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SUMMARY

Stream processing is a computing paradigm that has emerged from the necessity of handling high volumes of
data in real time. In contrast to traditional databases, stream processing systems perform continuous queries
and handle data on-the-fly. Today, a wide range of application areas relies on efficient pattern detection and
queries over streams. The advent of Cloud computing fosters the development of elastic stream processing
platforms which are able to dynamically adapt based on different cost-benefit tradeoffs. This article provides
an overview of the historical evolution and the key concepts of stream processing, with special focus on
adaptivity and Cloud-based elasticity. Copyright c© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modern IT systems are handling an ever increasing volume of data, continuously generated by
data producers such as social networks, electronic commerce systems, or Smart Cities, amongst
others. These data streams include relevant information that can be revealed by data mining and
processing. The traditional approach towards handling and analyzing data is to persist the data in a
database and execute queries against it. However, there are scenarios in which not all the data can
be stored because of high volume, or where real-time processing is required to react in a timely
manner. Stream computing allows to process high loads of transient data in real time. Compared to
traditional database management systems where queries are sent to the data, in stream computing
the data are applied to continuously executed queries. Since operators typically do not have any
control over the rate at which events are created, stream computing platforms need to be able to
adapt. The number of events at low activity periods can be dramatically different from peak periods.

Over the last years, the cloud computing paradigm [1] has found widespread adoption. The reason
for the success of cloud computing is the possibility to use services on-demand with a pay as you
go pricing model, which proved to be convenient in many respects. One popular approach to cloud
computing is the Infrastructure-as-a-Service [2] (IaaS) model, where virtual computing resources
(virtual machines) are acquired and released on demand. This idea has been made popular in recent
years by widely used implementations, such as Amazon’s Elastic Compute Cloud (EC2) [3] or
the OpenStack [4] open source Cloud middleware implementation. Cloud computing appears to
be the perfect infrastructure for realizing an elastic stream computing service, by dynamically
adjusting used resources to the current conditions. In economics, elasticity describes how the change
in one variable (e.g., price) influences the change in another variable (e.g., demand). Elasticity
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2 ELASTIC STREAM PROCESSING IN THE CLOUD

in computing defines how computing resources are varied dynamically in order to cope with
environmental changes, e.g., different workloads, variations in the price of computing resource,
and changing user requirements regarding quality of service [5, 6, 7].

1.1. Methodology and Roadmap

In this article we perform a systematic review of stream processing, with a focus on how elastic
computing of data streams can be achieved on top of Cloud computing. The study attempts to
put the topic into perspective under its evolutionary context, focusing on the one hand on the
ground-breaking contributions which build the foundation of state-of-the-art stream processing, and
discussing on the other hand the most recent developments that shape the future of the field.

We have thoroughly collected an initial set of over 100 research papers from scientific workshops,
conferences, and journals, mostly published within the past 10 years. The papers were filtered based
on the relevance and impact (number of citations) considering their age. Approximately half of the
initially selected papers are included in this article. The authors also included some of their own
related research work, but have carefully avoided to overemphasize it in the discussion.

The remainder of the paper is structured as follows. Firstly, Section 2 introduces the core concepts
and terminology related to Cloud and stream processing. Section 3 discusses the emergence of the
most important stream processing systems, providing a historical outline of the early days and rise
of the research field. In Section 4, our focus shifts towards adaptivity and different strategies (mostly
dating to the pre-Cloud era) for dealing with overload and other exceptional situations. Contrasting
the approaches with largely static supply of resources in Section 4, Section 4.3 concentrates
on resource-centric adaptation and discusses the relatively young research area of elastic stream
processing in the Cloud. Section 5 summarizes the main findings and concludes the paper.

2. CORE PRINCIPLES OF STREAM PROCESSING

Based on existing models for event and stream computing (most notably [8, 9, 10]), we define
the most important terms related to stream computing and event-based systems. The core artifacts
and terminology are illustrated in Figure 1. Various research sub-areas use slightly different
terminology [11], hence Figure 1 contains alternative terms (in brackets) for the core concepts.
These terms are used interchangeably throughout the paper.
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Figure 1. Core Artifacts and Terminology
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ELASTIC STREAM PROCESSING IN THE CLOUD 3

An event is an object encoding something that is happening for the purpose of computer
processing (e.g., stock tick message). Typically, events are of a certain type, have a timestamp,
and hold further, more specific data. A complex event results from applying processing steps, like
aggregation and filtering, to one or more other events. Events are emitted by (event) sources and
consumed by (event) sinks. An (event or data) stream is a linear sequence of events, usually ordered
by time. Streams are usually considered (potentially) infinite, and a window [12, 13, 14] is some
finite portion of a stream.

To distinguish different types of windows (or window queries), we formalize an event stream
E as a sequence of events E = 〈e1, e2, e3, . . .〉. A window query, at each point in time, evaluates
a set of active (or open) windows, denoted W . A window w ∈W is a subsequence of the event
stream, denoted w ⊆ E (based on the notation for subsets). Each window w has a start condition
(s(w)) and an end condition (e(w)). The window types are illustrated in Figure 2 based on a simple
exemplary event stream with “start” and “end” event types. One basic type of query window is the
growing window which binds data values to be available over the entire stream. Another simple
type is the single item window where each single event is considered separately. The single item
window is particularly suitable for stateless operators, which only consider one event at a time and
do not need to store the state of previous items. In tumbling window queries, new windows are only
created if there is currently no other open window (i.e., |W | = 0). With a sliding window query, a
new window is always opened if s(w) holds. Finally, in a landmark window query, once a window
has been opened, it remains open indefinitely (until the end of the stream is reached or the query
is explicitly closed). In contrast to the growing window which binds some values over the entire
stream, landmark windows consider different portions of the stream over time. More specialized
characterizations of window types (e.g., time-based or count-based) are discussed in [13].
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Figure 2. Different Types of Event Stream Query Windows (based on [14])

Event processing agents (EPAs) are software modules that consume events, process them, and
output new events. Their behavior is defined by an event processing language, i.e., a high-level
language, for instance based on an SQL dialect. Stream processing, stream computing, and complex
event processing (CEP) are synonyms for performing computations with event streams as input.
The behavior of the processing is define by an event processing network (EPN), a directed graph
consisting of EPAs (as vertices) and event channels (as edges); the latter define the flow of events.
While an EPN solely defines the logical connection between EPAs, the physical deployment is
achieved by mapping EPAs to concrete computing nodes. A data stream management system
(DSMS) is a software system whose main responsibility is the execution of one or multiple EPNs. It
has responsibilities comparable to a traditional database management system (DBMS), with some
notable differences, as shown in Table I.

The main challenges for stream processing are founded in the variability, unpredictability,
burstiness, and volume of stream rates and data characteristics. Further aspects like changing
processing objectives, e.g., higher quality of data requirements, and changing environmental
circumstances, e.g., increased cost of computing resources, reinforce the challenge. Cloud
computing and IaaS provide a new level of flexibility in resource management, which provides
a solid basis for implementing highly elastic stream computing.
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4 ELASTIC STREAM PROCESSING IN THE CLOUD

DBMS DSMS
Persistent relations Transient streams
One-time queries Continuous queries
Random access Sequential access
Optimized access plans can be derived Unpredictable data characteristics and arrival patterns

Table I. Comparison of DBMS and DSMS

3. IMPORTANT SYSTEMS

This section discusses some of the most seminal contributions to the field of stream processing,
which started to take off around the turn of the millennium. The ground-breaking early works are
summarized in Section 3.1, before we shift the focus to more recent, largely distributed or Cloud-
based approaches in Section 3.2.

3.1. The Rise of a New Research Field

The NiagaraCQ [19] continuous query system is among the first and most influential stream
processing platforms. The NiagaraCQ command language, which allows to add and remove
continuous queries at runtime, is tailored to XML data and based on the existing XML query
language XML-QL† (whose features were later incorporated into the XQuery language ‡). The
basic form of a continuous query in NiagaraCQ is printed in Listing 1. One advantage of the
NiagaraCQ query approach is that queries written in traditional languages can be easily transformed
into continuous queries. NiagaraCQ also introduced the concept of incremental group optimization,
which allows queries that are grouped together for performance reasons to be incrementally updated.� �
1 CREATE CQ name
2 XML−QL query
3 DO a c t i o n
4 {START s t a r t t i m e } {EVERY t i m e i n t e r v a l } {EXPIRE e x p i r a t i o n t i m e }� �

Listing 1: Continuous Query in NiagaraCQ
At roughly the same time, Stanford introduce their seminal STREAM platform and discuss models

and issues in data stream systems [12], such as (potentially) unbounded memory requirements,
approximate query answering, window queries, and blocking operators such as aggregate functions.
In contrast to XML-based NiagaraCQ, STREAM utilizes an extension of SQL as query language.

Also the TelegraphCQ [20] dataflow system was developed with the motivation that database
systems at the time provided insufficient support for continuous adaptive querying, shared
processing and different sources of unpredictability. TelegraphCQ is built on top of the open source
DBMS PostgreSQL and the query syntax is based on SQL.

The aforementioned systems are largely based on declarative query languages which hide the
query plan and internal processing logic from the user. The Aurora project [21, 22, 23] introduces
a novel querying approach based on an explicit network graph with operator nodes and data flow
connections (i.e., explicit modeling of the EPN).

3.2. Road Towards Distributed Stream Processing

To account for an ever increasing volume of data, research has put an emphasis on distributed
and scalable stream processing. The Medusa [24] infrastructure, used as an extension to Aurora,
integrates autonomous participants to process streaming data collaboratively. A currency-based
market mechanism and other economic principles are applied to regulate participant collaborations.
The distributed collaboration model introduces challenges such as naming, discovery, routing, or

†http://www.w3.org/TR/NOTE-xml-ql/
‡http://www.w3.org/TR/xquery/
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ELASTIC STREAM PROCESSING IN THE CLOUD 5

message transport. Load management is achieved by repartitioning Aurora networks, typically by
splitting (and remapping) operator nodes. The underlying principle that stream operators can be
divided into atomic units is similar to the famous map-reduce paradigm, which later gained wide-
spread popularity for batch processing of large data sets [25].

The Borealis [26] engine inherits the core functionality from Aurora and Medusa, and provides
advanced capabilities for dynamism. Besides dynamic modification of running queries, Borealis
allows revision of previously issued query results to recover from mistakes or problems with the
input data. Revisions may originate from different sources: 1) from the input data (e.g., a stock
ticker event corrects a previously published quote), 2) from the processing platform (e.g., events
were dropped or deferred due to high load), or 3) from “time travel”. Traveling back and forth
in time over the input data sequence is a central concept in Borealis. Backwards travel means
to rewind the input by issuing revision messages that allow the stream operators to reconstruct
a certain historical state. Forward travel requires to predict the ongoing progression of the data
streams, which evidently can lead to incorrectness and the necessity to revise results. Borealis also
focuses on distributed processing via local, neighborhood and global optimization strategies. Since
scheduling and placement of operators does not scale on a per-message basis, the notion of train
scheduling [27] is introduced.

System S and its various satellite and successor projects (SPC [28], SODA [29], SPADE [30],
InfoSphere Streams [31]) is an ongoing industry-driven research effort by IBM. SPC implements the
general platform, provides a global event type system, and defines the notion of processing elements.
SODA introduces an “importance” measure, which is typically based on a quantity or quality of the
output stream, to maximize the utility of the data flow graphs. The SODA approach targets systems
that are frequently rather than rarely overloaded, and since load shedding is not sufficient in such
systems, SODA’s scheduler entirely rejects low-priority jobs. SODA divides the global scheduling
optimization into macro phases (determine admitted jobs and candidate nodes) and micro phases
(fractional placement of operators on nodes). SPADE contributes an intermediate language and
toolkit for stream operators and data flow graphs. The commercial InfoSphere platforms and its
stream computing platform provide easy integration with the Cloud.

Microsoft’s Dryad platform [32] is a general purpose distributed execution engine tailored to
data-parallel applications. The Dryad runtime facilitates the implementation of inherently parallel
applications by abstracting from standard concurrency mechanisms such as threads, scheduling, or
synchronization. Although not a stream processing system in the narrower sense, Dryad has also
influenced the field of online parallel data processing (e.g., [33]). The processing logic is modeled
as a directed acyclic graph (DAG), and each vertex represents a sub-program which is mapped onto
a physical resource. The DAG is specified based on a domain-specific language with notations
for 1) creating new vertices (singleton graph; cloned sub-graph), 2) adding edges (pointwise
composition; complete bipartite sub-graph), 3) merging graphs (concatenation of vertices; union
of edges), and 4) customization and optimization (channel I/O types; encapsulation of vertices
for scheduling; container vertices for output concatenation). Different graph refinements are
implemented to optimize data locality and network usage.

The popular Esper§ platform [34] provides a declarative language (Event Processing Language,
EPL) and runtime library for event processing. EPL defines a comprehensive set of expressive
language constructs for event correlation, filtering, and aggregation. The basic syntax of EPL has
similarities with SQL (e.g., select statements), and the extended concepts range from window
queries, pattern detection queries, or context-based queries to complex event hierarchies, splitting
and duplicating of streams, predefined statistics views, and more.

Yahoo maintains the stream processing platform S4 [35]. Processing elements in S4 are
programmed with a fairly simply API (Application Programming Interface) consisting of methods
processEvent(..) to consume data and output() to publish internal states to external systems.

The Storm platform [36] promises “extremely robust” support for distributed and fault-tolerant
realtime computing, tailored to high-volume data streams. Storm has been in use for analytics

§http://esper.codehaus.org/
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6 ELASTIC STREAM PROCESSING IN THE CLOUD

purposes by major companies like Twitter¶ or Groupon‖. Storm provides native clustering support
and integrates seamlessly with Cloud providers like Amazon EC2. The storm daemon processes
are designed to be stateless and fail-fast, hence daemons can be killed without affecting the overall
health of the cluster.

3.3. Comparison of Stream Processing Systems

Platform Year Operation
Definition

Main Focus Core Achievements

NiagaraCQ [19] 2000 Query based
on XML-QL

Turn Passive Web into
Active Environment

Timer-Triggered (Pull-Based) Continu-
ous Web Queries; Grouping of Queries;
Incremental Group Optimization

STREAM [12] 2002 Query based
on SQL

From Persistent
Relations to Transient
Data Streams

Approximate Query Answering; Sliding
Windows; Timestamping; Discussion of
Algorithmic and Querying Issues

TelegraphCQ [20] 2003 Query based
on SQL

Dealing with High-
Volume, Highly-
Variable Data Streams

Data Ingress and Caching; Adaptive
Routing; Fjords (Push and Pull Inter-
Module Communication)

Aurora [22] 2003 Operator
Graph

Fundamental
Architecture of
DBMS for Streaming
Data

Combining/Reordering Operator Boxes;
Train Scheduling; Connection Points
(Storing Stream Data); Ad-Hoc Queries;
Stream Query Algebra; Load Shedding

Medusa [24] 2003 Operator
Graph

Scalable, Distributed
and Loosely Coupled
Stream Processing

Agoric System; Autonomous Partic-
ipants; Market Mechanism; Split &
Remap; QoS Guarantees; Data Backup
Control via Back Channels

Borealis [26] 2005 Operator
Graph

Extend Aurora and
Medusa with Criti-
cal Advanced Capa-
bilities

Dynamic Query Modification; Time
Travel; Result Revision; Flexible and
Highly Scalable Monitoring and Opti-
mization;

System S [28, 29, 30] 2006 Data-Flow
Graph, Pro-
gramming
Language

Highly Scalable and
Usability-Oriented
Declarative Stream
Processing

Data Fabric (Routing & Transport);
Selective Job Admission and Schedul-
ing; Stream Importance Weights; User-
Oriented Abstraction Levels; Code Gen-
eration; Compiler Optimizations; Bal-
anced Resource Allocation; Alternative
Hardware Architectures (e.g., GPUs)

Dryad [32] 2007 Data-Flow
Graph
Connecting
Sub-
Programs

Generic Platform for
Data-Oriented Paral-
lel Programming

Automatic Scheduling and Distribution;
DSL and Semantics for Construction
of Data-Flow Graphs; Dynamic Graph
Refinements; Efficient Job Pipelining;
Processing Terabytes of Data in Min-
utes; Multi-Level Fault Tolerance

Esper [34] 2007 Event
Processing
Language
(EPL)

Open-Source Event
Processing Library
for Java and .NET

Highly Expressive Query Language;
Dynamic Event Type Definition; Pat-
tern Matching Facilities; Actively Main-
tained, Production-Ready Library.

S4 [35] 2010 Programming
API

Scalable, Partially
Fault-Tolerant
Platform with Simple
Programming API

Keyed Data Events; Simple Process-
ing Element API; Pluggable Architec-
ture; Performance Evaluation of Lossy
Failover

Storm [36] 2012 Programming
API

Scalable, Fault-
Tolerant Distributed
Computation System

Guaranteed Processing; Automatic
Reconfiguration with Stateless and Fail-
Fast Daemons; Integration of Arbitrary
Programming Languages;

Table II. Comparison of Stream Processing Systems

The core differences of the stream processing systems discussed earlier in this section are
summarized in Table II. For each platform, we record the year of the first seminal publication,

¶http://twitter.com
‖http://groupon.com
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ELASTIC STREAM PROCESSING IN THE CLOUD 7

the type of notation employed to define the platform’s operation, the main focus of the project as a
whole, and a highlight of the keywords that express the core contributions and novelties achieved.

4. ELASTICITY AND ADAPTIVITY IN STREAM PROCESSING

One of the core challenges in stream processing is to adapt to highly dynamic environments,
resource limitations, as well as variations in the data arrival (e.g., load bursts, out-of-order events)
and data quality (e.g., uncertain/approximate data, result revisions). The work in [37] discusses
pointedly a set of eight requirements (or guidelines) that should be tackled in real-time stream
processing. Among these eight rules, three points are particularly interesting for elastic stream
processing in the Cloud: handling of stream imperfections, guaranteed data safety and delivery,
and automatic partitioning and scaling of applications. The proposed solutions in the literature can
be roughly divided into strategies based on single events (Section 4.1) and more coarse-grained
reorganization of the processing logic (Section 4.2). Some of the strategies discussed in this section
are fundamental contributions that date back to the pre-Cloud era; more recent works have a stronger
focus on Cloud and resource elasticity, which is discussed in Section 4.3.

4.1. Processing Strategies Based on Single Events

The reliance on and uncontrollability of external data makes stream processing platforms inherently
prone to overload situations or data inconsistencies like out-of-order event streams, resulting in the
temporary or permanent inability of processing all incoming data. The major strategies for handling
such exceptional conditions are discussed in the following. Note that the strategies are orthogonal
and in fact often used in combination.

Reordering [38, 39] and prioritization [40, 41] are strategies which use an ordering function
to give precedence to important results, and to reject or defer less important data or queries.
Prioritization can be specified along with the query, or provided separately. In [40], query language
extensions are introduced: PRIORITY and DELIVERY ORDER specify the local transmission order
of results, and SUMMARIZE AS computes a summary of the query results, used to order the entire
result set. In contrast to ORDER BY in standard SQL, with DELIVERY ORDER the score of each
result can depend on all other tuples in the result. To keep the overhead of reordering at a minimum,
best effort approaches that run concurrently with the processing are employed [38]. The prefetch and
spool (P&S) technique fetches data from the input and sets aside uninteresting items to an auxiliary
side-disk, denoted spooling. If an item on the side-disk becomes interesting (e.g, because ordering
functions have changed), the input buffer is enriched with this item for further processing. Index
stride [38] is used in online aggregation to partition the input streams (e.g., according to GROUP BY)
and selectively fill the buffer with items from the currently underrepresented partition. Mechanisms
for matching sequence patterns over out-of-order event streams are proposed in [42]. Depending on
the likelihood of out-of-order event arrival, either an aggressive approach for maximum output or a
conservative approach for guaranteed correctness is applied.

Load shedding [43, 44, 45, 22] is a well-studied mechanism for reducing the system load by
dropping certain events from the stream. The simplest form is random drop, whereas semantic drop
discards tuples with the lowest utility [22]. Three challenges can be identified [43]: when, where,
and how much to shed load. These fundamental decisions can be expressed as an optimization
problem, based on the data arrival rates and the capacity of the system, trying to reduce the input load
while minimizing the loss of accuracy. The first challenge, detecting overload, is solved via a load
coefficient which is computed based on the computational costs of the stream operators and their
selectivity, i.e., the ratio of output rate to input rate. The latter two decisions are made based on a load
shedding roadmap which determines the (CPU-)cycle savings coefficient at different points in the
network. The amount of shedding performed before data arrive at an operator is denoted sampling
rate [44]. In practice, load schedulers cannot take large amounts of time to dynamically compute
optimal plans, hence offline algorithms are used to build a set of potential plans in advance [45].
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8 ELASTIC STREAM PROCESSING IN THE CLOUD

In deferred processing [26, 22, 46], data that cannot be immediately handled are stored for later
processing. The assumption of deferred processing is that the overload is limited in time, either for
external reasons (e.g., the load burst is only temporary) or for internal reasons (e.g., the platform
is about to acquire additional resources). In its simplest form, all types of incoming events are
equally deferred, and more advanced implementations use prioritization where some outputs are
given precedence over others. The utility of an output is determined by how much QoS is sacrificed
if the processing is deferred [22].

4.2. Adaptation of Processing Logic

Besides adaptation strategies for single events, more large scale reorganization of the processing
logic and platform topology can be applied to cope with dynamic environments. The approaches
discussed here have in common that the logic of the adaptation takes place on a more or less static
set of computing resources, rather than considering elastic scale-out, which is the aim of Section 4.3.

The most obvious form of elasticity is to scale with the input data rate and the complexity of
operations - acquiring new resources when needed, and releasing resources when possible. However,
besides the mere computing power, more sophisticated issues must be taken into account. Most
operators in stream computing are stateful and cannot be easily split up or migrated (e.g., window
queries need to store the past sequence of events).

The performance of stream processing systems depends on the topology of operators,
hence efficient operator placement [47] plays a key role. In [47], eight different operator
placement algorithms are evaluated with respect to five core dimensions: node location
(clustered/distributed), data rates (bursty/uniform), administrative domain (single/multiple),
topology changes (dynamic/uniform), and queries (redundant/heterogeneous). The algorithm in [48]
models the system load as a time series X and computes the load correlation coefficient ρij for pairs
of nodes i and j. The optimization goal is to maximize the overall correlation, which has the effect
that the load variance of the system is minimized. A comprehensive and fine-grained model of CPU
capacity and system load is provided in [49]. The feasible set of stream data rates under a certain
placement plan is constructed. Mathematically, the feasible set corresponds to the (nonnegative)
space under n node hyperplanes, where n is the number of nodes and the i-th hyperplane consists
of all points that render node i fully loaded. Another important goal is stabilization of the buffer
occupancy levels, because EPAs can often take advantage of batch-processing several successive
events [50] (to transfer data in larger units, decrease context-switching overhead, avoid memory
cache misses, etc.). Within the highly scalable data streaming platform StreamCloud [51], query
parallelization and operator placement play a central role. Based on an abstract query definition,
StreamCloud materializes queries into complex networks of parallel operators, supporting intra-
query parallelism as well as intra-operator parallelism.

An important design decision is whether the adaptation logic is centralized or distributed. In
practice, construction of operator placement and data flow graphs cannot always be centralized, for
instance because of size constraints or because the system is managed by multiple administrative
domains. A distributed algorithm for deploying the dataflow graph in the network is presented
in [52]. Nodes are hierarchically clustered (possibly in multiple levels) and one node per cluster is
elected coordinator. The clustering allows a divide-and-conquer approach: the placement problem
is split up into partitions for which locally optimal mappings are constructed. Given a dataflow
graph G, the algorithm first exhaustively maps all vertices of G to nodes within the top-level cluster.
Each of the cluster nodes now contains a sub-graph of G, and the algorithm recursively refines the
placement for each cluster node. In [53], the notion of elastic operators is proposed, where each
operator has local control over its resource utilization. The elastic operator is based on an adaptive
monitoring algorithm for assessing changes in the incoming workload. An alarm thread signals if
the workload is peaking, which causes activation of additional resources (e.g., worker threads).

Most approaches discussed so far in this paper do not take into account the costs for migrating
to a new configuration. However, relocation of EPAs at runtime is a non-trivial technical challenge
and also resource intensive, particular if part of the state needs to be transferred. Network-
aware dynamic operator placement, particularly for wide area networks, is discussed in [54]. The
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ELASTIC STREAM PROCESSING IN THE CLOUD 9

minimum migration threshold determines the required savings in network usage to amortize the
reconfiguration costs for a specific placement. The Flux platform [55] was among the first to address
the technical challenges of moving (migrating) stateful event stream operators. The proposed state
movement protocol involves quiescing the input to the operator, transferring the state, and restarting
the input stream in the new location. State migration also influences the load-balancing policy in
Flux, which aims at achieving a unified utilization among the processing nodes while minimizing the
number of state moves. In [56], a multi-query optimization algorithm is discussed which achieves a
tradeoff between load distribution, duplicate event buffering and inter-node data traffic, also taking
into account the costs of migration.

An important issue for reliable processing is adaptation to cope with faults. Handling
faults such as crash of machines and loss of events has been an intensively studied challenge
in stream processing. A comprehensive taxonomy of potential origins and effects of faults in
event-based systems can be found in [11]. Among the proposed solutions are replica based
approaches (redundant processing), upstream backup (restoring lost state from predecessor nodes),
or checkpointing techniques (periodically forwarding the state from a primary node to a secondary
fallback node) [15]. The challenge tackled in [57] is to minimize the loss of application output in
the face of node failures. Each external input node is assigned an importance value, and the value of
data at internal nodes (EPAs) is expressed as an aggregation of the importance of its inputs plus the
“added value” generated by the preceding EPAs. The total expected output value includes the value
of each node as well as the failure probabilities. The seminal work on fault tolerance in the Borealis
system [58] introduces DPC (Delay, Process, and Correct) – a protocol for handling different types
of failures in distributed stream processing. DPC allows the simultaneous crash of at most n− 1 of
the n replicas of each node. Fault handling mechanisms are also implemented in Dryad [32], where
the data operators are transparently replicated by the platform and re-started in case of failure. To
support fault tolerance, Dryad persists intermediate results and takes advantage of the fact that the
processing graph is acyclic. For further details on fault models and fault handling, we refer the
interested reader to related work in [11, 16, 15, 17, 18].

Finally, platforms are able to perform adaptation of QoS (or quality of data, QoD) by taking
advantage of the fact that many applications do not require exact precision for stream-based queries.
In [59], adaptive filters are utilized to balance the system load and quality levels. External inputs are
subject to periodic shrinking by filters, and a precision manager is responsible to send out “growth
messages” which ensure the demanded precision constraints.

4.3. Current and Future Trends for Elastic Stream Processing in the Cloud

The Cloud computing paradigm introduces the possibility to easily allocate dynamic computing
resources, hence fostering a highly elastic mode of operation. Elastic stream processing in the Cloud
is a relatively young and arguably immature research area, which is evidenced by the fact that at
the time of writing (early 2013) the scientific literature is mostly published in recent conference or
workshop publications. In contrast to Section 4, where we discussed adaptation strategies based on
a (more or less) static pool of resources, this section focuses on Cloud-based elasticity in stream
computing. We identified four core challenges, which are discussed in the following paragraphs.

The advanced resource allocation possibilities provided by Clouds require optimized integration
of stream engines with specific Cloud environments, and novel (adaptation) algorithms to
integrate and exploit this new potential. We can anticipate that there is still potential for leveraging
specific hardware characteristics, virtualization on different abstraction levels, and selective use
of available cloud services. One of the most basic forms of elasticity in the Cloud is to use a
pool of fixed resources for average loads and additional machines for peak loads, as discussed
in [60]. Nephele [33] is among the first data processing platforms to exploit dynamic resource
provisioning offered by IaaS clouds. The core deployment components are the job manager (job
scheduling, resource management), a multitude of task managers (deployed on each node, manage
task execution) and a Cloud controller (interface to the IaaS Cloud). A fine-grained CPU utilization
analysis allows to employ specific virtual machine types for processing different tasks. ESC is an
elastic stream processing platform for the Cloud [61] which scales seamlessly with the number
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of provided computing resources. ESC exploits lightweight processes provided by the Erlang∗∗

platform for transparent distribution of data processing jobs. Since elasticity can have a critical
influence on the application functionality, we also regard the field of reliability as a key challenge
for Cloud operators – regarding both fault resistance [62] and upfront testing of event-based data
processing applications [63].

Following the recent trend towards everything as a service [64] (XaaS), stream processing as a
service (or data processing as a service, DaaS) is certainly a grand challenge for the near future:
How can Cloud service providers offer stream processing as a service to their customers? Which
languages and tools are most appropriate to support different levels of user experience, and how are
the service level objectives (SLOs) best defined and enforced on a per-tenant basis? Multi-tenancy
also introduces pressing legal and practical challenges such as data security and privacy [65].
The WS-Aggregation [66, 56] platform takes a service-oriented approach to event processing with
loosely coupled aggregator nodes that process streams collaboratively. The platform is tailored
to multi-tenancy and optimizes resource usage through multi-query optimization. Streaming as
a service is also targeted by the Stormy platform [67]. Stormy aims at providing elastic stream
processing that scales with the number of queries as well as the number of streams. Another XaaS
approach by [68] has been termed continuous analytics as a service (CaaaS). One of the main
challenges in CaaaS is integration of stream data with persistent (stored) data, which is solved via an
integrated query language that combines both paradigms. Data staging [68] is an important concept
in CaaaS and data warehousing, allowing for stepwise archival of historical data. Because often only
the latest data are important, young data objects can be put to high-performance in-memory caches,
whereas older data can be stored to different types of persistent databases. The Cloud is utilized to
obtain storage resources, with appropriate level of availability, access performance, and clustering.

The legal and business aspects of Cloud computing require many platform providers to integrate
support for customized service-level agreements (SLAs), or consistency guarantees, combined
with suitable monitoring infrastructures to ensure that SLAs are not violated. The famous CAP
theorem [69] proposed by Eric Brewer states that any distributed system can satisfy at most two out
of the three properties consistency, availability, and partition tolerance. This conjecture, which has
also been formally proven valid [70], has fundamental implications on elastic stream processing in
the Cloud: since network partitions can never be entirely ruled out (i.e., partition tolerance needs to
be ensured), essentially developers are left with the choice between availability and consistency. In
this context, the term eventual consistency [71] has coined database research in the previous years,
also applied to data streams (e.g., in [72]). One remaining challenge is whether and how these two
latter goals could potentially be combined for stream processing, e.g., by dynamically activating
one or the other goal at runtime. For instance, the Stormy platform [67] claims to focus on both,
availability and strong consistency. Events are processed with a configurable replication factor, and
within each replication group events are guaranteed not to get lost and to be processed in total order.

Moreover, explicit pricing information becomes available with Cloud computing. One of the
challenges with critical business impact is how to define the price-quality tradeoff, and how to
support and enforce quality guarantees at runtime. Early works on SLAs for stream processing were
mostly quality of data oriented, but the Cloud promotes a primarily cost-based view on QoS. Cost-
based optimization of service compositions [73] is a related field and partly applicable as well, but
stream processing entails more specific issues that need to be addressed. The generic cost model for
wide-area stream processing discussed in [74] distinguishes operator costs, query costs, node costs
and system costs (from finer to more coarse grained). Since the model is generic, it can be directly
mapped to monetary costs associated with CPU utilization on a Cloud host. It should be noted that
not only the current and desired configuration has to be considered for cost calculation, but also
the steps required to reach the new state. Hence, the topology optimization in [56], which allows
to migrate event streams between nodes, also takes into account the cost of migration. The work
in [75] aims at minimizing the economic cost of using the Cloud, roughly distinguishing between

∗∗http://www.erlang.org
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data parallel and task parallel applications, which have different requirements and cost factors
associated.

The fourth major open issue is how we can push the limits of stream computing to provide
efficient locality- and context-aware data delivery on a global scale, integrating desktop
machines, mobile devices, and federated data centers. Another aspect of this challenge is
the increasing importance of green computing and energy-efficiency which has embraced and
influenced various research areas. As today’s Clouds become interoperable and more coordinated,
an envisioned worldwide network of interconnected Cloud data centers needs to cope with new
challenges [76]. Data locality is important to minimize latency, and computation should be as
close to the source as possible. The RACE architecture proposed in [77] integrates a multitude
of end devices organized in a star-like Cloud-Edge topology. Query graphs and operator placement
plans are generated from queries expressed in LINQ†† (Language Integrated Query). The Mortar
platform [78] provides control over wide-area stream processing applications. Mortar uses multipath
routing policies, while still guaranteeing duplicate-free processing. The authors advocate the use of
a hierarchical overlay network with a primary tree and multiple sibling trees. The Mortar framework
is also used in [79] to perform wide-scale ad-hoc data processing in the Cloud. The microblogging
service Twitter uses Storm [36] to process tweet messages and user clicks for analytics purposes.
The tuple stream based processing allows scalability in the order of one million 100 byte messages
per second per node [36], collected from a worldwide user base. The Web Service Stream Deployer
(WSSD) proposed in [80] is a component-based architecture for remote deployment of streams
across widely distributed resources.

5. CONCLUSION

The ever increasing amount of data generated around the globe, paired with advancing requirements
for continuous queries and online analytics, demand for highly efficient, scalable and reliable stream
processing solutions. Stream processing has emerged as a research direction starting from the late
1990ies with a variety of seminal contributions achieved since then. Due to the uncontrollability
of external data and the highly dynamic operating environment, state-of-the-art stream processing
platforms are inherently geared towards adaptivity and elasticity. Early forms of adaptation include
strategies based on single events or event streams (e.g., load shedding), as well as more coarse-
grained reorganization of the processing platform (e.g., optimized operator placement). The advent
of Cloud computing has fostered a resource-oriented view towards adaptation, allowing to elastically
allocate and release resources on demand. Ongoing trends in technology, politics and society
in general introduce high-priority issues such as privacy and security, energy efficiency, or data
traceability. With some of these challenges yet seeking to be solved in the context of continuous
data processing, elastic stream computing in the Cloud certainly remains an important and high-
impact research field for the years to come.
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