header
for taskName

Add AuthData
to WS-Security Header

Add Authentication
to Request

AuthData

taskName

AuthData

taskName

SOAPHeader

SOAPHeader

(c) Add Authentication to Request

Check Binding Constraints
RBindSBind

[else]

[else]

AuthData

successful unsuccessful

[not isNull(SBind)]

[not isNull(RBind)]

Lookup Local Invocation Map

taskName

Lookup Local Invocation Map

taskName

logs

logs

[else]

[logs->notEmpty() and
logs->last().subject <>

AuthData.subject]

[logs->notEmpty()
and

logs->last().role <>
AuthData.role]

[else]

(d) Check Binding Constraints

Check Mutual Exclusion
SMEDME

[else]

[else]

AuthData

successful unsuccessful

[not isNull(DME)]

[not isNull(SME)]

Lookup Local Invocation Map

taskName

Lookup Global Invocation Map

logs

logs
[logs->isEmpty() or logs.forAll(

subject <> AuthData.subject and
role <> AuthData.role)]

[else]

taskName

(e) Check Mutual Exclusion

Figure 5.8: Supporting Tasks for IAM Enforcement in WS-BPEL

Task Log Invocation: In general, process-related RBAC constraints rely on knowledge
about historical task executions (see also [316]). Therefore, a mechanism is required to store
data about previous service invocations. One conceivable approach is that the process execution
engine keeps track of the invocation history. To that end, invocation data can be stored either
in a local variable of the process instance (for DME constraints) or in a global variable that
is accessible from all process instances (for SME constraints). Unfortunately, WS-BPEL does
not support global variables, but we can overcome this issue by using an external logging Web
service. Figure 5.8(a) shows the Log Invocation activity, which stores data about service calls,
including the name of the invocation and the AuthData of the user under which the process exe-
cutes. The invocation is first stored in a local array variable of WS-BPEL. If the input pin named
global is not null, the data is also stored with the external logging service (Log Invocation Glob-
ally). Currently, our framework relies on a central logging service. In our future work, we tackle
advanced challenges such as privacy, and timing issues that come with decentralized logging.

Task Get Authentication Data: This supporting IAM task is used to obtain authentication
tokens, see Figure 5.8(b). The identifier of the affected process task is provided as a parame-
ter taskName. For instance, in the case of WS-BPEL, the name attribute of the corresponding
invoke statement can be used to determine this value. As outlined in Section 5.4, the procedure
is split up between the RBAC Manager service and the IdP. First, the invocation Get Respon-

153

sibility asks the RBAC Manager for the role or subject responsible for executing the next task.
All combinations of values are possible, i.e., either subject or role, or both, or none of the two
may be specified. The subject/role responsibility information is used to execute an IdP Authen-
tication Request. The authentication method performed by the IdP is transparent; for instance,
it may perform smartcard based authentication or ask for username/password. The AuthData
output pin provided by this invocation contains the definite subject and role name of the user.

Task Add Authentication to Request: The activity in Figure 5.8(c) illustrates how authenti-
cation data are appended to the invocation of Business Actions. First, the AuthData information
is used to request a SAML assertion from the IdP service. This token contains the subject and
role with a trusted signature that ensures the integrity of the assertion content. The assertion
is then added to the request message for the target service operation (the name is specified via
the input pin taskName) using the SOAP header mechanism [366]. Note that this activity leaves
room for optimization. If many tasks in the process are executed by the same subject and role, it
is advantageous to cache and reuse the SAML tokens in a local variable of the process instance.
However, caching security tokens carries the risk of inconsistencies if the RBAC policies change.

Task Check Binding Constraints: Figure 5.8(d) contains the activity Check Binding Con-
straints, whose internal logic is to check the logged invocations with role-binding and subject-
binding against the AuthData information. If the SBind parameter is set, the activity looks up
the last corresponding log entry (the taskName of the log entry needs to be equal to SBind) in
the local invocation map of the WS-BPEL process instance. If the returned array (named logs)
is not empty, then the subject stored in the last log entry needs to be identical to the subject in
AuthData. Analogously, if the RBind parameter is set, then the role of the last log entry with
taskName equal to RBind must be equal to the role in AuthData. If and only if all conditions
hold true, the activity returns a success status.

Task Check Mutual Exclusion: Similarly, the Check Mutual Exclusion activity in Figure
5.8(e) uses the log data to check the AuthData against the previously performed invocations. If
the input parameter DME is set, WS-BPEL looks up the log entries from the local invocation
map. Otherwise, if an SME parameter is provided, the corresponding logs are received from
the external logging service (global invocation map). The activity returns a successful result if
either the logs sequence is empty or all log entries have a different subject and role than the
given AuthData. Due to the possibly large number of entries in the logs sequence, it is crucial
where these conditions are evaluated (by the process or the logging service directly). To avoid
transmitting log data over the network, we recommend the implementation variant in which the
logging service itself validates the conditions. To that end, AuthData is sent along with the
request to the logging service and the service returns a boolean result indicating whether the
constraints are satisfied.

5.5.2 RBAC DSL Integration with WS-BPEL

The TASK statement of the RBAC DSL realizes a mapping from operations to concrete WS-
BPEL tasks (invoke activities). This corresponds to the model in Figure 5.3, where TaskType
in the Business Activities metamodel is mapped to Operation in the RBAC metamodel. Us-
ing this mapping, we are able to automatically apply all Business Activity entailment constraints
to the corresponding WS-BPEL invoke activities.

154

DSL Statement WS-BPEL DSL Statement
DME task1 task2 <invoke name=”task1” rbac:dme=”task2” ../>

SME task1 task2 <invoke name=”task1” rbac:sme=”task2” ../>

SBIND task1 task2 <invoke name=”task1” rbac:sbind=”task2” ../>

RBIND task1 task2 <invoke name=”task1” rbac:rbind=”task2” ../>

Table 5.2: Mapping of RBAC DSL Statements to WS-BPEL DSL Statements

In our approach, WS-BPEL invoke activities are constrained using specialized DSL state-
ments. The DSL uses the extension mechanism of WS-BPEL and introduces new XML at-
tributes rbac:dme, rbac:sme, rbac:sbind and rbac:rbind (the prefix rbac refers to
the corresponding XML namespace). These attributes are directly annotated to the invoke ac-
tivities in WS-BPEL. Table 5.2 illustrates how the relevant RBAC DSL statements are mapped
to the corresponding WS-BPEL DSL statements. For instance, the DME statement is mapped
to a rbac:dme attribute. The parameters of the DSL statements in Table 5.2 refer to the task
types defined using the TASK statement (see Section 5.3.3). The rbac:* attributes can contain
multiple valued separated by commas, e.g., a task that is dynamically mutual exclusive to task1
and task2 can be annotated with a rbac:dme=”task1,task2” attribute.

5.5.3 Automatic Transformation of WS-BPEL Definition

At deployment time, the business process model is automatically transformed to ensure correct
enforcement of identity and access control policies at runtime. The transformation can happen
on different abstraction levels, either based on the platform-independent model (PIM) or on the
platform-specific model (PSM) (see, e.g., [356]). On the PIM level, model transformation lan-
guages such as Query/View/Transformation (QVT) [248] can be used to perform UML-to-UML
transformation of process activity models. Our approach proposes a transformation directly on
the PSM model, i.e., the WS-BPEL process definition file.

Algorithm 4 gives a simplified overview of which WS-BPEL code fragments are injected,
and where. Variable names are printed in italics, and XML markup and XPath expressions
are in typewriter font. The input is a WS-BPEL document bpel with security annota-
tions. First, various required documents (e.g. the XSD files of SAML and WS-Security) are
imported into the WS-BPEL process using import statements. Then the partnerLink dec-
larations for the needed services (such as the IdP service) are added to bpel, and variable
declarations are created (e.g., input/output variables for getAuthenticationData opera-
tions). Using assign statements, some variables (such as ProcessInstanceID) are ini-
tialized. Next, the algorithm loops over all invoke elements that have an attribute from the
rbac namespace assigned. For every matching invoke several WS-BPEL code injections
and transformations have to be conducted. First, an invoke statement (authInvoke) is
created. At runtime, this statement calls the IdP’s getAuthenticationData operation.
Next, an empty set (constraintChecks) is created. Afterwards, the algorithm iterates over
all constraints (e.g., rbac:sbind) that have been defined for this particular invoke state-
ment. The values of every constraint are split by commas. For instance, in the case of an

155

Algorithm 4 WS-BPEL Transformation Algorithm
Input: WS-BPEL document bpel, Fragment Templates tmpl
Output: transformed WS-BPEL document

1: add <import ../>, <partnerLink ../>, and <variable ../> statements to bpel
2: add <assign ../> statements to initialize ProcessInstanceID and InvocationLogs variables
3: for all bpel//invoke as inv do
4: if inv/@rbac:* then
5: authInvoke← create <invoke ../> for operation getAuthenticationData and partnerLink IdP
6: constraintChecks← ∅
7: for all inv/@rbac:* as constraint do
8: tasks← split value of constraint by commas
9: for all tasks as task do

10: check← create <if>..</if> which checks outcome of authInvoke for RBAC entailment con-
straint constraint and task task

11: constraintChecks← constraintChecks ∪ check
12: end for
13: end for
14: enforcementBlock← wrap sequence authInvoke||constraintChecks in new <while> block
15: insert enforcementBlock before inv
16: if inv/@rbac:sme then
17: logInvoke← create <invoke ../> for operation logInvocation via partnerLink LoggingService
18: insert logInvoke after inv
19: end if
20: end if
21: end for

rbac:dme=”task1,task2” annotation, constraint is rbac:dme and tasks is a set
with two elements (task1 and task2). For every task an if-block (check) is created. At
runtime, this if-block checks if there is a violation of the entailment constraint constraint
regarding another task task. Next, a new <while>-block (enforcementBlock) is created.
This block envelopes the previously created authInvoke statement and all checks contained
in constraintChecks. Finally, this enforcementBlock is inserted directly before the
secured invoke statement. Just in case the latter is also annotated using a rbac:sme attribute,
an additional invocation is injected right after the actual invoke element. This one calls the
logInvocation operation via the LoggingService PartnerLink.

5.6 Implementation

The implementation of the proposed approach is integrated in the SeCoS1 (Secure Collaboration
in Service-based systems) framework, which is discussed in the following. This section is di-
vided into four parts: firstly, we outline the architecture of the system and the relationship be-
tween the individual services and components in Section 5.6.1; secondly, the SAML-based SSO
mechanism is described in Section 5.6.2; in Section 5.6.3 we present the algorithm for automatic
transformation of WS-BPEL definitions containing security annotations from our DSL; finally,
Section 5.6.4 discusses the implementation for checking constraints over the log data.

1http://www.infosys.tuwien.ac.at/prototype/SeCoS/

156

http://www.infosys.tuwien.ac.at/prototype/SeCoS/

5.6.1 System Architecture

Figure 5.9 sketches the high-level architecture and relationships between the example process
and the system components.

Hospital 2

SAML Identity Provider

S

RBAC
Service

S Secured Service

IdP

PDP

PEP

SAML Request

S

S

IdP

Hospital 1

S

PDP

PEP S

S

IdP

Hospital 3

S

PDP

PEP S
S

IdP

Instrumented
IAM Tasks Secured Service Request

Business Process System Architecture and Services

Figure 5.9: Example Process in System Architecture

The patient examination scenario from Section 5.2 is implemented using WS-BPEL and de-
ployed in a Glassfish2 server. The scenario involves three hospitals, which host the protected
services for patient management and examination. All service invocations are routed through
a PEP, which acts as a central security gateway, intercepts every incoming service request and
either allows or disallows its invocation. It is important that the PEP operates transparently and
as close to the protected resources (i.e., services) as possible. Using the Java API for XML
Web services (JAX-WS), the PEP has been implemented as a SOAP message handler (inter-
face SOAPHandler). This handler can be plugged into the Web service’s runtime engine in a
straightforward manner. Once activated, the interceptor is able to inspect and modify inbound
and outbound SOAP messages and to deny service invocations.

Each hospital runs a SAML IdP service, which is used to issue the SAML assertions that
are required in the WS-BPEL process. The IdP’s responsibility is twofold: firstly, it authenti-
cates users; secondly, the IdP assures the identity of a subject and its associated attributes (e.g.,
roles) by issuing a SAML assertion SOAP header which is used in subsequent service invoca-
tions. For the sake of an easy integration into the given system environment, we decided to use
the JAX-WS API for implementing the Login Web service. This SOAP Web service offers a

2https://glassfish.dev.java.net/

157

https://glassfish.dev.java.net/

login method. It requires a username/password pair and returns a SAML assertion. Internally,
we utilize the Java Architecture for XML Binding (JAXB) for parsing and creating SAML as-
sertions. Additionally, the Apache XML Security for Java3 library is used for digitally signing
XML documents (i.e., the SAML assertions).

The actual decision whether an invocation should be prevented or not is typically delegated
to another entity, the PDP. When deciding over the access to a service resource the PDP has to
make sure that the subject attempting to access the resource has the permission to do so. This
decision is based on the policy information stored in the RBAC repository (which is based on
the DSL statements authored by domain experts). In our implementation, the core functionality
of the PDP is embedded into the RBAC DSL (see Section 5.3.2). That is, the DSL offers an
access method that can be used to determine whether the requesting subject is permitted to
access the target resource (service) under the specified context and role (see Figure 5.9). In
order to make this functionality accessible to the outside of the DSL’s interpreter, we developed
a RESTful Web service, that bridges HTTP requests to the interpreter. More precisely, the PDP
service uses the Bean Scripting Framework (BSF)4 to access the interpreter. The Java API for
RESTful Web Services (JAX-RS) is used to realize the PDP service’s RESTful Web interface.

5.6.2 SAML-based Single Sign-On

Figure 5.10 depicts an example of the access control enforcement procedure modeled in UML.
To illustrate the SSO aspect of the scenario, we assume that a patient with subject name “Alice”
(cf. Figure 5.3), who is registered in hospital 2 (H2), is examined in hospital 1 (H1) and requests
her patient history from previous examinations in hospital 3 (H3). The procedure is initiated by
the WS-BPEL process which requests the execution of a protected Web service.

C
lie

n
t

(B
P

E
L

)
S

e
rv

ic
e

(H
3

)
P

E
P

(H
3

)
Id

P
/P

D
P

(H
3

)
Id

P
(H

2
)

authenticate user

check
credentials

[authentication
failed]

return assertion

request service

intercept request

validate integrity
of assertion

[assertion invalid]

create
AuthzDecisionRequest

check permissions return result

receive request return assertion

check
AuthzDecisionStatement

invoke service

receive result

[invocation disallowed]

Id
P

(H
1

)

authenticate user
return

assertion

R
B

A
C

[else]

[else]

[else]

Figure 5.10: Identity and Access Control Enforcement Procedure

3http://santuario.apache.org/
4http://commons.apache.org/bsf/

158

http://santuario.apache.org/
http://commons.apache.org/bsf/

Prior to issuing the actual service request, the user has to authenticate using the SAML IdP.
The IdP queries the user database to validate the credentials provided by the client. As the
credentials of user Alice are not stored in the Data Base (DB) of H1, the IdP contacts the IdP of
H2, which validates the credentials.

If the user credentials could not be validated, the process is terminated prematurely and a
SOAP fault message is returned. In our example scenario, the business process receives the fault
message and activates corresponding WS-BPEL fault handlers. Otherwise, if the credentials are
valid, the IdP creates a signed assertion similar to the one shown in Listing 5.1 and passes it
back to the WS-BPEL process (see Figure 5.10). The business process attaches the assertion to
the actual service request.� �

1 < A s s e r t i o n >
2 < I s s u e r > h t t p : / / h2 . com / IdP </ I s s u e r >
3 <ds : S i g n a t u r e > . . . < / ds : S i g n a t u r e >
4 < S u b j e c t ><NameID> Al ice < / NameID> </ S u b j e c t >
5 < C o n d i t i o n s NotBefore ="2013−05−17T09 : 4 8 : 3 6 . 1 7 1 Z"
6 NotOnOrAfter="2013−05−17T10 : 0 0 : 3 6 . 1 7 1 Z" / >
7 < A t t r i b u t e S t a t e m e n t >
8 < A t t r i b u t e Name=" r o l e ">
9 < A t t r i b u t e V a l u e > s t a f f < / A t t r i b u t e V a l u e >

10 </ A t t r i b u t e >
11 </ A t t r i b u t e S t a t e m e n t >
12 </ A s s e r t i o n >� �

Listing 5.1: Exemplary SAML Assertion Carrying Subject and Role Information

The example SAML assertion in Listing 5.1 illustrates the information that is encapsulated
in the header token when the scenario process invokes the getPatientHistory operation
of the patient Web service of H3. The assertion states that the subject named Alice, which
has been successfully authenticated by the IdP of the hospital denoted by the Issuer element
(H2), is allowed to use the the role staff. The included XML signature element ensures
the integrity of the assertion, i.e., that the assertion content indeed originates from the issuing
IdP (H2) and has not been modified in any way. When the PEP of H3 intercepts the service
invocation with the SAML SOAP header, its first task is to verify the integrity of the assertion.
The signature verification requires the public key of the IdP that signed the assertion; this key
is directly requested from the corresponding IdP (under http://h2.com/IdP) using SAML
Metadata [244]. The implementation uses the Apache XML Security for Java library to conduct
the signature verification.� �

1 < A s s e r t i o n >
2 < I s s u e r > h t t p : / / h3 . com / IdP </ I s s u e r >
3 <ds : S i g n a t u r e > . . . < / ds : S i g n a t u r e >
4 < S u b j e c t >
5 <NameID> Al ice < / NameID>
6 </ S u b j e c t >
7 < A u t h z D e c i s i o n S t a t e m e n t D e c i s i o n =" P e r m i t "
8 Resource =" h t t p : / / h3 . com / p a t i e n t ">
9 <Act ion > g e t P e r s o n a l D a t a < / Act ion >

10 </ A u t h z D e c i s i o n S t a t e m e n t >
11 </ A s s e r t i o n >� �

Listing 5.2: Exemplary SAML Authorization Decision

159

After the PEP of H3 has verified the message integrity, it needs to determine whether the
subject is authorized to access the requested service operation. This is achieved by the PDP
service of H3 that allows the PEP to post a SAML Authorization Decision Query. The PDP
answers this query by returning an assertion containing a SAML Authorization Decision State-
ment. Listing 5.2 shows an example SAML assertion which informs the PEP that our staff
member is allowed to invoke the action (operation) getPersonalData of the resource (Web
service) http://h1.com/patient. Analogously to the IdP service, we also used the JAX-
WS API to implement the SOAP-based interface of the PDP service. The PDP offers the method
query, which takes an Authorization Decision Query message as argument and returns an Au-
thorization Decision Statement. Again, we leverage JAXB for parsing the SAML documents.

5.6.3 Automatic Transformation of WS-BPEL Definition

Since both WS-BPEL and SAML are XML based standards, we are able to reuse and utilize
the broad line-up of existing XML tooling. The transformation procedure of WS-BPEL process
definitions is hence based on XSLT (Extensible Stylesheet Language Transformations) [367], a
language for arbitrary transformation and enrichment of XML documents.

2

Original
Process
Definition

BPEL

Transformed
Process
Definition

BPEL

Template
Generator

XSLT

BPEL
Transformation

XSLTgenerate
TemplatesTemplatesFragments

XML

generate

TemplatesTemplatesFragment
Templates

XML

Figure 5.11: Artifacts of the Transformation Process

In general, the original WS-BPEL process is transformed by enriching the process definition
file with code fragments that perform the IAM tasks (cf. Section 5.5.1). In principle, these frag-
ments are generic and static, i.e., for arbitrary WS-BPEL processes nearly the same fragments
can be injected. However, some fragments contain volatile elements that are specific to every
single WS-BPEL process. As these fragments need to be adapted to fit a specific WS-BPEL
process, we propose a two-stage transformation process. Figure 5.11 depicts an overview of the
document artifacts involved in the transformation process, as well as the flow relations between
them. The leftmost part of the figure indicates how the original WS-BPEL process definition file
and various XML fragment files serve as input for the Template Generator XSLT file. This Tem-
plate Generator constitutes the first transformation step and turns the generic fragment templates
into fragments tailored to the target process definition. The last transformation step injects the
generated fragments into the original WS-BPEL process file.

160

5.6.4 Checking Business Activity Constraints

The process transformation approach presented in Section 5.4 ensures runtime enforcement of
Business Activity entailment constraints. For highly business- or security-critical systems we
propose log analysis to additionally monitor that the process instances behave as expected (see,
e.g., [129]). To check whether all constraints are fulfilled in the log data, we require an engine
capable of querying the state of historical invocation data. As our framework is operating in
a Web Services environment, XML is the prevalent data format and we focus mainly on XML
tooling. We hence utilize XQuery [361] to continuously perform queries over the invocation
logs stored in XML. To facilitate the handling of these queries, we use WS-Aggregation [139],
a platform for event-based distributed aggregation of XML data.� �

1 < l o g taskName=" G e t _ P e r s o n a l _ D a t a " s u b j e c t =" john "
2 r o l e =" s t a f f " i n s t a n c e I D =" i 1 " t ime =" 1316423654600 " / >
3 < l o g taskName=" A s s i g n _ P h y s i c i a n " s u b j e c t =" john "
4 r o l e =" s t a f f " i n s t a n c e I D =" i 1 " t ime =" . . . " / >
5 < l o g taskName=" G e t _ P e r s o n a l _ D a t a " s u b j e c t =" john "
6 r o l e =" s t a f f " i n s t a n c e I D =" i 2 " t ime =" . . . " / >
7 < l o g taskName=" G e t _ C r i t i c a l _ H i s t o r y " s u b j e c t =" bob "
8 r o l e =" p h y s i c i a n " i n s t a n c e I D =" i 1 " t ime =" . . . " / >
9 . . .� �

Listing 5.3: Format of Invocation Data Logged as Events

Listing 5.3 prints exemplary log data that are emitted by the transformed business process
and handled by WS-Aggregation. Each log element in the listing represents one invocation
event. The detailed constraint enforcement queries, expressed as XQuery assertion statements,
are printed and discussed in Appendix A.2.

5.7 Evaluation and Discussion

In this section, we evaluate various aspects to highlight the benefits, strengths, and weaknesses of
the presented solution. Five representative business processes with entailment constraints were
selected to conduct the evaluation, including our example process from Section 5.2 and four
additional processes from existing literature. The examples represent typical processes from
different domains and cover all constraint types supported by our approach. The key properties
of the evaluated processes are summarized in Table 5.3: ID identifies the process (P1 is our
sample process), |TT | is the total number of task types per process, |CTT | is the number of
task types associated with entailment constraints5, |R| is the number of roles defined in the
scenario, |S| is the number of subjects used for the test, and |HR| is the number of senior-junior
relationships in the role hierarchy6.

Although not all results of our evaluation are fully generalizable, they are arguably valid for
a wide range of scenarios and SOA environments in general. An evident observation is that run-
time enforcement of security constraints is computationally intensive, and therefore performance

5CTT = { t ∈ TT | sb(t) 6= ∅ ∨ rb(t) 6= ∅ ∨ sme(t) 6= ∅ ∨ dme(t) 6= ∅ }
6HR = { (s, j) ∈ R×R | j ∈ rh(s) }

161

ID Name |TT| |CTT| |R| |S| |HR|
P1 Patient Examination 7 6 3 4 1
P2 Purchase Order [75] 6 4 2 3 1
P3 Paper Review [316] 5 4 3 5 0
P4 Tax Refund [33] 5 4 2 5 0
P5 Credit Application [316] 5 3 2 4 1

Table 5.3: Characteristics of Business Processes Used in the Evaluation

effects need to be taken into account. We also show that the proposed DSL greatly simplifies de-
velopment of security-enabled WS-BPEL processes, which becomes apparent when comparing
the number of code artifacts before and after automatic transformation. However, the approach
also has certain limitations which we also want to document explicitly. Overall, our evaluation
is organized in four parts: first, we evaluate the runtime performance in Section 5.7.1; sec-
ond, in Section 5.7.2 we verify the behavior of secured processes when provided with valid and
invalid authentication data7; third, Section 5.7.3 evaluates the WS-BPEL transformation proce-
dure; fourth, in Section 5.7.4 we discuss current limitations in the framework and general threats
to validity. The experiments in Sections 5.7.1, 5.7.2 and 5.7.3 were executed on a machine with
Quad Core 2.8GHz CPU, 8GB RAM, running Ubuntu Linux 9.10 (kernel 2.6.31-23).

5.7.1 Performance and Scalability

To evaluate the scalability we have deployed and executed different process instantiations (based
on the scenario in Section 5.2) in a Glassfish server (version 2.1.1) with WS-BPEL engine (ver-
sion 2.6.0). Here, we are interested in the net processing time of the Web service invocations,
the duration of human tasks is not considered. Therefore, the execution of business operations
(e.g., Obtain X-Ray Image or Decide On Treatment) has zero processing time in our testbed.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

m
s
)

Number of WS-BPEL Scopes

Execution Time Secured
Execution Time Unsecured

Figure 5.12: Process Execution Times – Secured vs Unsecured

7Note that all processes from Table 5.3 where implemented and evaluated with the same rigor. However, we
do believe that certain parts of our evaluation are best explained in detail based on a single process. Therefore,
Sections 5.7.1 and 5.7.2 exemplarily discuss the results from the patient examination example. This discussion
applies analogously to the other processes from Table 5.3. The aggregated results for all processes are discussed in
Section 5.7.2.3.

162

The WS-BPEL process has been deployed in different sizes (multiple scopes, one invoke
task per scope), once with enforced security (i.e., annotated with security attributes, automati-
cally transformed at deployment time), and once in an unsecured version. The deployed pro-
cesses were executed 100 times and we have computed the average value to reduce the influence
of external effects. Figure 5.12 plots the execution time (minimum, maximum, average) for
both the secured (top line) and the unsecured version (bottom line). The top/bottom of each
box represents the maximum/minimum, respectively, and a trendline is drawn for the average
value8. We observe that a single BusinessAction invocation in the unsecured version is very fast,
whereas the secured version incurs a considerable overhead. The overhead is hardly surprising
considering that for each business logic service the process needs to invoke the IdP and RBAC
services, as well as apply and check XML signatures. However, the measured results indicate
that the current implementation has potential room for additional optimization.

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000

T
im

e
 (

m
s
)

Number of Logged Invocations

Execution Time for Constraint Queries

Figure 5.13: Execution Time of Constraint Queries for Increasing Log Data

In addition to the end-to-end performance of the secured WS-BPEL process, we also eval-
uated the performance of enforcing the BusinessActivity constraints using the XQuery based
querying approach. To that end, we stored 10000 entries with SME, DME, SBind and RBind
constraints to the invocation log and measured the time required to execute the four constraint
queries in Listing A.2 (see Appendix A.2). The results are illustrated in Figure 5.13, which plots
the time for every 100th invocation over time. As the testbed started cleanly from scratch, the
first logged invocation(s) took longer (∼250ms) because of internal initialization tasks in the
log store and the WS-Aggregation query engine. Starting from the second data point (invoca-
tion 100), we see the query time increasing by around 6ms per 100 queries. To provide an insight
about resource consumption, the CPU utilization and Java heap space usage are plotted in Fig-
ure 5.14. The slight fluctuations in heap space are due to Java’s garbage collection procedure.
The four constraint queries are executed in parallel, but since they access a shared data structure
with log data, internal thread synchronization is applied. Hence, CPU utilization reaches only a
peak value of ∼70% (i.e., 3 of the 4 cores).

The increase of time is inherent to the problem of querying growing log data. We argue that
query performance is feasible for medium-sized to even large scenarios. Firstly, as evidenced in

8The standard deviation was in the range of 39.21 to 413.69 ms (lowest and highest values are for processes with
1 scope and 18 scopes, respectively) for the secured version, and in the range of 10.38 to 58.78 ms (for 13 scopes and
8 scopes, respectively) for the unsecured version.

163

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

M
e
m

o
ry

 S
iz

e
 (

M
e
g
a
B

y
te

s
)

U
ti
liz

a
ti
o
n
 (

%
)

Number of Logged Invocations

Java Heap Space
CPU Utilization

Figure 5.14: Resource Consumption for Constraint Queries

Figure 5.13, the execution time appears to grow only linearly (we have also performed a linear
regression which showed almost perfect fit for y = 20 + 0.06x). The reason is that the queries
are formulated in a way that always only the last added log entry needs to be compared to the
other entries (hence, the queries are executed for each new log entry). Secondly, even for large
logs (tens of thousands of entries) the execution time is still in a range of only a few seconds.
If we extrapolate the test values for very huge logs (millions of entries), however, the current
approach would take in the order of minutes, which may not be feasible for real-time processes.
Hence, additional optimizations will be required for such very-large scale situations – a problem
we actively tackle in our future work.

5.7.2 Reaction of the Secured Process to Valid and Invalid Authentication Data

In the second experiment, we utilize the five evaluation processes (see Section 5.7) to evaluate
how our approach deals with authentication data of authorized and unauthorized users provided
by the IdP service. As outlined in Section 5.4, the task of the IdP is solely to authenticate users,
but the authorization in terms of RBAC constraints is enforced by the process instance (and,
additionally, by the log data queries from Section 5.6.4). Hence, the reason for performing this
experiment is to test the ability of the transformed business process to cope with unauthorized
users who attempt to execute restricted process tasks. Moreover, we are interested in evaluating
under which circumstances the RBAC rules may become overconstrained such that the process
ends in a deadlock and is unable to continue. Our methodology in this experiment is to execute
all possible instances of the test processes with respect to user authorization (given a set of sub-
jects and process tasks, try each combination of subjects performing a task; see Section 5.7.2.1
for details). The chosen scenario processes have a feasible size to perform this full enumeration.
We discuss detailed results based on the patient examination process (P1) in Section 5.7.2.2, and
aggregated results over all five processes (P1-P5) in Section 5.7.2.3.

5.7.2.1 Permutation of RBAC Assignments

We define the domain [TT → (S × R)] of RBAC assignment functions, where TT is the set of
BusinessAction task types, S is the set of subjects and R is the set of roles (cf. Section 5.3.1).

164

The function defines which authentication data should be used for each task type. We then
consider all possible permutations of function assignments in this domain, with the restriction
that for each pair (s, r) ∈ S × R the subject s is directly associated with role r. To keep
the domain small, inherited roles are not considered. For instance, in our scenario the pair
(Bob,Physician) is included, but (Bob,Staff) is not considered, although Bob inherits the role
Staff through Physician. Furthermore, note that SME constraints are checked at design-time
when defining a process-related RBAC model. The static correctness rules ensure the consis-
tency of the corresponding RBAC models at any time (see [316]). Hence, it is not possible to
define an inconsistent RBAC model where, for example, a subject or role possesses the right to
execute two SME tasks. The respective RBAC model is then applied to make access decisions
and to perform task allocations for all process instances. In other words, because the allocation
of task instances is based on a consistent process-related RBAC model, it is not necessary to
check the fulfillment of SME constraints again at runtime (see also [315]).

For each permutation one process instance is executed, and the IdP in the test environment is
configured to return the authentication data that correspond to the respective permutation. The
IdP keeps track of getAuthenticationData requests and registers the number of duplicate requests
in each process instance. Recall that a duplicate request is always issued if the IdP provides au-
thentication data of a non-authorized user. Thus, each duplicate getAuthenticationData request
represents a blocked execution of a restricted task (which is the desired/expected behavior).

The purpose of this experiment setup is to empirically evaluate 1) whether the secured pro-
cess correctly allows/denies access for valid/invalid provided credentials, respectively, and 2)
how the platform deals with unresolvable conflicts (if the process deadlocks due to mutual ex-
clusions). For instance, when Get Personal Data in our scenario is invoked with (Bob,Physician)
and the IdP provides (John,Staff) for Assign Physician, then re-authentication is necessary be-
cause of role-binding violation. In this case, the IdP simply provides the next available authen-
tication data, simulating the real-life situation that a new subject logs in after an unauthorized
subject has been denied access. This procedure is repeated as long as new (subject,role) com-
binations can be provided; if the process has unsuccessfully attempted to invoke a task with all
possible combinations, the entire process terminates with a fault message. Note that this method
of deadlock detection is suitable for our scenario with only a small number of subjects; for more
advanced detection of deadlocks and unsatisfiable constraints we refer to related work [76,349].

5.7.2.2 Detailed Discussion for the Patient Examination Process

In our scenario, the domain (S × R) consists of the four pairs ((John,Staff), (Jane,Physician),
(Bob,Physician), (Alice,Patient)), and six task types exist (|TT | = 6). Hence, the total number of
possible assignment function permutations is 46 =4096. However, the process structure allows
to reduce this number because the decision node (whether it is in an emergency situation) splits
the process into two possible execution paths (one path with 5 tasks and the other path with 4
tasks). The decision node is simulated to uniformly use both of the two possible conditional
branches. Therefore, in total only 45 + 44 =1280 process instances have to be executed.

Figure 5.15 illustrates the number of blocked authorization requests for each process in-
stance. Considering the procedure of security enforcement (cf. Section 5.4), a blocked request
means that the authentication data provided by the IdP violate any constraints (which is expected

165

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

D
up

lic
at

e
R

eq
ue

st
s

Process Instance

Figure 5.15: Blocked Task Executions per Test Process Instance (Patient Examination Scenario)

in many cases, since all permutations are tested). Table 5.4 summarizes the aggregated values:
20 of the 1280 generated RBAC assignments were completely valid from the start and no blocked
requests were necessary. The remaining instances required between 1 and 11 blocked requests
until a final state (successful or unsuccessful) is reached.

Result Outcome Instances Result Outcome Instances
No Blocked Requests 20 7 Blocked Requests 140
1 Blocked Request 56 8 Blocked Requests 80
2 Blocked Requests 108 9 Blocked Requests 32
3 Blocked Requests 163 10 Blocked Requests 10
4 Blocked Requests 228 11 Blocked Requests 1
5 Blocked Requests 232 Successful Execution 1024
6 Blocked Requests 210 Failed (Deadlocked) 256

Total Instances 1280

Table 5.4: Process Executions with Permutations of TT → (S ×R) Assignments

While there have been 1024 successful executions of the process, 256 failed instances had
to be aborted because of deadlock situations. Deadlocks can result from the complex inter-
dependencies of BusinessActivity access rules (see, e.g., [293, 320]). For instance, consider
the operation sequence in Table 5.5. The deadlock is caused by the subject-binding between
Get Critical History and Decide On Treatment, combined with the fact that both tasks can be
executed by different roles (the former by Patient and Physician, and the latter only by Patient).
In fact, all process executions in which the patient Alice executes Get Critical History lead to
this conflicting situation. Note that the focus of our work is to enforce RBAC constraints and to
detect deadlocks9. In our future work we also investigate techniques to check the satisfiability
of a certain process and avoid deadlocks in advance (see, e.g., [76, 292, 320, 349]).

9Note that the deadlocks in our evaluation result from the fact that we automatically generate and execute all
possible process instances (see Section 5.7.2). Because our process-related RBAC models adhere to the static and
dynamic consistency requirements defined in [315,316] the resulting RBAC models are always consistent. However,
even though we always have consistent models, it is still possible that a certain process is not satisfiable [76, 349].

166

Task Sub. Role Effect
Get Personal Data John Staff Role Staff must Assign Physician; John must Assign Physician
Assign Physician John Staff -
Obtain X-Ray Image Bob Physician -
Get Critical History Alice Patient Alice must not Get Expert Opinion; Alice must Decide On Treatment
Get Expert Opinion Jane Physician -
Decide On Treatment ? ? Deadlock, because the bound subject Alice is not permitted

Table 5.5: Operation Sequence Leading to a Constraint Conflict (Deadlock)

The same experiment setup has been used to measure the execution time of the secured pro-
cess instances over time (Figure 5.16). Again, we see a slight upwards trend in the processing
time. The reasons for this trend are twofold. First, the more instances have executed, the more
log data must be checked for constraint conflicts. Second, particularly for SME constraints an
increasing number of log data increases the likelihood that the blocked requests need to be is-
sued because the provided test authentication data are in a conflict with one or more previous
invocations. The spikes in Figure 5.16 indicate different execution times of instances with few
versus many blocked requests (see also Figure 5.15). Notice that the execution time shows a cer-
tain pattern between roughly 0 and 1000, and a different pattern between 1000 and 1280. These
patterns are a direct result of the experiment design, because we first execute 1024 instances that
follow the “emergency” path in the scenario process, and afterwards 256 instances that follow
the “non-emergency” path.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

T
im

e
(m

s)

Process Instance

WS-BPEL Execution Time

Figure 5.16: Execution Time of Secured BPEL Process Instances Over Time

5.7.2.3 Aggregated Results for All Test Processes

Table 5.6 summarizes the test results for the five test processes. The table contains the process
ID that refers back to Table 5.3, the total number of executed instances which were generated
from the RBAC assignment permutations, the number of deadlocks that occurred, the blocked
requests (minimum/maximum/average) per process instance, and the aggregated execution time
per instance. In general, the number of instances corresponds to |S||TT |, except in cases where
we can take advantage of the process structure to reduce the number of instances (i.e., 1280
instead of 4096 instances for P1). Process P4 has the highest number of instances (3125). The

167

ID Inst- Dead- Blocked Requests Execution Time (ms)
ances locks min avg max min avg max

P1 1280 256 0.0 4.8 11.0 1802.0 3199.6 5222.0
P2 729 243 0.0 3.3 7.0 3990.0 5009.0 8881.0
P3 625 0 0.0 3.6 8.0 3444.0 5464.8 8057.0
P4 3125 0 0.0 6.9 16.0 2984.0 8356.6 14363.0
P5 64 0 0.0 1.8 4.0 2799.0 3070.1 5530.0

Table 5.6: Aggregated Test Execution Results of the Five Evaluated Processes

aggregated values are computed over all process instances; for example, the average number of
blocked requests over all 1280 instances of process P1 is 4.8. The difference between minimum
and maximum execution time depends on the executed tasks, and hence correlates strongly with
the number of blocked requests. The maxium execution time was roughly 14 seconds (for an
instance of process P4), and the shortest instance (of P1) executed within less than 2 seconds.
Depending on the process definition and the chosen subjects, either all generated process in-
stances were able to execute successfully (P3, P4, P5), or some instances deadlocked (P1, P2).
Some process definitions are prone to deadlocking (e.g., 20% of P1’s possible instances lead to
a deadlock), whereas in other processes deadlocks are not even possible. For instance, the tax
refund process [33] (P4) was run with the smallest possible number of subjects (at least 2 clerks
and 3 managers are required), but out of the 3125 instances (each subject tries to access each
of the five task types, 55 = 3125) not a single instance deadlocks. Even though satisfiability
of access constraints at different points of the process execution can be determined algorithmi-
cally (see, e.g., [320]), we argue that it is equally important to test the running system, and to
empirically verify the number of successful and blocked requests, as shown in this evaluation.

5.7.3 WS-BPEL Transformation Algorithm

Concerning the evaluation of the WS-BPEL transformation algorithm, we consider the same
twenty test process definitions with different sizes described earlier in Section 5.7.1.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12 14 16 18 20

N
u
m

b
e
r

o
f
E

le
m

e
n
ts

Number of WS-BPEL Scopes

WS-BPEL Elements After Transf.
WS-BPEL Elements Before Transf.

Figure 5.17: Different Sizes of WS-BPEL Processes Before and After Transformation

Figure 5.17 shows the number of WS-BPEL elements of the process definition before and
after the automatic transformation. The results indicate that the size of the WS-BPEL def-

168

inition rises with increasing number of scopes. While our test process with a single scope
contains 33/115 WS-BPEL elements before/after transformation, the process definition for 10
scopes grows to 60/484 WS-BPEL elements before/after transformation, respectively. These
numbers are determined by counting all XML (sub-)elements in the WS-BPEL file using the
XPath expression count(//*). At the beginning of the transformation, 41 elements are added
(import, partnerLink and variable declarations), and for each new scope 41 elements
are added for the IAM task definitions (note that both values are 41 coincidentally). We observe
that the ability to define security annotations in WS-BPEL keeps the process definition clear at
design time. In fact, the additional code for security enforcement in WS-BPEL is often larger
than the actual business logic. This can be seen as an indicator that our approach can reduce
the development effort as compared to manual implementation, although we did not empirically
evaluate this aspect in detail.

5.7.4 Discussion of Limitations

In this section, we discuss the current limitations and weaknesses of our approach and the corre-
sponding Web service technology projection. We also propose possible mechanisms and future
work to mitigate the consequences and risks associated with these limitations.

∗ Parallel Process Flows: WS-BPEL provides the flow command for concurrent execution
of tasks. Security enforcement of tasks that execute in parallel poses a challenge for
various reasons. Firstly, if two tasks are started with mutually exclusive access rights, a
race condition is created with respect to the first task to access the authentication token.
Secondly, since we make use of “global” (process-instance-wide) variables, the injected
IAM tasks for each single WS-BPEL invoke action are supposed to execute atomically
and should not access these variables concurrently. To handle parallel execution, we hence
propose to extend the injected IAM tasks with two additional tasks to acquire and release
an exclusive lock when entering and leaving the critical region, respectively. Since WS-
BPEL does not provide a corresponding language construct, an external Web service is
used to acquire the exclusive lock on a semaphore. For brevity and clarity, these additional
synchronization tasks have not been added to the transformation in Section 5.4. In future
work, we further plan to introduce more sophisticated synchronization using the WS-
BPEL link mechanism.

∗ Deadlocking: If the RBAC policies are conflicting, the procedure for obtaining and check-
ing user authentication data can end up in a deadlock that is unable to terminate with a
successful result. To mitigate the effect of policy conflicts, it is therefore required to per-
form timely satisfiability checks. In Section 5.8 we discuss related work that focuses on
this topic, in particular we refer to previous work in [292, 293, 315, 320].

∗ Single Point of Failure: Our Web service technology projection builds on the assumption
that the IdP and Logging services operate reliably and continuously. An outage of any
of these services would imply that the access control procedure cannot be performed in
its entirety or that certain log data cannot be stored. Depending on the process defini-
tion at hand, the consequences can be more or less severe. The IdP service is the key

169

component that provides the basis for user authentication. If it is unavailable, the secured
execution fails. A possible strategy for certain application scenarios would be to define
break-the-glass (BTG) rules (see, e.g., [102,215,294]) which allow to temporarily access
the protected resources with fallback security settings, in order to provide for continuous
operation. An outage of the Logging service is less severe, because it is strictly only re-
quired to perform a posteriori conformance checks of global constraints that may affect
all (or at least multiple) process instances (see, e.g., [28]). Instance-specific constraints
are local to a certain process instance and can be enforced by means of instance-specific
log data stored in WS-BPEL variables (see Section 5.5).

∗ Security Token Hijacking: Malicious users may attempt to gain access to services they
are not entitled to. Consider an attacker who intentionally does not follow the processing
logic of the transformed process but invokes the target Web services directly. The attacker
may obtain a SAML token by executing getAuthenticationData, which asserts its subject
and role. Assume that the token is used in combination with the instanceID of an active
process instance to invoke the Decide On Treatment; this situation must be avoided under
any circumstances. To enforce the subject-binding with Get Critical History and other
RBAC rules it is imperative that all access constraints are validated on the service side. In
our architecture we hence require a PEP which intercepts and analyzes all invocations.

∗ Invalid WS-BPEL Modification: For the approach to work reliably, it is important that the
WS-BPEL definition should not be modified after the automated code transformation step.
We therefore propose the use of a trusted deployment component which provides exclusive
access to the business process execution engine. As part of transformation process the
WS-BPEL file is signed with an XML signature [368], which is then checked by the
deployment component to enforce integrity.

∗ Human Factors: In the end, a business process involving human labor can only be as safe
and reliable as the persons who perform it. That is, control mechanisms such as mutual
exclusion (e.g. to enforce the four-eyes principle) can provide a strong instrument for
improving quality and reliability, but human errors can never be fully ruled out.

5.8 Related Work

This section provides a discussion of related work in the area of model-driven IAM and their
application to SOA business processes. Our analysis focuses on three main research areas:
security modeling for Web service based systems, DSL-based security modeling, and techniques
for incorporating runtime enforcement of security constraints into business processes.

5.8.1 Security Modeling for Web Service Based Systems

Jensen and Feja [166] discuss security modeling of Web service based business processes, fo-
cusing on access control, confidentiality and integrity. Their approach is based on Event-driven
Process Chains (EPC) [291] and defines different security symbols that the process definitions

170

are annotated with. Their implementation is integrated into the ARIS SOA Architect software,
which is also able to transform the EPC model into an executable SOA business process. The
paper describes the generation of WS-SecurityPolicy [247] policies, but does not discuss mutual
exclusion and binding constraints in process-related RBAC models, nor does it discuss in detail
how the process engine enforces the policies and constraints at runtime, which in contrast is a
core part in our work.

Kulkarni et al. [179] describe an application of context-aware RBAC to pervasive computing
systems. As the paper rightly states, model-level support for revocation of roles and permissions
is required to deal with changing context information. The approach has a strong focus on dy-
namically changing context (e.g., conditions measured by sensors) and the associated permission
(de-)activation. In our framework, context information is part of the RBAC model definitions
(more details can be found in [134]). In this thesis, the context information in the RBAC model
has been abstracted from, but as part of our future work we plan to integrate the Business Activ-
ity model in [316] with context information (see also [317]).

Although our model does not directly build on the notion of trust, access control policies can
also be established dynamically by deriving trust relationships among system participants [86].
Skoksrud et al. present Trust-Serv [305], a solution for model-driven trust negotiation in Web
service environments. Similar to our approach, the policy enforcement is transparent to the in-
volved Web services. Another similarity is that trust credentials (such as user identifier, address
or credit card number) are exchanged iteratively throughout the process, which is also the case
for the authentication credentials in our approach. However, trust-based policies in [305] are
monotonic in the sense that additional trust credentials always add access rights and never re-
move existing ones, which is in contrast to access control in this thesis, where the execution of
tasks can activate entailment constraints which progressively narrow down the set of valid access
control configurations.

Our approach was also influenced by Foster et al. [105] who present an integrated work-
bench for model-based engineering of service compositions. Their approach supports service
and business process developers by applying formal semantics to service behavior and config-
uration descriptors, which can then be analyzed and checked by a verification and validation
component. The policies enforced by the workbench are quite generally applicable and hence
require developers to perform application specific modeling, whereas our proposed DSL and
WS-BPEL annotations are tailored to the domain of RBAC and entailment constraints and ar-
guably straight-forward to apply.

Seminal contributions in the context of modeling support for Web service based business
processes are provided within the Web Services Modeling Framework (WSMF) by Fensel et
al. [100], and the modeling ontologies that emerged from this project. For instance, security
requirements can be modeled in WSMF by declaring the subject and role as input data and
defining pre-conditions for all operations that require certain authentication data. In the previous
years, the Semantic Web community has been pushing forward various ontologies to draw an
ever more exact picture of the functionality exposed by Web services, in order to allow for
sophisticated discovery, execution, composition and interoperation [221]. In fact, although not
very frequently used in practice, semantically annotated Web services also allow for a more
fine-grained definition of access control policies, from the interaction level down to the message

171

level. Whereas annotations in semantic Web services are used mostly for reasoning purposes,
the WS-BPEL annotations used in our approach are utilized as metadata for runtime access
control enforcement. Such business process model abstractions, which are the underpinning of
semantic equivalence and structural difference, have been empirically studied in [306], and our
approach can be seen as the reverse operation of abstraction (i.e., concretization) for the specific
application domain of task-based entailment constraints.

Various other papers have been published that are related to our work or have influenced it,
some of which are mentioned in the following. The platform-independent framework for Secu-
rity Services named SECTISSIMO has been proposed by Memon at al. [225]. The conceptual
novelty of this framework is the three-layered architecture which introduces an additional layer
of abstraction between the models and the concrete implementation technologies. In contrast,
our prototype only considers two layers (i.e. modeling of RBAC constraints and transforma-
tion of WS-BPEL code). However, the presented modeling concepts (see Section 5.3) as well
as the model transformations (see Section 5.4) are independent from concrete implementation
technologies too.

Lin et al. [198] propose a policy decomposition approach. The main idea is to decompose a
global policy and distribute it to each collaborating party. This ensures autonomy and confiden-
tiality of each party. Their work is particularly of relevance for cross-organizational definition of
RBAC policies, as performed in our multi-hospital use case scenario. Currently, our prototypical
implementation relies on a single, global RBAC Web service. However, we plan to adopt this
complementary policy decomposition approach, which will allow each hospital to employ its
own dedicated RBAC Web service.

5.8.2 DSL-Based Security Modeling

An integrated approach for Model Driven Security, that promotes the use of Model Driven Ar-
chitectures in the context of access control, is presented by Basin et al. [27]. The foundation
is a generic schema that allows creation of DSLs for modeling of access control requirements.
The domain expert then defines models of security requirements using these languages. With
the help of generators these models are then transformed to access control infrastructures. How-
ever, compared to our approach, [27] does not address the definition of task-based entailment
constraints.

The approach by Wolter et al. [356] is concerned with modeling and enforcing security
goals in the context of SOA business processes. Similar to our approach, their work suggests
that business process experts should collaboratively work on the security policies. They define
platform independent models (PIM) which are mapped to platform specific models (PSM). At
the PIM level, eXtensible Access Control Markup Language (XACML) and AXIS 210 security
configurations are generated. Whereas their approach attempts to cover diverse security goals
including integrity, availability and audit, we focus on entailment constraints in service-based
business processes.

A related access control framework for WS-BPEL is presented by Paci et al. in [257]. It
introduces the RBAC-WS-BPEL model and the authorization constraint language BPCL. Similar

10http://axis.apache.org/axis2/java/core/

172

http://axis.apache.org/axis2/java/core/

to our approach, the WS-BPEL activities are associated with required permissions (in particu-
lar, we associate permissions for invoke activities that try to call certain service operations).
However, one main difference is related to the boundaries of the validity of user permissions:
RBAC-WS-BPEL considers pairs of adjacent activities (a1 and a2, where a1 has a control flow
link to a2) and defines rules among them, including separation of duty (a1 and a2 must execute
under different roles) and binding of duty (a1 and a2 require the same role or user). As elaborated
in previous work [134], our approach also allows to annotate scopes (groups of invoke tasks)
in BPEL processes and hence to apply RBAC policies in a sequential, but also in a hierarchical
manner.

XACML [243] is an XML-based standard to describe RBAC policies in a flexible and ex-
tensible way. Our DSL could be classified as a high-level abstraction that implements a subset
of XACML’s feature set. Using a transformation of DSL code to XACML markup, it becomes
possible to integrate our approach with the well-established XACML environment and tools for
policy integration (e.g., [219]).

5.8.3 Runtime Enforcement of Constraints in Business Processes

Various approaches have been proposed to incorporate extensions and cross-cutting concerns
such as security features into business process models. Most notably, we can distinguish differ-
ent variants of model transformation [78,300] and approaches that use aspect-oriented program-
ming [172].

A dynamic approach for enforcement of Web services Security is presented in [235] by
Mourad et al. The novelty of the approach is mainly grounded by the use of AOP in this context,
whereby security enforcement activities are specified as aspects that are dynamically woven
into WS-BPEL processes at certain join points. Charfi and Mezini presented the AO4BPEL [61]
framework, an aspect-oriented extension to WS-BPEL that allows to attach cross-cutting con-
cerns. The aspect-oriented language Aspects for Access Control (AAC) by Braga [41] is based
on the same principle and is capable of transforming SecureUML [203] models into aspects.
A main difference is that AAC does not operate on WS-BPEL, but on Java programs, and can
hence be applied directly to Java Web service implementations to enforce access control.

Essentially, our approach can be regarded as a variant of AOP: the weaved aspects are the
injected IAM tasks, and join points are defined by security annotations in the process. A major
advantage of our approach is the built-in support for SSO and cross-organizational IAM. An
interesting extension could be to decouple security annotations from the WS-BPEL definition,
to store them in a separate repository and to dynamically adapt to changes at runtime.

A plethora of work has been published on transformations and structural mappings of busi-
ness process models. Most notably, our solution builds on work by Saquid/Orlowska [283],
and Eder/Gruber [93] who presented a meta model for block structured workflow models that
is capable of capturing atomic transformation actions. These transformation building blocks are
important for more complex transformations, as in our case when multiple process fragments for
enforcement of entailment constraints are combined for a single action in WS-BPEL. While this
work focuses mainly on deployment time model transformations, other research also investigates
runtime changes of service compositions. For instance, automatic process instrumentation and
runtime transformation have previously been applied in the context of functional testing [143] of

173

service-based business processes. Weber et al. [350] investigate security issues in adaptive pro-
cess management systems and claim that such dynamicity increases the vulnerability to misuse.
Our approach is adaptive in that it allows the “environment” (e.g., access policies) to change at
runtime. However, we currently assume that the process definition itself does not change. In
our ongoing research, we are complementing our approach with support for online structural
process adaptation.

An important aspect of security enforcement is the way how constraint conflicts are handled
at runtime. Consequently, our approach is related to a recent study on handling conflicts of bind-
ing and mutual exclusion constraints in business processes [292,293]. Based on a formalization
of process-related RBAC, this work proposes algorithms to detect conflicts in constraint defini-
tions, as well as strategies to resolve the conflicts that have been detected. In our evaluation (see
Section 5.7), we illustrated an example constraint conflict that lead to a deadlock and discussed
how the platform is able to detect such conflicts. In order to anticipate and avoid deadlocks
altogether, we will eventually integrate these algorithms with our RBAC DSL.

Although not necessarily concerned with security (i.e., access control) in the narrower sense,
the area of Web service transaction processing [289, 344] and conversational service proto-
cols [31, 138] is related to our work on secured business processes. Put simply, a transactional
protocol is a sequence of operations with multiple participants that have a clearly defined role
and need to collaboratively perform a certain task. Analogously, BusinessActivities are per-
formed by subjects with clearly defined roles and limited permissions. One could argue that
while the responsibility of transaction control is to ensure that all participants actually do per-
form their task, the main purpose of access control is to ensure that subjects do not perform
tasks they are not authorized to. Amongst others, our approach was influenced by von Riegen
et al. [344] who model distributed Web service transactions with particular focus on complex
interactions where participants are restricted to only possess limited local views on the overall
process. These limited views are comparable to our access control enforcement. Our approach
also detects if a process instance is about to break the required conversational protocol (i.e., ac-
cess control policies), in which case we apply a sequence of compensation actions [289] (e.g.,
repeat authentication or terminate instance due to deadlock).

5.9 Conclusions

Enforcement of security and access constraints is a key concern for reliable application provi-
sioning, particularly in Cloud environments where multiple tenants and users collectively utilize
shared infrastructure and platform services. For any mission- or safety-critical application it is
imperative that restricted resources be protected from unauthorized access. While the theoretical
foundations of security mechanisms like RBAC or task-based entailment constraints are well-
understood, development support for runtime enforcement has so far received less attention. In
lack of a systematic development approach, the business logic code may get mixed up with
tailor-made security enforcement procedures, resulting in often recurring manually written boil-
erplate code that becomes hard to maintain and validate. To overcome this situation, developers
should be provided with suitable abstractions and convenient tools for reliable enforcement of
access constraints.

174

In this chapter, we have tackled these challenges and presented an integrated, model-driven
approach for the enforcement of access control policies and task-based entailment constraints in
distributed service-based business processes. The approach is centered around the DSL-driven
development of RBAC policies and the runtime enforcement of the resulting policies and con-
straints in Web services based business processes. Our work fosters cross-organizational authen-
tication and authorization in service-based applications, and facilitates the systematic develop-
ment of secured business environments. From the modeling perspective, the solution builds on
the BusinessActivity extension – a native UML extension for defining entailment constraints in
activity diagrams. We provided a detailed description of the procedure to transform design-time
BusinessActivity models into standard activity models that enforce the access constraints at run-
time. Based on a generic transformation procedure, we discussed our implementation which is
based on WS-BPEL and the Web services framework.

Our approach based on BusinessActivities allows to abstract from the technical implementa-
tion of security enforcement in the design time view of process models. The detailed evaluation
of the process transformation has shown that process definitions with injected tasks for security
enforcement grow considerably large. In fact, the additional code for security enforcement in
WS-BPEL is often larger than the actual business logic. This can be seen as an indicator that our
approach can reduce the development effort as compared to manual implementation, although
we did not empirically evaluate this aspect in detail.

Our extensive performance evaluation has illustrated that the proposed runtime enforcement
procedures operate with a slight overhead that scales well up to the order of several ten thousand
logged invocations. We can conclude that the overhead consists of three main parts: 1) the
approach builds on digital signatures for ensuring message integrity, 2) the process determines
the role and permissions of the currently executing user, which results in additional requests and
increased execution time, and 3) the enforcement of entailment constraints requires querying
the log traces of previous executions of the process. Note that the overhead for 1) and 2) does
not increase over time (with rising number of process executions), whereas the overhead for 3)
inherently rises because the log traces are accumulating over time, and more data have to be
evaluated.

The implementation of our prototype still has limitations, and we discussed strategies to im-
prove some of these limitations in future work. For instance, advanced synchronization mech-
anisms are required for business processes with highly parallel processing logic. Moreover, the
query mechanism that checks security constraints for validity needs to be further optimized for
very large log data sets (in the order of millions of invocations). We envision advanced data stor-
age and compression techniques, as well as optimized query mechanisms to further reduce this
increase of overhead over time. In our ongoing work we also investigate the use of additional
security annotations and an extended view of context information. Finally, we plan to shift from
a process-centric to a more data-centric view and seek for a stronger integration of entailment
constraints into our ongoing work on reliability in event-based data processing (see Section 3.2)
and collaborative Web applications [113–115].

175

CHAPTER 6
Conclusions

This final chapter summarizes the main results achieved within this thesis. Section 6.1 provides
a summary of the contributions with a focus on how the work has advanced the scientific state of
the art. In Section 6.2, the research questions formulated in Section 1.1.2 are revisited and put
into perspective with the provided contributions. Finally, Section 6.3 concludes the thesis with a
discussion of ongoing trends in related research areas, as well as open topics for future research
which can build on the contributions achieved here.

6.1 Summary of Contributions

Throughout this thesis, we have elaborated novel techniques for reliable provisioning of data-
centric and event-based applications in the Cloud. The thesis takes a holistic viewpoint and
tackles the problem from different angles, ranging from reliable deployment on the infrastruc-
ture layer, to optimized processing and load distribution on the middleware platform layer, to
functional testing and access control enforcement on the application level.

The discussion of the individual contributions is aligned along three distinct, yet strongly
interconnected, frameworks that have been developed in the course of this thesis:

• First, in the context of the WS-Aggregation platform, a novel model and execution approach
for reliable event-based data processing applications has been introduced. The platform is
tightly integrated with Cloud computing techniques, focusing on dynamic resource alloca-
tion, elastic scaling, and adaptation to workload fluctuations. Our comprehensive survey and
taxonomy of faults in event-based systems provides guidance for developers of fault tolerant
event processing platforms. Motivated by the fact that resource elasticity depends on reliable
infrastructure provisioning (e.g., deployment and configuration of new VMs), a novel method-
ology for testing idempotence and convergence of Infrastrucure-as-Code (IaC) automation
scripts has been developed. The comprehensive evaluation based on roughly 300 publicly
available IaC automations (Chef scripts) reveals that a large number (> 30%) of the selected
automations exhibit non-idempotent behavior, compromising the stability and repeatability of

177

deployments. Reliable infrastructure provisioning allows us to elastically scale and reconfig-
ure the WS-Aggregation platform at runtime. A formally defined target function achieves a
tradeoff along three dimensions: balanced load among nodes, low data transfer, and reduction
of duplicate event buffering. Our work is the first to study the effect of optimizing these par-
ticular dimensions. Moreover, our heuristic optimization algorithm, based on VNS, also takes
the cost for migrating to a new configuration into account.
• Second, the TeCoS framework introduces a novel approach for testing and fault localization

in dynamic composite Service-Based Applications (SBAs). The testing goal is to instantiate
SBAs in various configurations, systematically combining concrete service implementations,
in order to identify incompatibilities and integration issues. Based on a generic model of
SBAs, we define k-node data flows, a coverage metric aiming at limiting the size of gener-
ated test suites. The generic model is mapped and applied to two concrete technologies for
SBAs, namely WS-Aggregation and WS-BPEL. We leverage techniques from combinatorial
test design to generate near-minimal test suites, utilizing the FoCuS tool developed by IBM.
The instantiations of the SBA, both during testing and in production mode, are monitored and
stored as execution traces. The collected execution traces are analyzed to localize faults re-
sulting from incompatible services. Our fault localization approach utilizes machine learning
techniques, and is capable of dealing with transient faults and changing fault conditions.
• Third, the SeCoS framework provides identity and access management (IAM) for service-

based business processes deployed in multi-tenant Cloud environments. We build on the
well-established concept of RBAC to assign roles and permissions to subjects participating
in the business process. Task-based entailment constraints allow for fine-grained assignment
of responsibilities, in particular separation and binding of duties. We propose a declarative
DSL for defining access constraints as annotations in the business process definition. At
deployment time, systematic transformations are applied to convert the process definition into
an executable format which enforces the constraints at runtime. The prototype implementation
is integrated with the WS-BPEL framework and supports single sign-on (SSO) across multiple
organizations. Our comprehensive evaluation has demonstrated that the approach correctly
ensures access constraint consistency.

Throughout the entire thesis, we have striven to achieve a fair balance between systematic
problem abstractions with formal underpinnings on the one hand, and concrete technology map-
pings with runnable prototype implementations on the other hand. The majority of the developed
implementation code has been provided as open source tools to the community. Each contribu-
tion has been rigorously evaluated based on the prototype implementations and representative
experimentation scenarios.

6.2 Research Questions Revisited

In Section 1.1.2, we have formulated three core research questions which have guided the re-
search of this thesis. In the following, we briefly summarize how these questions have been
addressed within our work, and which limitations remain in the current solution.

178

Q1: What are suitable methods and a supporting system to reliably execute event-based
data processing applications in the Cloud, leveraging elasticity and dynamic resource
allocation?

Chapter 3 has introduced WS-Aggregation, a self-adaptive platform for event-based data
processing. WS-Aggregation is designed for reliability and elastic runtime adaptation, provid-
ing consistent QoS in the face of workload fluctuations and runtime faults (e.g., node outages).
A comprehensive taxonomy for faults in event-based systems has been derived, which builds
the foundation for reliable processing and fault tolerance mechanisms (e.g., redundant process-
ing). The platform leverages dynamic resource allocation in the Cloud to provide runtime op-
timization and elastic scaling. Since elasticity requires reliable resource provisioning on the
infrastructure level, a systematic testing method for IaC automations is employed, which is able
to efficiently determine faulty automations and issues concerning idempotence and repeatabil-
ity. The method for elastic reconfiguration is based on the M-A-P-E cycle from Autonomic
Computing [171], with the recurring phases of monitoring (capturing the workload and data
traffic between nodes), analysis (detecting whether the system is about to enter a critical state
and requires reconfiguration), planning (finding a new configuration based on a well-defined
optimization target), and execution (putting the plan into action, reconfiguring the system and
migrating processing elements between nodes).

Some limitations and shortcomings of the presented approach still remain. Our solution cur-
rently only considers resource elasticity, that is, the number of computing resources is adapted
based on external factors such as changing workloads. In addition, quality elasticity and cost
elasticity have to be considered; the former takes an existing resource allocation and dynam-
ically adjusts the QoS, e.g., varying the level of data consistency or precision of results; the
latter means to dynamically adjust the budget limit devoted to operation of the platform, while
tolerating variable QoS [91]. Moreover, the approach needs to be extended to systematically
handle and detect all fault types of the taxonomy. To that end, the taxonomy needs to be en-
coded in a generic runtime model which is kept in sync with specific target platforms, reflecting
all platform changes in the model, and enforcing all changes in the model to trigger reconfig-
urations in the platform. By means of such a synchronization mechanism between the model
and real platforms, systematic fault detection and fault injection techniques can be implemented
by generic manipulations on the model, in order to determine whether the platform gracefully
handles different types of runtime faults.

Q2: Which testing and fault localization techniques can be applied to ensure reliable pro-
visioning of data-centric and event-based applications in the Cloud?

Testing is an integral activity for ensuring reliability and detecting potential runtime prob-
lems up front. The testing technique discussed in Chapter 4 tackles reliable provisioning on the
application level and has been shown to successfully detect integration issues with incompatible
service implementations and data incompatibilities. The k-node data flow coverage metric is
tailored to data-centric services and allows to keep the testing effort low by limiting the size of
test suites. The approach is generic and applicable to different types of application frameworks,
which is evidenced by the demonstrated mappings to WS-BPEL and WS-Aggregation. Since

179

systems are typically evolving and not all situations can be anticipated up front, the system ex-
ecution is additionally monitored for runtime faults. The collected execution traces are utilized
for fault localization based on machine learning techniques. The evaluation has shown that the
approach successfully deals with transient faults as well as changing fault conditions.

Among the current limitations, we identify that the testing approach is tailored to short-
running technical processes with integration of real (production use) services. Long running
processes, possibly with human interaction or long waiting times in the activities, are currently
not well supported, because of the typically large number of process instantiations required for
testing. In addition, if the real services are not available for testing (e.g., for cost reasons), a
possible extension would be to utilize mock testing services which simulate or proxy the actual
services. Moreover, the presented fault localization approach provides useful insights for the
system maintainers, but currently does not perform further processing of the derived results. To
improve this aspect, the extracted rules could be used for guiding automated reconfiguration
when a fault occurs. Furthermore, future work will focus on integrating test coverage mecha-
nisms that help to actively investigate faults. Guiding the test execution with identified runtime
faults could be used to execute insightful configurations and input requests which further narrow
down the search space of possible fault reasons.

Q3: How can security and access control policies be enforced in the context of data pro-
cessing applications and workflows?

Provisioning of security-critical applications, particular in Cloud environments with multi-
ple tenants, requires systematic enforcement of access constraints to avoid unauthorized access.
Chapter 5 has tackled this issue, with a focus on two well-established types of constraints: RBAC
constraints which allow fine-grained assignment of roles and permissions, and entailment con-
straints which regulate the interdependencies between individual processing steps, for instance
binding of duty or separation of duty. The logic for security enforcement is often considered
“boilerplate” code which tends to blow up the application code and becomes error-prone if tailor
made. Hence, we propose to define access constraints declaratively, separating the application
logic from the security enforcement code. Our approach takes process models annotated with se-
curity annotations and automatically transforms them into process models which strictly follow
the required enforcement procedure at runtime. Our implementation and evaluation is integrated
with WS-BPEL and the Web services framework, although the approach is general.

The presented method provides a solid foundation and covers the crucial aspects of research
question Q3, yet some extensions and optimizations still have to be tackled. One central is-
sue for practical applicability is the performance of the query mechanism that checks security
constraints for consistency, given the fact that the log data of past process invocations grows
indefinitely. We envision advanced data storage and compression techniques, combined with
query optimization to further reduce the increasing overhead over time. Moreover, our approach
currently leads to the situation of possible process deadlocks (see evaluation in Section 5.7.2),
which is desired from a security perspective (if none of the subjects is permitted to perform
an action, no action should be performed), but may be critical from a practical perspective.
Hence, advanced satisfiability and conflict prediction techniques have to be integrated with the
approach, in order to avoid deadlocking in the first place.

180

6.3 Future Work

Within this thesis, different solutions for reliable application provisioning have been proposed,
covering the infrastructure, platform, and application layer in Cloud environments. Yet, a num-
ber of important challenges remain which were out of scope of this thesis. In the following we
conclude the thesis by summarizing these open issues for future work.

• It is expected that future research will build on and possibly extend the fault taxonomy for
EBS derived in this thesis. The generic model for EBS (Section 3.2.2) will be encoded and
instantiated for concrete event processing platforms, thereby providing a consistent mapping
between the model state and the real state of the platform. This mapping will allow to utilize
the taxonomy as the basis for two orthogonal goals: fault detection (or fault monitoring) and
fault injection. Using this two-way synchronization, faults can be injected into the platform
by generic manipulations on the model, and faults in the platform can be detected by moni-
toring changes in the model. This way, the fault detection and injection mechanisms can be
implemented in a generic fashion, and only the model mapping needs to be implemented to
integrate new platforms.
• The approach for testing idempotence of infrastructure automation scripts (Section 3.5) should

be extended to also consider systematic testing of convergence. Particularly in multi-node
environments where automations are continuously executed on interdependent machines, it
must be ensured that the overall system eventually converges to the desired state. Moreover,
the approach should be generalized to support arbitrary automation frameworks. The current
evaluation is focused on Chef where tasks have total ordering, but other frameworks like
Puppet use partial task ordering, which increases the complexity of the testing problem space.
• Elasticity is becoming a key feature for applications in the Cloud (e.g., elastic scaling in

WS-Aggregation), which raises the demand for systematic engineering and validation mech-
anisms. Implementing elastic systems is a complex endeavor that is associated with a number
of risks and potential faults. For instance, the system may fail to properly allocate sufficient
resources on time, it may become plastic in the sense that it becomes unable to scale down
after a scale out, or it may fail entirely due to the complex internal reconfigurations which may
break the system. Future work will tackle this problem and propose systematic methods for
testing of elastic computing systems. Initial work and research directions have been defined
in [108–110], but there are still a number of open challenges related to modeling of elastic
behavior, suitable coverage metrics, generation of test suites, and efficient test execution.
• In future work, we envision a tighter mutual integration of the proposed techniques for testing

and fault localization in data-centric applications (Section 4). The information about detected
faults at runtime could be used to trigger regression test suites, guiding the testing process
towards the proximity (similar inputs and configurations) of the identified fault, and potentially
redefining the test coverage criteria. Moreover, as an alternative to generating the entire test set
up front, fault localization could be used for iterative test generation, combined with adaptive
test case prioritization [168]. To that end, the execution starts with a set of random tests,
which is then iteratively extended and refined based on the faulty test cases.
• Finally, the security policies supported in Chapter 5, currently covering RBAC with mutual

exclusion and binding of duty constraints, will be extended with advanced schemes to support

181

a larger set of complex real-world situations, including extended notions of execution context
(e.g., different end user devices), exceptional policy settings (e.g., break-glass rules [102,
215]), or dynamic runtime changes in the access constraint model. Moreover, future research
is expected to explore the concepts established in this thesis for novel application areas, such
as entailment constraints in the context of collaborative Web applications [115] and constraint
enforcement in offline scenarios [114].

182

List of Acronyms

AOP Aspect Oriented Programming. 55, 68, 167, 171
API Application Programming Interface. 7, 24, 69, 88, 108, 151, 152, 154, 171
AQC Active Query Coordinator. 44, 65, 66, 171

BPM Business Process Management. 1, 171

CC Cloud Computing. 17, 171
CEP Complex Event Processing. 27, 29, 34, 39–41, 171
COP Combinatorial Optimization Problem. 87, 171
CPU Central Processing Unit. 70, 115, 156, 157, 171
CT Combinatorial Testing. 24, 171
CTL Computational Tree Logic. 25, 171

DAG Directed Acyclic Graph. 79, 171
DB Data Base. 152, 171
DBMS Data Base Management System. 13, 171
DME Dynamic Mutual Exclusion. 134, 137, 141, 143–148, 157, 171, 178
DSL Domain-Specific Language. 7, 135, 138, 140, 141, 148, 149, 151, 152, 156, 164–

169, 171, 177
DSMS Data Stream Management System. 12, 171

EBNF Extended Backus-Naur Form. 66, 171
EBS Event-Based System. 1, 7, 8, 11, 22, 27–30, 35, 171
EC2 Elastic Compute Cloud. 17, 69, 70, 171
EDBPM Event-Driven Business Process Management. 30, 42, 171
EDIP Event-Driven Interaction Paradigms. 29, 38, 171
EFSM Extended Finite State Machine. 25, 171
EPA Event Processing Agent. 12, 31–35, 39–43, 171
EPN Event Processing Network. 12, 13, 31, 32, 35, 40–42, 80, 81, 171
EPR Endpoint Reference. 95, 96, 108, 112, 113, 117, 118, 171
ES Elastic System. 18, 171
ESP Event Stream Processing. 29, 39, 40, 171

183

GPS Global Positioning System. 14, 89, 171
GUID Globally Unique Identifier. 113, 171

HTTP Hypertext Transfer Protocol. 14, 171

IaaS Infrastructure as a Service. 13, 17, 171
IaC Infrastructure as Code. 8, 9, 19, 54–57, 62, 64, 78, 81, 82, 171
IAM Identity and Access Management. 7, 135, 136, 142, 146, 147, 154, 163, 164, 167,

171
IdP Identity Provider. 142, 144, 147–149, 151–154, 157–159, 163, 171
IP Internet Protocol. 1, 171
IR Information Retrieval. 99, 100, 171
IT Information Technology. 133, 135, 136, 171

JMX Java Management Extensions. 70, 171

LXC Linux Containers. 18, 55, 82, 171

MAPE Monitor-Analyze-Plan-Execute. 80, 171
MBT Model Based Testing. 23, 24, 171

NH Neighborhood. 53, 54, 171
NIST National Institute of Standards and Technology. 17, 171

OCL Object Constraint Language. 140, 171
OS Operating System. 8, 18, 55, 59, 171

PaaS Platform as a Service. 17, 18, 171
PDP Policy Decision Point. 7, 152, 154, 171
PEP Policy Enforcement Point. 135, 151, 153, 154, 164, 171
PFT Partial Fault Tolerance. 81, 171
POSIX Portable Operating System Interface. 82, 171
Pub/Sub Publish/Subscribe. 4, 171

QoS Quality of Service. 2, 6, 16, 18, 19, 109, 171

RBAC Role-Based Access Control. 2, 5, 7, 133–136, 138, 140–142, 146–149, 152, 157–
161, 163–169, 171, 177

REST Representational State Transfer. 14, 171
RPC Remote Procedure Call. 4, 171

SaaS Software as a Service. 17, 18, 171
SAML Security Assertion Markup Language. 142, 148–154, 164, 171

184

SBA Service-Based Application. 6, 7, 13, 15, 16, 24, 85–88, 94, 102–104, 106, 108,
114, 123, 128, 171

SLA Service Level Agreement. 1, 2, 22, 133, 171
SME Static Mutual Exclusion. 134, 137, 141, 143–145, 147, 148, 157, 159, 161, 171,

178
SOA Service-Oriented Architecture. 13, 45, 81, 85, 113, 133, 134, 136, 146, 155,

164–166, 171
SOAP Simple Object Access Protocol. 14, 109, 111, 148, 151–154, 171
SOC Service-Oriented Computing. 13, 171
SSH Secure Shell. 68, 171
SSO Single Sign-On. 7, 150, 152, 167, 171
STG State Transition Graph. 8, 25, 55, 57, 59, 62, 63, 171
SUT System Under Test. 23–25, 55, 171

UML Unified Modeling Language. 23, 32, 109, 135, 138, 144, 149, 152, 169, 171
URL Uniform Resource Locator. 14, 108, 171

VM Virtual Machine. 4, 5, 8, 17, 18, 28, 43, 54, 55, 64, 82, 115, 171
VNS Variable Neighborhood Search. 53, 54, 83, 171
VRESCo Vienna Runtime Environment for Service-oriented Computing. 16, 45, 46, 171

WAQL Web services Aggregation Query Language. 5, 28, 171
WS Web Service. 1, 14, 171
WS-BPEL Web Services Business Process Execution Language. 7, 14, 16, 85, 87–92, 95,

108–110, 112–114, 116–118, 128, 129, 131, 135, 136, 141, 142, 144, 146–149,
151, 152, 154, 156, 157, 162–167, 169, 171

WSDL Web Services Description Language. 14, 15, 86, 110, 171
WSN Wireless Sensor Network. 22, 29, 32, 34, 40–42, 171
WWW World Wide Web. 1, 171

XACML eXtensible Access Control Markup Language. 166, 167, 171
XML Extensible Markup Language. 5, 14, 43, 71, 85, 86, 149, 151–155, 157, 163, 164,

167, 171
XPath XML Path Language. 14, 89, 90, 95, 113, 129, 171
XQuery XML Query Language. 5, 66, 155, 171, 178
XSD XML Schema Definition. 14, 149, 171

185

Bibliography

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch Cherni-
ack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvk-
ina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik. The Design of the Borealis Stream
Processing Engine. In 2nd Biennial Conference on Innovative Data Systems Research
(CIDR), 2005. → pages: 31, 41, and 42

[2] Divyakant Agrawal, Amr El Abbadi, Sudipto Das, and Aaron J Elmore. Database scala-
bility, elasticity, and autonomy in the cloud. In Database Systems for Advanced Applica-
tions, pages 2–15. Springer, 2011. → pages: 2

[3] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient Pattern
Matching Over Event Streams. In SIGMOD Int. Conference on Management of Data,
2008. → pages: 82

[4] David W. Aha. Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms. Int. Journal of Man-Machine Studies, 36(2):267–287, 1992. → pages: 110

[5] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. Wire-
less sensor networks: a survey. Computer Networks, 38(4):393–422, Elsevier, 2002.
→ pages: 31, 43, and 44

[6] Open Mashup Alliance. Enterprise Mashup Markup Language (EMML). http://
www.openmashup.org/omadocs/v1.0/index.html. → pages: 113

[7] P.E. Ammann, P.E. Black, and W. Majurski. Using model checking to generate tests from
specifications. In 2nd International Conference on Formal Engineering Methods, pages
46–54, 1998. → pages: 99

[8] ANSI/IEEE. Standard glossary of software engineering terminology. STD-729-1991,
1991. → pages: 2

[9] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University Press,
2003. → pages: 115

[10] Michael Armbrust et al. Above the clouds: A berkeley view of cloud computing. Tech-
nical Report UCB/EECS-2009-28, University of California at Berkeley, 2009. → pages:
1 and 17

187

http://www.openmashup.org/omadocs/v1.0/index.html
http://www.openmashup.org/omadocs/v1.0/index.html

[11] Ellen M. Arruda and Mary C. Boyce. A three-dimensional constitutive model for the
large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics
of Solids, 41(2):389 – 412, 1993. → pages: 18

[12] Taimur Aslam, Ivan Krsul, and E Spafford. Use of a taxonomy of security faults.
19th National Information Systems Security Conference (NISSC), pages 551–560, 1996.
→ pages: 6 and 38

[13] Algirdas Avizienis, Jean Laprie, Brian Randell, and Carl Landwehr. Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Transactions on Dependable
and Secure Computing, 1:11–33, 2004. → pages: 2, 6, 20, 21, 22, 36, 37, and 38

[14] Ahmed Ayad and Jeffrey Naughton. Static optimization of conjunctive queries with
sliding win- dows over infinite streams. In SIGMOD Int. Conf. on Management of Data,
2004. → pages: 83

[15] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.
Models and issues in data stream systems. In 21st Symposium on Principles of Database
Systems (PODS), pages 1–16, 2002. → pages: 1, 11, and 31

[16] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom. Exploiting k-constraints to re-
duce memory overhead in continuous queries over data streams. ACM Transactions on
Database Systems, 29:545–580, 2004. → pages: 83

[17] Shivnath Babu and Jennifer Widom. Continuous queries over data streams. ACM SIG-
MOD International Conference on Management of Data, 30:109–120, 2001. → pages:
1, 31, and 49

[18] Ricardo Baeza-Yates and Ribeiro-Neto Berthier. Modern information retrieval. ACM
Press, Addison-Wesley, 1999. → pages: 103, 104, 110, and 134

[19] Guruduth Banavar, Tushar Chandra, Robert Strom, and Daniel Sturman. A case for mes-
sage oriented middleware. In SDC, 1999. → pages: 31

[20] Luciano Baresi and Sam Guinea. Towards dynamic monitoring of ws-bpel processes.
In International Conference on Service-Oriented Computing (ICSOC), pages 269–282.
Springer, 2005. → pages: 14

[21] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Mingsheng Hong. Consistent
streaming through time: A vision for event stream processing. In 3rd Biennial Conference
on Innovative Data Systems Research (CIDR), pages 363–374, 2007. → pages: 31

[22] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review, 37(5):164–177, 2003. → pages: 17

188

[23] Alistair Barros, Gero Decker, Marlon Dumas, and Franz Weber. Correlation patterns
in service-oriented architectures. In Fundamental Approaches to Software Engineering,
volume 4422 of Lecture Notes in Computer Science, pages 245–259. Springer, 2007.
→ pages: 134

[24] Cesare Bartolini, Antonia Bertolino, Sebastian Elbaum, and Eda Marchetti. Bringing
white-box testing to service oriented architectures through a service oriented approach.
Journal of Systems and Software, 84(4):655–668, 2011. → pages: 90 and 132

[25] Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Ioannis Parissis. Data Flow-
Based Validation of Web Services Compositions: Perspectives and Examples. Architect-
ing Dependable Systems V, 2008. → pages: 133

[26] Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Andrea Polini. WS-TAXI: A
WSDL-based Testing Tool for Web Services. In 2nd IEEE International Conference on
Software Testing, Verification and Validation (ICST), pages 326–335, 2009. → pages: 14
and 90

[27] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model driven security: From UML
models to access control infrastructures. ACM Transactions on Software Engineering
Methodology, 15:39–91, 2006. → pages: 172

[28] Anne Baumgrass, Thomas Baier, Jan Mendling, and Mark Strembeck. Conformance
Checking of RBAC Policies in Process-Aware Information Systems. In BPM’11 Work-
shop on Workflow Security Audit and Certification (WfSAC). Springer, 2011. → pages:
170

[29] Armin Beer and Matthias Heindl. Issues in testing dependable event-based systems at
a systems integration company. In 2nd IEEE International Conference on Availability,
Reliability and Security (ARES), pages 1093–1100, 2007. → pages: 134

[30] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New
York, USA, 1990. → pages: 2, 23, and 133

[31] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Web Service Conversation Mod-
eling: A Cornerstone for E-Business Automation. IEEE Internet Computing, 8(1):46–54,
2004. → pages: 174

[32] Djamal Benslimane, Schahram Dustdar, and Amit Sheth. Services Mashups: The
New Generation of Web Applications. IEEE Internet Computing, 12(5):13–15, 2008.
→ pages: 113 and 136

[33] Elisa Bertino, Elena Ferraria, and Vijay Atluri. The specification and enforcement of
authorization constraints in workflow management systems. ACM Transactions on Infor-
mation and System Security, 2(1):65–104, 1999. → pages: 140, 162, and 168

[34] Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In
Future of Software Engineering (FOSE), pages 85–103. IEEE, 2007. → pages: 23 and 24

189

[35] Antonia Bertolino, Guglielmo De Angelis, Sampo Kellomaki, and Andrea Polini. En-
hancing service federation trustworthiness through online testing. IEEE Computer,
45(1):66–72, 2012. → pages: 131

[36] Robert V Binder. Testing object-oriented software: a survey. Software Testing Verification
and Reliability (STVR), 6(3-4):125–252, 1996. → pages: 6

[37] Christian Böhm, Beng Chin Ooi, Claudia Plant, and Ying Yan. Efficiently processing
continuous k-nn queries on data streams. In Int. Conf. on Data Engineering, pages 156–
165, 2007. → pages: 83

[38] Boris J. Bonfils and Philippe Bonnet. Adaptive and decentralized operator placement for
in-network query processing. Telecommunication Systems, 26:389–409, 2004. → pages:
82

[39] Irina Botan, Donald Kossmann, Peter M. Fischer, Tim Kraska, Dana Florescu, and Rokas
Tamosevicius. Extending xquery with window functions. In 33rd international Confer-
ence on Very Large Data Bases (VLDB), pages 75–86, 2007. → pages: 11 and 13

[40] Reinhardt A. Botha and Jan H.P. Eloff. Separation of duties for access control enforce-
ment in workflow environments. IBM Systems Journal, 40(3):666–682, 2001. → pages:
140

[41] Christiano Braga. A transformation contract to generate aspects from access control poli-
cies. Software and Systems Modeling, 10:395–409, 2011. → pages: 173

[42] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger
Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and Mary Shaw. Engineering self-
adaptive systems through feedback loops. In Software Engineering for Self-Adaptive
Systems, pages 48–70. Springer, 2009. → pages: 82

[43] Stefan Bruning, Stephan Weissleder, and Miroslaw Malek. A Fault Taxonomy for
Service-Oriented Architecture. In 10th IEEE High Assurance Systems Engineering Sym-
posium (HASE), pages 367–368, 2007. → pages: 6 and 84

[44] Antonio Bucchiarone, Hernán Melgratti, and Francesco Severoni. Testing service com-
position. In 8th Argentine Symposium on Software Engineering, 2007. → pages: 132

[45] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel symbolic ex-
ecution for automated real-world software testing. In ACM EuroSys Conference, pages
183–198, 2011. → pages: 85

[46] Mark Burgess. Testable system administration. Communications of the ACM, 54(3):44–
49, 2011. → pages: 19, 56, and 84

[47] Zack Butler and Daniela Rus. Event-based motion control for mobile-sensor networks.
Pervasive Computing, 2(4):34–42, 2003. → pages: 31, 34, and 36

190

[48] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality for deliv-
ering computing as the 5th utility. Future Generation computer systems, 25(6):599–616,
2009. → pages: 1 and 17

[49] C. Cadar, P. Godefroid, S. Khurshid, C.S. Pasareanu, K. Sen, N. Tillmann, and W. Visser.
Symbolic execution for software testing in practice: preliminary assessment. In 33rd
International Conference on Software Engineering (ICSE), pages 1066 –1071, 2011.
→ pages: 85

[50] George Candea, Stefan Bucur, and Cristian Zamfir. Automated software testing as a
service. In 1st ACM Symposium on Cloud Computing (SoCC), pages 155–160, 2010.
→ pages: 85

[51] Gerardo Canfora and Massimiliano Di Penta. Testing Services and Service-Centric Sys-
tems: Challenges and Opportunities. IT Professional, 8(2):10–17, 2006. → pages: 90
and 132

[52] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani. A
framework for qos-aware binding and re-binding of composite web services. Journal of
Systems and Software, 81(10):1754–1769, 2008. → pages: 8 and 16

[53] J.C. Cannon and Marilee Byers. Compliance Deconstructed. ACM Queue, 4(7):30–37,
Septemper 2006. → pages: 139

[54] Tien-Dung Cao, P. Felix, R. Castanet, and I. Berrada. Online testing framework for web
services. In 3rd International Conference on Software Testing, Verification and Validation
(ICST), pages 363–372, 2010. → pages: 131

[55] Barbara Carminati, Elena Ferrari, and Patrick C.K. Hung. Security conscious web service
composition. In International Conference on Web Services (ICWS), pages 489–496, 2006.
→ pages: 95

[56] Antonio Carzaniga, David Rosenblum, and Alexander Wolf. Design and evaluation of
a wide-area event notification service. ACM Transactions on Computer Systems, 19(3),
2001. → pages: 31

[57] Giuliano Casale, Amir Kalbasi, Diwakar Krishnamurthy, and Jerry Rolia. Automatic
stress testing of multi-tier systems by dynamic bottleneck switch generation. In 10th
ACM/IFIP/USENIX International Middleware Conference, pages 20:1–20:20, 2009.
→ pages: 85

[58] Fabio Casati, Ski Ilnicki, LiJie Jin, Vasudev Krishnamoorthy, and Ming-Chien Shan.
Adaptive and dynamic service composition in eflow. In Advanced Information Systems
Engineering, pages 13–31. Springer, 2000. → pages: 16

191

[59] K. S. Chan, Judith Bishop, Johan Steyn, Luciano Baresi, and Sam Guinea. A fault tax-
onomy for web service composition. In International Conference on Service-Oriented
Computing (ICSOC) - Workshops, pages 363–375, 2009. → pages: 6, 37, and 84

[60] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM (JACM), 43(2):225–267, 1996. → pages: 135

[61] Anis Charfi and Mira Mezini. AO4BPEL: An Aspect-oriented Extension to BPEL. World
Wide Web Journal - Special Issue: Recent Advances in Web Services, 10:309–344, 2007.
→ pages: 173

[62] Jianjun Chen, David DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: a scalable contin-
uous query system for Internet databases. In ACM SIGMOD International Conference on
Management of Data, pages 379–390, 2000. → pages: 83

[63] Jie Chen and Ron J. Patton. Robust Model-based Fault Diagnosis for Dynamic Systems.
Kluwer Academic Publishers, 1999. → pages: 134

[64] Liming Chen and Algirdas Avizienis. N-version programming: A fault-tolerance ap-
proach to reliability of software operation. In 8th IEEE International Symposium on
Fault-Tolerant Computing, pages 3–9, 1978. → pages: 23

[65] Qiming Chen and Meichun Hsu. Data stream analytics as cloud service for mobile ap-
plications. In Int. Symp. on Distributed Objects, Middleware, and Applications (DOA),
2010. → pages: 82

[66] Christine T. Cheng. The test suite generation problem: Optimal instances and their im-
plications. Discrete Applied Mathematics, 155(15):1943–1957, 2007. → pages: 101

[67] Michal R. Chmielewski and Jerzy W. Grzymala-Busse. Global discretization of contin-
uous attributes as preprocessing for machine learning. International Journal of Approxi-
mate Reasoning, 15(4):319 – 331, 1996. → pages: 108

[68] Calin Ciordas, Twan Basten, Andrei Rădulescu, Kees Goossens, and Jef Van Meerbergen.
An event-based monitoring service for networks on chip. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 10(4):702–723, 2005. → pages: 32

[69] David D. Clark and David R. Wilson. A Comparison of Commercial and Military Com-
puter Security Policies. In IEEE Symp. on Security and Privacy, April 1987. → pages:
140

[70] Alberto Coen-Porisini, Giovanni Denaro, Carlo Ghezzi, and Mauro Pezzé. Using sym-
bolic execution for verifying safety-critical systems. In ACM SIGSOFT Software Engi-
neering Notes, volume 26, pages 142–151. ACM, 2001. → pages: 85

[71] David M. Cohen, Siddharta R. Dalal, Michael L. Fredman, and Gardner C. Patton. The
AETG system: an approach to testing based on combinatorial design. IEEE Transactions
on Software Engineering, 23(7):437–444, 1997. → pages: 25 and 101

192

[72] European Commission. General Data Protection Regulation. http://eur-lex.
europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0011:FIN:
EN:PDF, January 2012. Accessed: 2013-12-10. → pages: 6

[73] Microsoft Corporation. Windows workflow foundation. http://msdn.microsoft.
com/en-us/vstudio/jj684582. Visited: 2013-10-15. → pages: 113

[74] Alva Couch and Yizhan Sun. On the algebraic structure of convergence. In 14th Interna-
tional Workshop on Distributed Systems: Operations and Management (DSOM), pages
28–40, 2003. → pages: 8, 19, 56, 57, 61, 62, and 84

[75] Jason Crampton. A reference monitor for workflow systems with constrained task execu-
tion. In 10th ACM Symposium on Access Control Models and Technologies (SACMAT),
pages 38–47, 2005. → pages: 162

[76] Jason Crampton, Gregory Gutin, and Anders Yeo. On the parameterized complexity of
the workflow satisfiability problem. In 19th ACM Conference on Computer and Commu-
nications Security (CCS), pages 857–868. ACM, October 2012. → pages: 165 and 166

[77] Gianpaolo Cugola and Alessandro Margara. TESLA: a Formally Defined Event Specifi-
cation Language. In International Conference on Distributed Event-Based Systems, 2010.
→ pages: 82

[78] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transformation
approaches. IBM Systems Journal - Model-driven software development, 45:621–645,
July 2006. → pages: 173

[79] Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, David Mazières, and Robert Morris.
Event-driven programming for robust software. In 10th ACM SIGOPS (workshops), 2002.
→ pages: 31

[80] Marios Damianides. How does SOX change IT? Journal of Corporate Accounting &
Finance, 15(6):35–41, 2004. → pages: 139

[81] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. Approximate join processing
over data streams. In ACM SIGMOD International Conference on Management of Data,
pages 40–51, 2003. → pages: 41

[82] Francesco de Angelis, Andrea Polini, and Guglielmo de Angelis. A counter-example test-
ing approach for orchestrated services. In 3rd IEEE International Conference on Software
Testing, Verification and Validation (ICST), pages 373–382, 2010. → pages: 133

[83] Giovanni Denaro and Mauro Pezze. Petri nets and software engineering. In Lectures on
Concurrency and Petri Nets, pages 439–466. Springer, 2004. → pages: 133

[84] Massimiliano Di Penta, Raffaele Esposito, Maria Luisa Villani, Roberto Codato, Massi-
miliano Colombo, and Elisabetta Di Nitto. Ws binder: a framework to enable dynamic
binding of composite web services. In International Workshop on Service-Oriented Soft-
ware Engineering, pages 74–80. ACM, 2006. → pages: 16

193

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0011:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0011:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0011:FIN:EN:PDF
http://msdn.microsoft.com/en-us/vstudio/jj684582
http://msdn.microsoft.com/en-us/vstudio/jj684582

[85] Massimiliano Di Penta, Raffaele Esposito, Maria Luisa Villani, Roberto Codato, Massi-
miliano Colombo, and Elisabetta Di Nitto. Ws binder: a framework to enable dynamic
binding of composite web services. In International Workshop on Service-Oriented Soft-
ware Engineering (SOSE), pages 74–80. ACM, 2006. → pages: 94

[86] Nathan Dimmock, András Belokosztolszki, David Eyers, Jean Bacon, and Ken Moody.
Using trust and risk in role-based access control policies. In 9th ACM Symposium on
Access Control Models and Technologies (SACMAT), 2004. → pages: 171

[87] Wen-Li Dong, Hang Yu, and Yu-Bing Zhang. Testing BPEL-based Web Service Com-
position Using High-level Petri Nets. In 10th IEEE International Enterprise Distributed
Object Computing Conference (EDOC’06), pages 441–444, 2006. → pages: 14 and 133

[88] Dirk Draheim. The Service-Oriented Metaphor Deciphered. Journal of Computing Sci-
ence and Engineering (JCSE), 4(4):253–275, 2010. → pages: 139

[89] Dirk Draheim, John Grundy, John Hosking, Christof Lutteroth, and Gerald Weber. Real-
istic Load Testing of Web Applications. In IEEE Conference on Software Maintenance
and Reengineering (CSMR), pages 57–70, 2006. → pages: 122

[90] Joao A. Duraes and Henrique S. Madeira. Emulation of software faults: A field data study
and a practical approach. IEEE Transactions on Software Engineering, 32(11):849–867,
2006. → pages: 84

[91] Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong-Linh Truong. Principles
of elastic processes. Internet Computing, IEEE, 15(5):66–71, 2011. → pages: 5, 18,
and 179

[92] Schahram Dustdar and Wolfgang Schreiner. A Survey on Web Services Composition.
International Journal of Web and Grid Services, 1(1):1–30, 2005. → pages: 1 and 89

[93] Johann Eder and Wolfgang Gruber. A meta model for structured workflows supporting
workflow transformations. In 6th East European Conference on Advances in Databases
and Information Systems (ADBIS’02), pages 326–339. Springer-Verlag, 2002. → pages:
173

[94] Marcelo Medeiros Eler, Marcio Eduardo Delamaro, Jose Carlos Maldonado, and
Paulo Cesar Masiero. Built-in structural testing of web services. In Brazilian Sympo-
sium on Software Engineering (SBES), pages 70–79, 2010. → pages: 90 and 132

[95] Elmootazbellah Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David Johnson. A survey
of rollback-recovery protocols in message-passing systems. ACM Computing Surveys,
34(3), 2002. → pages: 31

[96] Thomas Erl. Service-oriented architecture. Prentice Hall Englewood Cliffs, 2004.
→ pages: 1 and 13

194

[97] Opher Etzion and Peter Niblett. Event Processing in Action. Manning Publications, 2010.
→ pages: 1, 11, 29, 31, and 32

[98] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys, 35:114–131, 2003. → pages:
32 and 40

[99] Mohamed Fayad and Douglas C Schmidt. Object-oriented application frameworks. Com-
munications of the ACM, 40(10):32–38, 1997. → pages: 16

[100] Dieter Fensel and Christoph Bussler. The web service modeling framework wsmf. Elec-
tronic Commerce Research and Applications, 1(2):113 – 137, 2002. → pages: 171

[101] David Ferraiolo, Richard Kuhn, and Ramaswamy Chandramouli. Role-Based Access
Control. Artech House, second edition, 2007. → pages: 139

[102] Ana Ferreira, Ricardo Cruz-Correia, Luis Antunes, Pedro Farinha, Ernesto Oliveira-
Palhares, David W. Chadwick, and Altamira Costa-Pereira. How to break access con-
trol in a controlled manner. In 19th IEEE International Symposium on Computer-Based
Medical Systems (CBMS), pages 847–854, 2006. → pages: 170 and 182

[103] Ludger Fiege, Felix Gartner, Oliver Kasten, and Andreas Zeidler. Supporting Mobility in
Content-Based Publish/Subscribe Middleware. In Middleware Conference, pages 103–
122. Springer, 2003. → pages: 32

[104] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul Leach,
and Tim Berners-Lee. Hypertext transfer protocol – HTTP/1.1. https://tools.
ietf.org/html/rfc2616, 1999. → pages: 14

[105] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. An integrated workbench
for model-based engineering of service compositions. IEEE Transactions on Services
Computing, 3(2):131–144, 2010. → pages: 171

[106] Chris Fowler and Behrang Qasemizadeh. Towards a Common Event Model for an In-
tegrated Sensor Information System. In Workshop on the Semantic Sensor Web, 2009.
→ pages: 83

[107] Martin Gaedke, Johannes Meinecke, and Martin Nussbaumer. A modeling approach
to federated identity and access management. In Special interest tracks and posters of
the 14th international conference on World Wide Web, pages 1156–1157. ACM, 2005.
→ pages: 9

[108] Alessio Gambi, Waldemar Hummer, and Schahram Dustdar. Automated testing of cloud-
based elastic systems with autocles. In 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Demo track, pages 714–717, 2013. → pages:
18, 181, and 226

195

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616

[109] Alessio Gambi, Waldemar Hummer, and Schahram Dustdar. Testing Elastic Systems
with Surrogate Models. In ICSE Workshop on Combining Modelling and Search-Based
Software Engineering (CMSBSE), 2013. → pages: 18, 85, 181, and 226

[110] Alessio Gambi, Waldemar Hummer, Hong-Linh Truong, and Schahram Dustdar. Testing
elastic computing systems. IEEE Internet Computing, 17(6):76–82, 2013. → pages: 18,
85, 181, and 225

[111] José García-fanjul, Javier Tuya, and Claudio De La Riva. Generating Test Cases Specifi-
cations for BPEL Compositions of Web Services Using SPIN. In WS-MaTe 2006, pages
83–94, 2006. → pages: 132

[112] David Garlan and David Notkin. Formalizing design spaces: Implicit invocation mecha-
nisms. In 4th International Symposium of VDM Europe on Formal Software Development,
pages 31–44, 1991. → pages: 31

[113] Patrick Gaubatz, Waldemar Hummer, Uwe Zdun, and Mark Strembeck. Supporting Cus-
tomized Views for Enforcing Access Control Constraints in Real-time Collaborative Web
Applications. In International Conference on Web Engineering (ICWE), 2013. → pages:
175 and 227

[114] Patrick Gaubatz, Waldemar Hummer, Uwe Zdun, and Mark Strembeck. Enforcing En-
tailment Constraints in Offline Editing Scenarios for Real-time Collaborative Web Doc-
uments. In 29th ACM Symposium On Applied Computing (SAC), 2014. → pages: 175,
182, and 227

[115] Patrick Gaubatz and Uwe Zdun. Supporting entailment constraints in the context of col-
laborative web applications. In 28th Symposium On Applied Computing (SAC). ACM,
2013. → pages: 175, 182, and 227

[116] David Gelernter. Multiple tuple spaces in Linda. Parallel Architectures and Languages
Europe, 366:20–27, 1989. → pages: 31

[117] Ioana Giurgiu, Claris Castillo, Asser Tantawi, and Malgorzata Steinder. Enabling effi-
cient placement of virtual infrastructures in the cloud. In 13th ACM/IFIP/USENIX Inter-
national Middleware Conference, pages 332–353, 2012. → pages: 84

[118] John B Goodenough and Susan L Gerhart. Toward a theory of test data selection. IEEE
Transactions on Software Engineering, (2):156–173, 1975. → pages: 26

[119] Michaela Greiler, Hans-Gerhard Gross, and Arie van Deursen. Evaluation of online test-
ing for services: a case study. In 2nd International Workshop on Principles of Engineering
Service-Oriented Systems (PESOS), pages 36–42, 2010. → pages: 131

[120] Liang Guo, Abhik Roychoudhury, and Tao Wang. Accurately choosing execution runs
for software fault localization. In Compiler Construction, pages 80–95. Springer, 2006.
→ pages: 135

196

[121] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical report, Cornell University, Ithaca, NY, USA, 1994. → pages:
83

[122] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and techniques.
Morgan Kaufmann, 2006. → pages: 1

[123] Pierre Hansen and Nenad Mladenović. Handbook of metaheuristics, chapter Variable
Neighborhood Search. Springer, 2003. → pages: 55

[124] Reiko Heckel and Leonardo Mariani. Automatic conformance testing of web services.
Fundamental Approaches to Software Engineering, pages 34–48, 2005. → pages: 132

[125] Pat Helland. Idempotence is not a medical condition. ACM Queue, 10(4), 2012. → pages:
84

[126] Pat Helland and David Campbell. Building on quicksand. In Conference on Innovative
Data Systems Research (CIDR), 2009. → pages: 84

[127] Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. A framework
for proactive self-adaptation of service-based applications based on online testing. In Petri
Mähönen, Klaus Pohl, and Thierry Priol, editors, Towards a Service-Based Internet, pages
122–133. Springer, 2008. → pages: 131

[128] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister.
System architecture directions for networked sensors. SIGPLAN Notices, 35:93–104,
2000. → pages: 32

[129] Bernhard Hoisl and Mark Strembeck. A UML Extension for the Model-driven Specifi-
cation of Audit Rules. In 2nd International Workshop on Information Systems Security
Engineering (WISSE). Springer Verlag, 2012. → pages: 161

[130] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural. A temporal logic based
theory of test coverage and generation. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 327–341. Springer, 2002. → pages: 26

[131] George Hripcsak and Adam S. Rothschild. Agreement, the f-measure, and reliabil-
ity in information retrieval. Journal of the American Medical Informatics Association,
12(3):296–298, 2005. → pages: 110

[132] Michael N. Huhns and Munindar P. Singh. Service-Oriented Computing: Key Concepts
and Principles. IEEE Internet Computing, 9:75–81, January 2005. → pages: 139

[133] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 2010. → pages:
84

197

[134] Waldemar Hummer, Patrick Gaubatz, Mark Strembeck, Uwe Zdun, and Schahram Dust-
dar. An integrated approach for identity and access management in a SOA context. In
16th ACM Symposium on Access Control Models and Technologies (SACMAT), pages
21–30, 2011. → pages: xxii, 9, 95, 131, 141, 146, 171, 173, and 226

[135] Waldemar Hummer, Patrick Gaubatz, Mark Strembeck, Uwe Zdun, and Schahram Dust-
dar. Enforcement of Entailment Constraints in Distributed Service-Based Business Pro-
cesses. Information and Software Technology (IST), 55(11):1884–1903, 2013. → pages:
xxi, 9, and 224

[136] Waldemar Hummer, Christian Inzinger, Philipp Leitner, Benjamin Satzger, and Schahram
Dustdar. Deriving a unified fault taxonomy for distributed event-based systems. In 6th
ACM International Conference on Distributed Event-Based Systems (DEBS), pages 167–
178, 2012. → pages: xxi, 6, 137, and 225

[137] Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. A Step-by-Step Debug-
ging Technique To Facilitate Mashup Development and Maintenance. In 4th Interna-
tional Workshop on Web APIs and Services Mashups, co-located with ECOWS’10, 2010.
→ pages: xxii, 7, and 226

[138] Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. SEPL – a domain-specific
language and execution environment for protocols of stateful Web services. Distributed
and Parallel Databases, 29(4):277–307, 2011. → pages: 174 and 225

[139] Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. WS-Aggregation: Dis-
tributed Aggregation of Web Services Data. In ACM Symposium On Applied Computing
(SAC), pages 1590–1597, 2011. → pages: xxi, 7, 50, 83, 100, 114, 161, and 226

[140] Waldemar Hummer, Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and
Schahram Dustdar. VRESCo - Vienna Runtime Environment for Service-oriented Com-
puting, pages 299–324. Service Engineering. European Research Results. Springer, 2010.
→ pages: 16, 47, and 229

[141] Waldemar Hummer, Philipp Leitner, Benjamin Satzger, and Schahram Dustdar. Dynamic
migration of processing elements for optimized query execution in event-based systems.
In 1st International Symposium on Secure Virtual Infrastructures (DOA-SVI’11), OnThe-
Move Federated Conferences, pages 451–468, 2011. → pages: xxii, 7, 44, and 226

[142] Waldemar Hummer, Orna Raz, and Schahram Dustdar. Towards Efficient Measuring of
Web Services API Coverage. In 3rd International Workshop on Principles of Engineer-
ing Service-Oriented Systems (PESOS), co-located with ICSE’11, pages 22–28, 2011.
→ pages: xxii, 9, 112, and 226

[143] Waldemar Hummer, Orna Raz, Onn Shehory, Philipp Leitner, and Schahram Dustdar.
Test coverage of data-centric dynamic compositions in service-based systems. In 4th In-
ternational Conference on Software Testing, Verification and Validation (ICST’11), pages
40–49, 2011. → pages: xxii, 9, 173, and 226

198

[144] Waldemar Hummer, Orna Raz, Onn Shehory, Philipp Leitner, and Schahram Dustdar.
Testing of Data-Centric and Event-Based Dynamic Service Compositions. Software Test-
ing, Verification and Reliability (STVR), 23(6):465–497, 2013. → pages: xxi, 9, 85,
and 225

[145] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. Automated
testing of chef automation scripts. In ACM/IFIP/USENIX Middleware Conference (tool
demo track), 2013. → pages: xxi, 8, and 225

[146] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. Testing idem-
potence for infrastructure as code. In 14th ACM/IFIP/USENIX Middleware Conference,
pages 368–388, 2013. Best Student Paper Award. → pages: xxi, 8, and 225

[147] Waldemar Hummer, Benjamin Satzger, and Schahram Dustdar. Elastic Stream Processing
in the Cloud. Wiley Interdisciplinary Rewiews: Data Mining and Knowledge Discovery,
3(5):333–345, 2013. → pages: xxi, 7, and 225

[148] Waldemar Hummer, Benjamin Satzger, Philipp Leitner, Christian Inzinger, and Schahram
Dustdar. Distributed Continuous Queries Over Web Service Event Streams. In 7th IEEE
International Conference on Next Generation Web Services Practices (NWeSP), pages
176–181, 2011. → pages: xxii, 7, 52, 100, and 226

[149] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria. In 16th Interna-
tional Conference on Software Engineering (ICSE), pages 191–200, 1994. → pages: 134
and 135

[150] Michael Hüttermann. DevOps for Developers. Apress, 2012. → pages: 8 and 19

[151] IBM alphaWorks. Focus code and functional coverage tool. http://alphaworks.
ibm.com/tech/focus. → pages: 91 and 115

[152] Cisco Systems Inc. Visual networking index. http://www.cisco.com/web/go/
vni. Accessed: July 5, 2013. → pages: 1

[153] Christian Inzinger, Waldemar Hummer, Ioanna Lytra, Philipp Leitner, Huy Tran, Uwe
Zdun, and Schahram Dustdar. Decisions, models, and monitoring a lifecycle model for
the evolution of service-based systems. In 17th IEEE International EDOC Conference,
2013. → pages: 227

[154] Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Towards identifying root causes of faults in service-based applications. In 31st
International Symposium on Reliable Distributed Systems (poster paper), pages 404–405,
2012. → pages: xxii, 9, 136, and 227

[155] Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Identifying incompatible service implementations using pooled decision trees.

199

http://alphaworks.ibm.com/tech/focus
http://alphaworks.ibm.com/tech/focus
http://www.cisco.com/web/go/vni
http://www.cisco.com/web/go/vni

In 28th ACM Symposium on Applied Computing (SAC), DADS Track, pages 485–492,
2013. → pages: xxii, 9, and 227

[156] Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and Schahram
Dustdar. Generic Event-Based Monitoring and Adaptation Methodology for Heteroge-
neous Distributed Systems. Software: Practice and Experience, 2014. → pages: 225

[157] Christian Inzinger, Benjamin Satzger, Waldemar Hummer, and Schahram Dustdar. Spec-
ification and deployment of distributed monitoring and adaptation infrastructures. In
Workshop on Performance Assessment and Auditing in Service Computing, co-located
with ICSOC’10, pages 167–178, 2012. → pages: 227

[158] Christian Inzinger, Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and Schahram
Dustdar. Non-intrusive policy optimization for dependable and adaptive service-oriented
systems. In 27th Annual ACM Symposium on Applied Computing (SAC), pages 504–510,
2012. → pages: 227

[159] Christian Inzinger, Benjamin Satzger, Philipp Leitner, Waldemar Hummer, and Schahram
Dustdar. Model-based adaptation of cloud computing applications. In International Con-
ference on Model-Driven Engineering and Software Development, pages 351–355, 2013.
→ pages: 227

[160] Yannis E. Ioannidis. Query optimization. ACM Computing Surveys, 28:121–123, 1996.
→ pages: 82

[161] Rolf Isermann. Model-based fault-detection and diagnosis - status and applications. An-
nual Reviews in Control, 29(1):71–85, 2005. → pages: 6

[162] Sadeka Islam, Kevin Lee, Alan Fekete, and Anna Liu. How a consumer can measure
elasticity for cloud platforms. In International Conference on Performance Engineering
(ICPE), pages 85–96, 2012. → pages: 18

[163] Gabriela Jacques-Silva, Bugra Gedik, Henrique Andrade, Kun-Lung Wu, and Ravis-
hankar Iyer. Fault injection-based assessment of par- tial fault tolerance in stream pro-
cessing applications. In 5th International Conference on Distributed Event-Based Systems
(DEBS), 2011. → pages: 6, 42, and 84

[164] Muhammad Jaffar-ur Rehman, Fakhra Jabeen, Antonia Bertolino, and Andrea Polini.
Testing software components for integration: a survey of issues and techniques. Soft-
ware Testing, Verification and Reliability (STVR), 17:95–133, 2007. → pages: 134

[165] Pankaj Jalote. Fault tolerance in distributed systems. Prentice Hall, 1994. → pages: 2
and 6

[166] Meiko Jensen and Sven Feja. A security modeling approach for web-service-based busi-
ness processes. In 16th Annual IEEE International Conference on the Engineering of
Computer Based Systems (ECBS’09), pages 340–347, 2009. → pages: 170

200

[167] Zbigniew Jerzak and Christof Fetzer. Bloom filter based routing for content-based pub-
lish/subscribe. In 2nd ACM International Conference on Distributed Event-Based Systems
(DEBS), pages 71–81, 2008. → pages: 31 and 40

[168] Bo Jiang, Zhenyu Zhang, Wing Kwong Chan, and TH Tse. Adaptive random test case
prioritization. In 24th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pages 233–244, 2009. → pages: 181

[169] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula automatic
fault-localization technique. In 20th IEEE/ACM International Conference on Automated
software engineering (ASE), pages 273–282, 2005. → pages: 134

[170] Lukasz Juszczyk and Schahram Dustdar. Script-Based Generation of Dynamic Testbeds
for SOA. In International Conference on Web Services (ICWS), pages 195–202, 2010.
→ pages: 120

[171] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Computer,
36(1), 2003. → pages: 82 and 179

[172] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In European Conference
on Object-Oriented Programming (ECOOP’97), pages 220–242, 1997. → pages: 173

[173] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm: the linux
virtual machine monitor. In Proceedings of the Linux Symposium, volume 1, pages 225–
230, 2007. → pages: 17

[174] Michael Klein and Birgitta Konig-Ries. Combining query and preference-an approach
to fully automatize dynamic service binding. In IEEE International Conference on Web
Services, pages 788–791. IEEE, 2004. → pages: 16

[175] Donald Kossmann, Tim Kraska, and Simon Loesing. An evaluation of alternative archi-
tectures for transaction processing in the cloud. In ACM SIGMOD International Confer-
ence on Management of Data, pages 579–590, 2010. → pages: 18

[176] Bhaskar Krishnamachari, Deborah Estrin, and Stephen Wicker. The impact of data ag-
gregation in wireless sensor networks. In 22nd International Conference on Distributed
Computing Systems - Workshops, pages 575–578, 2002. → pages: 31, 34, and 36

[177] Christopher Krügel, Thomas Toth, and Clemens Kerer. Decentralized event correlation
for intrusion detection. In 4th International Conference on Information Security and
Cryptology (ICISC), pages 114–131, 2002. → pages: 31 and 34

[178] D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo. Software fault interac-
tions and implications for software testing. IEEE Transactions on Software Engineering,
30(6):418–421, 2004. → pages: 25

201

[179] Devdatta Kulkarni and Anand Tripathi. Context-aware role-based access control in per-
vasive computing systems. In 13th ACM Symposium on Access Control Models and Tech-
nologies (SACMAT), pages 113–122, 2008. → pages: 171

[180] Puppet Labs. Cucumber-puppet. http://projects.puppetlabs.com/
projects/cucumber-puppet. Accessed: 2013-02-03. → pages: 84

[181] Geetika T. Lakshmanan, Yuri G. Rabinovich, and Opher Etzion. A stratified approach for
supporting high throughput event processing applications. In 3rd ACM International Con-
ference on Distributed Event-Based Systems (DEBS), pages 5:1–5:12, 2009. → pages:
43

[182] Mounir Lallali, Fatiha Zaidi, and Ana Cavalli. Timed modeling of web services com-
position for automatic testing. In 3rd IEEE International Conference on Signal-Image
Technologies and Internet-Based Systems (SITIS’07), pages 417–426, 2007. → pages:
133

[183] Janusz W. Laski and Bogdan Korel. A data flow oriented program testing strategy. IEEE
Transactions on Software Engineering, SE-9(3):347–354, 1983. → pages: 132

[184] George Lawton. Developing software online with platform-as-a-service technology.
Computer, 41(6):13–15, 2008. → pages: 18

[185] Philipp Leitner, Johannes Ferner, Waldemar Hummer, and Schahram Dustdar. Data-
driven and automated prediction of service level agreement violations in service com-
positions. Distributed and Parallel Databases, 31(3):447–470, 2013. → pages: 225

[186] Philipp Leitner, Waldemar Hummer, and Schahram Dustdar. A monitoring data set for
evaluating qos-aware service-based systems. In ICSE Workshop on Principles of Engi-
neering Service Oriented Systems (PESOS), pages 67–68, 2012. → pages: 228

[187] Philipp Leitner, Waldemar Hummer, and Schahram Dustdar. Cost-based optimization of
service compositions. IEEE Transactions on Services Computing (TSC), 6(2):239–251,
2013. → pages: 124, 139, and 225

[188] Philipp Leitner, Waldemar Hummer, Benjamin Satzger, and Schahram Dustdar. Step-
wise and asynchronous runtime optimization of web service compositions. In 12th In-
ternational Conference on Web Information System Engineering (WISE), pages 290–297.
Springer, 2011. → pages: 228

[189] Philipp Leitner, Waldemar Hummer, Benjamin Satzger, Christian Inzinger, and Schahram
Dustdar. Cost-Efficient and Application SLA-Aware Client Side Request Scheduling in
an Infrastructure-as-a-Service Cloud. In 5th IEEE International Conference on Cloud
Computing, pages 213–220, 2012. → pages: 228

202

http://projects.puppetlabs.com/projects/cucumber-puppet
http://projects.puppetlabs.com/projects/cucumber-puppet

[190] Philipp Leitner, Christian Inzinger, Waldemar Hummer, Benjamin Satzger, and Schahram
Dustdar. Application-level performance monitoring of cloud services based on the com-
plex event processing paradigm. In 5th IEEE International Conference on Service-
Oriented Computing and Applications (SOCA), pages 1–8, 2012. → pages: 228

[191] Philipp Leitner, Benjamin Satzger, Waldemar Hummer, Christian Inzinger, and Schahram
Dustdar. Cloudscale: a novel middleware for building transparently scaling cloud appli-
cations. In 27th Annual ACM Symposium on Applied Computing (SAC), pages 434–440.
ACM, 2012. → pages: 228

[192] Philipp Leitner, Branimir Wetzstein, Dimka Karastoyanova, Waldemar Hummer,
Schahram Dustdar, and Frank Leymann. Preventing SLA violations in service com-
positions using aspect-based fragment substitution. In 8th International Conference on
Service-Oriented Computing, pages 365–380. Springer, 2010. → pages: 228

[193] Marek Leszak, Dewayne E. Perry, and Dieter Stoll. A case study in root cause defect
analysis. In 22nd International Conference on Software Engineering (ICSE), pages 428–
437, 2000. → pages: 38

[194] Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. A distributed service-oriented
architecture for business process execution. ACM Transactions on the Web, 4:2:1–2:33,
2010. → pages: 44

[195] Xiaogang Li and Gagan Agrawal. Efficient evaluation of XQuery over streaming data. In
International Conference on Very Large Data Bases, pages 265–276, 2005. → pages: 29

[196] Zhong Jie Li, Wei Sun, and Bin Du. BPEL4WS unit testing: Framework and implementa-
tion. International Journal of Business Process Integration and Management, 3(2):131–
143, 2008. → pages: 14

[197] Christoph Liebig, Mariano Cilia, and Alejandro Buchmann. Event composition in time-
dependent distributed systems. In International Conference on Cooperative Information
Systems (CoopIS), pages 70–78, 1999. → pages: 43

[198] Dan Lin, Prathima Rao, Elisa Bertino, Ninghui Li, and Jorge Lobo. Policy decomposition
for collaborative access control. In 13th ACM SACMAT, pages 103–112, 2008. → pages:
172

[199] Kwei-Jay Lin, M. Panahi, Yue Zhang, Jing Zhang, and Soo-Ho Chang. Building account-
ability middleware to support dependable soa. Internet Computing, IEEE, 13(2):16 –25,
2009. → pages: 135

[200] Chien-Hung Liu, David C. Kung, Pei Hsia, and Chih-Tung Hsu. Structural testing of web
applications. In 11th IEEE International Symposium on Software Reliability Engineering
(ISSRE), 2000. → pages: 132

203

[201] Guangtian Liu, Aloysius K. Mok, and Eric J. Yang. Composite events for network event
correlation. In Sixth IFIP/IEEE International Symposium on Integrated Network Man-
agement, pages 247–260, 1999. → pages: 134

[202] Ling Liu, Calton Pu, and Wei Tang. Continual queries for Internet scale event-driven
information delivery. IEEE Trans. on Knowledge and Data Engineering, 11(4), 1999.
→ pages: 83

[203] Torsten Lodderstedt, David A. Basin, and Jürgen Doser. SecureUML: A UML-Based
Modeling Language for Model-Driven Security. In 5th International Conference on The
Unified Modeling Language (UML), pages 426–441. Springer, 2002. → pages: 173

[204] Mike Loukides. What is DevOps? O’Reilly Media, 2012. → pages: 19

[205] Daniel Lübke, Leif Singer, and Alex Salnikow. Calculating BPEL Test Coverage Through
Instrumentation. In ICSE Workshop on Automation of Software Test (AST), pages 115–
122, 2009. → pages: 113

[206] David Luckham and Roy Schulte. Event processing glossary v1.1. Event Processing
Technical Society, 2, 2008. → pages: 11

[207] David C. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman, 2001. → pages: 1, 11,
31, and 82

[208] David C. Luckham and Brian Frasca. Complex Event Processing in Distributed Systems.
Analysis, 28, 1998. → pages: 31

[209] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and
Walter Mann. Specification and analysis of system architecture using Rapide. IEEE
Transactions on Software Engineering, 21(4), 1995. → pages: 31

[210] Shruti P. Mahambre, Madhu Kumar, and Umesh Bellur. A Taxonomy of QoS-Aware,
Adaptive Event-Dissemination Middleware. IEEE Internet Computing, 11(4):35–44,
2007. → pages: 31

[211] Yashwant K. Malaiya, Michael Naixin Li, James M. Bieman, and Rick Karcich. Software
reliability growth with test coverage. Reliability, IEEE Transactions on, 51(4):420–426,
2002. → pages: 2 and 26

[212] Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic. A style-aware architectural
middleware for resource- constrained, distributed systems. IEEE Transactions on Soft-
ware Engineering, 31, 2005. → pages: 31

[213] Leonardo Mariani, Sofia Papagiannakis, and Mauro Pezze. Compatibility and regression
testing of cots-component-based software. In Software Engineering, 2007. ICSE 2007.
29th International Conference on, pages 85–95. IEEE, 2007. → pages: 134

204

[214] Leonardo Mariani and Mauro Pezzè. Dynamic detection of cots component incompati-
bility. Software, IEEE, 24(5):76–85, 2007. → pages: 134

[215] Srdjan Marinovic, Robert Craven, Jiefei Ma, and Naranker Dulay. Rumpole: a flexible
break-glass access control model. In 16th ACM Symposium on Access Control Models
and Technologies (SACMAT), 2011. → pages: 170 and 182

[216] Wes Masri. Fault localization based on information flow coverage. Software Testing,
Verification and Reliability (STVR), 20:121–147, 2010. → pages: 134

[217] Mark T. Maybury. Generating Summaries From Event Data. International Journal on
Information Processing and Management, 31:735–751, September 1995. → pages: 82

[218] Philip Mayer and Daniel Lübke. Towards a BPEL unit testing framework. In Workshop
on Testing, Analysis, and Verification of Web Services and Applications, pages 33–42.
ACM, 2006. → pages: 14

[219] Pietro Mazzoleni, Bruno Crispo, Swaminathan Sivasubramanian, and Elisa Bertino.
XACML Policy Integration Algorithms. ACM Transactions on Information System Secu-
rity, 11:4:1–4:29, February 2008. → pages: 173

[220] Dennis McCarthy and Umeshwar Dayal. The architecture of an active database manage-
ment system. In SIGMOD’89. → pages: 31 and 36

[221] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic web services. IEEE
Intelligent Systems, 16(2):46–53, 2001. → pages: 171

[222] Lijun Mei, W.K. Chan, and T.H. Tse. Data flow testing of service-oriented workflow
applications. In 30th International Conference on Software Engineering (ICSE), 2008.
→ pages: 14 and 133

[223] René Meier and Vinny Cahill. Taxonomy of Distributed Event-Based Programming Sys-
tems. Computer Journal, 48(5):602–626, 2005. → pages: 83

[224] Peter Mell and Timothy Grance. The nist definition of cloud computing (draft). NIST
special publication, 800:145, 2011. → pages: 13 and 17

[225] Mukhtiar Memon, Michael Hafner, and Ruth Breu. SECTISSIMO: A Platform-
independent Framework for Security Services. In Modeling Security Workshop at MOD-
ELS ’08, 2008. → pages: 172

[226] Daniel A. Menascé. QoS Issues in Web Services. IEEE Internet Computing, 6(6):72–75,
2002. → pages: 94

[227] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. Electronic Notes
in Theoretical Computer Science, 152:125–142, 2006. → pages: 141

205

[228] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to Develop
Domain-Specific Languages. ACM Computing Surveys, 37(4):316–344, December 2005.
→ pages: 141

[229] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. Advanced
event processing and notifica- tions in service runtime environments. In 2nd Interna-
tional Conference on Distributed Event-Based Systems (DEBS), pages 115–125, 2008.
→ pages: 32

[230] Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar. End-to-
End Support for QoS-Aware Service Selection, Binding and Mediation in VRESCo. IEEE
Transactions on Services Computing, 2010. → pages: 16, 47, and 117

[231] Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber, and Schahram
Dustdar. Towards recovering the broken soa triangle: a software engineering perspective.
In 2nd International Workshop on Service Oriented Software Engineering, pages 22–28.
ACM, 2007. → pages: 13

[232] Sushma Mishra and Heinz Roland Weistroffer. A Framework for Integrating Sarbanes-
Oxley Compliance into the Systems Development Process. Communications of the Asso-
ciation for Information Systems (CAIS), 20(1):712–727, 2007. → pages: 139

[233] Oliver Moser, Florian Rosenberg, and Schahram Dustdar. Non-intrusive monitoring and
service adaptation for ws-bpel. In 17th International Conference on World Wide Web
(WWW), pages 815–824. ACM, 2008. → pages: 14

[234] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur
Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma. Query pro-
cessing, approximation, and resource management in a data stream management system.
In Conference on Innovative Data Systems Research (CIDR), 2003. → pages: 83

[235] A. Mourad, S. Ayoubi, H. Yahyaoui, and H. Otrok. New approach for the dynamic en-
forcement of Web services security. In 8th International Conference on Privacy Security
and Trust, pages 189–196, 2010. → pages: 173

[236] Catherine Moxey, Mike Edwards, Opher Etzion, Mamdouh Ibrahim, Sreekanth Iyer, Hu-
bert Lalanne, Mweene Monze, Marc Peters, Yuri Rabinovich, Guy Sharon, and Kristian
Stewart. A conceptual model for event processing systems. IBM Redguide publication,
2010. Accessed: 2013-04-02. → pages: 6, 11, 31, 32, 33, and 34

[237] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed event-based systems. Springer,
2006. → pages: 1, 11, and 29

[238] Glenford J. Myers, Corey Sandler, and Tom Badgett. The art of software testing. Wiley,
2011. → pages: 23

206

[239] Luis Daniel Navarro, Rémi Douence, and Mario Südholt. Debugging and testing mid-
dleware with aspect-based control-flow and causal patterns. In 9th ACM/IFIP/USENIX
International Middleware Conference, pages 183–202, 2008. → pages: 85

[240] Stephen Nelson-Smith. Test-Driven Infrastructure with Chef. O’Reilly, 2011. → pages:
8 and 19

[241] Sandvine Intelligent Broadband Networks. Global Internet Phenomena Report, 2013.
→ pages: 18

[242] Changhai Nie and Hareton Leung. A survey of combinatorial testing. ACM Computing
Surveys, 43:11:1–11:29, 2011. → pages: 25, 65, and 101

[243] OASIS. eXtensible Access Control Markup Language, 2005. → pages: 173

[244] OASIS. Metadata for the OASIS Security Assertion Markup Language
(SAML). http://docs.oasis-open.org/security/saml/v2.0/
saml-metadata-2.0-os.pdf, 2005. → pages: 159

[245] OASIS. Security Assertion Markup Language. http://docs.oasis-open.org/
security/saml/v2.0/saml-core-2.0-os.pdf, March 2005. → pages: 148

[246] OASIS. Web Services Business Process Execution Language. http://docs.
oasis-open.org/wsbpel/2.0/OS, 2007. → pages: 6, 14, 89, and 141

[247] OASIS. WS-SecurityPolicy 1.3. http://docs.oasis-open.org/ws-sx/
ws-security\discretionary{-}{}{}policy/v1.3/os/, 2009. → pages:
171

[248] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, January 2011. → pages: 155

[249] Object Management Group. UML 2.4.1 Superstructure, August 2011. → pages: 24, 141,
and 150

[250] Object Management Group (OMG). Business Process Model and Notation (BPMN).
http://www.omg.org/spec/BPMN/, 2011. → pages: 93

[251] Jeff Offutt and Wuzhi Xu. Generating Test Cases for Web Services Using Data Perturba-
tion. ACM SIGSOFT Software Engineering Notes, 29(5), 2004. → pages: 90 and 99

[252] Jefferson Offutt, Shaoying Liu, Aynur Abdurazik, and Paul Ammann. Generating test data
from state-based specifications. Software Testing, Verification and Reliability, 13(1):25–
53, 2003. → pages: 26 and 64

[253] Opscode. Chef. http://www.opscode.com/chef/. Accessed: 2013-02-03.
→ pages: 8, 19, 57, and 84

207

http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS
http://docs.oasis-open.org/wsbpel/2.0/OS
http://docs.oasis-open.org/ws-sx/ws-security\discretionary {-}{}{}policy/v1.3/os/
http://docs.oasis-open.org/ws-sx/ws-security\discretionary {-}{}{}policy/v1.3/os/
http://www.omg.org/spec/BPMN/
http://www.opscode.com/chef/

[254] Opscode. Test Kitchen. https://github.com/opscode/test-kitchen. Vis-
ited: 2013-02-06. → pages: 84

[255] Opscode Community. http://community.opscode.com/. Accessed: 2013-02-
03. → pages: 20 and 57

[256] Chun Ouyang, Eric Verbeek, Wil van der Aalst, Stephan Breutel, Marlon Dumas, and
Arthur HM ter Hofstede. Wofbpel: A tool for automated analysis of bpel processes. In In-
ternational Conference Service-Oriented Computing (ICSOC), pages 484–489. Springer,
2005. → pages: 14

[257] Federica Paci, Elisa Bertino, and Jason Crampton. An Access-Control Framework for
WS-BPEL. International Journal of Web Services Research, 5(3):20–43, 2008. → pages:
172

[258] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-
Oriented Computing: State of the Art and Research Challenges. Computer, 40, 2007.
→ pages: 13 and 89

[259] Mike P Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-
Oriented Computing: State of the Art and Research Challenges. IEEE Computer,
40(11):38–45, 2007. → pages: 135 and 139

[260] Lilia Paradis and Qi Han. A survey of fault management in wireless sensor networks.
Journal of Network and Systems Management, 15(2):171–190, 2007. → pages: 23

[261] Kostas Patroumpas and Timos Sellis. Window specification over data streams. In Current
Trends in Database Technology (EDBT), pages 445–464, 2006. → pages: 11 and 12

[262] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs. "big"’
web services: making the right architectural decision. In 17th International Conference
on World Wide Web (WWW), pages 805–814. ACM, 2008. → pages: 14

[263] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. Journal of the ACM (JACM), 27(2):228–234, 1980. → pages: 23

[264] Tan Phan, Jun Han, J.-G. Schneider, T. Ebringer, and T. Rogers. A survey of policy-based
management approaches for service oriented systems. In 19th Australian Conference on
Software Engineering, pages 392–401, 2008. → pages: 135

[265] Éric Piel, Alberto Gonzalez-Sanchez, and Hans-Gerhard Gross. Built-in data-flow inte-
gration testing in large-scale component-based systems. In 22nd IFIP International Con-
ference on Testing Software and Systems (ICTSS), pages 79–94. Springer, 2010. → pages:
134

[266] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt Welsh,
and Margo Seltzer. Network-aware operator placement for stream-processing systems. In
International Conference on Data Engineering (ICDE), 2006. → pages: 82

208

https://github.com/opscode/test-kitchen
http://community.opscode.com/

[267] Peter R. Pietzuch and Jean M. Bacon. Hermes: a distributed event-based middleware ar-
chitecture. In 22nd International Conference on Distributed Computing Systems (ICDCS)
Workshops, pages 611–618, 2002. → pages: 31

[268] Alexander Pretschner. Model-based testing. In 27th International Conference on Software
Engineering (ICSE), pages 722–723, 2005. → pages: 85

[269] Puppet Labs. Puppet. http://puppetlabs.com/. Accessed: 2013-02-03.
→ pages: 19 and 84

[270] John Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
→ pages: 108

[271] John Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., 1993. → pages: 117

[272] Peter J. Ramadge and W. Murray Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77(1), 1989. → pages: 32

[273] Chittoor V. Ramamoorthy, Siu-Bun Ho, and Wen-Tsuen Chen. On the automated genera-
tion of program test data. IEEE Transactions on Software Engineering, SE-2(4):293–300,
1976. → pages: 99

[274] Brian Randell. System structure for software fault tolerance. Software Engineering, IEEE
Transactions on, (2):220–232, 1975. → pages: 23

[275] Sandra Rapps and Elaine J. Weyuker. Selecting software test data using data flow in-
formation. IEEE Transactions on Software Engineering, 11:367–375, 1985. → pages:
132

[276] Manos Renieris and Steven P. Reiss. Fault localization with nearest neighbor queries. In
18th IEEE International Conference on Automated Software Engineering (ASE), pages
30–39, 2003. → pages: 134 and 135

[277] Debra J. Richardson, Stephanie Leif Aha, and T. Owen O’Malley. Specification-based test
oracles for reactive systems. In 14th International Conference on Software Engineering
(ICSE), pages 105–118, 1992. → pages: 96, 97, and 117

[278] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensible
algorithms for multi query optimization. In ACM SIGMOD International Conference on
Management of Data, pages 249–260, 2000. → pages: 82

[279] Anne Rozinat and Wil van der Aalst. Conformance testing: Measuring the fit and appro-
priateness of event logs and process models. In 4th International Conference on Business
Process Management - Workshops, pages 163–176. Springer, 2006. → pages: 44

[280] Szabolcs Rozsnyai, Aleksander Slominski, and Geetika T. Lakshmanan. Discovering
event correlation rules for semi-structured business processes. In 5th DEBS, 2011.
→ pages: 32 and 34

209

http://puppetlabs.com/

[281] Linnyer Beatrys Ruiz, Isabela G. Siqueira, Leonardo B. e Oliveira, Hao Chi Wong, José
Marcos S. Nogueira, and Antonio A. F. Loureiro. Fault management in event-driven wire-
less sensor networks. In 7th ACM International Symposium on Modeling Analysis and
Simulation of Wireless and Mobile Systems (MSWiM), pages 149–156, 2004. → pages:
23 and 31

[282] Hazlifah Mohd Rusli, Suhaimi Ibrahim, and Mazidah Puteh. Testing web services com-
position: A mapping study. Communications of the IBIMA, pages 34–48, 2011. → pages:
132

[283] Wasim Sadiq and Maria Orlowska. On business process model transformations. In Al-
berto Laender, Stephen Liddle, and Veda Storey, editors, Conceptual Modeling — ER
2000, volume 1920, pages 47–104. Springer Berlin / Heidelberg, 2000. → pages: 173

[284] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
access control models. Computer, 29(2):38–47, 1996. → pages: 2 and 139

[285] Benjamin Satzger, Waldemar Hummer, Christian Inzinger, Philipp Leitner, and Schahram
Dustdar. Winds of change: From vendor lock-in to the meta cloud. IEEE Internet Com-
puting, 17(1):69–73, 2013. → pages: 225

[286] Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. Esc:
Towards an elastic stream computing platform for the cloud. In IEEE International Con-
ference on Cloud Computing (CLOUD), pages 348–355, 2011. → pages: 228

[287] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and Theo Ungerer. A new
adaptive accrual failure detector for dependable distributed systems. In ACM Symposium
on Applied Computing (SAC), pages 551–555, 2007. → pages: 135

[288] Andreas Schaefer, Marc Reichenbach, and Dietmar Fey. Continuous Integration and Au-
tomation for Devops. IAENG Transactions on Engineering Technologies, 170:345–358,
2013. → pages: 19

[289] Michael Schäfer, Peter Dolog, and Wolfgang Nejdl. An environment for flexible advanced
compensations of web service transactions. ACM Transactions on the Web, 2(2):14:1–
14:36, 2008. → pages: 174

[290] Daniel Schall, Florian Skopik, and Schahram Dustdar. Expert discovery and interac-
tions in mixed service-oriented systems. IEEE Transactions on Services Computing,
99(PrePrints), 2011. → pages: 136

[291] August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam. Process Modeling using
Event-Driven Process Chains, pages 119–145. John Wiley & Sons, Inc., 2005. → pages:
170

[292] Sigrid Schefer, Mark Strembeck, and Jan Mendling. Checking satisfiability aspects of
binding constraints in a business process context. In Workshop on Workflow Security
Audit and Certification (WfSAC). Springer, August 2011. → pages: 166, 169, and 174

210

[293] Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass. Detecting and
resolving conflicts of mutual-exclusion and binding constraints in a business process con-
text. In 19th International Conference on Cooperative Information Systems (CoopIS’11).
Springer, 2011. → pages: 166, 169, and 174

[294] Sigrid Schefer-Wenzl and Mark Strembeck. A UML Extension for Modeling Break-Glass
Policies. In 5th International Workshop on Enterprise Modelling and Information Systems
Architectures (EMISA), 2012. → pages: 170

[295] Josef Schiefer, Gerd Saurer, and Alexander Schatten. Testing event-driven business pro-
cesses. Journal of Computers, 1(7):69–80, 2006. → pages: 134

[296] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering. IEEE Com-
puter, 39(2):25–31, 2006. → pages: 141

[297] Schultz-Møller, Nicholas Poul and Migliavacca, Matteo and Pietzuch, Peter. Distributed
Complex Event Processing with Query Rewriting. In International Conference on Dis-
tributed Event-Based Systems (DEBS), pages 4:1–4:12. ACM, 2009. → pages: 31, 42,
and 43

[298] Toby Segaran. Programming Collective Intelligence. O’Reilly Media, 2007. → pages:
109

[299] Bran Selic. The Pragmatics of Model-Driven Development. IEEE Software, 20(5):19–25,
2003. → pages: 141

[300] Shane Sendall and Wojtek Kozaczynski. Model Transformation: The Heart and Soul
of Model-Driven Software Development. IEEE Software, 20(5), 2003. → pages: 141
and 173

[301] Sangeetha Seshadri, Vibhore Kumar, and Brian F. Cooper. Optimizing multiple queries
in distributed data stream systems. In Int. Conference on Data Engineering, Workshops,
2006. → pages: 82

[302] Sangeetha Seshadri, Vibhore Kumar, Brian F. Cooper, and Ling Liu. Optimizing multiple
distributed stream queries using hierarchical network partitions. In IEEE International
Parallel and Distributed Processing Symposium, pages 1–10, 2007. → pages: 82

[303] Mehul A. Shah, Joseph M. Hellerstein, and Eric Brewer. Highly available, fault-tolerant,
parallel dataflows. In ACM SIGMOD International Conference on Management of Data,
pages 827–838, 2004. → pages: 42

[304] Guy Sharon and Opher Etzion. Event-processing network model and implementation.
IBM Systems Journal, 47(2):321–334, 2008. → pages: 6, 11, and 32

[305] Halvard Skogsrud, Boualem Benatallah, and Fabio Casati. Model-Driven Trust Negotia-
tion for Web Services. IEEE Internet Computing, 7:45–52, 2003. → pages: 171

211

[306] Sergey Smirnov, Hajo A. Reijers, and Mathias Weske. A semantic approach for business
process model abstraction. In 23rd International Conference on Advanced information
Systems engineering (CAiSE), pages 497–511, 2011. → pages: 172

[307] Stephen Soltesz, Herbert Pötzl, Marc E Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: a scalable, high-performance alternative
to hypervisors. In ACM SIGOPS Operating Systems Review, volume 41, pages 275–287.
ACM, 2007. → pages: 17

[308] D. Spinellis. Notable design patterns for domain-specific languages. Journal of Systems
and Software, 56(1):91–99, 2001. → pages: 141

[309] Thomas Stahl and Markus Völter. Model-Driven Software Development. John Wiley &
Sons, 2006. → pages: 141

[310] William Stallings. Cryptography and Network Security. Pearson Education India, 2006.
→ pages: 6

[311] Malgorzata Steinder and Adarshpal S. Sethi. A survey of fault localization techniques in
computer networks. Science of Computer Programming, 53(2):165–194, 2004. → pages:
38 and 84

[312] Robert Stephens. A survey of stream processing. Acta Informatica, 34:491–541, 1997.
→ pages: 1, 31, 35, and 36

[313] Mark Strembeck. A Role Engineering Tool for Role-Based Access Control. In 3rd Sym-
posium on Requirements Engineering for Information Security, 2005. → pages: 139

[314] Mark Strembeck. Scenario-driven Role Engineering. IEEE Security & Privacy, 8(1):28–
35, January 2010. → pages: 139

[315] Mark Strembeck and Jan Mendling. Generic Algorithms for Consistency Checking of
Mutual-Exclusion and Binding Constraints in a Business Process Context. In 18th In-
ternational Conference on Cooperative Information Systems (CoopIS), October 2010.
→ pages: 9, 140, 148, 152, 165, 166, and 169

[316] Mark Strembeck and Jan Mendling. Modeling Process-related RBAC Models with Ex-
tended UML Activity Models. Information and Software Technology, 53(5):456–483,
May 2011. → pages: 139, 141, 142, 144, 146, 153, 162, 165, 166, and 171

[317] Mark Strembeck and Gustaf Neumann. An Integrated Approach to Engineer and En-
force Context Constraints in RBAC Environments. ACM Transactions on Information
and System Security (TISSEC), 7(3):392–427, 2004. → pages: 171

[318] Mark Strembeck and Uwe Zdun. An Approach for the Systematic Development of
Domain-Specific Languages. Software: Practice and Experience, 39(15), October 2009.
→ pages: 141

212

[319] Ya-Yunn Su, Mona Attariyan, and Jason Flinn. AutoBash: improving configuration man-
agement with operating system causality analysis. In 21st ACM Symposium on Operating
Systems Principles, 2007. → pages: 85

[320] Kaijun Tan, Jason Crampton, and Carl A. Gunter. The Consistency of Task-Based Autho-
rization Constraints in Workflow Systems. In 17th IEEE Workshop on Computer Security
Foundations (CSFW), pages 155–169, June 2004. → pages: 140, 166, 168, and 169

[321] Andrew S Tanenbaum and Maarten Van Steen. Distributed Systems: Principles and
Paradigms, volume 2. Prentice Hall, 2002. → pages: 22

[322] Abbas Tarhini, Hacène Fouchal, and Nashat Mansour. A simple approach for testing web
service based applications. In International Workshop on Innovative Internet Community
Systems, 2005. → pages: 133

[323] Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, E. James Whitehead, Jr.,
Jason E. Robbins, Kari A. Nies, Peyman Oreizy, and Deborah L. Dubrow. A Component-
and Message-Based Architectural Style for GUI Software. IEEE Transactions on Soft-
ware Engineering, 22(6):390–406, 1996. → pages: 31

[324] TeleManagement Forum. Case study handbook, December 2009. → pages: 90

[325] Gerard J. Tellis. The price elasticity of selective demand: A meta-analysis of econometric
models of sales. Journal of Marketing Research, pages 331–341, 1988. → pages: 18

[326] Jean-Yves Tigli, Stephane Lavirotte, Gaëtan Rey, Vincent Hourdin, Daniel Cheung-Foo-
Wo, Eric Callegari, and Michel Riveill. WComp middleware for ubiquitous comput-
ing: Aspects and composite event-based Web services. Annales des Télécommunications,
64(3-4):197–214, 2009. → pages: 31

[327] Sameer Tilak, Nael B. Abu-Ghazaleh, and Wendi Heinzelman. A taxonomy of wireless
micro-sensor network models. ACM SIGMOBILE Mobile Computing and Communica-
tions Review, 6(2):28–36, 2002. → pages: 43

[328] Torry Harris Business Solution. SOA Test Methodology. http://thbs.com/pdfs/
SOA_Test_Methodology.pdf, 2007. Accessed: 2012-01-14. → pages: 89

[329] Steve Traugott. Why order matters: Turing equivalence in automated systems admin-
istration. In 16th Conference on Systems Administration (LISA), pages 99–120, 2002.
→ pages: 84

[330] Hong-Linh Truong, Schahram Dustdar, Georgiana Copil, Alessio Gambi, Waldemar
Hummer, Duc-Hung Le, and Daniel Moldovan. CoMoT - A Platform-as-a-Service for
Elasticity in the Cloud. In IEEE International Workshop on the Future of PaaS, 2014.
→ pages: 228

213

http://thbs.com/pdfs/SOA_Test_Methodology.pdf
http://thbs.com/pdfs/SOA_Test_Methodology.pdf

[331] Wei-Tek Tsai, Yinong Chen, Zhibin Cao, Xiaoying Bai, Hai Huang, and Ray Paul. Testing
Web Services Using Progressive Group Testing. In Content Computing, pages 314–322.
Springer, 2004. → pages: 16 and 90

[332] Wei-Tek Tsai, Yinong Chen, Ray Paul, Ning Liao, and Hai Huang. Cooperative and
Group Testing in Verification of Dynamic Composite Web Services. In 28th International
Computer Software and Applications Conference (COMPSAC), pages 170–173, 2004.
→ pages: 14, 16, and 90

[333] Fang Tu, K.R. Pattipati, S. Deb, and V.N. Malepati. Computationally efficient algorithms
for multiple fault diagnosis in large graph-based systems. IEEE Transactions on Systems,
Man and Cybernetics, 33(1):73–85, 2003. → pages: 134

[334] Mark Utting and Bruno Legeard. Practical model-based testing: a tools approach. Mor-
gan Kaufmann, 2010. → pages: 24

[335] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based
testing approaches. Software Testing, Verification and Reliability, 22(5):297–312, 2012.
→ pages: 24, 25, and 58

[336] Wil van der Aalst. Formalization and verification of event-driven process chains. Infor-
mation & Software Technology, 41(10):639–650, 1999. → pages: 45

[337] Wil van der Aalst and Kristian Bisgaard Lassen. Translating unstructured workflow pro-
cesses to readable bpel: Theory and implementation. Information and Software Technol-
ogy (IST), 50(3):131–159, 2008. → pages: 14

[338] Wil van der Aalst, Arthur HM Ter Hofstede, and Mathias Weske. Business process man-
agement: A survey. Springer, 2003. → pages: 1

[339] Wil van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: discovering
process models from event logs. IEEE Transactions on Knowledge and Data Engineering,
16(9):1128–1142, 2004. → pages: 32, 34, and 44

[340] Sander van der Burg and Eelco Dolstra. Automating system tests using declarative virtual
machines. In 21st Int. Symposium on Software Reliability Engineering, 2010. → pages:
85

[341] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in the
clouds: towards a cloud definition. ACM SIGCOMM Computer Communication Review,
39(1):50–55, 2008. → pages: 17

[342] Seth Vargo. Chefspec. http://code.sethvargo.com/chefspec/. Accessed:
2013-02-03. → pages: 84

[343] Vitria. Complex Event Processing for Operational Intelligence. http://
www.club-bpm.com/Documentos/DocProd00015.pdf, 2010. Accessed:
2013-10-05. → pages: 82

214

http://code.sethvargo.com/chefspec/
http://www.club-bpm.com/Documentos/DocProd00015.pdf
http://www.club-bpm.com/Documentos/DocProd00015.pdf

[344] Michael von Riegen, Martin Husemann, Stefan Fink, and Norbert Ritter. Rule-based co-
ordination of distributed web service transactions. IEEE Transactions on Services Com-
puting, 3(1):60–72, 2010. → pages: 174

[345] Jacques Wainer, Paulo Barthelmess, and Akhil Kumar. W-RBAC - A Workflow Secu-
rity Model Incorporating Controlled Overriding of Constraints. International Journal of
Cooperative Information Systems, 12(4):455–485, December 2003. → pages: 139

[346] Carl A Waldspurger. Memory resource management in vmware esx server. ACM SIGOPS
Operating Systems Review, 36(SI):181–194, 2002. → pages: 17

[347] Fusheng Wang, Shaorong Liu, Peiya Liu, and Yijian Bai. Bridging Physical and Virtual
Worlds: Complex Event Processing for RFID Data Streams. In 10th International Con-
ference on Extending Database Technology (EDBT), pages 588–607, 2006. → pages: 31
and 43

[348] Nanbor Wang, Douglas C Schmidt, Aniruddha Gokhale, Christopher D Gill, Balachan-
dran Natarajan, Craig Rodrigues, Joseph P Loyall, and Richard E Schantz. Total quality
of service provisioning in middleware and applications. Microprocessors and Microsys-
tems, 27(2):45–54, 2003. → pages: 3

[349] Qihua Wang and Ninghui Li. Satisfiability and resiliency in workflow authorization sys-
tems. ACM Transactions on Information and System Security (TISSEC), 13(4):40:1–
40:35, December 2010. → pages: 165 and 166

[350] Barbara Weber, Manfred Reichert, Werner Wild, and Stefanie Rinderle. Balancing flex-
ibility and security in adaptive process management systems. In On the Move to Mean-
ingful Internet Systems 2005: CoopIS, DOA, and ODBASE, volume 3760, pages 59–76.
Springer Berlin / Heidelberg, 2005. → pages: 174

[351] Utz Westermann and Ramesh Jain. Toward a common event model for multimedia appli-
cations. IEEE MultiMedia, pages 19–29, 2007. → pages: 6, 32, and 83

[352] Elaine J. Weyuker. Testing component-based software: a cautionary tale. IEEE Software,
15(5):54–59, 1998. → pages: 134

[353] Elaine J. Weyuker and Bingchiang Jeng. Analyzing partition testing strategies. IEEE
Transactions on Software Engineering (TSE), 17(7):703–711, 1991. → pages: 108

[354] Andrew Whitaker, Richard Cox, and Steven Gribble. Configuration debugging as search:
finding the needle in the haystack. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 6–6, 2004. → pages: 85

[355] Matthias Wieland, Daniel Martin, Oliver Kopp, and Frank Leymann. SOEDA: A Method-
ology for Specification and Implementation of Applications on a Service-Oriented Event-
Driven Architecture. In 12th International Conference on Business Information Systems
(BIS). Springer, 2009. → pages: 32

215

[356] Christian Wolter, Michael Menzel, Andreas Schaad, Philip Miseldine, and Christoph
Meinel. Model-driven business process security requirement specification. Journal of
Systems Architecture, 55:211–223, 2009. → pages: 155 and 172

[357] Christian Wolter, Andreas Schaad, and Christoph Meinel. Task-based entailment con-
straints for basic workflow patterns. In 13th ACM Symposium on Access Control Models
and Technologies (SACMAT), pages 51–60. ACM, June 2008. → pages: 2, 6, 9, and 140

[358] W. Eric Wong and Vidroha Debroy. Software fault localization. IEEE Reliability Society
2009 Annual Technology Report, 2009. → pages: 134 and 135

[359] World Wide Web Consortium (W3C). Web Services Addressing. http://www.w3.
org/Submission/WS-Addressing/. → pages: 49 and 99

[360] World Wide Web Consortium (W3C). Web Services Eventing. http://www.w3.
org/Submission/WS-Eventing/. → pages: 68

[361] World Wide Web Consortium (W3C). XQuery 3.0: An XML Query Language. http:
//www.w3.org/TR/xquery-30/. → pages: 66 and 161

[362] World Wide Web Consortium (W3C). XML Path Language (XPath). http://www.
w3.org/TR/xpath/, 1999. → pages: 14 and 93

[363] World Wide Web Consortium (W3C). Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, 2001. → pages: 99

[364] World Wide Web Consortium (W3C). Web Services Activity. http://www.w3.org/
2002/ws/, 2002. → pages: 1, 6, 14, 20, 68, 89, and 139

[365] World Wide Web Consortium (W3C). Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer. http://www.w3.org/TR/2006/
CR-wsdl20-primer-20060327/, 2006. → pages: 90

[366] World Wide Web Consortium (W3C). SOAP Messaging Framework. http://www.
w3.org/TR/soap12-part1/, 2007. → pages: 154

[367] World Wide Web Consortium (W3C). XSL Transformations (XSLT) Version 2.0. http:
//www.w3.org/TR/xslt20/, 2007. → pages: 160

[368] World Wide Web Consortium (W3C). XML Signature Syntax and Processing. http:
//www.w3.org/TR/xmldsig-core/, 2008. → pages: 170

[369] Franz Wotawa, Marco Schulz, Ingo Pill, Seema Jehan, Philipp Leitner, Waldemar Hum-
mer, Stefan Schulte, Philipp Hoenisch, and Schahram Dustdar. Fifty Shades of Grey
in SOA Testing. In Workshop on Advances in Model Based Testing, co-located with
ICST’13, pages 154–157, 2013. → pages: 228

216

http://www.w3.org/Submission/WS-Addressing/
http://www.w3.org/Submission/WS-Addressing/
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/wsdl
http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

[370] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event processing
over streams. In SIGMOD International Conference On Management of Data, 2006.
→ pages: 42, 43, and 83

[371] Wuzhi Xu, Jeff Offutt, and Juan Luo. Testing Web services by XML perturbation. In
16th IEEE International Symposium on Software Reliability Engineering (ISSRE), 2005.
→ pages: 14

[372] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Toward a unified ontology of cloud
computing. In Grid Computing Environments Workshop, 2008. GCE’08, pages 1–10.
IEEE, 2008. → pages: 13 and 17

[373] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for Web services selection
with end-to-end QoS constraints. ACM Transactions on the Web, 1(1), 2007. → pages:
124

[374] Diego Zamboni. Learning CFEngine 3: Automated system administration for sites of any
size. O’Reilly Media, Inc., 2012. → pages: 84

[375] Uwe Zdun and Mark Strembeck. Modeling Composition in Dynamic Programming Envi-
ronments with Model Transformations. In 5th Int. Symposium on Software Composition,
2006. → pages: 141

[376] Uwe Zdun and Mark Strembeck. Reusable Architectural Decisions for DSL Design:
Foundational Decisions in DSL Projects. In 14th European Conference on Pattern Lan-
guages of Programs (EuroPLoP), 2009. → pages: 141 and 147

[377] Yongyan Zheng, Jiong Zhou, and Paul Krause. Analysis of BPEL Data Dependen-
cies. In 33rd Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), 2007. → pages: 94

[378] Pin Zhou, Binny Gill, Wendy Belluomini, and Avani Wildani. Gaul: Gestalt analysis of
unstructured logs for diagnosing recurring problems in large enterprise storage systems.
In 29th IEEE Symposium on Reliable Distributed Systems (SRDS), pages 148–159, 2010.
→ pages: 135

[379] Hong Zhu, Patrick AV Hall, and John HR May. Software unit test coverage and adequacy.
ACM Computing Surveys, 29(4):366–427, 1997. → pages: 2, 25, and 26

[380] Yali Zhu, Elke Rundensteiner, and George Heineman. Dynamic plan migration for
continuous queries over data streams. In SIGMOD Int. Conf. on Management of Data,
2004. → pages: 82

[381] Zhengdong Zhu, Yahong Hu, Xuehan Dong, and Zengzhi Li. A minimum coverage
method for web service composition. In 5th IEEE International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), pages 468–472, 2008. → pages: 133

217

APPENDIX A
Code Listings

A.1 RBAC DSL Statements for Patient Examination Process

Listing A.1 contains the complete access control configuration of the Patient Examination sce-
nario process (two involved hospitals), expressed using RBAC DSL statements.� �

1 RESOURCE P a t i e n t S e r v i c e 1 " h t t p : / / h o s p i t a l 1 . com / p a t i e n t s "
2 RESOURCE P a t i e n t S e r v i c e 2 " h t t p : / / h o s p i t a l 2 . com / p a t i e n t s "
3 OPERATION r e t r i e v e D a t a
4 OPERATION makeAssignment
5 OPERATION g e t H i s t o r y
6 OPERATION g e t O p i n i o n
7 OPERATION q u e r y P a r t n e r
8 OPERATION makeDecis ion
9 ROLE S t a f f

10 ROLE P h y s i c i a n
11 ROLE P a t i e n t
12 INHERIT S t a f f P h y s i c i a n
13 SUBJECT John
14 SUBJECT J ane
15 SUBJECT Bob
16 SUBJECT A l i c e
17 ASSIGN John S t a f f
18 ASSIGN J ane P h y s i c i a n
19 ASSIGN Bob P h y s i c i a n
20 ASSIGN A l i c e P a t i e n t
21 # Web s e r v i c e o p e r a t i o n p e r m i s s i o n s (h o s p i t a l 1)
22 PERMIT S t a f f r e t r i e v e D a t a P a t i e n t S e r v i c e 1
23 PERMIT S t a f f makeAssignment P a t i e n t S e r v i c e 1
24 PERMIT P h y s i c i a n g e t H i s t o r y P a t i e n t S e r v i c e 1
25 PERMIT P a t i e n t g e t H i s t o r y P a t i e n t S e r v i c e 1
26 PERMIT P h y s i c i a n g e t O p i n i o n P a t i e n t S e r v i c e 1
27 PERMIT P a t i e n t q u e r y P a r t n e r P a t i e n t S e r v i c e 1
28 PERMIT P h y s i c i a n makeDecis ion P a t i e n t S e r v i c e 1
29 # Web s e r v i c e o p e r a t i o n p e r m i s s i o n s (h o s p i t a l 2)
30 PERMIT S t a f f r e t r i e v e D a t a P a t i e n t S e r v i c e 2
31 PERMIT S t a f f makeAssignment P a t i e n t S e r v i c e 2
32 PERMIT P h y s i c i a n g e t H i s t o r y P a t i e n t S e r v i c e 2
33 PERMIT P a t i e n t g e t H i s t o r y P a t i e n t S e r v i c e 2

219

34 PERMIT P h y s i c i a n g e t O p i n i o n P a t i e n t S e r v i c e 2
35 PERMIT P a t i e n t q u e r y P a r t n e r P a t i e n t S e r v i c e 2
36 PERMIT P h y s i c i a n makeDecis ion P a t i e n t S e r v i c e 2
37 # ’ t a s k ’ t o ’ s e r v i c e o p e r a t i o n ’ b i n d i n g s (h o s p i t a l 1)
38 TASK G e t P e r s o n a l D a t a r e t r i e v e D a t a P a t i e n t S e r v i c e 1
39 TASK A s s i g n P h y s i c i a n makeAssignment P a t i e n t S e r v i c e 1
40 TASK G e t C r i t i c a l H i s t o r y g e t H i s t o r y P a t i e n t S e r v i c e 1
41 TASK G e t E x p e r t O p i n i o n g e t O p i n i o n P a t i e n t S e r v i c e 1
42 TASK G e t P a r t n e r H i s t o r y q u e r y P a r t n e r P a t i e n t S e r v i c e 1
43 TASK DecideOnTrea tment makeDecis ion P a t i e n t S e r v i c e 1
44 # ’ t a s k ’ t o ’ s e r v i c e o p e r a t i o n ’ b i n d i n g s (h o s p i t a l 2)
45 TASK G e t P e r s o n a l D a t a r e t r i e v e D a t a P a t i e n t S e r v i c e 2
46 TASK A s s i g n P h y s i c i a n makeAssignment P a t i e n t S e r v i c e 2
47 TASK G e t C r i t i c a l H i s t o r y g e t H i s t o r y P a t i e n t S e r v i c e 2
48 TASK G e t E x p e r t O p i n i o n g e t O p i n i o n P a t i e n t S e r v i c e 2
49 TASK G e t P a r t n e r H i s t o r y q u e r y P a r t n e r P a t i e n t S e r v i c e 2
50 TASK DecideOnTrea tment makeDecis ion P a t i e n t S e r v i c e 2
51 # t a s k−based e n t a i l m e n t c o n s t r a i n t s
52 RBIND G e t P e r s o n a l D a t a A s s i g n P h y s i c i a n
53 DME G e t C r i t i c a l H i s t o r y G e t E x p e r t O p i n i o n
54 SBIND G e t C r i t i c a l H i s t o r y DecideOnTrea tment
55 SBIND G e t P a r t n e r H i s t o r y G e t P a r t n e r H i s t o r y
56 SME G e t E x p e r t O p i n i o n G e t P a r t n e r H i s t o r y� �

Listing A.1: Exemplary RBAC DSL Statements for Hospital Scenario

A.2 XQuery Assertion Expressions for Enforcing Access
Constraints

Listing A.2 prints the constraint enforcement queries, expressed as XQuery assertion statements
that are expected to always yield a boolean true value. Lines 1-7 contain an excerpt of the
constraint definitions of the scenario introduced in Section 5.2.1. For instance, the two tasks
named Get_Personal_Data and Assign_Physician are in a role-binding relationship and hence
combined in an element rbind. Moreover, the code binds the log elements from Listing 5.3
to the variable $logs (line 8). Finally, Listing A.2 contains the four XQuery expressions used
for enforcing constraints concerning SME tasks (lines 11-16), DME tasks (lines 19-23), subject-
bindings (lines 26-30) and role-bindings (lines 33-37).

The four expressions use universal quantification (every...in...satisfies) to express
assertions about pairs of tasks defined in the constraints list. The variables $t1 and $t2 refer to
the names of the respective tasks. The query for SME loops over all pairs of SME tasks and
ensures that the logs do not contain invocations for both tasks that use the same subject or the
same role. The DME query tasks is similar, with the difference that only the subject is queried
and additionally the instanceID attribute of the log entries is considered. Subject-binding is
checked by ensuring that for all log entries of a particular process instance two tasks $t1 and
$t2 are executed by the same subject. The role-binding query works analogously, but instead
of using the subject attribute, here we require the role attribute to match for all rbind-connected
tasks that occur in the same process instance.

220

� �
1 l e t $cons := < c o n s t r a i n t s >
2 < r b i n d >< t a s k > G e t _ P e r s o n a l _ D a t a < / t a s k > < t a s k > A s s i g n _ P h y s i c i a n < / t a s k > </ r b i n d >
3 < sb ind >< t a s k >Decide_On_Treatment < / t a s k > < t a s k > G e t _ C r i t i c a l _ H i s t o r y < / t a s k > </ sb ind >
4 <dme>< t a s k > G e t _ C r i t i c a l _ H i s t o r y < / t a s k > < t a s k > Get_Exper t_Opin ion < / t a s k > </dme>
5 <sme>< t a s k > Get_Exper t_Opin ion < / t a s k > < t a s k > G e t _ P a t i e n t _ H i s t o r y < / t a s k > </sme>
6 . . .
7 </ c o n s t r a i n t s >
8 l e t $ l o g s := / / l o g
9

10 SME Tasks :
11 every $sme in $cons / sme , $ t 1 in $sme / t a s k , $ t 2 in $sme / t a s k s a t i s f i e s (
12 $ t 1 = $ t 2 o r
13 (every $ i in $ l o g s [@taskName= $ t 1] s a t i s f i e s (
14 not (e x i s t s ($ l o g s [@taskName= $ t 2] [@role= $ i / @role]))
15 and
16 not (e x i s t s ($ l o g s [@taskName= $ t 2] [@subjec t = $ i / @subjec t])))))
17
18 DME Tasks :
19 every $dme in $cons / dme , $ t 1 in $dme / t a s k , $ t 2 in $dme / t a s k s a t i s f i e s (
20 $ t 1 = $ t 2 o r
21 (every $ i in $ l o g s [@taskName= $ t 1] s a t i s f i e s (
22 not (e x i s t s (
23 $ l o g s [@taskName= $ t 2] [@subjec t = $ i / @sub jec t] [@ins tanceID = $ i / @ins tanceID])))))
24
25 S u b j e c t−Bind ing :
26 every $ s b i n d in $cons / sb ind , $ t 1 in $ s b i n d / t a s k , $ t 2 in $ s b i n d / t a s k s a t i s f i e s (
27 $ t 1 = $ t 2 o r
28 (every $ i in $ l o g s [@taskName= $ t 1] s a t i s f i e s (
29 every $ j in $ l o g s [@taskName= $ t 2] [@ins tanceID = $ i / @ins tanceID]
30 s a t i s f i e s $ i / @subjec t = $ j / @sub jec t)))
31
32 Role−Bind ing :
33 every $ r b i n d in $cons / r b i n d , $ t 1 in $ r b i n d / t a s k , $ t 2 in $ r b i n d / t a s k s a t i s f i e s (
34 $ t 1 = $ t 2 o r
35 (every $ i in $ l o g s [@taskName= $ t 1] s a t i s f i e s (
36 every $ j in $ l o g s [@taskName= $ t 2] [@ins tanceID = $ i / @ins tanceID]
37 s a t i s f i e s $ i / @role = $ j / @role)))� �

Listing A.2: XQuery Assertion Expressions for Enforcing Access Constraints

221

APPENDIX B
Curriculum Vitae

Personal Information
Name Waldemar Hummer

Address Josefstädter Straße 14/2/58, 1080 Wien, Austria
Email hummer@dsg.tuwien.ac.at

Web http://dsg.tuwien.ac.at/staff/hummer
Date & Place of Birth April 12, 1986, Hall in Tirol, Austria

Citizenship Austrian

Work Experience
October 2013 – ongoing Researcher within the Pacific Controls Cloud Computing Lab
January 2010 – ongoing Research Assistant at Vienna University of Technology

Oct. 2010 – Oct. 2013 Researcher in the FP7 Project INDENICA (http://indenica.eu)
June – September 2012 Research Internship at IBM T.J. Watson Research Center, NY, US
July – September 2010 Visiting Researcher at IBM Haifa Research Labs, Haifa, Israel
June – September 2008 R&D Internship at Bloomberg L.P., London, UK

2008 – 2009 Teaching Assistant at Vienna University of Technology
June 2007 – Sept. 2007 Student Researcher at University of Innsbruck, Quality Engineer-

ing Group (head: Univ.-Prof. Dr. Ruth Breu)
Oct. 2006 – March 2007 Software Engineer for Arctis GmbH, subcontractor of Bayerische

Landesbank (BayernLB), Germany

Education and Training
2010 - 2013 Ph.D. in Computer Science, Vienna University of Technology
2007 - 2009 M.S. in Computer Science, Vienna University of Technology
2007 - 2010 B.S. in Business Administration, Vienna University of Economics

and Business
2004 - 2007 B.S. in Computer Science, University of Innsbruck

223

Teaching
Bachelor Level Courses • Distributed Systems Lab (184.167 - UE 2.0 - Verteilte Systeme)

• Project Lab Work (184.230 - PR 4.0 - Projektpraktikum)

Master Level Courses • Distributed Systems Technologies (184.260 - VU 4.0)
• Software Architectures (184.159 - VU 2.0)
• Distributed Systems Engineering (184.159 - VU 2.0)
• Project Lab Software Engineering & Internet Computing
(184.715 - PR 6.0)

Co-Supervised Theses • Eduard Szente: Efficient Computation of Web Services API Cov-
erage Metrics
• Andrea Floh: Dependable Event Processing over High Volume
Data Streams
• Michael Strasser: Cloud-Based Monitoring and Simulation for
Fault-Tolerant Event Processing Platforms

Professional Activities
Reviewer, Program

Committee Member
(Excerpt)

• 9th International Conference on Internet and Web Applications
and Services (ICIW) 2014
• 1st International Workshop on Monitoring and Prediction of
Cloud Services (MoPoC), co-located with ICSOC 2012
• 2nd IEEE International Conference on Computer & Communi-
cation Technology (ICCCT) 2011
• 3rd ServiceWave Conference 2010
• 8th IEEE European Conference on Web Services (ECOWS) 2010
• IEEE Transactions on Services Computing
• IEEE Transactions on Software Engineering
• ACM Transactions on the Web
• IEEE Software
• IEEE Internet Computing
• Engineering Applications of Artificial Intelligence (Elsevier)

Publications

Journal Papers

1. Waldemar Hummer, Patrick Gaubatz, Mark Strembeck, Uwe Zdun, and Schahram
Dustdar. Enforcement of Entailment Constraints in Distributed Service-Based
Business Processes. Information and Software Technology (IST), 55(11):1884–
1903, 2013

224

2. Waldemar Hummer, Orna Raz, Onn Shehory, Philipp Leitner, and Schahram Dust-
dar. Testing of Data-Centric and Event-Based Dynamic Service Compositions.
Software Testing, Verification and Reliability (STVR), 23(6):465–497, 2013

3. Waldemar Hummer, Benjamin Satzger, and Schahram Dustdar. Elastic Stream
Processing in the Cloud. Wiley Interdisciplinary Rewiews: Data Mining and
Knowledge Discovery, 3(5):333–345, 2013

4. Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. SEPL – a domain-
specific language and execution environment for protocols of stateful Web ser-
vices. Distributed and Parallel Databases, 29(4):277–307, 2011

5. Alessio Gambi, Waldemar Hummer, Hong-Linh Truong, and Schahram Dustdar.
Testing elastic computing systems. IEEE Internet Computing, 17(6):76–82, 2013

6. Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and
Schahram Dustdar. Generic Event-Based Monitoring and Adaptation Methodol-
ogy for Heterogeneous Distributed Systems. Software: Practice and Experience,
2014

7. Philipp Leitner, Waldemar Hummer, and Schahram Dustdar. Cost-based optimiza-
tion of service compositions. IEEE Transactions on Services Computing (TSC),
6(2):239–251, 2013

8. Philipp Leitner, Johannes Ferner, Waldemar Hummer, and Schahram Dustdar.
Data-driven and automated prediction of service level agreement violations in ser-
vice compositions. Distributed and Parallel Databases, 31(3):447–470, 2013

9. Benjamin Satzger, Waldemar Hummer, Christian Inzinger, Philipp Leitner, and
Schahram Dustdar. Winds of change: From vendor lock-in to the meta cloud.
IEEE Internet Computing, 17(1):69–73, 2013

Conference and Workshop Papers

1. Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. Testing
idempotence for infrastructure as code. In 14th ACM/IFIP/USENIX Middleware
Conference, pages 368–388, 2013. Best Student Paper Award

2. Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam. Au-
tomated testing of chef automation scripts. In ACM/IFIP/USENIX Middleware
Conference (tool demo track), 2013

3. Waldemar Hummer, Christian Inzinger, Philipp Leitner, Benjamin Satzger, and
Schahram Dustdar. Deriving a unified fault taxonomy for distributed event-based
systems. In 6th ACM International Conference on Distributed Event-Based Sys-
tems (DEBS), pages 167–178, 2012

225

4. Waldemar Hummer, Orna Raz, Onn Shehory, Philipp Leitner, and Schahram Dust-
dar. Test coverage of data-centric dynamic compositions in service-based systems.
In 4th International Conference on Software Testing, Verification and Validation
(ICST’11), pages 40–49, 2011

5. Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. WS-Aggregation:
Distributed Aggregation of Web Services Data. In ACM Symposium On Applied
Computing (SAC), pages 1590–1597, 2011

6. Waldemar Hummer, Patrick Gaubatz, Mark Strembeck, Uwe Zdun, and Schahram
Dustdar. An integrated approach for identity and access management in a SOA
context. In 16th ACM Symposium on Access Control Models and Technologies
(SACMAT), pages 21–30, 2011

7. Waldemar Hummer, Benjamin Satzger, Philipp Leitner, Christian Inzinger, and
Schahram Dustdar. Distributed Continuous Queries Over Web Service Event
Streams. In 7th IEEE International Conference on Next Generation Web Services
Practices (NWeSP), pages 176–181, 2011

8. Waldemar Hummer, Philipp Leitner, Benjamin Satzger, and Schahram Dustdar.
Dynamic migration of processing elements for optimized query execution in event-
based systems. In 1st International Symposium on Secure Virtual Infrastructures
(DOA-SVI’11), OnTheMove Federated Conferences, pages 451–468, 2011

9. Waldemar Hummer, Orna Raz, and Schahram Dustdar. Towards Efficient Mea-
suring of Web Services API Coverage. In 3rd International Workshop on Princi-
ples of Engineering Service-Oriented Systems (PESOS), co-located with ICSE’11,
pages 22–28, 2011

10. Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. A Step-by-Step
Debugging Technique To Facilitate Mashup Development and Maintenance. In
4th International Workshop on Web APIs and Services Mashups, co-located with
ECOWS’10, 2010

11. Alessio Gambi, Waldemar Hummer, and Schahram Dustdar. Automated testing
of cloud-based elastic systems with autocles. In 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Demo track, pages 714–
717, 2013

12. Alessio Gambi, Waldemar Hummer, and Schahram Dustdar. Testing Elastic Sys-
tems with Surrogate Models. In ICSE Workshop on Combining Modelling and
Search-Based Software Engineering (CMSBSE), 2013

226

13. Patrick Gaubatz, Waldemar Hummer, Uwe Zdun, and Mark Strembeck. Enforcing
Entailment Constraints in Offline Editing Scenarios for Real-time Collaborative
Web Documents. In 29th ACM Symposium On Applied Computing (SAC), 2014

14. Patrick Gaubatz, Waldemar Hummer, Uwe Zdun, and Mark Strembeck. Support-
ing Customized Views for Enforcing Access Control Constraints in Real-time Col-
laborative Web Applications. In International Conference on Web Engineering
(ICWE), 2013

15. Patrick Gaubatz and Uwe Zdun. Supporting entailment constraints in the context
of collaborative web applications. In 28th Symposium On Applied Computing
(SAC). ACM, 2013

16. Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and
Schahram Dustdar. Identifying incompatible service implementations using pooled
decision trees. In 28th ACM Symposium on Applied Computing (SAC), DADS
Track, pages 485–492, 2013

17. Christian Inzinger, Benjamin Satzger, Philipp Leitner, Waldemar Hummer, and
Schahram Dustdar. Model-based adaptation of cloud computing applications. In
International Conference on Model-Driven Engineering and Software Develop-
ment, pages 351–355, 2013

18. Christian Inzinger, Waldemar Hummer, Ioanna Lytra, Philipp Leitner, Huy Tran,
Uwe Zdun, and Schahram Dustdar. Decisions, models, and monitoring a lifecycle
model for the evolution of service-based systems. In 17th IEEE International
EDOC Conference, 2013

19. Christian Inzinger, Benjamin Satzger, Waldemar Hummer, and Schahram Dust-
dar. Specification and deployment of distributed monitoring and adaptation in-
frastructures. In Workshop on Performance Assessment and Auditing in Service
Computing, co-located with ICSOC’10, pages 167–178, 2012

20. Christian Inzinger, Waldemar Hummer, Benjamin Satzger, Philipp Leitner, and
Schahram Dustdar. Towards identifying root causes of faults in service-based
applications. In 31st International Symposium on Reliable Distributed Systems
(poster paper), pages 404–405, 2012

21. Christian Inzinger, Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and
Schahram Dustdar. Non-intrusive policy optimization for dependable and adaptive
service-oriented systems. In 27th Annual ACM Symposium on Applied Computing
(SAC), pages 504–510, 2012

227

22. Philipp Leitner, Benjamin Satzger, Waldemar Hummer, Christian Inzinger, and
Schahram Dustdar. Cloudscale: a novel middleware for building transparently
scaling cloud applications. In 27th Annual ACM Symposium on Applied Comput-
ing (SAC), pages 434–440. ACM, 2012

23. Philipp Leitner, Waldemar Hummer, Benjamin Satzger, Christian Inzinger, and
Schahram Dustdar. Cost-Efficient and Application SLA-Aware Client Side Re-
quest Scheduling in an Infrastructure-as-a-Service Cloud. In 5th IEEE Interna-
tional Conference on Cloud Computing, pages 213–220, 2012

24. Philipp Leitner, Christian Inzinger, Waldemar Hummer, Benjamin Satzger, and
Schahram Dustdar. Application-level performance monitoring of cloud services
based on the complex event processing paradigm. In 5th IEEE International
Conference on Service-Oriented Computing and Applications (SOCA), pages 1–8,
2012

25. Philipp Leitner, Waldemar Hummer, and Schahram Dustdar. A monitoring data set
for evaluating qos-aware service-based systems. In ICSE Workshop on Principles
of Engineering Service Oriented Systems (PESOS), pages 67–68, 2012

26. Philipp Leitner, Waldemar Hummer, Benjamin Satzger, and Schahram Dustdar.
Stepwise and asynchronous runtime optimization of web service compositions. In
12th International Conference on Web Information System Engineering (WISE),
pages 290–297. Springer, 2011

27. Philipp Leitner, Branimir Wetzstein, Dimka Karastoyanova, Waldemar Hummer,
Schahram Dustdar, and Frank Leymann. Preventing SLA violations in service
compositions using aspect-based fragment substitution. In 8th International Con-
ference on Service-Oriented Computing, pages 365–380. Springer, 2010

28. Benjamin Satzger, Waldemar Hummer, Philipp Leitner, and Schahram Dustdar.
Esc: Towards an elastic stream computing platform for the cloud. In IEEE Inter-
national Conference on Cloud Computing (CLOUD), pages 348–355, 2011

29. Hong-Linh Truong, Schahram Dustdar, Georgiana Copil, Alessio Gambi, Walde-
mar Hummer, Duc-Hung Le, and Daniel Moldovan. CoMoT - A Platform-as-a-
Service for Elasticity in the Cloud. In IEEE International Workshop on the Future
of PaaS, 2014

30. Franz Wotawa, Marco Schulz, Ingo Pill, Seema Jehan, Philipp Leitner, Waldemar
Hummer, Stefan Schulte, Philipp Hoenisch, and Schahram Dustdar. Fifty Shades
of Grey in SOA Testing. In Workshop on Advances in Model Based Testing, co-
located with ICST’13, pages 154–157, 2013

228

Book Chapters

1. Waldemar Hummer, Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and
Schahram Dustdar. VRESCo - Vienna Runtime Environment for Service-oriented
Computing, pages 299–324. Service Engineering. European Research Results.
Springer, 2010

229

	Erklärung zur Verfassung der Arbeit
	Abstract
	Kurzfassung
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	Publications
	Introduction
	Problem Statement
	Problem Domain and Context
	Research Questions

	Scientific Contributions
	Thesis Organization

	Background
	Event-Based Systems and Data Stream Processing
	Service-Based Applications
	Web Services Business Process Execution Language
	Dynamic Service Selection and Binding

	Cloud Computing
	Elastic Computing
	Automated Resource Provisioning – DevOps and Infrastructure as Code

	Basic Terminology of Dependability – Faults, Errors, Failures
	Fault Management and Fault Tolerance

	Software Testing
	Model-Based Testing
	Combinatorial Testing
	Test Coverage and Adequacy

	WS-Aggregation: Reliable Event-Based Data Processing with Elastic Runtime Adaptation
	Introduction
	Common Model and Fault Taxonomy for Event-Based Systems
	Specialized Types of Event-Based Systems
	Description of the Common Model for Event-Based Systems
	Modeling the Operation of Event Processing Agents
	Fault Taxonomy
	Discussion of Identified Faults
	Relation of the Fault Taxonomy to Other Contributions

	Event-Based Continuous Queries in WS-Aggregation
	Application Scenario
	System Architecture
	Query Model of WS-Aggregation
	Distributed Query Execution
	Elastic Scaling Using Cloud Computing

	Optimized Query Distribution and Placement of Processing Elements
	Optimization Target
	Optimization Algorithm

	Testing Approach for Reliable Infrastructure Provisioning
	Background and Motivation
	Approach Synopsis
	System Model for Infrastructure Automations
	Test Design

	Implementation
	Query Model and WAQL Query Language
	Aggregator Nodes and Query Processing
	Migration of Event Buffers and Subscriptions
	Framework for Testing Infrastructure Automation Scripts

	Evaluation
	WS-Aggregation Runtime Performance
	Identified Issues in Real-World Chef Automation Scripts

	Related Work
	Optimized Event Processing and Placement of Processing Elements
	Fault Models for Event-Based Systems
	Reliable Infrastructure Provisioning

	Conclusions

	TeCoS: Testing and Fault Localization for Data-Centric Dynamic Service Compositions
	Introduction and Motivation
	Approach Synopsis
	Roadmap

	Scenario
	Sources of Faults in Dynamic Service Compositions
	Runtime Composition Instances

	Testing of Dynamic Data-Centric Compositions
	Service Composition Model and Composition Test Model
	k-Node Data Flow Coverage Metric
	Mapping the Composition Model to Concrete Platforms
	Combinatorial Test Design
	Determining Faulty Services and Incompatible Configurations

	Advanced Fault Localization for Transient and Changing Faults
	Extended Service Composition Model
	Trace Data Preparation
	Learning Rules from Decision Trees
	Coping with Transient Faults

	Implementation: The TeCoS Framework
	Integration of Target Platforms via Extensible Adapter Mechanism
	Test Preparation Steps
	Transformation to FoCuS Data Model
	Generating and Executing Tests
	Test Oracle
	Fault Localization Platform

	Evaluation
	Effect of k-Node Coverage Criterion on the Number of Test Cases
	Performance of Testing WS-BPEL Service Compositions
	Performance of Testing Event-Based Applications with WS-Aggregation
	Measures for Determining Incompatible Service Assignments
	Performance of Fault Localization Approach
	Discussion of Assumptions, Weaknesses and Limitations

	Related Work
	Testing of Service-Based Applications
	Fault Detection and Fault Localization Techniques

	Conclusions

	SeCoS: Automated Enforcement of Access Constraints in Business Processes
	Introduction
	Motivation
	Approach Synopsis

	Scenario
	Patient Examination Business Process
	Entailment Constraints

	Metamodel for Specification of Entailment Constraints in Business Processes
	Business Activity RBAC Models
	RBAC Modeling for Business Processes
	RBAC DSL Statements

	Process Model Transformations for Runtime Constraint Enforcement
	Model Transformations to Enforce Mutual Exclusion Constraints
	Model Transformations to Enforce Binding Constraints
	Transformation Rules for Combining Multiple Constraints

	Application to SOA and WS-BPEL
	Supporting Tasks for IAM Enforcement in WS-BPEL
	RBAC DSL Integration with WS-BPEL
	Automatic Transformation of WS-BPEL Definition

	Implementation
	System Architecture
	SAML-based Single Sign-On
	Automatic Transformation of WS-BPEL Definition
	Checking Business Activity Constraints

	Evaluation and Discussion
	Performance and Scalability
	Reaction of the Secured Process to Valid and Invalid Authentication Data
	WS-BPEL Transformation Algorithm
	Discussion of Limitations

	Related Work
	Security Modeling for Web Service Based Systems
	DSL-Based Security Modeling
	Runtime Enforcement of Constraints in Business Processes

	Conclusions

	Conclusions
	Summary of Contributions
	Research Questions Revisited
	Future Work

	List of Acronyms
	Bibliography
	Code Listings
	RBAC DSL Statements for Patient Examination Process
	XQuery Assertion Expressions for Enforcing Access Constraints

	Curriculum Vitae

