Tournal of Applied Sciences, 2012
ISSN 1812-5654 / DOL 10.3923/jas.2012.
© 2012 Asian Network for Scientific Information

Efficient Scheduling for Data Processing in Large-scale Sensory Environments

'A. Alexandrescu, °F. Li, 2S. Dustdar and ™. Craus
"Department of Computer Science and Engineering, "Gheorghe Asachi” Technical University,
27 Mangeron Blvd, Tasi, 700050, Romania
"Distributed Systems Group {DS@G), Information Systems Institute, Vienna University of Technelogy,
Argentinierstrasse 8, A-1040 Wien, Austria

Abstract: In recent years, there has been an emergence of systems that employ large numbers of sensory
devices to collect information from the real-world and to react in observed situations, e.g., smart buildings and
smart grids. In such systems, massive amounts of data need to be collected and processed in near real-time.
This research proposes an efficient method of processing sensory data by considering that each data
transmission and processing is a task which has to be scheduled for execution to a gateway. The proposed
heuristic, Weighted Minimum Completion Time (WMCT), was compared against five mapping heuristics by
using five efficiency indicators-execution time, makespan, A time difference, solution worth and success rate.
The experiments have shown that the WMCT heuristic outperforms the other methods 1n terms of the success
rate, the solution’s worth and especially, the execution time of the algorithm, while it obtained good results in
regards to the other two efficiency indicators.

Key words: Deadline, large-scale sensory environment, priority, sensor data, sensor-gateway system, task

mapping, task scheduling

INTRODUCTION

Large deployments of sensors are used i many
systems in order to acquire information on specific
environments; for example, in smart buildings (Chen et al.,
2009) monitor building functions,
security and energy consumption, or in smart grids
(Farhangi, 2010) where sensors send data to grid control
and schedule centers. Many similar applications can be
found in study of Firner et af. (2011) and Bimschas et al.
(2010). This research a typical sensory
architecture (Gupta 2011) where middle
components, namely gateways (Pacific Controls, 2010),
sensor connections,

where sensors

considers
et al,
are used to manage mediate
protecols and process sensory data before it 13 sent to
applications or back end databases.
gateway systems have to be capable of

These sensor-
collecting
massive data from a large number of sensors wiule
processing the information in near real-time.

There are some research papers on task allocation in
wireless sensor networks that do not consider the task's
prionity and deadline (Okhovvat et al., 2011; Zahariev and
Hristov, 2011). These mapping techniques focus on

minimizing the energy consumption and reducing the

tasks' completion time. Momeni ef af. (2009) proposed a
new approach to task allocation in wireless sensor actor
networks that considers the periodic tasks to be real-time
jobs. Edalat et al (2012) proposed an auction-based
strategy to maximize the lifetime of wireless sensor
networks by solving the distributed task allocation
problem. Other research focuses on task scheduling and
data transmission in wireless video sensor networks,
while in study of Huang ef al. (2009) an approach that
uses 1intelligent agents and mtelligent algorithms 1s
used to solve the scheduling and data transmission
problems.

The goal of tlus research was to determine an
efficient method of processing sensory data in large-scale
sensory environments by mapping the data with priorities
and deadlines to processing gateways. The proposed
approach considers that the data transmission and
processing 1s a task which has to be mapped to a
gateway. Therefore, the efficiency of sensory data
processing can be improved by applymng mapping
heuristics. The gateways are considered to be black-boxes
with highly-computational capabilities and from the task
mapping perspective, they can simply be seen as
machines that are able to execute tasks.

Corresponding Author: Mitica Craus, Department of Computer Science and Engineering, Gheorghe Asachi” Technical University,
27 Mangeron Blvd, Tasi, 700050, Romamnia Tel: +40-232-278680 Fax: +40-232-231343

J. Applied Sci., 2012

PROBLEM STATEMENT

Sensory data processing: The sensor-gateway system 1s
a system in which multiple sensors are connected to a
gateway network. There are many different types of
sensors depending on their application (e.g., acoustic,
thermal, proximity, optical). Each sensor periodically
sends data in different formats and sizes through various
protocols and the gateways must be able to process the
received data accordingly and in the shortest time
possible.

Four semsor data characteristics
distinguished: pricrity, volume, send rate and receiving

can be

deadline. The information received from the sensors can
have different priorities depending on the context in
which the semsors are used and depending on their
functionality. For example, in an art gallery, during the
day, a humidity sensor has a higher priority than a motion
sensor because a high humidity level can damage the
pamtings whereas the motion sensor 1s quite useless
because of the flow of people who visit the gallery. ITna
typical situation where the sensors are functioning
normally, each sensor sends different volumes of data at
fixed periods of time. The data size of the information sent
by the sensors depends on the sensor types.
Applications can also spontanecusly request data from
sensors; in this case the sending rate can be lugher than
preconfigured rates. Some data 1s useful if it arrives and 1s
processed in a predetermined period of time, otherwise the
data becomes stale. This study considers that the data
has to be processed no matter if it is stale or not (soft-
deadlines). For example, a stale temperature data 1s mvalid
to a real-time monitoring system, but it is valid if a
histogram of the registered temperatures 1s required.

The gateways have limitations on the maximum
number of active connections, the maximum bandwidth
and the processing power. In order to increase the
capacity and the reliability, the gateways are
mterconnected. The system must dynamically assign the
recelved data to the best gateways. The sensor data
represents the volume of information sent by a sensor at
a fixed period of time. This problem can be modeled as a
task mapping problem m which independent tasks with
priorties and soft-deadlines must be mapped to gateways
for execution. In this study a task is considered to be
composed of sending data to a gateway and processing
the data.

In task mapping, the tasks are scheduled to run on
machines and, usually, the mapping algorithm has an
Expected Time to Compute (ETC) matrix which contains
estimations of the time 1t would take to execute a task on
a specific machine. This study considers that the expected

time to compute can be obtained by estimating the
execution time of the data processing algorithm located on
each gateway depending on the available resources.
Usually, the gateways are considered to be mter-
connected via a high speed network.

In order to obtain an efficient sensory data
processing method, the mapping heuristic must consider
the particularities of the sensory environment. Previous
mapping heuristics cannot be directly applied to the
problem considered in this study because they are general
approaches to task mapping that do not take into account
the sensor data characteristics and do not focus on
improving all the efficiency indicators. Only some
mapping heuristics consider the task's priority and
deadline, but they do not scale well because, in order to
map a task, all the other unmapped tasks are evaluated.
This leads to a significant increase of the execution time
especially for a large number of tasks which 1s a problem
in a large sensory environment.

Efficiency indicators: The mapping heuristics must
efficiently assign and schedule n tasks to m gateways.
Each task t, (i = 1...n) has a corresponding priority p,,
deadline d; and, also, an expected time to compute on each
gateway (etc;). A gateway is usually a single-core
industrial-grade computer that can execute only one task
at a time, therefore a task will execute on its assigned
gateway only after all the other previous scheduled tasks
have finished their execution on that gateway. The
gateway availability time (mat, where j = 1...m) is the time
1t takes for all the tasks assigned to that gateway to finish
their execution. For a task that is going to be assigned to
a gateway, the task completion time (tct) 1s the sum
between the gateway availability time and the expected
time to compute on that gateway. In order to evaluate the
algorithms, the deadline factor (df) (Braun et al., 2008;
Kim et al., 2007) was adapted to suit the considered
situation:

1.00, iftet; < d,
| 030, iftet, <d,, (1)
Y] 025, iftet, <d,,

0.05, otherwise.

Also, Braun et al. (2008) defined the worth of a task
as the priority multiplied by the deadline factor:

Worthy, = pxdf; (2)

Five efficiency indicators were used to compare the
performance of the tested mapping heuristics:

J. Applied Sci., 2012

¢ The most common method of evaluating the
solutions of mapping heuristics is the malkespan
which 1s defined as the time 1t takes for all the tasks
to fimsh their execution on their assigned gateways.
This efficiency indicator is used in problems
involving static mapping of independent tasks. The
drawback of considering only the makespan 1s that it
does not take nto account the tasks' priorities and
deadlines

¢+ A mapping heuristic must assign the tasks so that
the load 1s balanced across gateways, therefore the
second efficiency indicator 1s the A time difference,
defined as the difference between the time in which
the first and the last gateway finish running their
assigned tasks (Alexandrescu et al., 2011). If A 1s
zero then the load 1s perfectly balanced across
gateways

¢ The third indicator is the execution time of the
mapping algorithm. The tasks have to be mapped as
fast as possible, especially i dynamic task mapping
situations. If, for example, a genetic algorithm is used
to map the tasks, then some tasks might miss their
deadline because of the time it takes to do the
mapping

¢ The fowth indicator is the solution's worth which
is an adaptation of the evaluation value from
(Braun et al., 2008) and is defined as the sum of the
tasks' worth. This indicator introduces penalties to
the task’s priority based on the task’s completion
time compared to its deadline.

* The considered problem requires that the maximum
number of tasks with the highest sum of priorities
complete their execution before their deadline. Once
a task has missed its deadline it matters less when it
finishes its execution as long ag it is done in a
reasonable amount of time. The last efficiency
indicator is the success rate which represents the
weighted percentage of tasks that finished before
their deadline, 1.e., the ratio between the sum of
priorities of the tasks that fimished before their
deadline and the sum of all the task priorities

An 1deal mapping heuristic must obtain, m the
shortest time, the solution with the lowest makespan, the
lowest A time difference and with the highest solution
worth and success rate.

WEIGHTED MINIMUM COMPLETION TIME
The proposed mapping heuristic, Weighted Minimum

Completion Tine (WMCT), uses the Minimum Completion
Time (MCT) method to map the tasks to gateways. The

MCT algorithm has the advantage of a short execution
time, but it has several disadvantages: the makespan and
A time difference are higher compared to other mapping
methods and the priority and deadline of a task are not
considered in the mapping process.

To overcome this problem, all the tasks are sorted in
descending order based on their weight:

weight; =pTi1 (3)
e

Then, the tasks are mapped in the order of their
weight, while also factoring whether the tasks' deadline
has been exceeded or not. The tasks with a higher weight
will be more likely to be mapped before tasks with a lower
weight. The weight of a task is higher for high priority
tasks which must complete their execution soconer rather
than later. The use of the exponential function results in
a greater impact of the deadline on the weight, especially
for large deadline values, i.e., the tasks with large deadline
values are mapped later and also the priority has a smaller
impact on the weight.

The steps of the WMCT algorithm are as follows.
Firstly, all the tasks are sorted in descending order based
on their weight. Next, the ordered task list is processed
and each task 1s assigned to its mimmum completion time
gateway, only if the task fimshes its execution before the
deadline. If there are unassigned tasks, step two is
repeated but only the tasks that finish before twice their
deadline are mapped. If there are still unassigned tasks,
step two 1s repeated but this time only the tasks that
finish before four times their deadline are mapped. All the
remaining tasks are mapped to their minimum completion
time gateway. Lastly, all the tasks that finish after four
times their deadline are reassigned. The reassignment
consists of identifying the gateway that finishes its
assigned tasks the last (g) and the one that finishes the
earliest (g,). The reassignment then finds the task from
gateway g, with the largest difference between the
availability time of g, and the availability time of g, plus
the expected time to compute of the task on gateway g,
and if the time difference 1s greater than zero, it moves the
chosen task from g, to g, and tries to make another
reassighment. The algorithm stops when no more
reassignments can be made.

The time complexity for mapping n tasks to m
gateways is O(n log n + nm), where the complexity for
sorting the tasks 1s O(n log n) and the complexity for each
of the other five steps of the algorithm is O(nm). The
execution time of the algorithm can be further improved if
the tasks are sorted by their weight as they arrive in the
mapping queue, before the mapping algorithm runs.

J. Applied Sci., 2012

The Weighted Minimum Completion Time heuristic
is designed to obtain very good results for the five
efficiency indicators. Efficiency Indicators. Because the
algorithm considers only one task at a time i the mapping
process, the execution time of the algorithm is very short
compared to other algorithms, especially for a high
number of tasks. A low value for the makespan and the A
time difference 1s obtained by assigning the tasks to their
minimum completion time gateway. Also, by first
sorting the tasks based on their weight, the tasks with the
highest priority and the tightest deadline are mapped first.
This particularity, added to the fact that the tasks are
mapped depending on how much they exceed their
deadline, ensures a high solution's worth and a high
success rate.

Step 6 reassigns only the tasks that missed their
deadline, therefore, this step does not affect the solution's
worth and the success rate efficiency indicators. The goal
of the reassignment 13 to minimize the makespan and the
A time difference by moving tasks from the gateways
which finish the assigned tasks the last to the less loaded
gateways. This last step is efficient if there are enough
tasks that fimsh after four times their deadline.

EXPERIMENTAL RESULTS

Simulation setup: At fixed periods of time, each sensor
sends a volume of data to be processed. This 1s translated
into a task with priorities and deadlines that has to be
assigned to a gateway and then executed. Because of the
large number of sensors n the system there will most
likely be moments when multiple tasks are waiting to be
processed. This study addresses this issue and simulates
such a situation, showing how efficient each tested
mapping algorithm i3 in assigning the tasks that need to
be processed at a point in time. Some tasks can originate
from the same sensor, but, because of the environment’s
characteristics, most of the tasks come from different
sensors 1 the sensor-gateway system.

The simulator uses a set of configurable parameters
to generate the input data for the tested algorithms. The
performance of each algorithm is computed by running
the algorithm for a specified number of generated input
data sets (1000 m this study) and by computing the mean
of each efficiency indicator. The input data (ie., the
Expected Time to Compute matrix, the deadlines and the
priorities of the tasks) are generated from a set of
parameters which describe the sensors' behavior. The
values for these parameters were chosen to best simulate
a generic multi-sensor heterogeneous environment. In this
study, all the random values were generated using a
uniform random distribution.

The first two parameters are the number of sensors
and the number of gateways to which the tasks will be
assigned. For the tests in this study, between 100 and
1000 tasks (with increments of 100 tasks) are assigned to
10 gateways. Each sensor can send a random number of
values to be processed (in this study, between 1 and 10)
and each value can be processed in a time between 0.01
and 0.10 time units (t.u). The time it takes to process the
information received from a sensor is calculated as the
number of values being sent multiplied by the time in
which a value is processed. The resulted time is an
estimation of the execution time of a task on a gateway
(processing time). A line in the ETC matrix represents the
estimated execution times of a task on each gateway.
Therefore, these times are calculated by multiplying the
processing time by a random processing time variation
factor between 1.0 and 1.5 which is a measure of the
system’s heterogeneity.

As is the case m a real sensor environment, in this
study, some sensors send each time a fixed number of
values to be processed while other sensors send a
variable number of values. The interval for processing a
value was chosen so that the values for the efficiency
indicators are in an acceptable range and the differences
between the tested algorithms can be easily seen. This
study uses generic tume units which can be seconds,
tenths of a second or any time unit, depending on how
much processing is done at the gateways for each piece
of data received from the sensors. For example, at one time
a sensor can send four values and each value can be
processed in 0.7 tu, resulting in an estimation of the
execution time for the considered task of 2.8 t.u which can
mean that the four values will be processed at the earliest
in 2.8 sec.

When computing the deadline, the
considers the task's processing time and the elapsed time
from the task's arrival. The deadline for each task is
calculated as the sum between the task's processing time
multiplied by a processing coefficient and a deadline
constant. The processing coefficient is a random number
between 1 and 10, because the deadline must be greater
than and depend on the processing time, whereas the
deadline constant is a random value between O and 10 tu.
This method of computing the deadline was chosen
because 1n a real senser envirorment, the tasks have to be
processed in near real-time but also a specific time period
can pass before the data becomes outdated. There is an
acceptable fixed peniod of ime in which the data has to be
processed (in this study, the deadline constant) but the
deadline also depends on the sensor that sends the data
and on the volume of data that needs to be processed (the
task's processing time multiplied by a processing
coefficient).

simmulator

J. Applied Sci., 2012

In order to simulate the degree of importance of the
sensor data, each task was assigned, with the same
probability, a high, medium or low priority level as in
(Kim et al., 2007). For the tests 1 this study the priority
level was respectively represented by the weights 4,
2 and 1.

Other mapping heuristics: Tn order to evaluate and
compare the proposed solution five existing mapping
heuristics were applied to the problem considered in this
study. These heuristics were designed to wnprove the
solution’s worth efficiency indicator. These methods were
adapted to achieve better results regarding the other four
efficiency indicators for a more relevant comparison
between these heuristics and the proposed WMCT
method. Next are presented the changes that were made
to the five mapping heuristics.

The Two-Phase Fitness (TPF) heuristic described by
Braun et al. (2008) was slightly modified because, 1 this
study’s context, the tasks do not have dependencies,
hard deadlines and multiple versions. The proposed
adaptation of the algorithm uses the task's worth from
Eq. 2 to determine the best gateway. This allows the tasks
to be mapped even after their deadline has been missed,
but they will incur a penalty given by the deadline factor
df.

The other four considered heuristics, 1i.e.,
Rescheduling Min-Min, Relative Cost, Slack Sufferage
and Max-Max, are described by Kim et al (2007).
Optimizations were made to unprove the execution time of
the algorithms m order to have a fairer comparison with
the proposed approach. Also, in this study the Relative
Cost heuristic maps only the task with the lowest relative
cost, among all the highest worth tasks, to its minimum
completion time gateway. This was done to obtamn a better
makespan and A time difference, a higher solution's worth
and a higher success rate at the expense of a slightly
higher execution time of the mapping heuristic.

The Max-Max heuristic assigns tasks to the gateway
with the maximum fitness which was defined in this study
as:

worth, / etc,, if df; =0.25,
worth; / mat; otherwise

)

fitness, = {

The proposed approach to this heuristic maps the
tasks that finish before four times their deadline to the
gateway with the shortest execution time and the tasks
that finish after that to the gateway with the shortest
completion time. This method of computing the fitness
improves the makespan and the A time difference while it
does not influence the other efficiency indicators.

RESULTS

The
heuristic, Weighted Mimmum Completion Time, was
compared against five other heuristics, 1.e., Two-Phase
Fitness, Rescheduling Min-Min, Relative Cost, Slack
Sufferage and Max-Max. The results obtained based on
the five efficiency indicators. Efficiency Indicators-

performance of the proposed mapping

namely, the execution time of the algorithm, the makespan,
the A time difference, the solution's worth and the
success rate-for each of the six heuristics are presented
below.

The means of the execution times for each of the six
tested algorithms are presented m Table 1. Regardless of
the number of tasks that had to be mapped to the ten
gateways, the proposed algorithm, WMCT, mapped the
tasks the fastest. For 1000 tasks the proposed algorithm
did the mapping in 4.39 sec which was more than nine
times faster than the second fastest algorithm, Max-Max
which mapped the tasks in 40.68 sec. The least effective
of the six algorithms were Two-Phase Fitness and Slack
Sufferage which were 32 times slower than WMCT
(more than 142 sec).

The second efficiency indicator used to evaluate the
results was the makespan. Table 2 shows the mean of the
values obtamed for the makespan over 1000 iterations.
One of the goals of the algorithms was to obtain a low
makespan value. The Relative Cost heuristic produced the
solutions with the best makespan for all the tested number
of tasks. On the other hand, the worst makespan was

Table 1: The execution time (sec) for six mapping heuristics each running for 1000 ETC matrices and mapping 100 to 1000 tasks to ten gateways

tasks

Algorithm 100 200 300 400 500 600 700 800 900 1000

Two-Phase Fitness 1.33 5.42 12.25 2215 34.53 49.71 67.90 89.19 113.00 143.48
Rescheduling Min-Min 0.49 1.85 4.11 7.33 11.47 16.28 22.33 2917 37.27 46.73
Relative Cost 0.69 2.75 5.98 10.91 16.78 23.82 32.22 43.69 54.71 69.35
Slack Sufferage 1.36 5.49 12.04 22.05 33.83 48.42 65.81 89.15 112.29 142.19
Max-Max 0.43 1.57 3.35 6.13 9.40 13.36 1816 2531 32.07 40.68
WMCT 0.21 0.41 0.65 0.97 1.36 1.81 2.30 2.90 3.55 4.39

ETC: Expected time to compute, WMCT: Weighted minimum completion time, Underline row is proposed method, Bold values are best values

J. Applied Sci., 2012

Table 2: The makespan (time units) for six mapping heuristics each running for 1000 ETC matrices and mapping 100 to 1000 tasks to ten gateways

tasks
Algorithm 100 200 300 400 500 600 700 800 900 1000
Two-Phase Fitness 3.83 7.04 10.37 13.69 17.05 20.32 23.62 26.84 30.05 33.32
Rescheduling Min-Min ~ 3.85 7.03 10.24 13.40 16.61 19.76 2297 26.12 29.26 32.46
Relative Cost 3.57 6.71 9.88 13.00 16.13 19.24 22.44 25.57 28.71 31.91
Slack Sufferage 3.64 6.77 10.01 13.25 16.53 19.74 23.01 26.22 29.41 32.69
Max-Max 4.93 8.01 10.98 13.96 16.98 19.94 23.09 26.22 29.41 32.66
WMCT 3.95 7.40 10.87 14.30 17.73 21.01 24.41 27.80 31.20 34.69

ETC: Expected time to compute, WMCT: Weighted minirmum completion time, Underline row is proposed method, Bold values are best values

Table 3: The A time difference (time units) for six mapping heuristics each running for 1000 ETC matrices and mapping 100 to 1000 tasks to ten gateways

tasks
Algorithm 100 200 300 400 500 600 700 800 900 1000
Two-Phase Fitness 0.74 0.57 0.60 0.70 0.81 0.89 0.93 0.95 0.99 1.00
Rescheduling Min-Min 1.03 1.07 1.09 1.10 1.11 1.11 1.12 1.11 1.12 1.12
Relative Cost 0.50 0.44 0.39 0.30 0.18 0.12 0.09 0.07 0.06 0.05
Slack Sufterage 0.74 0.63 0.67 0.71 0.75 0.76 0.75 0.76 0.77 0.78
Max-Max 3.23 282 2.15 1.71 1.39 1.11 1.00 0.95 0.98 1.01
WMCT 0.90 0.93 0.95 0.87 0.76 0.45 0.26 0.19 0.15 011
ETC: Expected time to compute, WMCT: Weighted minimum completion time, Underline row is proposed method, Bold values are best values
Table 4: The solution’s worth for six mapping heuristics each running for 1000 ETC matrices and mapping 100 to 1000 tasks to ten gateways

tasks
Algorithm 100 200 300 400 500 600 700 800 900 1000
Two-Phase Fitness 228.9 437.8 626.1 795.1 951.4 1090.8 1221.3 1342.4 1459.5 1567.9
Rescheduling Min-Min ~ 228.4 437.6 624.8 790.9 941.3 1075.2 1200.7 1316.2 1425.4 1525.1
Relative Cost 228.1 430.2 606.4 756.7 886.4 996.4 1096.2 1181.5 1260.3 1330.0
Slack Sufferage 2304 444.6 640.0 817.8 982.6 1131.4 1274.2 1408.3 1537.7 1662.9
Max-Max 232.6 456.9 663.8 851.6 1025.6 1183.4 1331.9 1470.0 1602.9 1725.8
WMCT 233.3 466.4 699.4 918.5 1107.5 1272.2 1426.0 1565.6 1693.3 1806.0

ETC: Expected time to compute, WMCT: Weighted minimum completion time, Underline row is proposed method, Bold values are best values

obtamed by the Max-Max heuristic for less than 400 tasks
and by the WMCT heuristic for more than 400 tasks. For
100 tasks, the best makespan was 3.57 t.u (Relative Cost)
and the worst was 4.93 tu (Max-Max), while, for 1000
tasks, the best makespan value was 31.91 tu (Relative
Cost) and the worst was 34.69 tu (WMCT).

The algorithms were also evaluated on how well the
load was distributed across gateways. The load is well
balanced if the A time difference 1s minim. As it was the
case with the makespan, the Relative Cost algorithm
obtained the lowest A time difference as can be seen in
Table 3. The A time difference obtained by the WMCT
algorithm for 1000 tasks was twice the value obtained by
the Relative Cost heuristic (0.11 t.u compared 0.05 t.u), but
it was also seven times better than the third best
algorithm, Slack Sufferage which was 0.77 t.u and more
than ten times better than the worst algonthm,
Rescheduling Min-Min which was 1.12 tu. For 100 tasks,
the best A time difference was 0.50 t.u (Relative Cost) and
the worst 3.23 tu (Max-Max).

The results regarding the fourth efficiency indicator,
the solution’s worth, are shown in Table 4. Higher values
signify a better solution. For all the tested situations, the
proposed algorithm, WMCT, was the best, followed by

Max-Max, while the Relative Cost algorithm was last. For
100 tasks the best worth was a value of 228.1 (Relative
Cost), while the best was 233.3 (WMCT). For 1000 tasks,
the WMCT solution’s worth had a value of 1806 which
was 4% better than the solution’s worth of the Max-Max
heuristic (with a worth of 1726) and 26% better than the
solution’s worth of the worst algorithm, Relative Cost
(with a worth of 1330).

The last efficiency indicator 1s a measure of how
many tasks fimshed before thewr deadline based on their
priority. The values obtained for the success rate are
presented in Table 5. The best values were obtained by
the WMCT algornithm, followed by Max-Max, Slack
Sufferage, Two-Phase Fitness, Rescheduling Min-Min
and, lastly, Relative Cost; this order was maintained
regardless of the number of tasks to be assigned. As the
number of tasks increased, the success rate decreased
because there were more tasks that needed to be mapped
to the same number of gateways. The WMCT algorithm
obtained an almost 100% success rate for less than 300
tasks and had a 33% decrease in the success rate for 1000
tasks (67.9%). The worst success rate was obtained by
the Relative Cost algorithm, 96.7% for 1 00 tasks and 43.8%
for 1000 tasks.

J. Applied Sci., 2012

Table 5: The success rate for six mapping heuristics each rurming for 1000 ETC matrices and mapping 100 to 1000 tasks to ten gateways

tasks
Algorithm 100 200 300 400 500 600 700 800 900 1000
Two-Phase Fitness 97.3 91.4 85.4 79.7 74.6 69.9 65.7 62.0 59.1 56.5
Rescheduling Min-Min ~ 96.9 91.0 84.7 78.5 72.8 67.9 63.7 60.0 57.0 54.2
Relative Cost 96.7 88.6 80.9 73.4 66.5 60.6 55.6 50.9 47.1 43.8
Slack Sufferage 98.3 93.7 88.5 83.3 78.3 73.5 69.4 65.8 62.7 60.3
Max-Max 99.5 96.9 92.5 87.5 82.8 78.5 74.5 70.9 67.8 65.0
WMCT 100.0 100.0 100.0 97.2 91.1 85.3 80.3 75.8 71.8 67.9

ETC: Expected time to compute, WMCT: Weighted minirmum completion time, Underline row is proposed method, Bold values are best values

Table 6: The mean percentages of tasks that finished before their deadline based on their priorities (low, medium and high) for six mapping heuristics each

running for 1000 ETC matrices, for 400, 700 and 1000 tasks

400 tasks 700 tasks 1000 tasks
Algorithm low medium high low medium high low medium high
Two-Phase Fitness 12.6 21.8 324 31 13.5 30.8 0.2 7.9 28.9
Rescheduling Min-Min ~ 11.0 21.5 323 1.5 12.3 30.6 02 5.7 28.7
Relative Cost 9.7 18.1 31.3 24 9.3 27.1 0.9 4.6 23.0
Slack Sufferage 13.0 24.1 33.2 24 13.2 33.3 0.9 3.2 33.3
Max-Max 21.1 27.7 31.9 12.7 21.8 29.4 8.7 17.7 26.9
WMCT 272 33.2 33.2 53 25.0 33.0 14 14.7 31.9

ETC: Expected time to compute, WMCT: Weighted minimum completion time, Underline row is proposed method, Bold values are best values

Another interesting aspect 18 how each algorithm
mapped the tasks based on their priority. Table 6 shows
the percentages of tasks that finished before their
deadline for 400, 700 and 1000 tasks; for less than 300
tasks the results are not that relevant because most of the
tasks finished before their deadline. From the total number
of tasks to be mapped, a third had a high priority, a third
had a medium priority and a third had a low priority.
Regardless of the number of tasks, the Slack Suffrage
algorithm mapped the most high priority tasks (almost all
of them), followed closely by the WMCT algorithm.
Max-Max mapped the most medium priority tasks for 1000
tasks (17.7%), whereas WMCT mapped the most for 400
and 700 tasks (27.7% and, respectively, 29.4%). The
number of low priority tasks that fimshed before their
deadline was higher for fewer tasks because most of the
higher priority tasks were also mapped. WMCT mapped
the most low priority tasks for 400 tasks (21.1%), but the
Max-Max mapped the most for 700 and 1000 tasks (12.7%
and, respectively, 8.7%). For a high number of tasks there
were fewer tasks that could fimsh before their deadline,
therefore sigmificantly more high priority tasks were
mapped compared to the number of low priority tasks.
From 1000 tasks, a total of 48.0% of tasks finished before
their deadline by mapping with the WMCT algorithm,
whereas, by mapping the tasks with the Max-Max
algorithm, a total of 53.3% of tasks finished before their
deadline.

DISCUSSION

The task mapping problem has been widely studied
in different scenarios. The basic approach is to statically

map a set of independent tasks to heterogeneous
machines. Heuristics like Opportunistic Load Balancing,
Minimum Execution Time, Mimimum Completion Time,
K-percent Best, Min-Min, Max-Min or Suffrage are the
most well known methods of mapping independent tasks.
A comparison of these heuristics was performed by
Braun et al (2001) and Maheswaran et al. (1999) or
Alexandrescu and Craus (2010). Alexandrescu et al. (2011)
proposed a genetic algorithm to wnprove the makespan
and the A time difference at the expense of a higher
execution time. The mutation operator described in the
aforementioned research was the basis for the last step of
the mapping heuristic presented in this study. The main
disadvantage of these methods is that they do not
consider the task's priority and deadline.

Some approaches to the task mapping problem start
from a candidate solution (which can be generated by
another mapping heuristic) and try to improve it. Such a
heuristic is presented by Attiya and Hamam (2006), where
a simulated annealing approach is used to map tasks in
order to maximize the reliability of a distributed system.
The difference, compared to this research, is that the
simulated annealing heuristic considers inter-dependent
tasks and it does not take into account the deadline for
processing a task.

Braun et al (2008) proposed three algorithms
static resowce allocation of tasks having
dependencies, priorities, deadlines and multiple versions.
Two of the used heuristics are a genetic algorithm and a
GENITOR-style algorithm, but these take longer to run
and are not suitable in a dynamic mapping environment.
Also, a two-phase fitness algorithm which is based on the
Min-Min heuristic, 13 presented. The main difference

for

J. Applied Sci., 2012

compared to this study is that the context does not
mvolve dependencies, multiple versions and hard
deadlines.

The Two-Phase Fitness (TPF) algorithm used i this
study is an adaptation of the algorithm from Braun et al.
(2008). The proposed WMCT heuristic outperformed the
TPF method regarding the execution time of the algorithm.
WMCT was more than six times faster than TPF for 100
tasks and more than 32 tiunes faster for 1000 tasks, this
was due to the much greater scalability of the WMCT
heuristic. Regardless of the munber of tasks that needed
to be mapped, the only efficiency indicator at which
WDMCT obtained poorer results compared to TPF was the
makespan. TPF produced solutions with a 3% to 4% lower
makespan than WMCT. Regarding the A time difference,
the TPF algorithim was better for less than 500 tasks,
whereas the proposed WMCT obtained lower time
differences for 500 or more tasks. With the increase in the
number of tasks that need to be mapped, the WMCT
heuristic showed a descending trend for A time difference
value, as opposed to the TPF heuristic which obtained
increasingly poorer results. The values for the solution’s
worth and the success rate were in favor of the WMCT
heuristic regardless of the number of tasks. The WMCT
heuristic obtained a 15% better solution’s worth
compared to the TPF heuristic for 1000 tasks and an 11%
higher success rate.

The work from Kim et @l (2007) presents and
compares eight dynamic mapping heuristics which use
mndependent tasks with prioritties and multiple soft-
deadlines. The dynamical aspect of the mapping heuristic
is obtained by using mapping events which are triggered
when a new task arrives and there is no mapping process
currently running and then applying a static heuristic for
the tasks waiting to be executed. The same principle can
be applied to the method used in this study in order to
dynamically process the data using the proposed
heuristic.

A significant difference, compared to this study, is
that their different method of

generating the expected time to compute matrix and

research uses a

another way of generating the deadline for each task
which does not take mto account the characteristics of
In this study, the
proposed method of generating these values 1s much
better suited for a sensory environment. Sensory Data

a sensor-gateway environment.

Processing. The methods of computing the matrix and
deadline have an important impact on the performance of
the mapping algorithms. Another difference is that in
this study uses the makespan, the A time difference, the

execution time of the algorithm and the success rate,
besides a vamation of the evaluation method from
Kim et al. (2007) to more accurately determine the
efficiency of a mapping heuristic.

Four adaptations from the aforementioned research
were used for comparison against the proposed WMCT
heuristic-1.e., Rescheduling Min-Min (RMM), Relative
Cost (RC), Slack Suffrage (S5) and Max-Max. The results
obtained n this study regarding these algorithms are
similar to the results from the aforementioned research.
The execution times of each of the four algorithms were
poorer than the execution time of the WMCT algorithm,
regardless of the number of tasks that needed to be
mapped. This was due to a lower time complexity
compared to the other heuristics; also, the WMCT
algorithm scaled sigmficantly better. As the number of
tasks that needed to be mapped increased, each algorithm
followed its increasingly hugher trend and the hierarchy of
the algorithms regarding the execution time was the same
throughout the simulation. For 1000 tasks, the WMCT
algorithm mapped all the tasks m 4.39 sec, whereas the
second best algorithm, Max-Max, did the mapping it a time
that was almost ten time slower (40.68 sec).

In regards to the makespan, the WMCT heuristic
outperformed the Max-Max heuristic for 100, 200 and 300
tasks. Apart from these cases, WMCT performed poorer
than the tested algorithms. WMCT obtained a 10% higher
makespan mean than the best heuristic (Relative Cost) for
100 tasks and 8.7% higher for 1000 tasks. The reason for
the poorer makespan values is that the WMCT heuristic
15 based on the Mimmum Completion Time heuristic
which does not take into consideration all the remaining
tasks when assigning a task to a gateway. The final step
of the WMCT algorithm improves the makespan by
reassigning the tasks from the most loaded gateways, but
it is not enough to outperform the other tested algorithms.
For less than 500 tasks, the A time difference obtained by
WMCT was worse than Slack Suffrage, Two-Phase
Fitness and Relative Cost, but for more than 500 tasks
WMCT was outperformed only by Relative Cost which
obtained the lowest time difference for all the tested
number of tasks. For 1000 tasks, the WMCT heuristic
obtained a A time difference of 0.11 t.u, whereas Relative
Cost obtained a value 0.05 tuand the third best algorithm,
Slack Suffrage, obtained a value of 0.78 tu, while the
worst values were obtained by Rescheduling Min-Min
(1.12 tu). Regarding the A time difference, the Relative
Cost, Max-Max and WMCT algorithms showed a
descending trend with the increase of the number of
tasks, while the other three algontlins, Two-Phase

J. Applied Sci., 2012

Fitness, Rescheduling Min-Min and Slack Suffrage
obtained slightly higher time differences as the number of
tasks that had to be mapped increased. The influence of
the fmal step of the WMCT algorithm which tries to level
the load across gateways, was more noticeable for over
500 tasks and its efficiency increased proportionally to the
number of tasks that had to be mapped. The Relative Cost
and the WMCT were the only algorithms that
systematically improved their A time difference for over
200 tasks.

Although the other heuristics focus solely on
mnproving the solution’s worth, the proposed WMCT
algorithm outperformed those heuristics regardless of the
number of tasks. Also, WMCT obtained the highest
success rate among all the tested algorithms. The success
rate difference between WMCT and the second best
algorithm, Max-Max, increased until 400 tasks to a
difference of 9%, but then started to decrease to only 3%
for 1000 tasks. This suggests that, for more than 1000 of
tasks, the Max-Max algorithm might outperform WMCT
regarding the success rate. The other algorithms obtained
lower success rates, the Relative Cost algorithm being the
worst with only 43.8% success rate, compared to
WMCT’s 67.9% for 1000 tasks. The optimal performance
of the WMCT heuristic in terms of the solution’s worth
and the success rate is due to the fact that the proposed
algorithm maps the tasks depending on how likely they
are to fimsh before their deadline.

Overall, the WMCT algorithm was by far the best
regarding the execution time of the algorithm, the Relative
Cost algorithm was best at obtaiming a low makespan and
a low A time difference and, even though i1t mapped fewer
tasks that finish before their deadline compared to the
Max-Max, the WMCT algorithm also obtained the best
solution’s worth and the highest success rate.

CONCLUSIONS

An important aspect of sensor-gateway systems 1s
efficiently assigmng sensory data to processing
gateways. In this study, the data transmission and
processing are seen as a task with priorities and soft-
deadlines which has to be mapped to a gateway. The
efficiency of an algorithm for mapping independent tasks
with priorities and deadlines depends on the number of
tasks and gateways, the method of generating the
expected time to compute matrix and, especially, the tasks'
deadline.

This study proposes a mapping heuristic called
Weighted Minimum Completion Time which was
compared to five adaptations of the best task mapping
heunstics. There are several advantages of using the

WMCT heuristic to dynamically map tasks with priorities
and soft-deadlines. The execution time scales sigmficantly
better with regard to the number of tasks compared to the
other tested algorithms, and, even though it obtamns a
poorer makespan, the load becomes more balanced with
the mcrease of the number of tasks that have to be
mapped. The WMCT heuristic does not always have the
most tasks that finish before their deadline but it obtains
the best solution’s worth and the highest success rate.

The proposed heuristic is efficient in the sense that
it can handle much better the arrival of a high number of
tasks in the system (task spikes), compared to the other
tested heuristics, due to its greater scalability and
because 1t obtams the lughest success rate in the shortest
time. Taking into consideration all the above, the WMCT
heuristic 15 an efficient method for processing sensory
data in large-scale sensory environments.

ACKNOWLEDGMENTS

This study was supported by the EURODOC
"Doctoral Scholarships for research performance at
European level” project, financed by the Furopean Social
Found and the Romanian Government and the Pacific
Controls Cloud Computing Lab (PCCCL) at Vienna
University of Technology.

REFERENCES

Alexandrescu, A. and M. Craus, 2010. Improving mapping
heuristics n heterogeneous computing. Proceedings
of the 6th European Conference on Intelligent
Systemns and Technologies, October 7-9, 2010, Iasi,
Romama, pp: 1-12.

Alexandrescu, A., T. Agavriloaei and M. Craus, 2011.
A genetic algorithm for mapping tasks in
heterogenesous computing systems. Proceedings of
the 15th International Conference on System Theory,
Control and Computing, October 14-16, 2011, Sinaia,
Romama, pp: 1-6.

Attiva, G. and Y. Hamam, 2006. Task allocation for
maximizing reliability of distributed systems: A
simulated amealing approach. J. Parallel Distrib.
Comput., 66: 1259-1266.

Bimschas, D., H Hellbruck, R. Mietz, D. Pfisterer,
K. Romer and T. Teubler, 2010. Middleware for smart
gateways connecting sensornets to the internet.
Proceedings of the 5th International Workshop on
Middleware Tools, Services and Run-Time Support
for Sensor Networks, November 29-December 3, 2010,
Bangalore, India, pp: 8-14.

J. Applied Sci., 2012

Braun, T.D., HJ. Siegel, N. Beck, L.I. Boloni and
M. Maheswaran et al., 2001. A comparison of eleven
static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing
systems. J. Parallel Distrib. Comput., 61: 810-837.

Braun, T.D., 1.5. Howard, A.M. Anthony and Y. Hong,
2008. Static resource allocation for heterogeneous
computing environments with tasks having
dependencies priorities deadlines and multiple
versions. J. Parallel Distrib. Comput., 68: 1504-1516.

Chen, H., P. Chou, S. Duri, H. Lei and J. Reason, 2009. The
design and implementation of a smart building
control system. Proceedings of the 2009 IEEE
International Conference on e-Business Engineering,
October 21-23, 2009, Macau, pp: 255-262.

Edalat, N., CK. Tham and W. Xiao, 2012. An auction-
based strategy for distributed task allocation in
wireless sensor Comp. Commun.,
35: 916-928.

Farhangi, H., 2010. The path of the smart grid. Power
Energy Magza., 8: 18-28.

Finer, B, R.S. Moore, R. Howard, R.P. Martin and
Y. Zhang, 2011. Smart buildings, sensor networks and
the internet of thungs. Proceedings of the Sth ACM
Conference on Embedded Networked Sensor
Systems, November 2-4, 2011, Seattle, WA, USA,
pp: 337-338.

Gupta, V., R. Goldman and P. Udupi, 2011. A network
architecture for the web of things. Proceedings of the
2nd International Workshop on Web of Things, Tune
16, 2011, San Francisco, CA, USA ., pp: 1-3.

networks.

10

Huang, HP., R.C. Wang, L..J. Sun, HY. Wang and F. Xiao,
2009. Research on tasks schedule and data
transmission of video sensor networks based on
intelligent agents and intelligent algorithms. J. China
Umniv. Posts Telecommun., 16: 84-91.

Kim, 1K, 3. Shivle, H.J. Siegel, A A. Maciejewski and
T.D. Braun ef al., 2007. Dynamically mapping tasks
with priorities and multiple deadlines in a
heterogeneous environment. J. Parallel Distrib.
Comput., 67: 154-169.

Maheswaran, M., 5. Ali, HJ. Seigel, D. Hensgen and
R. Freund, 1999. Dynamic mapping of a class of
mndependent tasks onto heterogeneous computing
systems. J. Parallel Dist. Comput., 59: 107-131.

Momeni, H., M. Sharnifi and 3. Sedighian, 2009. A new
approach to task allocation in wireless sensor actor
networks. Proceedings of the 2009 First International
Conference on Computational Intelligence,
Commurnication Systems and Networks, July 23-25,
2009, Indore pp: 73-78.

Okhovvat, M., M. Sharifi and H. Momeni, 2011. Task
allocation to actors m wireless sensor actor networks:
An energy and time aware technique. Proc. Comput.
Sci., 3: 484-490.

Pacific Controls, 2010. Bot gateway. Technology for
Sustamable Development. http:/pacificcontrols . net/
products/bot-gateway. html

Zahariev, P.Z. and G.V. Hristov, 2011. Performance
evaluation of data delivery approaches for wireless

sensor networks. Proc. Comput. Sci., 3: 714-720.

