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1 Introduction

Throughout the last years, software engineering research and practice have put re-
markable focus on the Service-Oriented Architecture (SOA) [29,11,22] paradigm,
which propagates the use of services as a means to create decoupled, distributed,
composite applications in heterogeneous environments. Services are autonomous
applications made available in a computer network using standardized interface
description and message exchange. Web services have gained momentum as a
means for implementing SOA applications and services. It is a commonly agreed
principle that Web services generally do not persist a state across invocations,
i.e., that they are stateless [11,22]. However, in some areas stateful services have
indeed become a necessity. Most notable is the concept of the Grid service which is
defined in [14] as follows: “a Web service [...] that implements standard interfaces,
behaviors, and conventions that collectively allow for services that can be transient
(i.e., can be created and destroyed) and stateful (i.e., we can distinguish one service
instance from another)”. Additionally, distributed data management and integra-
tion architectures (e.g., [5,16]) often also rely on stateful services. Furthermore,
Data-as-a-Service [38] approaches use Web services to provide data on demand,
following certain access control models and query protocols. The Web Services Re-
source Framework (WSRF) [27] builds a foundation for creating, addressing and
destroying service resources and for accessing the data (or properties) exposed by
these resources.

In general, clients need to obtain information about a service in order to access
its exposed data, or to be able to successfully invoke one or more of the service’s
operations. On the one hand, this information concerns the “static” interface de-
scription, including the names of available operations, parameter and return types
as well as the message style to be used. These issues are well covered by the
WSDL contract offered by the service provider. On the other hand, for stateful
services, clients additionally ought to know the service’s “dynamic” (behavioral)
interface, which specifies the order in which operations can be invoked and in
which way the data of a service may be retrieved and modified. As illustrated in

Fig. 1 Service Functionalities

Figure 1, Web services often provide different functionalities which may involve
invocation of more than one service operation and access to several data proper-
ties. This especially applies to stateful services, i.e., services which persist data
values across invocations. We refer to such constraints, which require the client
to have knowledge about functionalities on top of the actual service operations,
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as the intra-service protocol (for short, service protocol). We observe that service
protocols have transactional characteristics: if one involved operation call fails, the
wanted functionality can most likely not be delivered.

Service protocols play a key role for transactional services [31,21] and dis-
tributed databases. A transactional service embraces a sequence of actions that
must be executed as a unit [21], similar to the service functionalities of stateful
services. In the Web service environment, SOAP (Simple Object Access Protocol)
Faults are used to indicate exceptional and erroneous behavior. When an error
is detected, some compensation routine can be started to rollback the performed
changes and to reconstruct a consistent state. The Web services standards for
defining distributed transactions are 1) WS-AtomicTransaction (AT) for short-
running transactions with an all-or-nothing property, and 2) WS-BusinessActivity
(BA) to handle long-lived activities and business protocols. Both specifications
build on WS-Coordination, which defines a coordinator service that is used by the
participating services to activate a coordination context, to register for a certain
transaction protocol and to execute it. AT follows a traditional approach from the
database domain and enforces the ACID (atomicity, consistency, isolation, and
durability) criterion using a two-phase commit protocol. These ACID transactions
are usually not applicable for long-running activities because resources cannot be
locked in a transaction that runs over a long time. Therefore, BA defines compen-
sating transactions, which provide a means to undo an action if a process or user
cancels it [31]. In any case, AT and BA require a centralized coordinator entity.

1.1 Motivation

Intra-service protocols have commonalities with transaction protocols in distributed
databases and combine properties from both AT and BA. A sequence of actions
(invocations) needs to be executed, and the result of the sequence depends on the
proper execution of all atomic actions. However, the fact that only one service par-
ticipates in a protocol functionality renders the coordinator service’s functionality
for activation and registration unnecessary. Hence, coordination and execution of
an intra-service protocol is performed solely between client and target service.

The description of intra-service protocols is essentially a subproblem of service
composition [9]. Therefore, languages from the service composition domain (e.g.,
WS-BPEL [26]) can also be used to specify intra-service protocols. However, this
approach has a number of drawbacks. Firstly, we argue that the problem of intra-
service protocol specification is considerably less complex than service composition.
The service to invoke is always clearly defined (e.g., there is no need for different
partner link types), and protocols are usually much less complicated than compo-
sitions. The related work discussion in Section 7 compares in more detail which
language constructs are (not) supported in intra-service protocols as opposed to
WS-BPEL. Secondly, composition languages are generic and do not contain any
explicit support for stateful Web services specifics, such as Resource Properties
[28] in WSRF or patterns for resource lifetime. Thirdly, composition engines are
rather heavy-weight server tools, and not suitable for client-side usage. Lastly, the
XML syntax of languages such as WS-BPEL is notoriously hard to write without
appropriate tool support. For a light-weight Domain-Specific Language [34] (DSL)
a simpler and easier-to-understand syntax may therefore be superior.
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Currently, there is still an evident lack of special purpose languages to describe
executable intra-service protocols for stateful Web services. The discussion of re-
lated work in Section 7 outlines that most existing approaches and standards for
intra-service protocols are rather a high-level guideline for clients than an exe-
cutable language. We tackle this particular problem and present a domain-specific
language and an execution environment for protocols of stateful Web services.

1.2 Example Scenario

As the motivating example we consider a service hosted by a European cell phone
operator (CPO). The service allows other CPOs to port customer telephone num-
bers from one provider to the other, a functionality that CPOs have to provide
because of European Union regulations. The service is implemented as a stateful
Web service using WSRF, and employs the factory/instance pattern (one stateless
factory service is used to create stateful Web service resources).

Fig. 2 Intra-Service Protocol for Number Porting Functionality

Figure 2 sketches the intra-service protocol for the number porting function-
ality in a simple graphical notation. The left-hand side of the figure depicts the
steps to be carried out by the client, while the right-hand side shows the services
involved. Firstly, the client has to create a new Number Porting service instance
by using the Service Factory’s create operation. This operation returns a refer-
ence to the new instance, which is used by the client in all subsequent invocations.
After being granted access to the actual service functionality by logging in, the
client has to loop over all porting requests and check whether the porting process
is possible. If it is not, the client interrupts the current execution and calls a roll-
back routine. If porting is possible, the client provides the necessary input to the
service by setting two WSRF resource properties (customer and newProvider).
Then the porting can be scheduled for a specific date, causing the porting op-
eration to be carried out asynchronously. The service returns the result of this
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operation by sending a notification to the client. The protocol ends at the point
where all notification results have arrived at the client.

Even though this example is simple to understand, it contains a number of chal-
lenges and issues that service providers may encounter when defining intra-service
protocols, including invocations of Web service operations, alternative branches of
execution, service callbacks, (SOAP) fault handling, and handling of WSRF re-
source properties. Furthermore, the number porting protocol has a transactional
aspect, since all requested portings passed as input to the protocol need to be com-
pleted, and the operation is rolled back in case one request cannot be completed.
It should also be noted that the number porting scenario defines a rather intensive
business logic, and real-world protocols may be significantly simpler. The scenario
has been chosen to illustrate the majority of the SEPL features in one example.

1.3 Contribution

We address the issues mentioned above and propose a framework for intra-service
protocol description, modeling, and execution. The contribution is threefold:

• We introduce a light-weight DSL named SEPL (SErvice Protocol Language),
which offers features to specify functionalities on top of the operations of a Web
service. Features of SEPL include synchronous and asynchronous invocations,
fault handling, simplified processing of XML messages and direct support for
WSRF specifics and for the service factory/instance pattern. An advantage of
SEPL documents is that they are decoupled from existing services and that ser-
vice implementations remain untouched. SEPL documents are straight-forward
to author for service providers and easy and efficient to interpret for clients.

• Following a model-driven approach [1], SEPL protocols can be modeled as UML
(Unified Modeling Language) activity diagrams [23]. Existing UML tools fa-
cilitate the development process and help to graphically compose intra-service
protocol activity diagrams (PADs). A PAD definition provides the required in-
formation to generate executable code in the syntax of a scripting language. We
define a 1-to-1 mapping from UML activity diagrams to executable SEPL code,
and present the implementation of the SEPL code generation tool UML2SEPL.

• We present a prototype SEPL execution client written in the Java program-
ming language. The SEPL client combines the information from WSDL and
SEPL documents and conducts the SOAP message exchange as mandated by
the service protocol. Additionally, to take away the responsibility of clients to
execute SEPL protocols, we offer a SEPL protocol server implementation. The
task of the server is to host SEPL protocols, to expose functionalities contained
therein as WSDL operations and to execute protocol functions upon request.

The remainder of this paper is structured as follows. Based on the motivating
example scenario, we introduce the UML notation of SEPL and define the con-
cepts and language features in Section 2. Section 3 presents the and describe the
mapping of UML to executable SEPL code. Section 4 describes how intra-service
protocols can be centrally hosted in a server application. Section 5 discusses the
implementation of the SEPL client and the protocol host. An evaluation of the
SEPL framework is carried out in Section 6. Section 7 discusses existing work re-
lated to our approach and the paper concludes with a brief summary in Section 8.
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2 SEPL – The Service Protocol Language

In this section we present the concepts employed by SEPL and describe the syntax
and purpose of its concrete language constructs. Development of SEPL protocols
follows a model-driven approach, based on UML activity diagrams. The presen-
tation of the language details is based on the UML representation of the sample
scenario, which is depicted in Figure 3. All SEPL-specific language constructs in
the figure are printed in bold, whereas scenario-specific parts are printed in italics
(names of service operations to invoke) or in normal font (variables, constants and
data properties). In the following, a SEPL protocol in UML notation is referred
to as service protocol activity diagram, or PAD.

Fig. 3 UML Activity Diagram of Sample Service Protocol

2.1 Scenario Service Protocol

The top-level structure in SEPL documents, the protocol function, is modeled as
a UML activity. The scenario protocol function port numbers is depicted in Fig-
ure 3. The activity defines three input pins, which constitute the input parameters
needed by the service protocol: (username, password and requests). Parameters
are immutable and cannot be changed inside an activity. The activity result is de-
fined using an output parameter, in the example using the variable named result.
The UML standard specifies that an activity contains executable nodes and control
nodes as well as edges between these nodes. The node types are further divided
into different subtypes. Each edge connects exactly two nodes and the directions of
the edges signify the control flow of the service protocol. Note that PADs contain
no UML object flow edges but only control flow edges. The port numbers activity
contains both structured activities (in the form of two loop nodes) as well as atomic
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actions. Actions are used for resource creation/destruction, synchronous service in-
vocations, fault handling statements and directives for asynchronous invocations.
In the figure, input pins are depicted on the left side and output pins on the
right side of an action. We define that each input pin is an action input pin, whose
fromAction association points to a value specification action, which itself references
and evaluates the value of the input pin. The advantage of this approach is that
input pins can hold 1) constant values (e.g., "//PortingResult..."), 2) variable
references (e.g., username) and 3) expressions to be evaluated (e.g., r.customer).
In Figure 3 the input pin values are printed next to the input pin, regardless of
which of the three types the input has. The input and output pins of the loop
nodes are the UML-defined loopVariableInput and loopVariable, respectively. For
simplicity, the bodyOutput pins are omitted; we define that in each iteration of the
loop the next array element of the loopVariableInput is put to loopVariable.

SEPL PADs allow for the use of variables as defined in the UML superstructure
specification. All structured activities (e.g., activities, loop nodes) in the diagram
may hold references to variables that are local to the scope of this activity (in-
dicated using the activityScope association of the variable). A variable that holds
no activityScope association is a global variable. All data dependencies between
the actions in a SEPL protocol are modeled using variables, and object flow edges
are not required. Variables are untyped (i.e., the UML type association is not set)
and the type of a variable and the operations supported by the underlying object
are determined by the SEPL interpreter at runtime (discussed later in Section 5).
Variables can hold basic types (e.g., numbers, strings), arrays, object references
and XML structures, which are treated specially in SEPL (see Section 2.3). The
assignment of values to variables uses the UML AddVariableValueAction. In the
sample this happens either explicitly with the actions named assign or implicitly
when assigning the result of any other action via an output pin. If the attribute
isReplaceAll is set to true, the target variable is overwritten; otherwise the vari-
able is an array and the value gets appended to the array end. Note that this is
not visible in the graphical representation but contained in the metadata of the
UML elements. The example uses three array variables: requests is the activity
input and contains the porting requests, callbacks is used for the output pin of
the subscribe action, and result contains all individual number porting results.

Table 1 Reserved SEPL Variables

Name Purpose

async Interface for Asynchronous Invocations

factory Reference to the Factory Service

fault Reference to a Caught SOAP Fault

properties Container for WSRF Resource Properties

this Reference to the Target Service Instance

Five globally defined variable names (async,factory,fault,properties,this)
in SEPL are reserved for special purposes and must not be assigned values (see
Table 1). The semantics of these language constructs are explained in the following
subsections.
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The invocation of a Web service operation in SEPL PADs is modeled using
a CallOperationAction. The associated target is either this (to invoke the target
Web service this protocol applies to) or factory (to invoke the service factory).
For illustrative purposes the target is printed in front of the operation name in
Figure 3. An invocation action contains the name of the WSDL operation as
well as a list of parameter input pins, and returns a result which can be directly
assigned to a variable via an output pin. Figure 4 depicts the relationship between
the graphical representation of a SEPL invocation, WSDL and SOAP. From the
SEPL PAD description the name of the operation is determined and its definition
is looked up in the WSDL. The XML schema of the operation’s input element is
matched with the parameter input pins of the action to finally construct a SOAP
message and send it to the target Web service.

Fig. 4 SEPL-to-SOAP Mapping

To define the behavior of service protocols, SEPL supports a number of stan-
dard control flow structures (if-then-else branch, loop node, fault handler). The
number porting protocol contains two loop nodes, which iterate over all elements
of an array input variable (requests and callbacks, respectively). The example
also contains one if-then-else branch with a guard expression !status.isPossible,
which evaluates the output of the check porting status service invocation. A pro-
tocol function can return results (e.g., indicating outputs of the service protocol,
returning status codes) using the activity output parameter (result). Intra-service
protocols are not meant to perform heavy computations, but rather to delegate
tasks to existing services and to process their results. Nevertheless, the basic arith-
metic, logic, string processing and comparison operations are supported in SEPL.

2.2 WSRF Specific SEPL Features

The WSRF set of specifications [27] defines a message exchange model and related
XML definitions to access stateful (computational) resources, which retain a state
between invocations. Influenced by the observation that stateful service computing
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has gained considerable importance, the design of SEPL is tailored to specifically
support concepts of the WSRF.

The WSRF builds on WS-Addressing, a standard to uniquely identify Web
services. WS-Addressing introduced the notion of stateful interactions and pro-
vides a means to address service instances that are created as the result of these
interactions. A service’s EndpointReference (EPR) contains information about the
location of the service as well as instance-specific configuration details. The WSRF
suggests the use of factory services to control the lifetime of service resources (of-
ten referred to as the factory/instance pattern). Upon request, the factory creates
a new instance of a particular service and returns the EPR which holds the details
(identifier) of the new instance. For this purpose, SEPL provides the predefined
object named factory, which acts as a proxy to the factory service. In the scenario,
the factory’s operation createResource is used to create a new resource (see Fig-
ure 3). The invocation response contains the new EPR, which gets assigned to the
predefined variable this.EPR (not explicitly shown in the UML notation). Finally,
the service instance’s Destroy operation is invoked to destroy the resource.

Fig. 5 Setting WS-Resource Properties

This concept of stateful services and resources in WSRF is further extended
by the WS-ResourceProperties (WS-RP) specification. In WS-RP, the state of
a stateful service resource (instance) is defined by a set of properties, which are
exposed in the service description (WSDL) and can be retrieved and updated using
standardized operations (GetResourceProperty, SetResourceProperties). Using
the predefined properties object, SEPL allows direct read and write access to
resource properties. In the protocol in Figure 3 we use resource properties named
customer and newProvider to specify which customer account should be ported to
which provider. Figure 5 depicts the relationship of SEPL’s UML syntax to WSDL
and SOAP, applied to the example for setting the resource property customer. The
WSDL document of the target service resource contains a definition of the property
and its type. The SEPL command is transformed to a service invocation with a
SetResourceProperties SOAP body element. This method is the standardized
way in WSRF to update the value of a resource property.
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2.3 Advanced SEPL Concepts

A key goal of SEPL is to simplify access to elements and attributes of XML struc-
tures. Assuming a variable var contains an XML structure, an XML sub-element
named element can be directly addressed using var.element. Table 2 shows an
extended example of how XML elements and attributes can be accessed in SEPL.
SEPL’s convenience syntax to access XML sub-elements is equal to XPath with
the difference that a dot (.) is used instead of a slash (/). The reason for using this
dot syntax is twofold: first, the notation is compliant with the syntax of accessing
object attributes in UML’s Object Constraint Language (OCL); second, SEPL
activity diagrams are intended to be converted into an object-oriented, executable
scripting language (see Section 3) and XML markup is internally represented as an
object tree. The lookup of object associations is integrated in the scripting engine
(see Section 5) and slightly faster than applying XPath. XPath expressions may as
well be used directly as can be seen in Table 2. Note that array indices in XPath
start at position 1 whereas in SEPL array indices start with 0.

Table 2 XML Usage in SEPL

Content of Variable a SEPL Expression Equivalent To Returns

<a xmlns:ns=”...”> a.b.c[0] a.xpath(”b/c[1]/text()”) ”text1”

<ns:b num=”1”> a.b.c[1].attr(”id”) a.xpath(”b/c[2]/@id”) ”abc”

<c num=”2”>c1</c> a.b.c a.xpath(”b/c”) {”c1”, ”c2”}

<c id=”abc”>c2</c> a.b a.xpath(”b”) XML element

</ns:b> a.b.attr(”num”) + a.xpath(”b/@num”) + 3

</a> a.b.c[0].attr(”num”) a.xpath(”b/c[1]/@num”)

SEPL supports asynchronous service invocations with WS-BaseNotification [25].
The client subscribes at the service to receive notifications with a certain con-
tent (specified using XPath). SEPL provides a convenient way to handle notifica-
tion registrations and events. In Figure 3, the UML CallBehaviorAction named
subscribe registers a notification subscription and appends the returned callback
object to the array callbacks. Within this subscription, the callback object will
receive all notifications matching the XPath given as the first argument input pin.
The XPath points to an XML element with name PortingResult and an attribute
customer with the respective customer identifier. The string $1 is a placeholder
for the first argument after the XPath (r.customer). Further arguments are ref-
erenced using $2, $3 etc. After subscribing for a notification, execution continues
until a CallBehaviorAction named wait is activated, which takes the callback as
an input. This action blocks until the service sends a matching notification. An op-
tional timeout parameter can be specified to prevent the wait action from blocking
endlessly if no notification arrives. The predefined async object provides access to
additional configurations such as the listening port (not used in the sample).

SOAP Faults, the Web service equivalent to exceptions in ordinary program-
ming languages, are messages with a well-defined syntax which are sent by services
to indicate that an error occurred while processing a request. A SOAP fault mes-
sage contains a fault code, and both a brief and a detailed description of the
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fault’s reason and its origin. SEPL provides means to handle SOAP Faults us-
ing a UML ExceptionHandler. The handler is depicted as an arrow (resembling
a lightning bolt) and points from the action in which the fault may occur to the
fault handling action. Fault handling always happens for a particular fault code
(invalidCredentials in the sample), although it is possible to use a wildcard
symbol (*) to catch faults of any type. Inside the fault handling action the pre-
defined object fault can be used to obtain details about the fault. SOAP Faults
can also be thrown from inside the protocol function using the throw action.

3 Generating Executable SEPL Code

The model representation of SEPL protocols in the form of UML activity diagrams
provides the required information to generate executable SEPL scripts. In the
following we present the syntax of this domain-specific script language on the basis
of the scenario protocol. We then define the mapping between UML elements and
SEPL script code. Finally, we briefly discuss the code generation algorithm.

3.1 Scenario Service Protocol

Listing 1 prints the executable SEPL code representation of the sample scenario.
The script is generated from the scenario UML model in Figure 3. In this section
we only briefly discuss the code syntax. The complete syntax rules for SEPL code
in EBNF (Extended Backus-Naur Form) are listed in the Appendix (Section 9).
Line numbers in the following subsections always refer back to Listing 1.

� �
1 factory . wsdl = ”http :// i n f o s y s . tuwien . ac . at /Factory ?wsdl ”
2

3 function port numbers ( username , password , r eque s t s ) {
4 t h i s .EPR = factory . c r eateResource ( )
5 try {
6 l o g i n ( username , password )
7 } catch ( i n v a l i dC r ed en t i a l s ) {
8 r e s u l t = fault . d e t a i l
9 Destroy ( )

10 return r e s u l t
11 }
12 for ( r : r eque s t s ) {
13 s t a tu s = che ck po r t i n g s t a tu s ( r . customer , r . newProvider )
14 i f ( ! s t a tu s . i s P o s s i b l e ) {
15 r o l l b a c k a l l ( )
16 throw Fault ( s t a tu s . d e t a i l s )
17 }
18 properties . customer = r . customer
19 properties . newProvider = r . newProvider
20 c a l l b a ck s [ ] = async . s ub s c r i b e (
21 ”// Port ingResu l t [ @customer=‘”+r . customer+” ‘ ] ” )
22 s c h e du l e p o r t i n g f o r ( r . time )
23 }
24 for ( c : c a l l b a ck s )
25 r e s u l t [ ] = async . wait ( c )
26 Destroy ( )
27 return r e s u l t
28 }
� �

Listing 1 Number Porting Service Protocol in SEPL Code
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In line 1 of the listing, the WSDL location of the factory service is set. Note
that the WSDL location is not contained in the UML representation in Figure 3
but provided as an additional parameter when the SEPL code gets generated.
Line 3 marks the start of the code of the protocol function port numbers. First,
the factory method is invoked and the resulting EPR is stored with the predefined
object this (line 4). Lines 5-11 contain the login invocation, along with a fault
handling routine in a try and catch notation similar to the exception handling
syntax in traditional programming languages. Lines 12-23 embrace the for loop
which handle each item in the array requests. If the status result obtained from
the invocation in line 13 is not affirmative (line 14), the complete number porting
operation is rolled back using the invocation of operation rollback all (line 15)
and a SEPL protocol execution fault is thrown (line 16). Lines 18-19 set the two
WSRF resource properties customer and newProvider. The notification subscrip-
tions are added with lines 20-21 by means of the predefined object async. Note
that in the XPath expression the string $1 occurring in the UML representation
has been replaced with the according parameter (r.customer). After all portings
have been scheduled for asynchronous execution (line 22), the code loops over all
callbacks to wait for the result (using the async object, lines 24-25) returned from
the service using WS-BaseNotification. Finally, the created resource is destroyed
(line 26) and the result variable gets returned (line 27). Note that these two lines
of code are generated twice (9-10, 26-27), because in the UML representation the
Destroy invocation is accessible both from the second loop node and the fault
handler assign action.

3.2 UML-to-SEPL Mapping

Table 3 gives an overview of the mapping between SEPL language constructs and
PAD elements. Column 1 contains the name or purpose of the language construct,
column 2 gives the name of the corresponding UML element, and column 3 shows
the SEPL code representation based on an example. Reserved variable names and
keywords are in bold print.

The main entity of SEPL PADs is the UML activity, which is mapped to a
function in SEPL code. Just as a PAD may contain several activities, a SEPL
script may contain several functions. Service invocations in UML are modeled with
CallOperationAction elements that are associated with input pins (operation pa-
rameters) and the optional output pin result to assign the result of an invocation
to a variable. In SEPL code, invocations resemble a method call in an ordinary
programming language. As has been shown in Figure 4, upon execution of a pro-
tocol service invocation a SOAP message is constructed and sent to the target
service; the response is transformed back to the SEPL code representation and
can be directly assigned to a variable. The return value of a protocol activity in
UML is indicated with an output ActivityParameterNode. In the generated code,
a return statement is inserted at the end of the protocol function. Access to re-
source properties both in UML and in SEPL code is provided by the predefined
object properties. The assignment construct follows the standard notation of
a AddVariableValueAction in UML, and is mapped to an assignment expression
using an equality sign (=) in SEPL code. The base case is that a variable gets over-
written, in which case the UML attribute isReplaceAll is set to true. Otherwise,
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if this attribute evaluates to false, the corresponding SEPL code uses a special
syntax to append a value to an array, e.g., result[]=... .

Table 3 SEPL-to-UML Mapping

Language Construct UML Element SEPL Code (Example)

Protocol Function Activity function f1(param1,param2){ ... }

Service Invocation CallOperationAction login(username,password)

Invocation/Assignment CallOperationAction with result result = login(username,password)

Return Value ActivityParameterNode return result

Simple Assignment AddVariableValueAction i = i + 1

Set Resource Property AddVariableValueAction properties.prop1 = value

Subscribe Notification CallBehaviorAction ’subscribe’ callback=async.subscribe(“//result”)

Receive Notification CallBehaviorAction ’wait’ result = async.wait(callback)

If-Branch DecisionNode [& MergeNode] if(var1 < 10) { ... }

If-Else If-Else-Branch DecisionNode [& MergeNode] if(...){ ... }else if(...){ ... }else{ ... }

Array Iteration LoopNode with loopVariable for(r : requests) { ... }

Loop LoopNode with decider while(var1 < 10) { ... }

SOAP Fault Handling ExceptionHandler try{...}catch(invalidCredentials){...}

Protocol Fault CallBehaviorAction ’throw’ throw Fault(status.details)

Protocol faults and the actions to subscribe for and receive notifications are
modeled as UML CallBehaviorAction elements. Depending on the name of the
element (throw,subscribe,wait) the corresponding SEPL code is produced (see
Table 3). Decision branches are modeled in UML using a DecisionNode, where each
branch holds a guard expression denoting the associated condition. A MergeNode
may be optionally used to merge two or more branches and to continue with
a single control flow. The corresponding SEPL code contains if and else if

blocks with the conditions of the guard expressions, and optionally an else block
for a branch without guard. UML LoopNodes are used to model both loops and
array iterations. Loops hold a decider output pin, which gets evaluated before
each iteration. To iterate over all elements of an array, the LoopNode holds a
loopVariableInput input pin combined with a loopVariable output pin. Loops are
represented as while blocks and the code syntax for array iteration is a for block
as indicated in Table 3. Finally, SOAP fault handling in PADs is modeled using an
ExceptionHandler edge, which points from the protected action node to a handler
body node. The protected code is put in a try block and the instructions of the
handler body node are embraced by a catch block, which specifies the Fault code
to be handled (invalidCredentials in the sample) or a wildcard symbol (*) if
any fault should be caught.

3.3 UML2SEPL Code Generator

In order to create SEPL source code from a PAD (service protocol activity dia-
gram), we implemented the SEPL code generator (UML2SEPL), which is briefly
discussed in the following. The Eclipse Model Development Tools (MDT) [10] serve
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as the platform for SEPL modeling. With MDT, UML models can be saved in an
XML format based on XML Metadata Interchange [24] (XMI). The code generator
consists of two main parts: 1) a UML factory which reads encoded UML files and
builds an in-memory object representation (see Figure 6) and 2) the actual code
writer, which outputs the relevant SEPL code to an output stream. By making
this distinction we strive for independence from the UML notation (the file format
in which the PAD is saved). New notations can be integrated by implementing an

Fig. 6 Class Diagram of UML PAD In-Memory Representation

appropriate factory class. Our implementation is based on the file format used by
the Eclipse Modeling Tools [10] (MDT). With MDT, users can graphically design
SEPL PADs in the Eclipse IDE and save the model to a file.

We will not discuss in detail how the in-memory model is created from the MDT
AD file as this involves mainly parsing the XML markup. A complete discussion
of the code writer algorithm is also out of the scope of this paper. In short, the
proceeding of the code writer is similar to the visitor pattern [15]: basically it
iterates over all activities and calls a method visit, which recursively visits all
nodes and outputs corresponding SEPL code.

4 Service Protocol Hosting

The SEPL client implementation, which is discussed in more detail in Section
5.1, allows for the client-side execution of service protocols. Client-side protocol
execution has some drawbacks. For one thing, asynchronous communication with
services requires the client to open a separate port to listen for notification mes-
sages. Secondly, client applications require the SEPL client library files, in addition
to standard Web service libraries. We therefore provide a solution for clients to
launch a protocol execution with a standard SOAP client. This is accomplished by
setting up a server on which the service protocols are published as Web services
themselves. We refer to this part of the framework as SEPL Protocol Host (PH).
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Figure 7 depicts the PH providing the number porting protocol introduced in
Section 1.2. The number porting Web service is deployed on the service provider
side, and a SOAP client is available on the client side. With the combined infor-
mation of the WSDL and SEPL documents the PH generates and publishes the
Porting Protocol Web Service, which provides the protocol function port numbers.
The description of the protocol service is published in the Porting Protocol WSDL
document, which contains the functions of the SEPL document as WSDL op-
erations. The client uses a standard SOAP implementation to parse the service
protocol WSDL and send an invocation message to the Porting Protocol Web ser-
vice. This service receives and unmarshals the SOAP message and delegates the
request to the PH for execution. Note that the PH is typically published by the
service provider, although it is possible that the PH remains with a third party
(hence the dashed line between PH and the service).

Fig. 7 SEPL Protocol Host

We identify three main tasks performed by the PH:

1) generating the service protocol WSDL document from the service’s SEPL and
WSDL documents;

2) dispatching incoming requests;
3) executing the protocol and returning the result.

The issue with point 1) is that SEPL function parameters are untyped and that
WSDL, being based on XML, requires XSD type information of operation pa-
rameters. Therefore, we developed an algorithm that attempts to determine the
data type of parameters and return values of SEPL functions (see Section 5.2 for
more details). Using this type information, the WSDL generator outputs a WSDL
operation for each SEPL function, as well as according XML schema definitions.
Point 2) is achieved by using a WS-Addressing Action element of the format
<protocol name>:<function name>, which helps to uniquely identify a service
protocol function. This Action element is included in the portType element of the
generated protocol WSDL contract. WS-Addressing enabled clients will parse the
WSDL and automatically include the appropriate Action header in their SOAP
messages. For point 3), the actual execution of the protocol, we make use of the
SEPL execution client, which will be discussed in more detail in Section 5.1.

Figure 8 illustrates the service protocol WSDL generation based on the im-
plementation of the number porting scenario (compare Section 3). The binding
style of the Number Porting service’s WSDL is document/literal wrapped [6], i.e.,
the operation parameter elements in the XSD are “wrapped” in elements hav-
ing the same name as the operations they are part of. The details of the message,
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portType and binding sections are omitted for brevity. For the WSDL generation,
with regards to the example depicted in Figure 8, we consider the following:

• The name of the XSD top element (wrapper element) equals the name of the
protocol function (port numbers).

• The parameters user and pass are passed to the invocation of the operation
login. The XSD types of this operation’s parameters are both string (see the
WSDLs types section), hence the type of the function’s parameters user and
pass are assumed to be of type string.

• The parameter requests is used in a for loop, which indicates that it is an
array (or sequence) of elements. In the generated WSDL this is specified using
the attributes minOccurs and maxOccurs.

• The function port numbers returns an array of elements which are received
using notifications at run time. Since the type and content of the notification
messages is not known at design time, the type of the return message in the
generated WSDL document is any.

Fig. 8 Service Protocol WSDL Generation

5 Framework Implementation

In this section we discuss the implementation of the SEPL framework. Firstly, we
take a look at the “big picture”, i.e., how the framework components are connected
with each other, and the details will be explained in the subsections to follow. Fig-
ure 9 illustrates the implementation of the example scenario presented in Section
1.2. The scenario is based on the functionality of the Number Porting Web service
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which supports porting of mobile numbers across providers. The static interface of
this service is defined in the WSDL contract, the functionality is laid down in an
according SEPL document. The SEPL Protocol Host (PH) is responsible to exe-
cute the SEPL protocol and to expose its functionality to a SOAP Client (which
represents the end-user) in the form of invokable WSDL operations. The PH is
implemented as a Java Web Application [35] and is deployed in a Tomcat applica-
tion server 1. The WSDL Generator is responsible to generate a WSDL definition
containing the Web service interface of the protocol functionality. The UML2SEPL
Code Generator converts SEPL activity diagram (PAD) models into SEPL code
– an optional preprocessing step which is necessary in case the Number Porting

service is configured with a PAD model instead of a SEPL source document.

Fig. 9 Connection Between the SEPL Framework Components

If the end-user decides to execute a protocol function, a regular SOAP client
is used to parse the Protocol WSDL and to send an according SOAP message
to the PH. The Request Processor receives the SOAP message and dispatches it.
Then the request is delegated to the SEPL Client which is embedded in the Web
application. The SEPL client reads the SEPL document and executes the protocol
by invoking operations of the Factory and the Number Porting Web services.
When the execution reaches a wait statement, the SEPL client waits until the
service sends a notification message, which is received by the Notification Receiver
and handed to the SEPL client. The result of the protocol execution is handed
back to the request processor, which returns it to the SOAP client.

5.1 SEPL Execution Client

The SEPL client implementation has been developed in the Java programming
language. Figure 10 illustrates the structure of the engine and the responsibility of

1 http://tomcat.apache.org
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the separate parts, in the context of the example Number Porting Web service and
the service factory. In preparation of SEPL documents for interpretation, the Code
Preprocessor reads SEPL protocol files and applies the necessary modifications
to convert the DSL constructs into the format of a concrete host language (i.e.,
SEPL is a hybrid between embedded and external DSL [34]). The modified source
code is interpreted by a Code Interpreter, which directs the control flow of the
protocol and maintains the state of the variables. Currently, Pnuts 2 is used as
the host language and the interpreter is implemented as an extension of the Pnuts
scripting engine. All Web service specific tasks - as part of the Core Execution
- are delegated by the code interpreter to the respective specialized parts of the
client. The WSDL Parser reads WSDL documents and parses them for operations,
their parameters and for WSRF resource property definitions. The SOAP Stack
performs all Web service invocations and mediates between the SOAP messages
on network level and Java objects at high level. The SOAP stack is implemented
by Daios, an efficient framework for dynamic Web service invocation, which has
been measured against other popular Web service clients with good results [18].
In the figure, arrows point from the execution engine to the target Web service
and the factory Web service to illustrate the direction of invocation. The arrow
in the opposite direction signifies the flow of WS-BaseNotification messages which
are received and processed by the WSN Processor.

Fig. 10 SEPL Client Architecture

The Code Interpreter is based on the Java scripting engine Pnuts, which is
extensible in so far that it supports the definition of new object types with classes
that implement the interface pnuts.lang.AbstractData. These custom classes can
be seen as the DSL-specific extension to the Pnuts core. Pnuts is responsible to
parse and interpret SEPL code, whereas the SEPL extension performs domain-
specific tasks such as WSDL parsing, Web service invocations, XML processing
and so forth. In order for Pnuts to interpret SEPL code, the source needs to be
adapted by the Code Preprocessor. Pnuts cannot handle, for instance, faults in
the way they are syntactically defined in SEPL catch-blocks. As a solution, the
preprocessor dynamically defines exception classes which represent the SOAP fault
codes. Moreover, all string occurences are wrapped with a call to an initialization
method, which creates an XML instance in case a string contains valid XML markup.

2 https://pnuts.dev.java.net
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5.2 SEPL Protocol Host

The SEPL Protocol Host (PH) is a Java Web Application based on the Web
Services Engine Axis2 3. But, unlike in Axis2 where services are statically config-
ured, SEPL configures all required Web services dynamically on deployment. A
file sepl.xml contains the PH configuration, which, among other things, defines
the host and port on which the PH runs, the endpoint of the notification service to
be used and a list of service protocols which are handled by this PH. Each service
protocol is described as a tuple (name, wsdl, sepl) containing its unique name, the
URL of the target service’s WSDL file and the location of the SEPL specification
(either in source code or as a UML model).

Fig. 11 Determining the Return Type of a Function

Upon initialization of the PH Web application, the WSDL generator is used to
construct the WSDL documents of all configured protocols. As has been mentioned
in Section 4, a specialized algorithm tries to determine the data types of parameters
and return values by means of a static analysis of the SEPL code. Figure 11 depicts
a flowchart containing the programmatic decisions made to determine the return
type of a SEPL function from the source code. Firstly, the source code is checked
with a regular expression to find out the number of return statements contained
therein. If more than or less than one return statement exists, the return type is
set to any (unknown). Otherwise, the (single) return statement is syntactically
analyzed. If the statement returns the result of an operation, the functions return
type is the return type of the operation (which can be extracted from the WSDL).
If the statement returns a constant value (a string, numeric value or boolean value)
then the return type is the type of the constant. If the statement returns a variable,
we have to make another case distinction. If the variable gets assigned exactly once
in the function (and assumingly before the return statement), a recursive call is

3 http://ws.apache.org/axis2/
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made and the assigned variable is further analyzed. If the variable gets assigned
more than one time, we set the return type to any. If no assignment to the variable
in question is found in the function, the variable must be a function parameter,
in which case the return type of the function equals the type of the respective
parameter.

Determining the types of function parameters is less complicated than the
types of return values. We mentioned in Section 2 that parameters are final, thus
an assignment to a parameter variable is invalid and the type of parameters is
preserved throughout the function. It is therefore sufficient to find one Web service
invocation instruction in which the function parameter is used as a parameter
to the invocation. This is implemented in the PH with the aid of Java regular
expressions. If a parameter type cannot be determined by this means, its XSD
type in the WSDL is set to any.

Once the protocol WSDL has been generated and published, clients use it
to construct SOAP invocations to the PH. The Request Processor component
intercepts all invocations, reads the WS-Addressing Action header (which contains
the protocol name) from the incoming message and delegates the request to a SEPL
client instance for execution.

6 Evaluation

In this section we perform an evaluation of the work presented in this paper.
The evaluation targets two aspects: one part is concerned with qualitative and
quantitative characteristics of the approach in general. In this part we spotlight
the size and readability of SEPL service protocols, as well as efficiency criteria
(e.g., speed of development, ease of maintenance). The second part analyzes the
SEPL framework performance based on an end-to-end scenario implementation,
and compares the performance to other possible solutions.

6.1 Qualitative and Quantitative Characteristics of SEPL

In the following we compare the characteristics of the SEPL language and exe-
cution framework to other possible solutions for specifying and executing intra-
service protocols.

Consider the example number porting service protocol presented in Section
1.2. In principal, this scenario protocol could be specified in various ways. Our
evaluation compares the following possible techniques to solve the scenario, which
target the same goal but nonetheless constitute very diverse methods:

• hardcoding the solution, i.e., creating a client which implements the business
logic, or extending the service itself by adding a new operation. Note that a
hardwired solution may be generally undesired since it contradicts the SOA
paradigm of loose coupling [29].

• defining the protocol using the Web Services Conversation Language [36] (WSCL).
WSCL extends the static description of Web services (WSDL) and allows to
define conversational aspects such as the order in which messages need to be
exchanged. WSCL is not an executable protocol, but a guideline for the inter-
action with a service (for details see related work in Section 7).
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• creating a WS-BPEL process, which implements the functionality. The process
is decoupled from the target service and deployed in a WS-BPEL engine, which
is responsible for execution the protocol functionalities.

• developing and publishing the protocol in SEPL as described in the course of
this paper.

An overview of the comparison is printed in Table 4. An important distinction
is that protocols expressed in WSCL are not directly executable, whereas the
other variants provide all necessary details for execution. The fact that WS-BPEL
and WSCL are accepted industry standards indicates that a lot of experts are
trained in these languages. However, for a person with some (Web) programming
background SEPL can be learned with reasonably low effort.

Concerning the syntax, SEPL comes in two flavors: graphical UML represen-
tation and script code. WSCL and WS-BPEL use an XML-based syntax, and the
custom client implementation may be developed in a general purpose programming
language (GPL) such as Java. SEPL code is more light-weight and requires less in-
structions to implement a protocol compared to the alternative solutions. For the
presented number porting functionality, SEPL requires only around 20 language
constructs (compare Table 3), as opposed to the hardcoded client-side implemen-
tation (using the Daios framework) with more than 70 lines of code (LOC), the
WS-BPEL process with roughly 50 instructions and the WSCL rules with roughly
40 language constructs. The XML-based syntax of WS-BPEL is harder to read for
humans, but XML is well suited to be processed by machines. Graphical develop-
ment tools exist for WS-BPEL and SEPL (editor for UML activity diagrams), but
are generally not available for the other variants.

SEPL has built-in support for WSRF (resource creation/destruction, identifi-
cation using WS-Addressing, access to resource properties). WSCL does not take
WSRF into account, and also WS-BPEL has no direct support for WSRF, which
has been addressed in previous works [12,8].

Table 4 Comparison of Service Protocol Implementation Variants

Client Impl. / WSCL WS-BPEL SEPL

Extend WS

Syntax GPL XML-based XML-based UML / script

Executable X × X X

Graphical Tools × × X X

WSRF Support client library × × X

Standardization × X X ×

Modularization possible × × X (functions)

Development Speed slow medium slow fast

Maintenance recompile unconstrained redeploy ad-hoc

Dyn. Correlation tailor-made × × X

Loose Coupling × X X X

Impl. Size (ex.) > 70 LOC ∼ 40 constructs ∼ 50 constructs ∼ 20 constructs
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Modularization is easy with SEPL, since SEPL protocols can be split up into
functions, which can be invoked from one another. WS-BPEL does not explicitly
allow for the use of subprocesses. However, since they are also exposed as Web
services, WS-BPEL processes are recursively composable. As far as maintenance
in concerned, developers face different degrees of flexibility when a modification
in an existing service protocol function becomes necessary. Custom client or Web
service implementations usually require recompilation of the affected code parts,
and a modified WS-BPEL process needs to be redeployed in the execution engine.
As WSCL is not executable but merely descriptive, no runtime constraints need to
be considered. Since the script code representation of SEPL protocols is directly
interpreted, changes can be incorporated in an ad-hoc fashion at runtime. Our
experience with development of service protocols has shown that SEPL brings
an enhancement in development speed and productivity, a characteristic that is in
general often attributed to DSLs [34]. Custom implementations of service protocols
or WS-BPEL implementations contain many subtle technological challenges, e.g.,
related to XML, XPath or Web service technologies. SEPL abstracts from these
implementation details and provides a more readable, easy to use DSL.

Concerning asynchronous invocations, WS-BPEL imposes a difficulty: in or-
der for the execution engine to correlate an incoming notification message with a
certain process instance, the process definition needs to define a correlationSet

with correlation properties. However, the number of correlation property instances
needs to be defined at design time, which complicates the implementation of dy-
namic correlations. Such correlations for asynchronous invocations are provided
by the SEPL callback mechanism.

Table 5 SEPL versus WS-BPEL Language Constructs

SEPL WS-BPEL

Service Invocation <invoke .../>

Return Value <reply .../>

Sequential Control Flow <sequence>...

Simple Assignment <assign><copy>...

If-Else If-Else-Branch <if>...

Array Iteration <forEach ...>...

Loop <while ...>...

SOAP Fault Handling <faultHandlers>...

Protocol Fault <throw ...>...

Scope (StructuredActivity) <scope>...

SEPL WS-BPEL

Protocol Function (<process>...)

Set Resource Property (<invoke .../>)

Subscribe Notification (<invoke .../>)

Receive Notification (<receive .../><if>...)

(Receive Notification) <pick>...

n/a <partnerLinks>...

n/a <flow>...

n/a <correlations>...

n/a <wait>...

n/a <validate ...>...

As a final aspect of the qualitative evaluation we compare the language features
of SEPL and WS-BPEL in Table 5. The left part of the table lists features that
are available in a similar fashion in both languages, e.g., the service invocation in
SEPL and the WS-BPEL invoke element. The right part of the table lists the lan-
guage differences: features that are only partly available or can be achieved using a
workaround are printed in parantheses, and features that are not available are indi-
cated with n/a. SEPL protocols can be split up into functions, whereas BPEL does
not support explicit modularization. Manipulating WSRF resource properties has
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to be performed manually in WS-BPEL by invoking the according getter/setter
operations. Similarly, notification subscriptions are achieved using custom invoca-
tions. To receive a notification with a certain message content, WS-BPEL requires
a rather cumbersome combination of receive and if elements. Additionally, mes-
sage correlation has to be manually defined, which is often prone to errors. The
WS-BPEL pick activity is used to wait for one of several possible messages, which
in SEPL can only be solved using a workaround with notifications. Finally, a num-
ber of WS-BPEL language constructs are not available in SEPL. Selecting from
different service endpoints (partnerLinks) is not required in intra-service pro-
tocols, parallel execution (flow) is not beneficial. Message correlations are a
feature for long-running business process conversations and deliberately not sup-
ported in the light-weight SEPL language. Also the WS-BPEL activities wait and
validate are not provided in SEPL.

6.2 Framework Performance

In the following we evaluate the SEPL framework based on the performance tests
that we carried out. The aim of the tests is to determine how much overhead the
(dynamic) interpretation of SEPL code causes, in comparison to (static) imple-
mentation of the protocol directly using a SOAP client (Daios) and in comparison
to an implementation using WS-BPEL. We consider the example protocol pre-
sented in Section 1.2 in a slightly modified version, leaving out the asynchronous
messaging part (subscription and notification of finished portings). The tests are
executed in seven levels with an increasing number N of number porting requests
(N ∈ {10, 50, 100, 200, 400, 700, 1000}). All tests have been run ten times and the
numbers presented in the following are average values. The test execution has been
performed on a computer with a quad core 2.8GHz processor and 4GB RAM,
under the Linux operating system Ubuntu 9.10 4 (Linux kernel 2.6.31-17). The
WS-BPEL implementation of the process has been deployed in a Sun Glassfish 5

application server (version 2.1.1) using the sun-bpel-engine module.

Table 6 Performance Test Results

Daios SEPL SEPL PH ↔ WS-BPEL

# Avg. S.D. Avg. S.D. Avg. S.D. t Avg. S.D.

10 52.1 7.6 327.6 14.9 874.8 158.8 1.8 1140.7 418.3

50 277.6 79.1 588.5 88.1 1044.6 156.4 2.2 1388.6 439.0

100 482.7 98.3 829.0 117.3 1288.0 164.8 2.6 1692.6 436.2

200 873.8 34.8 1295.9 54.2 1781.3 171.0 3.2 2298.0 452.7

400 1761.9 48.8 2370.3 77.5 2853.9 134.9 4.6 3526.0 421.9

700 3039.2 68.4 3903.2 92.5 4412.3 153.2 5.4 5463.6 562.3

1000 4501.4 461.1 5515.7 127.0 6000.5 315.4 9.6 7712.9 433.3

4 http://www.ubuntu.com
5 https://glassfish.dev.java.net/
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The results of the test runs (average run times and standard deviations) are
listed in Table 6. Daios denotes the time consumed by the Web service invoca-
tion framework. The difference between the values for SEPL and Daios reflects the
overhead of the SEPL client, including SEPL code preprocessing, data transforma-
tion and the actual SEPL code interpretation. The figures for SEPL PH are slightly
above those for SEPL, a difference that results mainly from the network transfer
as well as (de-)serializing of the messages exchanged between the client and the
SEPL PH.
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Fig. 12 Execution Time Trendlines for Scenario Protocol

To check the statistical significance of the results, most importantly of the dif-
ference between SEPL PH and WS-BPEL, we performed a t-test for two independent
samples [19]. The t-test assumes that the test data is normally distributed. Hence,
we conducted a Anderson-Darling goodness-of-fit test [7], which revealed that, with
a 95% confidence interval, it is unlikely that the data is not normally distributed.
To compare implementation versions A and B, we calculate the value t, which is

defined as t :=
x̄A−x̄B

q

(sA)2+(sB)2

n

, where x̄A and x̄B are the average (mean) run times

of A and B, sA and sB are the estimated standard deviations of the run times of
A and B, respectively, and n is the number of iterations (10). The value of t is
compared to the critical value of t, which is obtained from the t-distribution. We
target a 95% confidence interval and the degree of freedom is (n−1)+(n−1) = 18.
Hence, the critical value of t is t(0.95, 18) = 1.734. As can be seen in Table 6,
the calculated value of t is greater than the critical value (1.734) in all test levels,
hence the difference in runtime of SEPL PH versus WS-BPEL is significant in this
test scenario. The value of t increases with rising test level, which suggests that
the SEPL PH scales at least as good as or even better than the WS-BPEL engine
for large requests. It should be noted that, despite the fact that SEPL performs
best in our evaluation scenario, we do not claim that SEPL is generally superior
for all types of protocols and all WS-BPEL implementations.
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7 Related Work

The problem of service protocol definition as discussed in this paper is essentially
a subset of the service composition problem. Modeling and description of both
service protocols and compositions can be achieved in various ways. For example,
[33] models business protocols using finite state machines. To that end, a business
workflow is divided into a set of states with one initial state and a set of final states.
A transition relation defines which states are accessible from a source state and
which message is consumed when a new state is reached. Also the service protocols
in [3] are modeled as state machines. Based on a formal model to express protocols,
the paper focuses on commonalities and differences between protocols (protocol
management operators) and compatibility issues when combining or replacing dif-
ferent protocol definitions. In contrast to this theoretical and foundational work
in terms of its general applicability, the focus of SEPL is to define directly ex-
ecutable protocols tailored to Web services and XML data. State machines are
not well suited for our purpose because SEPL protocols need to exactly define the
input-output transformations of data passed from one operation to another. For
modeling service protocols SEPL therefore relies on UML activity diagrams which
provide both the desired abstraction and level of granularity.

The approach in [17] uses a Petri net based algebra as a theoretical framework
for composition of Web services. Each place represents a state, the transitions
are the operations of a service and directed arcs define the flow relation between
two states. A similar Petri net based approach has been introduced in [37]. The
advantage of Petri nets lies in the support for many flow concepts (e.g., choice,
parallelism, iteration) and its formal foundation. Well-known algorithms can be
applied to prove the correctness (e.g., termination, reachability of places) even for
very complex compositions. On the other hand, Petri nets are unhandy to use
and can grow unmanageably large even for small or mid-size scenarios. Similar
problems arise when using formal process models based on the pi-calculus [32] for
composition or protocol specification.

The most prominent, de-facto standard service composition language is WS-
BPEL [26], which offers a broad spectrum of operations using an XML-based
syntax. WS-BPEL has a broad vendor support and is popular for its applicability
to most composition and protocol definition scenarios. Unfortunately, WS-BPEL
falls short of supporting stateful service resources, especially their creation using
factories, in an appropriate way. [12,8] state that WS-BPEL does not define a
standard way to store the resource identifier returned by a factory service and
automatically use it in subsequent invocations on the created resource. In [8] a
WSRF-specific gridInvoke operation is suggested to overcome this issue.

Other related works have been published in the field of service mashups [4],
which create new functionalities by combining services and data from heteroge-
neous Web resources. For instance, the IBM Sharable Code platform presented in
[20] provides a structured DSL for defining, sharing and executing Web service
mashups. The rise of service mashups constitutes a trend towards an open pro-
grammable Web. The basis for mashup development is an exact description of the
static and dynamic service interface, for which service protocols play an impor-
tant role. Whereas mashups are tailor-made applications and usually created in
a community-driven fashion, SEPL service protocols are an integral part of the
service description that can be (re-)used by mashup platforms and clients directly.
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The authors of [13] present XL, an XML programming language for Web ser-
vice specification and composition. It is argued that current Web service imple-
mentations have integration deficiencies: host programming languages such as Java
or Visual Basic in combination with XML documents and back-end (relational)
database management systems build up a heterogeneous environment with diffi-
culties. XML data must be converted to Java objects and vice versa. Java objects
must be marshaled through database management interfaces (e.g., JDBC). XL
attempts to address these issues and provides features to specify Web service im-
plementations. Similar to SEPL functions, XL defines operations which describe
service functionalities using control flow directives (if, switch, while, for),
invocations of (external) service operations and input-output transformation. XL
and SEPL are similar in the way they handle XML data as both languages di-
rectly integrate XML processing in the syntax. Both languages support XPath
to access certain elements and attributes of XML markup. SEPL additionally
supports a “dot-syntax” which resembles the syntax to access class members in
object-oriented programming. XL supports XQuery statements, which operate on
XML data sources and serve as a replacement for queries to external databases.
In general, XL is designed to contain much of the business logic and does not
necessarily require an existing target service whereas SEPL documents are rather
slender and delegate most tasks to the target service. XL and SEPL use different
conversation patterns: XL requires a conversation-URI header in each exchanged
SOAP message to identify which conversation the message belongs to, which im-
poses requirements on the clients’ capabilities; SEPL, on the other hand, creates
new service instances where needed and publishes the functions as stateless oper-
ations which do not require clients to consider any conversation-specific aspects.
XL allows for parallel execution which is not supported in SEPL. In SEPL it is
possible to perform asynchronous invocations, which XL does not directly support.

The Web Services Conversation Language (WSCL) [36] is an effort to extend
the standard Web service description (WSDL) by conversational aspects. The
WSCL specification declares that “defining which XML documents are expected
by a Web service or are sent back as a response is not enough”. Beyond the mere
description of the input and output messages, WSCL defines the order in which
they may be exchanged. WSCL is helpful to model intra-service dependencies in a
general way and to lay down the order in which interactions may occur, but fails to
specify how the interactions are connected, i.e., how the result of one interaction
can become part of the input to the next interaction. In SEPL this is possible –
input and output can be transformed directly and arbitrarily. Furthermore, WSCL
allows only for distinctions concerning the type and not the actual content of
messages. In total, WSCL does not define executable protocol functionalities but
is rather a guideline for the interaction with a service.

In WSDL 2.0 the concept of Message Exchange Patterns (MEPs) has been in-
troduced. MEPs can be seen as simple general-purpose intra-service protocols and
are therefore related to our work. However, the MEPs predefined in WSDL 2.0
are rather simplistic (in-out, in-only, robust-in-only, . . . ). Additionally, in WSDL
2.0 MEPs are described in an informal human-readable format, and are not suit-
able for machine interpretation. The concept of MEPs has been extended in SSDL
[30], where arbitrarily complex MEPs are used to define protocols and contracts
between services. However, SSDL has a rather different focus than the work we
present in this paper – SSDL has been proposed as an alternative to service com-
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position languages such as WS-BPEL, and seems not well-equipped to specify the
intra-service message exchange of single services as discussed in this paper.

8 Conclusion

In this paper we presented the SEPL framework as a solution to the problem
of intra-service protocol specification and execution. SEPL is a DSL whose fea-
tures to specify service protocols range from basic control flow directives and syn-
chronous/asynchronous invocations to fault handling and easy access to WSRF
resource properties or elements in XML markup. Based on the definition of the
DSL, we presented the design and implementation of the three main components
of the SEPL framework: the UML-based SEPL development facilities, the SEPL
execution engine, and the SEPL protocol host (PH). The PH host offers a conve-
nient way to expose protocol functions as Web service operations, thereby shifting
the protocol execution responsibility from clients to the service provider or an
intermediary. The qualitative evaluation of the framework indicates that SEPL
allows efficient development of service protocols and fosters readability and main-
tainability. The performance evaluation has shown that SEPL protocols execute
with a minor overhead compared to static implementation of the protocol logic.

As part of our future work we intend to develop a suitable way to include
SEPL protocols in the WSDL definition of services, e.g., linking to a SEPL file
or by embedding SEPL code directly. Another possible method to communicate
SEPL protocols to service clients would be the use of WS-MetadataExchange [2].
Furthermore, we plan to improve the algorithms to generate SEPL code and the
protocol WSDL. We also envision alternative ways to identify protocol execution
instances, e.g., by means of a conversation identifier in the SOAP header.

9 Appendix: SEPL Syntax Rules in EBNF

� �
1 PROTOCOL = {ASSIGNMENT} FUNCTION {FUNCTION} ;
2 FUNCTION = ” func t i on ” IDENTIFIER FUNC PARAMETERS BLOCK ;
3 EOL = ”\ r ” | ”\n” | ”\ r\n” ;
4 FUNC PARAMETERS = ” ( ” [ FUNC PARAM { ” , ” FUNC PARAM } ] ” ) ” ;
5 FUNC PARAM = IDENTIFIER ;
6 BLOCK = BLOCK2 | EXPRESSION {” ; ” [ EXPRESSION ] } ;
7 BLOCK2 = ”{” [ EXPRESSION LIST ] ”}” ;
8 EXPRESSION LIST = EXPRESSION { ( ” ; ” | EOL) [ EXPRESSION ] } ;
9 EXPRESSION = ASSIGNMENT | STATEMENT EXPR ;

10 ASSIGNMENT = IDENTIFIER ”=” ASSIGNABLE ;
11 ASSIGNABLE = INVOCATION | CONSTRUCTOR | (XML ” ; ” ) | PRIMARY EXPR;
12 STATEMENT EXPR = IF STMT | WHILE STATEMENT | DO STATEMENT |
13 FOR STATEMENT | ”break” | ” cont inue ” | RETURN |
14 INVOCATION | TRY STATEMENT | ”throw” EXPRESSION ;
15 IF STMT = ” i f ” ” ( ” EXPRESSION ” ) ” BLOCK {ELSEIF NODE} [ELSE NODE] ;
16 ELSEIF NODE = ” e l s e ” ” i f ” ” ( ” EXPRESSION ” ) ” BLOCK ;
17 ELSE NODE = ” e l s e ” BLOCK ;
18 WHILE STATEMENT = ” whi le ” ” ( ” EXPRESSION ” ) ” BLOCK ;
19 TRY STATEMENT = ” try ” BLOCK2 { CATCH BLOCK } [ FINALLY BLOCK ] ;
20 CATCH BLOCK = ”catch ” ” ( ” IDENTIFIER ” ) ” BLOCK2 ;
21 FINALLY BLOCK = ” f i n a l l y ” BLOCK2 ;
22 DO STATEMENT = ”do” BLOCK2 ” whi le ” ” ( ” EXPRESSION ” ) ” ;
23 FOR STATEMENT = ” f o r ” ” ( ” (IDENTIFIER ” : ” EXPRESSION) |
24 ({ASSIGNMENT} ” ; ” [CONDITION] ” ; ” {ASSIGNMENT}) ” ) ”
25 BLOCK ;
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26 RETURN = ” return ” [ASSIGNABLE] ;
27 NUMBER = INTEGER | FLOATING POINT ;
28 DIGIT = ”0” . . ”9” ;
29 INTEGER = DIGIT { DIGIT } ;
30 FLOATING POINT = INTEGER ” . ” INTEGER [EXPONENT] | INTEGER EXPONENT ;
31 EXPONENT = (”e” | ”E” ) [ ”+” | ”−” ] INTEGER ;
32 LETTER = ”a” . . ”z” | ”A” . . ”Z” | ” ” ;
33 IDENTIFIER = LETTER { LETTER | DIGIT } ;
34 NOT QUOTATION MARK = ”\x0020” . . ”\x0021” | ”\x0023” . . ”\ x f f f f ” ;
35 STRING = ”\”” {NOT QUOTATION MARK | ”\\\””} ”\”” ;
36 STRING ANY = {NOT QUOTATION MARK | ”\””} ;
37 NCNAME = IDENTIFIER [ {IDENTIFIER | ”−”} IDENTIFIER ] ;
38 XML = ”<” [ NCNAME ” : ” ] NCNAME
39 { [ NCNAME ” : ” ] NCNAME ”=” STRING } ”>”
40 (XML | STRING ANY) ”</” [ NCNAME ” : ” ] NCNAME ”>” ;
41 PRIMARY EXPR = STRING | NUMBER | IDENTIFIER | MATH EXPRESSION;
42 INVOCATION = IDENTIFIER ” ( ” PARAMETERS ” ) ” ;
43 PARAMETERS = ” ( ” [ PARAM { ” , ” PARAM } ] ” ) ” ;
44 PARAM = IDENTIFIER | STRING | MATH EXPRESSION ;
45 MATH EXPRESSION = STRING | NUMBER | IDENTIFIER | UNARY EXPRESSION |
46 BINARY EXPRESSION | ” ( ” MATH EXPRESSION ” ) ” ;
47 UNARY EXPRESSION = (” ! ” | ”−” | ”˜” ) MATH EXPRESSION ;
48 BINARY OPERATOR = (”+” | ”−” | ”∗” | ”/” | ”%” | ”<” | ”<=” | ”>” | ”>=” | ” | | ” | ”&&” ) ;
49 BINARY EXPRESSION = MATH EXPRESSION BINARY OPERATOR MATH EXPRESSION;
50 CONSTRUCTOR = IDENTIFIER ” ( ” PARAMETERS ” ) ” ;
51 CONDITION = MATH EXPRESSION ;
� �

Listing 2 SEPL Syntax Rules in EBNF
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