
Data Locality-Aware Scheduling
for Serverless Edge Computing

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Cynthia Kenia Arcanjo Marcelino, BSc
Matrikelnummer 01529611

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Dipl.-Ing. Dr. Thomas Rausch, BSc

Wien, 19. August 2021
Cynthia Kenia Arcanjo Marcelino Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Data Locality-Aware Scheduling
for Serverless Edge Computing

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering & Internet Computing

by

Cynthia Kenia Arcanjo Marcelino, BSc
Registration Number 01529611

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar
Assistance: Dipl.-Ing. Dr. Thomas Rausch, BSc

Vienna, 19th August, 2021
Cynthia Kenia Arcanjo Marcelino Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Cynthia Kenia Arcanjo Marcelino, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. August 2021
Cynthia Kenia Arcanjo Marcelino

v

Acknowledgements

First, I would like to thank Professor Dr. Schahram Dustdar for giving me this opportunity.
To my co-advisor, Dr. Thomas Rausch, I would like to emphasize how important it was
to have you guiding me through this path. I wish I could say that pursuing a technical
career is equally challenging for all of us, but I wouldn’t be lying only to you; I would
also be lying to myself. Nevertheless, I am happy to say that this was one of the few
times I did not feel the treatment difference for being a woman. Thank you for your
support and for being an ally in this equality fight. To my friend, Peter Vasil, thank you
for the constant technical discussions with and without a beer; I am happy I have the
opportunity to learn something new with you every day. To my life partner, Agnes Poks,
I would like to thank you for the RaspberryPi’s sponsorship. I will be forever grateful for
your infinite patience and your daily support. Thank you for always being by my side; I
could never have done this without you. I want to extend these acknowledgments outside
of the technical area, every thesis has a story behind it, and I feel many people helped
me achieve this. Thank you to Julia Ehgartner and Theresa Gwiggner, who helped me
integrate and feel like I have a family away from home. To the sister that life has given
me, Dr. Tainá Almeida, I want to thank you for the researching tips and for being present
at all times when I need you.

The path until here was not easy, but the word easy was never in my vocabulary, and last
but not least, I would like to thank my parents, who taught me never to give up. Father
and Mother, I know your path was not easy; I recognize how much you had to sacrifice
so that I can be here today. Both children of farmers who never had the opportunity to
study. Mom, I know the effort and sacrifices you had to go through to finish school. I
know that your dream was to go to university and that you only managed to get into
college when we were grown up. For me, it was an honor to enter college at the same
time as you. I will always be grateful for every penny counted so that I could take an
English course. Dad, you are my hero; even though you didn’t have the opportunity
to study, you made an effort to provide a way for your children to be able to. Father
and Mother, thank you so much for always working hard for us to have the opportunity
you never had. Mom, I know that your dream continued in an academic career, but
unfortunately, life didn’t allow it. I just wanted to tell you that I will forget everything
you sacrificed so that I could be here today. I will be forever grateful for all this. This
diploma may even have my name printed on it, but it belongs to both of you.

vii

Agradecimentos

Em primeiro lugar, gostaria de agradecer ao Professor Dr. Schahram Dustdar por me
dar esta oportunidade. Ao meu co-orientador, Dr. Thomas Rausch, gostaria de enfatizar
a importância de ter você me guiando por esse caminho. Eu gostaria de poder dizer
que seguir uma carreira técnica é igualmente desafiador para todos nós, mas eu não
estaria mentindo apenas para você, eu também estaria mentindo para mim mesmo. No
entanto, fico feliz em dizer que essa foi uma das poucas vezes em que não senti a diferença
de tratamento por ser mulher. Obrigada pelo seu apoio e por ser um aliado nesta luta
pela igualdade. Peter Vasil, obrigada pelas constantes discussões técnicas com e sem
cerveja; fico feliz por ter a oportunidade de aprender algo novo com você todos os dias. À
minha companheira, Agnes Poks, gostaria de agradecer pelo patrocínio das RaspberryPi’s.
Quero que saiba que serei eternamente grata por sua infinita paciência e seu apoio diário.
Obrigada por estar sempre ao meu lado; eu não poderia ter feito isso sem você. À Julia
Ehgartner e Theresa Gwiggner que me ajudaram a me integrar e a sentir que tenho uma
família longe de casa. À irmã que a vida me deu, Dra. Tainá Almeida, quero agradecer
pelas dicas de pesquisa e por estar presente em todos os momentos quando eu preciso.

O caminho até aqui não foi fácil, mas a palavra fácil nunca fez parte do meu vocabulário
e, por último e mais importante, gostaria de agradecer aos meus pais e minha familia,
que me ensinaram a nunca desistir. Pai e mãe, eu sei que o caminho de vocês não foi
fácil, eu reconheço o quanto vocês tiveram que sacrificar para que eu possa estar aqui
hoje. Ambos filhos de agricultores que nunca tiveram oportunidade para estudar. Mãe,
eu sei o esforço e os sacrifícios que você teve que passar para conseguir terminar o ensino
médio, eu sei que teu sonho era cursar uma universidade e que você só conseguiu entrar
na faculdade quando teus filhos já estavam grande o suficiente, para mim foi uma honra
entrar na faculdade ao mesmo tempo que você. Eu serei sempre grata a cada centavo
contado para que eu pudesse fazer um curso de inglês. Pai, você é meu herói, mesmo não
tendo oportunidade para estudar, você se esforçou para proporcionar um meio para que
seus filhos pudessem. Pai e mãe muito obrigada por vocês sempre se esforçarem para que
nós tivéssemos a oportunidade que vocês nunca tiveram. Mãe eu sei que teu sonho era
ter continuado na carreira acadêmica, mas infelizmente a vida não permitiu. Eu só queria
dizer-lhes que em nenhum momento me esquecerei de tudo que vocês sacrificaram para
que eu pudesse estar aqui hoje. Eu serei eternamente grata por tudo isso. Este diploma
pode até ter meu nome impresso, mas ele pertence a vocês dois.

ix

Kurzfassung

Das vernetzte Zeitalter, in dem Milliarden von Geräten Echtzeitdaten sammeln und
verarbeiten, erfordert Anpassungen in der aktuellen Technologieinfrastruktur, um die
gesammelten Daten zu verarbeiten. Cloud Computing wurde durch sein On-Demand-
Geschäftsmodell bekannt, welches Flexibilität und Skalierbarkeit durch wenige Klicks
verspricht. Dennoch kann der hohe Kommunikationsaufwand und Datenaustausch zwi-
schen Geräten mit geringeren Rechenressourcen und den Cloud-Diensten zu hohen
Latenzen und finanzielle Kosten führen. Eine Lösung dafür bietet Edge Computing,
welches die Datenverarbeitung von der Cloud in das Edge-Netzwerk verlagert. Edge
Computing verwendet die Ressourcen von Endgeräten, um Echtzeitdatenverarbeitung
zu ermöglichen. Edge Computing erzeugt jedoch neue Herausforderungen, zum Beispiel
beim platzieren von Funktionen, da Geräte heterogene und begrenzte Rechenkapazitäten
aufweisen. Edge Computing systeme basieren häufig auf Container-Management-Tools
wie Kubernetes, um Funktionen im Cluster zu verteilen und eine Überlastung der Re-
sourcen zu vermeiden. Diese Orchestrierungs-Tools sind nur bedingt in der Lage, die
Ressourcen der Geräte an die unterschiedlichen Workload-Anforderungen anzupassen.
Um diese Einschränkungen zu überwinden, konzentrieren sich mehrere Untersuchungen
auf die Identifizierung spezieller Gerätefähigkeiten und der Nutzung dieser Informationen
zum optimalen Scheduling der Arbeitslast. Obwohl solche Scheduler die Geräte- und
Netzwerkauslastung erheblich verbessern, indem sie die Characteristiker der Workloads
mit den Ressourcen der Geräte, wie beispielsweise vorhandener GPU Beschleunigern
abgleichen, bestehen nach wie vor Herausforderungen beim platzieren der Funktionen
basierend auf der Datenlokalität.

Daher präsentieren wir in dieser Diplomarbeit eine Erweiterung eines Orchestrierungs-
Tools-Schedulers mit der Berücksichtigung von Datenlokalität. Um dies zu erreichen,
haben wir (1) einen Speicherindex mit den Metadaten der im Cluster vorhandenen Datein
und (2) ein Netzwerküberwachungs-Tool entwickelt, das einen Echtzeit-Verfügbarkeits-
Bandbreitengraphen bereitstellt. Zusätzlich, erweitern wir (3) den Kubernetes Skippy
Scheduler mit einem Datenlokalitäts-Feature. Resultierend daraus, kann der Scheduler
den Bandbreitengraphen zwischen Nodes und Speicherindex in seinem Service-Placement-
Scheduling-Prozess verwenden. Da sich die Netzwerkauslastung zur Laufzeit nach dem
Scheduling dynamisch verhält, haben wir außerdem (4) ein Framework eingeführt, um
den kürzesten Weg für eine Dateiübertragung während der Laufzeit der Serverless-

xi

Funktionsausführung zu identifizieren. Unser Lösungsansatz fügt Datenlokalität während
der Platzierung und Laufzeit von Serverless-Funktion hinzu.

Unsere experimente zeigen, dass die Berücksichtigung der Datenlokalität die Ausfüh-
rungszeit von Serverless-Funktionen um bis zu 40% verbessert. Unser Framework prio-
risiert Dateiübertragungen in Edge-Netzwerken, was zu nahezu doppelt so viel Edge-
Netzwerkverkehr führt. Folglich verringert die Berücksichtigung der Datenlokalität die
Ein- und Ausgänge des Cloud-Netzwerkverkehrs erheblich. Die Verteilung des Netzwerk-
verkehrs basierend auf der Verfügbarkeit von Edge-Ressourcen reduziert die finanziellen
Kosten mit Cloud-Diensten um bis zu 85% im Vergleich zu Lösungen ohne Datenlokalität.

Abstract

The connected era in which billions of devices collect and process real-time data demands
adjustments in the current technology infrastructure to process the collected data.
Cloud computing introduced an on-demand business model, which enabled flexibility and
scalability a few clicks away. Nevertheless, the constant communication and data exchange
between low computational resource devices and cloud services may lead to high latency
and financial costs with cloud resources. Thus, edge computing emerged, shifting the
data processing from the cloud to the edge network. Edge computing leverages container
orchestration tools such as Kubernetes to distribute functions across the cluster according
to the devices’ resources. These orchestration tools have limitations to match devices’
capabilities with different workload requirements. Although new schedulers emerge to
improve the workload by matching workload with devices’ capabilities such as video
acceleration, they still struggle with function placement based on data locality. Data-
intensive workloads can profit from edge network proximity and data-locality awareness
to improve latency and bandwidth usage. Additionally, when the data processing is
closer to its source, the data can be processed using edge resources, decreasing latency,
bandwidth usage, and avoiding additional financial costs with cloud resources.

Therefore, we propose in this thesis a data-locality enhancement for a container orches-
tration scheduler. To achieve that, we create (1) a storage index containing the file’s
metadata and (2) a network monitoring tool to provide a real-time availability bandwidth
graph. Further, we introduce (3) a data-locality functionality on the Kubernetes Skippy
Scheduler. As a result, the scheduler can use the bandwidth graph between nodes and
storage index in its service placement scheduling process. Additionally, as the network
usage may differ between scheduling and runtime, we introduce (4) a framework to
identify the shortest route for a file transfer during the serverless function execution
runtime. Thus, our proposed solution adds data locality during the serverless function
placement and runtime.

Our experiments show data locality-aware scheduling improves the function execution
time up to 40%. Our framework prioritizes file transfers on edge networks, leading
to nearly twice as much edge network traffic. Consequently, the data locality-aware
scheduling decreases the ingress and egress of cloud network traffic significantly. The
network traffic distribution based on edge resources availability reduces the financial
costs with cloud services up to 85% compared to solutions without data locality.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Questions . 3
1.4 Solution Approach . 6
1.5 Structure . 7

2 Fundamentals 9
2.1 Serverless Edge Computing . 9
2.2 Scheduling Data Intensive Workloads 13
2.3 Data Sharing at the Edge . 16

3 Related Work 19
3.1 Service Placement Problem . 19
3.2 Data Placement . 20
3.3 Network Monitoring . 22

4 System Overview 25
4.1 Overview . 25
4.2 Scheduler . 27
4.3 Storage Index . 27
4.4 Storage Node Prediction . 28
4.5 Bandwidth Graph . 29
4.6 Skippy Data SDK . 30
4.7 Function Deployment . 31

5 Skippy Data Scheduler 35
5.1 Overview . 35

xv

5.2 Kubernetes Scheduler . 35
5.3 Skippy Scheduler . 37
5.4 Skippy Data Scheduler . 39
5.5 OpenFaaS Modifications . 44

6 Data Management 47
6.1 Overview . 47
6.2 Storage Index . 48
6.3 Metadata Handling . 51
6.4 Skippy Data SDK . 53

7 Network Monitoring 59
7.1 Overview . 59
7.2 Telemetry . 60
7.3 Bandwidth Graph . 62
7.4 Comparison of Approaches . 65
7.5 Skippy Network . 66

8 Evaluation 69
8.1 Methodology . 69
8.2 Skippy Data Scheduler . 79
8.3 Function Runtime: Skippy Data SDK 84
8.4 Network Monitoring . 89

9 Conclusion 95
9.1 Contributions . 95
9.2 Research Questions . 96
9.3 Challenges . 99
9.4 Future work . 99

A Skippy Data Scheduler Logs 103

B Additional Experiments 107

C Telemd Modifications 113

D Openfaas Modifications 119

Acronyms 123

Bibliography 125

CHAPTER 1
Introduction

1.1 Motivation

Edge computing is the terminology that describes a new paradigm where the processing
is placed close to its data producer on the edge of the network. According to [1], edge
network is populated with heterogeneous devices such as mobile, sensors, cloudlets, and
data centers that produce data and process computational tasks. Different from cloud
networks that present unlimited computational resources, there is a heterogeneous devices
infrastructure composed of low processing capabilities such as sensors and mobiles in the
edge network.

The increase of Internet of Things (IoT) devices in people’s daily routine brought many
questions and challenges about workload distribution on limited computational resources
such as edge systems. Every IoT device collects a large amount of data that needs to be
processed either on the device or the edge or cloud network. When the data is transferred
and processed in the cloud, the processing relies on unlimited infrastructure resources.
However, the use of cloud resources may lead to high latency and increased financial costs.
Edge computing shifts the processing closer to the data source. As the edge network
is closer to the end device, data-intensive workflows can profit from this proximity to
improve latency and bandwidth usage. Additionally, when the data processing is closer
to where it is produced, the data can be processed using edge resources, decreasing the
latency and avoiding cloud resources and additional financial costs. This data processing
shift from the cloud to the edge network opened up an opportunity for new execution
models to emerge [2].

Serverless computing has become a popular model for deploying applications because it
enables the developer to deploy short-lived functions which work as standalone services
[2]. To control and manage the deployments of these functions, Function-as-a-Service

1

1. Introduction

(FaaS) platforms often leverage container orchestration systems like Kubernetes (K8s)1.
In a heterogeneous device infrastructure presented by edge computing, it is a challenge
to distribute computing tasks to have a balanced infrastructure. Therefore, the use
of container-management systems is essential since it considers the devices’ available
resources to allocate functions effectively and closer to the end devices [3]. To control
service placement in a heterogeneous infrastructure, systems like Kubernetes depend
on a smart scheduling mechanism able to identify the edge network infrastructure and
make decisions based on devices’ capabilities such as Random-access Memory (RAM)
and Central Processing Unit (CPU) [4].

In a serverless-edge-computing environment with a data-intensive workload, there is an
issue with transferring information effectively without sending data back and forth when
data is spread between cloud and edge storage. Regardless of where the ping-pong data
flow is happening, either device-edge-cloud or device-edge-device, the latency increases
significantly in proportion to the amount of data. Additionally, data-intense workloads
may lead to high inter-network traffic causing network traffic overhead when processed
on edge. If the data-intense workloads are processed on the cloud, they can profit from
high-speed LAN in data centers; nevertheless, the use of cloud data centers may increase
financial costs. Thus, during the function’s deployment, data locality is essential in
serverless edge computing since responses are faster according to the function location
and the distance between the function and data. Therefore, function and data placement
are critical elements to be evaluated during function scheduling [5].

1.2 Problem Statement
As an example, we consider a typical machine learning (ML) workflow scenario where the
data that need to be processed are collected from cameras and stored in a cloud storage
service such as Amazon Web Services (AWS) Simple Storage Service (S3)2. Taking
into consideration that in a common ML workflow, the data needs to be preprocessed,
trained, and the ML model evaluated and deployed. If we have an environment where
part of the ML flow is executed on edge and part is executed on the cloud, for single
end-to-end workflow execution, this data and model need to be transferred multiple times.
In this case, by the end of our workflow execution, we will have an intensive data transfer
scenario between edge and cloud where every ML step needs to download its input and
upload its output [6]. If the ML flow is completely executed on the cloud, it might incur
high financial costs and latency. On the other hand, a flow mainly executed on the edge
benefits from the short distance and lower financial costs. However, the increase of data
processing on edge result in inter-network traffic, which may debilitate the workflow.

Therefore, data locality awareness, bandwidth, and processing capabilities are essential
for an edge-cloud scheduling system. A scheduling system with such characteristics can
distribute the tasks on edge and the cloud according to its availability and data location.

1https://kubernetes.io
2https://aws.amazon.com/s3

2

1.3. Research Questions

In this scenario, we can observe four main challenges to be considered in data-intensive
edge-cloud workflows as follows:

Service Placement It is a known obstacle in edge computing [7]. In a serverless-
edge environment, the scheduler performs the function placement based on devices’ and
workload attributes. A data-locality-aware scheduler can improve the flow by predicting
which node can quickly access a file based on bandwidth availability between node and
storage. Thus, functions can be placed closer to their input data. By placing the function
closer to its input data, we decrease the data traffic in the network and consequently
latency.

Runtime Data Transfer During a request execution, the serverless function needs to
transfer data from a storage node. In an environment where data-locality awareness is
not provided, the data would be transferred from any random storage node. Considering
that the nodes can be placed in different data centers, the flow can be improved by
identifying where the data is located and what the network status and consequently
transfer the necessary data from an optimal storage [8].

Data Index In a container-managed environment, the scheduler controls when and
where the functions will be placed. In data intensive scenarios, Rausch et al. [9] have
shown that system scalability and data throughput can be improved if the scheduler
considers functions’ input and output data. In order to provide data-locality, either
during scheduling or runtime, the framework needs to have access to information about
existing data in the cluster. Thus, it is necessary to create a data index which can be
quickly accessible whenever necessary.

Bandwidth Graph The bandwidth graph is a data structure that stores the available
bandwidth between nodes in the network. Data-locality leverages the network state
knowledge to find the shortest route between two nodes. However, authors in [10] mention
network monitoring as an issue in edge computing. Generally, precise monitoring creates
an additional overhead in an already limited network. Thus, we consider lightweight
solutions to generate a bandwidth graph that reflects the network traffic availability
between the nodes in the cluster.

1.3 Research Questions

The research and implementation is this thesis are based on the following research
questions:

3

1. Introduction

RQ1: Which components are necessary to enable data-locality-aware
scheduling in state-of-the-art container schedulers?

In a container-based system, scheduling is a crucial factor for balanced resource usage
in the cluster. Container management systems available in the development community
offer useful scheduling features such as CPU and RAM resource-based filtering and
scoring. However, in a data-intense exchange scenario with limited computing resources
like serverless edge computing, the scheduler needs extensive recognition to improve
the running environment and consequently the scheduling mechanism. Rausch et al.
present the Skippy Scheduler[9, 11]. Skippy is a custom Kubernetes scheduler that
scans the edge infrastructure and makes decisions based on edge devices and workload.
Besides computing resource capacity, Skippy is capable of identifying specific workflow
characteristics like Graphics Processing Unit (GPU) and devices’ locality like edge and
cloud. However, Skippy does not consider data locality, which is crucial in data-intensive
scenarios like serverless edge computing. To solve the data-locality problem during
scheduling, we propose a Skippy enhancement to identify existing data on the storage
nodes in the cluster and use data placement and network state as attributes during the
scheduling decision process.

We propose to extend Skippy to recognize files used by the serverless function and
schedule these new serverless functions by the file location in the cluster. The nodes
which host data files are referred to as storage nodes throughout this thesis. As an
example, if we say functionA reads fileA and this fileA exists in multiple storage
instances across the cluster like storageNodeA, storageNodeB and storageNodeC. Our
Skippy Data Scheduler should be able to identify which candidate host node has better
bandwidth availability to either storageNodeA, storageNodeB or storageNodeC. Our
Skippy Data Scheduler should score the candidate nodes based on their capability to
access the requested file in a storage node during the scheduling process. To achieve that,
we propose additional components that provide (1) a data index with metadata of all
files present in the storage nodes in the cluster. To provide the bandwidth availability
between the nodes in the cluster, we propose a network monitoring tool that creates (2)
a bandwidth graph of all nodes and storage nodes in the cluster. During the serverless
function deployment, the user adds Kubernetes labels that identify the files necessary.
Skippy Data Scheduler reads these file labels and accesses the data index to query the
storage nodes which contain the requested file. Finally, the scheduler scores the candidate
host nodes based on their bandwidth availability to access the requested file in a certain
storage node. By the end of the scheduling process, the node with the highest score hosts
the serverless function.

RQ1.1: what is the performance impact of providing data storage
information to the scheduler?

Data-locality solutions that depend on file metadata have the challenge of low-latency
data access. If a scheduler needs to know where the data is placed across the network,
it is inefficient to search for the data during its scheduling time. On that account, we

4

1.3. Research Questions

suggest a solution that identifies the existing data on the storage instances and stores
this metadata in a key/value store, which can be accessed during scheduling and runtime.
This solution creates a data index that works as a lookup mechanism to the existing
data in the storage instances present in the network. To interact with the scheduler,
we propose an independent component responsible for creating and updating the data
index. This data component makes the data index available by storing the data index in
a key/value caching system. Once the data index is stored in a caching system, it can be
retrieved by the scheduler. We hypothesize that this approach allows low-latency access
to the metadata information during scheduling time and runtime.

RQ1.2: What is the tradeoff for providing inter-node bandwidth
information to the scheduler?

Network monitoring plays an important role in enabling data locality awareness. Existing
solutions like iperf 3 deliver precise network metrics. However, such solutions add overhead
to the network, which can be considered intrusive. In data-intense workloads where
the network is already overloaded with constant transfers between device-edge-cloud
networks, an additional load is not an option. To overcome this challenge, we propose two
non-intrusive networking monitoring solutions to aid the data-locality process without
adding extra network load.

We create a bandwidth graph between the storage nodes and devices present in the
edge and cloud networks. In the bandwidth graph, G = (V, E) where V stands for the
vertices and represents the devices while E is the edge that connects the vertices. In
our bandwidth graph, the edge graph E is represented by the link availability between
the nodes in the network. Once the bandwidth graph is created, it can be low-latency
accessed by the Skippy Data Scheduler or Skippy Data Software Development Kit (SDK)
to support during the decision-making process.

We propose a network monitoring solution that collects metrics from the edge devices
and creates an estimated bandwidth graph based on these metrics. We hypothesize that
this approach allows efficient bandwidth graph creation without adding extra network
overhead. However, we hypothesize that our bandwidth graph does not have the accuracy
as intrusive tools. Therefore, our bandwidth graph might not have the same accuracy as
intrusive tools, but it provides an overview of the current network usage. We consider
the accuracy a tradeoff to have a lightweight bandwidth graph.

RQ2: What additional runtime mechanisms are needed by a serverless
system that performs data locality-aware scheduling?

Scenarios like the ML workflow example described above, which require multiple storage
data transfers, are challenging for data-locality solutions. The scheduler can improve the
workflow by placing the function on a node close to its input data. However, whenever a
serverless function is triggered, there is another decision about which storage to use during

3https://iperf.fr

5

1. Introduction

runtime. As an example, when a functionX is placed on nodeA, during its execution
functionX needs to identify the best storage to download or upload the data necessary for
its processing during runtime. Since the network usage might quickly change, this decision
should not be taken only during scheduling time. Therefore, we need a runtime solution
that supports the scheduler in its data-locality mechanism. To address this challenge,
we introduce a python library SDK which automatically downloads and uploads data
to the storage. The SDK reinforce the data-locality decision taken by the scheduler.
Nevertheless, the SDK still has the autonomy to identify network load and to make
different decisions in case of environmental changes.

1.4 Solution Approach
In this thesis, we present a data-locality scheduler and a data-locality runtime SDK. We
propose a network monitoring tool that provides bandwidth availability between the
cluster nodes to support the decision-making process during scheduling and runtime.
Additionally, we also create a data index containing the file’s metadata from the storage
nodes. As already described in the previous section, in data-intensive serverless edge
computing scenarios, the data transfer between functions may result in high inter-network
traffic and cause network congestion and low data throughput. This process can be faster
and more efficient if the framework knows where the data is located and the current
network traffic usage. In other words, data-intensive serverless scenarios can profits from
data proximity when a function is placed closer to the data instead of using remote data
storage centers [6].

To solve the data-locality for function placement, we propose to extend the Skippy
scheduler presented in [11, 9]. By consulting the requested data in a data lookup search
mechanism provided by the data index. Additionally, the scheduler uses the bandwidth
graph, which provides an overview of the current network usage and its availability
between the devices in the network. Further, the scheduler can score the cluster nodes
according to the data index and bandwidth graph.

As a runtime solution, we propose a SDK to resolve the requests during the function
execution. Once the function is placed on nodeA, it still needs to download and upload
data during its execution. In case the data is replicated across several storage nodes in
the network, the function still needs to be able to find the shortest path. Similar to the
data locality in the scheduler, our proposed SDK uses the current bandwidth graph and
low latency data index to identify the best storage node to be connected with.

To support this decision-making process during scheduling and runtime, there are two key
factors: data index and bandwidth graph. To build a fast data index lookup mechanism,
we need to scan files and storage in the network constantly. Once this information is
accessible, we can build a data index and store it in a key/value store. Throughout this
thesis, we refer to the data index as storage index. The second essential mechanism in
our data-locality framework is the bandwidth graph. To find the shortest route between
nodes A and B, we need to know the network status at an exact instant in time. To

6

1.5. Structure

solve that, we build a network monitoring solution that uses non-intrusive techniques to
overview the current network usage.

To evaluate the project, we create a testbed that runs our solution end-to-end. Addition-
ally, we use a simulator to obtain the results of our scheduler when run in a cluster with
a large number of devices.

1.5 Structure
The remainder of this thesis is structured as follows. In the current Chapter, we introduce
the problem and propose a solution for it. Chapter 2 presents basic concepts necessary to
understand the content of the thesis. Further in Chapter 3, we show similar approaches
for some of the problems. Chapter 4 gives a high-level overview of the system and its
components. In Chapter 5, we detailed how the scheduler works, which modifications and
improvements are implemented. In Chapter 6, we continue to describe how the framework
manages the metadata efficiently to have low latency access to it and consequently to speed
up the decision-making process. Chapter 7 shows how we obtain the network metrics
necessary to build a reliable bandwidth graph without intrusive network monitoring
methods. In Chapter 8 we detail tests and experiments performed. The results show
whether the solutions proposed are feasible or not. Finally, in Chapter 9, we conclude
the thesis and present bottlenecks and possible continuation of the project.

7

CHAPTER 2
Fundamentals

In this chapter, we introduce the background necessary to understand the project. We
give an overview of serverless edge computing and its main applications in the current
market. Additionally, we present the advantages and challenges of the serverless edge
computing approach.

2.1 Serverless Edge Computing
Cloud computing introduced new business models which enable unlimited computing
resources upon request. It delivers fast and on-demand services like computer power,
cloud storage, databases, and network services. The growth of IoT introduced a new
scenario to cloud computing. The increase of low capability devices and its intense data
transfer workflow created a scenario in which a large amount of data produced by these
devices was constantly moved back and forth from edge and cloud [12]. Edge computing
suggested the leverage of end devices’ capabilities to enable fast processing [13].

The adoption of serverless edge computing provided a fast, scalable way to produce and
process data close to its data source [14]. Serverless edge computing enables low latency,
fast processing, and low bandwidth usage for applications that rely on data collections
and analysis such as ML. Data intense workflow profits from the proximity between data
source and data center, leading to a higher performance since processing and storage are
also closer to the end device. However, its “pay-per-use” cloud-designed business model
became financially challenging for mixed edge-cloud infrastructure with data-intensive
workflows [15]. In [16, 17], the authors summarize how the costs to run a FaaS system
like AWS Lambda increase drastically according to storage access, function duration, the
number of invocations, and allocation of computational resources like RAM and CPU.

Serverless edge computing offers low latency for real-time applications. As an example,
in a traffic control environment where cameras and sensors collect real-time traffic data,

9

2. Fundamentals

the system needs to react as fast as possible whenever necessary. In case of an emergency,
e.g., ambulance or fire alarm, the traffic must respond immediately. Thus, the processing
closer to the device enables low latency responses. Additionally, it also avoids unnecessary
cloud data transfer hence, avoiding bandwidth overhead [18, 19].

2.1.1 Serverless Computing
According to [4], serverless computing is a new business model in which the developer has
to take care of as little as possible of server maintenance. Serverless computing emerged
with properties like event-driven and FaaS computing that fits in the edge computing
infrastructure with simple tasks execution [20].

Using the characteristics of cloud computing, serverless computing allows users to scale
their application’s resources up and down depending on workflows’ requirements. As the
name already suggests, there is no need to maintain any server, virtual machine (VM),
containers, or any infrastructure resources. Once a function is deployed on a specific
platform, it can be increased or decreased depending on the necessity of each application
[21]. However, as an execution model that hosts short-lived functions and do not do
any data management, serverless computing presents data management obstacles with
services that produce and process large amount of data. Thus, edge computing enables
serverless computing to process the produced data closer and faster without constantly
sending the data to the cloud [22].

FaaS presents an ability to be easily and quickly modified. It simplifies the complicated
deployment process for the developer, thus providing the developer with more time to
focus on programming tasks instead of operational ones. The simplified deployment and
low maintenance are also influencing FaaS to become widely used in the edge computing
topology [23]. As IoT devices and sensors present on the edge network have limited
computational power, thus the workflow can profit more from the proximity with the
data source if its task requirements do not require extensive computational resources.

2.1.2 Serverless Edge Computing Architecture
Fig. 2.1 shows an overview of a typical serverless edge computing architecture. The
top layer represents a standard cloud infrastructure that offers on-demand scalable
infrastructure and services. The intermediate layer illustrates the edge network. This
middle layer represents the processing nodes and data centers closer to the devices. The
bottom layer represents end-user client devices which often collect a large amount of data
that needs to be processed and stored. In a typical serverless edge architecture, events
are triggered by devices and processed on the edge or cloud network. The utilization of
edge nodes’ resources capabilities reduces cloud financial costs, and it increases latency.
Additionally, edge computing includes similar cloud solutions such as storage and other
processing services. Although the processing shift from cloud to edge network decreases
cloud costs, it may lead to provisioning challenges due to the heavy utilization of its
scarce computational power [24].

10

2.1. Serverless Edge Computing

Although most of serverless edge computing platforms work with three layers as base
architecture, the architecture details may differ according to the platform hosts like the
cloud providers such as AWS Greengrass1, Azure IoT Edge2 or even the open sources
like OpenWhiskey3, Kubeless4, Nuclio5 and OpenFaaS6 [25].

Figure 2.1: Serverless Edge Computing Architecture

As displayed in Fig. 2.1, an edge orchestration system is composed by computation,
execution and coordination [14]. Scheduling is part of the coordination mechanism in
serverless edge computing. In an orchestration system, the coordination is composed
mainly by three functionalities: queue, controller and scheduler. Every incoming message
arrives in queue, the controller validates the messages in the queue. Once the message is
verified and the current scheduler is not overloaded, the message is taken by the scheduler
which filters, scores and binds the message in a cluster node [14]. The scheduling process
is explained in detail in Chapter 5.

2.1.3 Application Scenarios
Serverless edge computing is becoming popular among scenarios that present hetero-
geneous devices constellation and data-intensive workflows. The proximity between
the processing center and data source is enabling low latency and real-time processing
scenarios. As an example of its current usage, we can describe typical serverless edge

1https://aws.amazon.com/greengrass/
2https://azure.microsoft.com/en-us/services/iot-edge/
3https://openwhisk.apache.org/
4https://kubeless.io/
5https://nuclio.io/
6https://www.openfaas.com/

11

2. Fundamentals

computing scenarios. The scenarios described below leverage the proximity to the data
source to enable fast processing. Serverless edge computing provides the means to
real-time processing close to the end user. As data-intense producers, the scenarios listed
below would profit from our data-locality solution described in the Chapter 4 to place
the functions close to the data, which leads to faster execution time and lower bandwidth
usage.

Edge Intelligence

Edge intelligence refers to systems where edge nodes have the autonomy to orchestrate
and distribute the tasks between themselves. Edge intelligent systems do not only produce
and collect data but also react upon them efficiently [26]. Compared to typical edge cloud
architecture where the data is transferred with minimal processing on edge nodes, edge
intelligence brings advantages such as low latency and energy saving due to its proximity
to the end device. It also provides scalability; an intelligent task distribution induces
idle nodes to share tasks with currently overloaded nodes. Furthermore, in an intelligent
edge system, the orchestration mechanism, which can identify its surrounding properties,
can profit maximum from it. Once there is an edge overhead, tasks can be easily shifted
to the cloud. This guarantees high availability and scalability [27]. Edge-intelligent
systems can improve their advantages such as low latency and task distribution with a
data-locality scheduling solution described in Chapter 5. The data-locality awareness
provided during scheduling helps the edge intelligent systems better task distribution,
leading to better results like low latency and energy saving.

Machine Learning

The rise of IoT and the large amount of data collected by sensors on the edge network
is pushing the adoption of ML. ML allows the optimization of an application according
to incoming analyzed data According to [28], a ML workflow consists basically in 1)
pre-process the collected raw data 2) train raw data 3) evaluate and deploy trained
model.

ML is a data driven approach used to teach applications how to perform tasks like
classification, prediction and recognition [29]. In serverless edge computing, ML is being
largely adopted due to the task functionalities previously described. In [30], the authors
present an innovative cognitive assistance concept. Data collected in sensors around
an urban area assist cyclists to predict cars on the next street even if they are still not
visible to the human eye. The authors also affirm the key role of edge computing in such
scenarios. In Chapter 8, we describe a typical ML workflow to evaluate this project. The
experiments use a ML workflow to show the benefits of data-locality awareness during
serverless edge function placement.

12

2.2. Scheduling Data Intensive Workloads

Smart City

More and more cities are converging on the smart city concept. A smart city scenario
might include smart traffic control, smart parking, or any other urban area which uses
end devices such as sensors to collect data. The collected data can be used for real-time
processing and environment monitoring. Serverless edge computing enables the data
collection from sensors around the city to be processed on edge data centers. The edge
processing allows the applications to react according to the environment’s information
quickly. As an example, traffic lights might promptly respond to an accident or any other
emergency case, or bikers can predict cars coming even when they are still not visible to
the human eyes preventing accidents [31].

Industry 4.0

Modern factories use serverless edge computing to improve their production line. In [32],
the authors introduce an interconnected and intelligent production line for a manufac-
turing company. The production line is composed of robots which collect data through
sensors and cameras interconnected to the edge nodes. The IRobot production line is
enforced by edge computing’s ability to process data produced by the robots. Edge
processing allows the robots to quickly act upon environmental change and dynamically
auto reconfigure.

Mobile Edge Cloud

Mobile edge cloud is an emerging technology that enables interconnection between devices
as in a home network. For example, in a smart home, the devices can communicate
through a home network. In a mobile network, this is not possible since, in the mobile
network, every device is isolated in the network. A conventional solution is to send
the data to a cloud center, where all the devices have access. However, the increase of
cloud traffic data leads to high bandwidth, latency, and high financial costs. Mobile
edge computing connects stationary devices to a local area network facilitating the
intercommunication between the devices [33]. In [34], the authors highlight the struggles
of the current mobile cloud edge computing due to high latency and low-speed uplink
and downlink. The ultra-high availability and ultra-low latency promised by 5G presents
a new range of serverless edge scenarios such as immediate traffic reaction in connected
cars on a highway in case of an accident or a real-time response for health monitoring
solutions.

2.2 Scheduling Data Intensive Workloads
As data-intensive scenarios increase, schedulers are targeting the challenges faced by
heterogeneous workloads in serverless edge computing. In [9], authors enumerate these
technical challenges as follows:

13

2. Fundamentals

• heterogeneous environment and workload: an edge cloud network is composed
of multiple nodes which present different processing capabilities. Additionally,
executed functions contain different resource necessities. An efficient scheduling tool
should analyze what the environment offers and match with functions’ requirements.

• locality: data might be locality sensitive e.g. some scenarios might require data to
be processed next to the data consumer.

• latency: certain workloads require fast response. The process directly on the edge
node reduces the latency by avoiding unnecessary cloud connections.

• bandwidth: constant data transfer between edge nodes intensifies overhead on
the network. Regardless of cloud or edge, intense network traffic can congest the
network and impact on the application’s performance. Hence, to decrease the
network traffic, the scheduler must know function’s required data in order to favor
the bandwidth during task and data placement.

2.2.1 Kubernetes

As stated in [4], serverless computing is generally adopted in a distributed landscape
where the serverless functions are placed on different cluster devices. For this scheduling to
happen, serverless computing relies on a framework that can facilitate and orchestrate the
deployment and management of functions. Kubernetes is the open-source orchestration
tool used in this thesis as described in Chapter 5. It provides flexibility and scalability
for users to deploy applications at scale, it contains components which manage the three
domains coordination, execution and computation.

As displayed in Fig. 2.2, Kubernetes has a main component control plane which acts in
the three layers coordination, execution and computation. K8s control-plane is composed
of four separated components: api-server, kube-scheduler, kube-control-manager and
etcd. The api-server is responsible to control the incoming flow. It allows incoming
pods from the queue to the scheduler. Kube-scheduler places pods in worker nodes
according to pod’s requirements and cluster environment while kube-controller-manager
monitors the cluster status and it stores this information in etcd7. Furthermore, in each
cluster worker there are three additional components to complete Kubernetes architecture:
kube-proxy, kubelet and container-runtime. Kube-proxy is a networking tool responsible
for forwarding incoming Hypertext Transfer Protocol (HTTP) requests to a specific pod
inside a cluster node. Kubelet execution engine identifies pods assigned to itself, it pulls
the container images if necessary and it starts a pod’s container. The container-runtime
is a third-part computing application necessary to be previously installed in order for
Kubernetes to run the container. As containers leverage host computation resources, the
container-runtime application is also responsible for resource allocation. Every running

7https://etcd.io

14

2.2. Scheduling Data Intensive Workloads

container allocates real host resources in order to prevent over provisioning on a specific
worker. For this project, we have used Docker8 as a container runtime application.

Figure 2.2: Kubernetes Control Panel

The Kubernetes scheduler’s decision-making process is based on a sum of scores defined
by priorities. The framework also allows the possibility to use another scheduler or even
run it parallel with another one. Along with a scheduler, Kubernetes1 also provide a
kube-proxy which is responsible to forward the incoming requests to the least loaded
worker that is able to execute that request. Details about Kubernetes mechanism and its
scheduling process are further discussed in Chapter 5.

2.2.2 Scheduling Problem
The proposed solution described in the previous chapter extends the Skippy scheduler
by implementing functionalities to address the data locality, data movement tradeoff,
bandwidth, and proximity between the nodes. To achieve that, we proposed to create
scheduler priorities for the existing Skippy scheduler. Chapter 5 explains how Skippy
Data scheduler addresses the data locality problem. Nevertheless, to understand how the
scheduling process works, we need to analyze the scheduling problem.

The Skippy scheduler assigns new pods to a node based on scores calculated by priority
functions. In [9], authors describe this problem as s ∈ S : P × N → R. In which S
denotes a set of priorities, P denotes the set of pods awaiting scheduling and N is the
domain of nodes. The Function schedule P → N selects the node by calling function

8https://www.docker.com/

15

2. Fundamentals

score for each pod and for each node. Each of these priorities matches a pod’s requirement
to a node’s ability to fulfil these requirements. After the score has been calculated, the
node which best fulfils the pod’s requirement presents the highest score which is then
multiplied by its priority weight. The node which has the maximum sum of priorities’
score is elected to host the pod as displayed in Eq. (2.1).

schedule(p) = arg max
n∈N

|S|�
i=0

ωi · Si(p, n) (2.1)

As kubernetes weights ωi every priority equally to 1, Skippy scheduler offers a weight value
setup which can tune the priorities according to the workflow’s necessity. Considering a
heterogeneous workload, priorities can have different importance e.g. in a intense data
scenario, data locality priority might have higher impact on the flow performance than
computational resource priority while in a intense CPU based workflow, a bandwidth
priority is not so relevant. Therefore, the optimized scheduler does not only calculate
priorities score but it also supports weight values to match the workloads’ requirement
[9].

In [35], the authors present a algorithm complexity for the problem. Overall, the schedul-
ing complexity depends on each priority function’s specific implementation. However, if
we dismiss this fact, we can consider the minimum scheduler complexity. In our context,
if there are a number of incoming pods p and n nodes in the cluster, during the scheduling
an incoming pod needs to check priorities s times, for all nodes at least once. Considering
that in our case we have 7 priorities + 1 overall sum calculation, we can say for our
scheduling algorithm s = 8. Therefore, our scheduling algorithm needs p × n × 8 which
can be written as the algorithm’s complexity of O(p × n).

2.3 Data Sharing at the Edge
In a typical serverless edge computing workflow, the data is shared over the network as
displayed in figure 2.3. More specifically, data can be shared between the edge architecture
layers as edge ↔ edge, edge ↔ cloud and cloud ↔ cloud.

Figure 2.3: Serverless Function Workflow

Data sharing across the network is a necessary tradeoff to build web applications. The
growth of real-time data producers at edge computing is pushing new solutions to improve

16

2.3. Data Sharing at the Edge

data transfers between edge and cloud network [36]. Data-locality awareness solutions like
Hadoop offers a MapReduce technique to locate the data. To schedule its jobs efficiently,
Hadoop first identifies the files across the cluster. Once Hadoop is aware of the data,
it distributes the tasks according to the data location [37]. Even though Hadoop has a
data-locality awareness, it does not consider a heterogeneous environment, making the
state-of-the-art Hadoop unsuitable for serverless edge computing.

In an attempt to overcome the intense data sharing bottleneck between edge networks,
solutions propose approaches like data indexing [38]. Our solution described in Chapter 4
profits from a data index to quickly locate the data in the cluster and consequently
decrease the latency and bandwidth usage. Our data management mechanism is described
in Chapter 6.

2.3.1 Data Index Complexity
Data indexing is one of the available approaches to enable fast information access to
data-intense serverless edge computing. In this technique, the knowledge about the
storage environment is collected and stored to be accessible when necessary; this is often
referred to as data locality. In [39], the author describes full-index, central-index and Data
Hashing Tables (DHT) as approaches to keep the data index up to date in a data-intense
workload scenario.

In a full-index, every node at the edge network keeps a copy of the storage nodes and
their metadata. As every edge node keeps a full-index copy, this approach profits from
the quick index access. However, it has drawbacks regarding scalability. It is hard to
keep every node’s full-index copy synchronized since the update needs to be broadcast
to fellow nodes in every change. Besides, the constant information transfer to maintain
the full index might add additional overhead on the network [40]. A central-index relies
on a central server which keeps the index up to date. A central node responsible for a
single task suffers the single-point-of-failure principle, which leads to performance and
fault-tolerance drawbacks [41]. At the same time, DHT systems rely on a key-value
lookup mechanism to retrieve data information. In [42], authors present a DHT algorithm
to locate the node which holds a piece of information quickly. It assigns a key to data
and nodes; thus, the node which contains key k calls its successor, the successor is defined
by the closest node id to k.

In our proposed solution, we use a third-party application Redis9 which allows a dis-
tributed key/value store mapped across the cluster and it handles a key-value lookup
search. Our data index is built upon content from the storage nodes; we referred to it
as “storage index” throughout this thesis. The detailed storage index construction and
maintenance are discussed further in chapter 6.

9https://redis.io

17

CHAPTER 3
Related Work

This chapter gives an overview of solutions existent in the research community. Although
we investigate these challenges like service problem placement and scheduling from the
serverless-edge-computing view, many of these issues have already been studied and
discussed for other scenarios. This chapter relates existent approaches for the challenges
we are addressing in this thesis. It is structured as Section 3.1 where we target related
research involving task distributions in general, Section 3.1.1 where we discuss approaches,
especially for an edge environment. Following, we show in Section 3.2 proposed resolutions
in different types of scenarios and how DHT,in Section 3.2.1 , plays a crucial role in this
problem. In Section 3.2.2, we show how temporary disk storage can improve workflow
performance. Further, Section 3.3 describes research that collects network status in
limited computational ecosystems and how these metrics decrease bandwidth overhead.

3.1 Service Placement Problem

Edge-computing topology is commonly known as an intensive data producer, and in some
cases, it needs to process large amounts of data. The service distribution also needs to
consider this factor to choose the feasible host for the task execution. In [43], related
researchers solve the problem in different ways according to their specific needs. In [44]
authors use a multi-component application where the tasks are placed according to the
ecosystem’s components while in [45] authors focus on workload. The task placement
should match each use case to reduce the overhead communication between the services
and achieve high performance. According to [46], the job scheduling should also be
responsible for other essential tasks like prioritization, capacity management, failure
recovery, and job completion.

19

3. Related Work

3.1.1 Scheduling at the Edge
Rausch et al. present skippy in [9]. A Kubernetes scheduler can make decisions based
not only on typical CPU and RAM usage but also on specific node attributes such as
GPU. Skippy brings an essential aspect for workflows such as ML where accelerators play
an important role. A detailed review of Skippy’s approach is explained in Chapter 5.

A similar approach is shown in [35] where a multi-objective optimized algorithm for
container scheduling is developed. In an attempt to minimize the scheduling tasks
processing time, the developers use a NP − complete problem as optimization criteria.
The scheduling algorithm is evaluated in the container orchestration system Docker
Swarm1. Its decision-process mechanism scores incoming containers based on CPU and
RAM utilization, image transfer from container registry, nodes which match containers’
requirements, and clustering of containers which favors related containers to the same
node. According to the authors, a multi-object algorithm performs with a complexity of
O(c × n) where c is a set of containers while n is a set of nodes.

Following a different methodology, KaiS [47] propose a learning-based scheduler designed
for a cloud-edge environment that aims to reduce incoming request processing time in the
long term. To achieve that, the authors propose a coordinated multi-agent actor-critic
algorithm for its request dispatching. Additionally, KaiS applies a graph neural network
for its orchestration and decision-making process. Results show that this scheduling
framework reduces the system processing rate by approximately 14%.

The edge scheduler in [48] focuses on the current network 5G. According to the authors,
the 5G scenario introduces new network challenges as the edge nodes are connected to
the internet. Still, they are not in the same edge network and have different subnets
that mean they need to communicate via public IP. As the edge nodes are placed in
various isolated networks, it is necessary to enable public Internet Protocol (IP) in each
edge node to enable cross-communication between themselves. The custom Kubernetes
scheduler addresses computational resources like CPU and RAM. However, this solution
does not consider data-locality awareness in the edge-cloud scenario.

3.2 Data Placement
The idea presented in [49] goes beyond function placement. In this paper, data and
function locations are equally important in an intensive data scenario. The authors say
that the best approach for data storage in an edge network is to store the data closer to
the execution node. This strategy decreases the data traffic and speeds up the service
execution.

To avoid the overhead of sending a large amount of data to the cloud repeatedly, [50]
created an optimization algorithm that allows a node in the edge network to share
its resources and act as a micro data center. Considering a homogeneous edge-cloud

1https://docs.docker.com/engine/swarm

20

3.2. Data Placement

infrastructure where services can be executed either in the edge or in the cloud, once
there is an incoming request, the algorithm can decide the shortest path for that request,
accounting for data and function location cloud available resources. In [51], the authors
used a similar approach; they created storage units in the edge network. Thus, devices
could access the data quicker since there was no need for remote cloud requests.

In [52], it is noticed that accessing remote data storage or caches during task scheduling
affects the performance significantly. Therefore, it developed a heuristic optimized
schedule system for data access. They use the input data and node’s resources to
calculate possible paths for a specific task. Once the paths are known, it is possible to
identify the shortest route and the first and the exit node. Whereas in [53], the authors
reduced the bandwidth usage considerably by using a cache system in the edge network
before sending the video packets to the long-distance cloud centers.

Another distributed data placement is proposed by Hadoop2. Its Hadoop Distributed
File System (HDFS) strategy enables a data file system equally distributed across the
cluster. Due to its MapReduce technique, Hadoop provides high efficiency and high
availability in its lookup search [54]. MapReduce programming model takes as input a set
of key/value populated by each cluster node containing every data piece stored. It reduces
to a key/value single data list only, which allows quick access to the data [55]. Although
it presents an efficient data placement mechanism, it still presents drawbacks. Its default
implementation is designed for a homogeneous infrastructure where all the nodes have the
same storage capacity. Nevertheless, researchers [54, 56] are addressing these problems by
creating special Hadoop solutions for heterogeneous clusters and context characteristics
awareness.

3.2.1 Distributed Hash Table
DHT is mentioned in [57] as a solution for storage and quick access to the data through
the network. However, the author also points out that most of the DHT methods are
designed to distribute the data equally within the network, which might not be the case
of serverless-edge computing, since in this case, the data can be present only on a few
nodes.

A Round-Hashing method is proposed in [58] for data storage on distributed servers
solution, which might be a suitable option for the problem stated in this proposal. An
ideal hashing algorithm should be available during deployment and runtime. Thus, the
scheduler and the API can quickly access it.

Another caching solution for request routing is proposed in [59]. The authors present an
algorithm able to improve the latency for content access of incoming requests. A caching
method that can store data and paths was developed. Once the paths are stored in the
cache, the framework can use this information to predict and allocate data accordingly.
Consequently, the following requests will be executed faster.

2https://hadoop.apache.org

21

3. Related Work

The use of caching systems in an intensive data environment avoids the overhead of
resources like bandwidth. It decreases the traffic volume on the network and consequently
reduces the latency. Nevertheless, every use case has a different requirement, and therefore
it is necessary to analyze every situation carefully to find the best-caching strategy [60].

3.2.2 Ephemeral Storage

Often in a serverless-edge-computing environment such as ML, the data needs to be
read-only once, e.g., pre-processed data [61]. This only-once read data is referred to
as ephemeral data. In [62], authors showed that it is profitable to use local storage as
ephemeral storage to avoid high latency to read and write a file that will only read once.
After the data is used, the framework deletes the data. This mechanism takes advantage
of local resources at their maximum, avoids overhead in the network, and significantly
reduces network throughput.

In [63] the authors innovate in its in-memory caching solution designed specifically for
data-intensive serverless scenarios. According to the authors, large object in-memory
storage degrades the caching application as it consumes a significant amount of ram and
it overloads the network. As in serverless computing, there are many situations that
use ephemeral data. InfiniCache proposes mitigation of this problem by intelligently
identifying no-longer-used data and evicting them. The disposal of ephemeral data
reduces the financial costs since it reduces data storage in cloud solutions like AWS
ElastiCache3. Additionally, it provides an intelligent backup methodology in which every
serverless function is responsible for its data backup, which offers high availability within
the cluster nodes.

3.3 Network Monitoring

Network monitoring is an important factor in a distributed systems ecosystem. The
authors in [64] show how one can build a reliable bandwidth graph using intrusive methods
such as iperf 4. In a venture for a reliable result, intrusive tools transfer data on the
maximum network capacity during the monitoring execution. Despite its accuracy, such
methods add additional load on the network and might not be an option in a small time
window or an already heavily used environment. Therefore, [64] presents a mixed solution
of intrusive and non-intrusive methods. It uses effective data transfers to calculate the
network capacity, which is later used as bandwidth metrics. Thus, the framework can
obtain an average between intrusive precise data and non-intrusive, less precise data.
Additionally, it proves that it is more profitable for decision-making to have a bandwidth
graph built from reliable and estimated data than to have completely reliable data but
with an overloaded network.

3https://aws.amazon.com/elasticache
4https://iperf.fr

22

3.3. Network Monitoring

Another solution [65] proposes a self-reporting network monitoring system. The telemetry
application introduces a mechanism where the packets report the network speed during
packet transportation in the network. As the packet report adds extra load on the
network, the authors proposed an orchestration framework where a network telemetry
scheduler can identify and select which node and route should be currently monitoring.
This monitoring system provides reliable results without affecting the bandwidth.

23

CHAPTER 4
System Overview

The goal of this thesis is to add data-locality awareness to the existing skippy Scheduler.
We develop a system that identifies the files in the storage in the Kubernetes cluster and
creates a storage index. Additionally, our system monitors the network traffic to generate
a bandwidth graph representing the network availability. To support the scheduling
decision, we reinforce the data-locality awareness during function runtime. This chapter
presents the core components of this system.

In Section 4.1, we list the components used in our system and give a brief explanation of
how the components play together. Section 4.2 introduces our data-locality scheduler. In
Section 4.3, we show how the storage index is created. Further in Section 4.4, we explain
the storage node prediction during scheduling and runtime. Section 4.5 gives a brief
overview of how we create the bandwidth graph. In Section 4.6, we detail how to use
Skippy Data SDK to make data-locality decisions during runtime. Finally, in Section 4.7,
we show the function deployment mechanisms of our system.

4.1 Overview
As this project is an extension of Skippy scheduler developed in [9, 11], it is important
to keep consistency between the tools used in the two projects. Hence, we selected
Kubernetes1 as Container Orchestration (CO) platform, Skippy Data, described in
Chapter 5, as scheduler, OpenFaas2 as serverless framework and MinIO3 as storage
system. Additionally, we use Redis4 as key/value store and Telemd5 as system metrics
collector. Furthermore, we introduce new components developed during this thesis.

1https://kubernetes.io
2https://github.com/openfaas
3https://min.io
4https://redis.io
5https://github.com/edgerun/telemd

25

4. System Overview

Skippy-cli assists the function deployment, Skippy-network creates and updates the
bandwidth graph and Skippy Data SDK responsible for data-locality prediction during
runtime.

Figure 4.1: System Overview

In Fig. 4.1, we can see how the components interact in the complete solution. The
tools telemd daemon, skippy data daemon and skippy network work asynchronously.
Telemd collects the nodes’ network metrics and stores them in the Redis system. Skippy
network fetches the network metrics stored in Redis, generates the bandwidth graph,
and stores the bandwidth graph in Redis. Skippy Data Daemon scans the MinIO storage
nodes for files’ metadata and creates the storage index. To initiate the data-locality
decision process, first, the function is deployed with the assistance of our deployment tool
Skippy-cli, described in Section 4.7.1. Skippy-cli assigns the Kubernetes labels necessary
for data-locality scheduling and deploys the function via Faas-cli. Faas-cli creates a
Kubernetes deployment which sends the new incoming pods to the scheduling queue.
Skippy Data scheduler identifies new incoming pod and starts the scheduling process.
At the data-locality priority from the Skippy Data Scheduler, the priority queries the
storage index and bandwidth graph. Then, the scheduler finds the closest feasible node
to the storage node, which contains the functions’ files to host the incoming pod. During
execution time, our Skippy Data SDK automatically downloads the files necessary for
the function from the closest storage node. By the end of the function execution, the
SDK finds the closest storage node again and automatically uploads the produced file.

26

4.2. Scheduler

4.2 Scheduler

Kubernetes is the tool used in this project for containerized workload management.
Kubernetes presents advantages relevant for this project like the ability to run an external
custom scheduler, FaaS integration, and active developments. Kubernetes also provides
a scheduling workflow that has the decision-making capability to place FaaS functions on
the node, which has more computational resources available [66].

This thesis deals with three Kubernetes schedulers: Kubernetes’ default scheduler, the
Skippy scheduler, and our scheduler extension called Skippy Data Scheduler. Skippy
scheduler identifies the cluster node’s attributes like hardware acceleration and resource
usage to match workflow’s requirements. When this resource knowledge is shared across
the cluster, the scheduler can better identify incoming requests and make scheduling
decisions based on each resource’s node characteristics. However, to profit from intensive
data transfer scenarios, it is necessary to learn where workflow data is stored to make
scheduling decisions. We consider the execution of serverless function as workflow and
workflow data, the files consumed or produced by a serverless function. The storage
mechanism is explained further in Section 4.3.

The Skippy Data Scheduler is an extension of the Skippy Scheduler. Specifically, our
scheduler adds data-locality awareness to Skippy’s awareness of node characteristics and
workload requirements. Our Skippy Data scheduler is designed as a framework able to
identify in the environment additional characteristics related to the data workflow like
network Input/Output (I/O) metrics and file metadata. Skippy Data Scheduler is further
discussed in Chapter 5.

We refer to every node participant in the Kubernetes cluster simply as node for any device
participant in the cluster or feasible node for devices able to host a specific incoming
pod e.g. if a pod requires 1 Gigabytes (GB) RAM, a feasible node refers to node which
can offer this amount of RAM. On the other hand, a docker container is wrapped in a
Kubernetes pod. A Pod is the smallest deployable entity that must contain at least one
container.

4.3 Storage Index

Storage plays an important role in this project. Since the project is designed for an
infrastructure with limited resource availability, the storage tools must be reliable and
efficient independently of its current environment. Furthermore, we assume that any
data content replication across the network is handled by the chosen storage framework.

Towards solutions that satisfy data-locality requirements for the two types of storage
used in this project, we decide to use MinIO for file storage and Redis as key/value store
for metadata storage. Both tools are deployed in a local Kubernetes setup and accessible
within the cluster.

27

4. System Overview

To create and maintain the storage index used in this thesis, we use a dedicated component
that asynchronously and regularly checks the MinIO instances for files update and stores
the storage index in our Redis key/value store. The details about the storage index is
described in Chapter 6.

4.3.1 Skippy Data Daemon
The Skippy Data daemon is responsible for creating the storage index. It identifies every
file present on MinIO and places the file’s metadata in a Redis key-value cache. The
daemon constantly runs on the cluster and periodically searches all the storage nodes
and collects information necessary to keep the storage index Section 6.2 up to date. The
Skippy data daemon connects to every MinIO storage node and reads every bucket and
file stat. Once all the files are known, the daemon can build and update the storage index
accordingly. Since there is no specific need for the daemon to run in every node, thus we
can deploy Skippy Data Daemon using Kubernetes default scheduler and priorities.

Besides the storage index, Skippy Data Daemon also stores secondary data which supports
Skippy Data SDK in its decision-making process. This data is described below as:

• Storage nodes: The storage index provides a tree with data properties and
relations like name, size, bucket and node. However, in order to directly connect
to this node, the SDK needs to be aware of its address. Therefore, Skippy Data
Daemon runs periodically and collects the HTTP address of each node e.g. http:
//10.244.2.41:9000.

• Locality type: Each node has a locality type which can be either edge or cloud.
This property helps identify where the node is located. Once the framework is
aware of its location, the SDK can take decisions based on the node’s location.
The locality type is the Kubernetes label which is assigned by Skippy Daemon as
described in Section 5.3.1.

4.4 Storage Node Prediction
Our data-locality solution leverages information from the bandwidth graph and storage
index to predict the closest storage node to transfer the necessary file for the serverless
function. The storage node prediction happens during two moments, as described below.

4.4.1 Select Node at Scheduling
The Skippy Data scheduler uses a Data Locality Priority to predict the closest node
to host an incoming pod. The data locality priority is responsible for searching every
feasible node that can transfer the workflow data quicker from a specific storage node. To
achieve that, the Data Locality Priority learns from the incoming pod, which “consume”
and “produce” files the function needs. Once the file metadata is known, the priority

28

4.5. Bandwidth Graph

queries the storage index to find which storage nodes contain those specific files. Finally,
the scheduler searches a feasible node with higher bandwidth available to transfer the
functions’ files from a storage node option. The prediction of storage node during
scheduling time is part of the Skippy Scheduler, and it is detailed in Section 5.4.3.

4.4.2 Select Node at Runtime

To enforce the Skippy Data scheduler’s data-locality decision, we need to ensure the
prediction of the storage node during the function runtime. The runtime storage node
prediction is necessary because the bandwidth graph can change between scheduling and
runtime. Thus, we created a tool Skippy Data SDK that predicts the storage during the
runtime. In a similar decision process as the scheduler, when the function is executed,
the SDK queries the storage index to fetch the functions’ file metadata. Then, the SDK
searches the closest storage node option according to the bandwidth graph. The storage
node prediction during runtime is detailed in Skippy Data SDK in Section 6.4. Further in
Section 4.6, we show how to use Skippy Data SDK to enable the storage node prediction
during function runtime.

4.5 Bandwidth Graph

To have an overview of the networks’ current usage, we need to create a bandwidth graph
with current availability between the nodes. In order to achieve this, we need to have the
correspondent network metrics from each node. Once we have the metrics we need to
create the bandwidth graph. The bandwidth graph represents the network bandwidth
availability between every node and storage node present in the cluster.

To generate a bandwidth graph without adding extra overhead on the edge network,
we propose two non-intrusive approaches: “Estimated Bandwidth Graph” and “Precise
Bandwidth Graph”. Both approaches generate a bandwidth in a JSON format as displayed
in Listing 4.1. The following subsections give an overview of the tools used to collect and
create the bandwidth graph.

1 {

2 "nodeA": {"storageNodeA": 4958842.4, "storageNodeB": 19651766.4},

3 "nodeB": {"storageNodeA": 25221414.0, "storageNodeB": 5048774.7},

4 "nodeC": {"storageNodeA": 1626606.8, "storageNodeB": 2810665.8},

5 "nodeD": {"storageNodeA": 17612750.1, "storageNodeB": 1368385.8}

6 }

Listing 4.1: Bandwidth Graph Example in Bytes/sec

29

4. System Overview

Telemd

To collect node’s real time metrics, we have used the edgerunio6 telemetry system Telemd.
This tool presents off-the-shelf metrics regarding node resource usage. It also provides
the network’s input and output rates in bytes/s. As the framework needs input from
every device in the network, Telemd needs to run as a daemon on every node on the
cluster. Metrics collected by the tool are stored in Redis. Although the metrics collected
by this tool provides very good insight from the current network state, it is still not
enough to build the bandwidth graph. Therefore during this project development, we
enhance Telemd with new metrics which are described in Chapter 7.

Skippy-network

Skippy-network is a standalone application that reads collected network metrics by Telemd
and calculates the bandwidth graph. Skippy-network works as a daemon application
continuously analyzing Telemd data to provide a current overview of the network overload.
It provides two different approaches to generate the bandwidth graph: “Precise Bandwidth
Graph” and “Estimated Bandwidth Graph”. The “Precise Bandwidth Graph” approach
uses the download and uploads effective speed to generate the graph. In contrast,
“Estimated Bandwidth Graph” reads Linux kernel configuration properties and Telemd
metrics to produce the graph. Details and implementations are discussed further in
Chapter 7.

4.6 Skippy Data SDK
Once the serverless function is placed near the storage node, it still needs to take the
decision during runtime. At the request time, there needs to be a framework or tool
which decides that storageA is closer than storageB. Following these requirements, Skippy
Data SDK is introduced as a Skippy library which considers the storage environment
and its metadata to make runtime decisions.

This python library enables the user to transfer the data from the closest node during
request time. The data transfer can be specified in levels such as download and upload or
even single or multiple file transfers. Skippy Data SDK is further discussed in Section 6.4.

4.6.1 Decorators

A FaaS function can invoke the SDK by Python decorators as shown below. The Skippy
configuration file enables the user to consume and produce more than a single file at once.
The python decorators read the file’s metadata from the Skippy config file added in the
OpenFaas function. The configuration file is the same one used by Skippy-cli, discussed
in Section 4.7.1, for the function deployment as described in Listing 4.2.

6https://edgerun.io

30

4.7. Function Deployment

@consume()
@produce()
def handle(request, consumed_data=None):

produced_data = produce(consumed_data)
return produced_data

Additionally to the configuration file, the user can also use the decorator without Skippy
configuration file. The decorator accepts Uniform Resource Name (urn) as shown below.

@consume("mybucketc:myfilec")
@produce("mybucketp:myfilep")
def handle(request, consumed_data=None):

produced_data = produce(consumed_data)
return produced_data

4.7 Function Deployment
To deploy our Skippy labels, we use Skippy-cli. As serverless framework to be used in
this thesis, we choose OpenFaaS due to its simplicity, flexibility, and previous research
[11, 9]. Additionally, in our framework, Faas-cli is used by Skippy-cli, described in last
Section 4.7.1, to deploy the serverless functions.

4.7.1 Skippy-cli
Skippy-cli is a command line tool used to deploy OpenFaas functions. Metadata iden-
tification is essential for the decision-making process, if no file metadata is present
during the deployment, data locality cannot be achieved neither in the scheduling nor
during execution time. Therefore, Skippy-cli is introduced as an encapsulated OpenFaas
command line interface (CLI) which reads a file containing properties associated to file
metadata and specific function’s attributes like chain name. Fig. 4.2 specifies how the
Skippy participates in the function deployment in combination with Kubernetes and
OpenFaas.

Yaml Configuration File

Skippy-cli enhances the deployment process by reading a configuration file and translating
these properties into Kubernetes pod labels. These properties are defined in yaml7
format as described in Listing 4.2. To be recognized and parsed by the CLI, the
configuration must be named skippy.yml and be placed in the function’s directory,
e.g., ~/my-function/skippy.yml. The placement of the configuration file inside the

7https://yaml.org

31

4. System Overview

user skippy-cli faas-cli image registry faas-netes k8s apiserver

build

push
save image

deploy deploy with
skippy labels

deploy function create k8s
deployment

Figure 4.2: Skippy Function Deployment

function’s directory enables the build process to pack this file inside the docker image,
which makes it accessible at runtime. As the Yaml file contains the file’s metadata such
as consume/produce bucket and filename, it provides this information at runtime, which
is used by Skippy data SDK in its storage node prediction described in Section 6.4.

1 data:

2 consume:

3 - bucketone.data-preproceesing.csv

4 - buckettwo.additionaldata.csv

5 produce:

6 - producebucket.trainedmodel.npy

7 chain:

8 function: skippychain

Listing 4.2: Skippy Yaml Configuration

Specifically, Skippy-cli is a CLI that identifies two properties from the yaml configuration
file: file metadata and chain function. Regarding file’s metadata, one can specify multiple
properties in consume and produce for download and upload respectively. Due to
alphanumeric limitations in underlying faas-cli8 system, Skippy CLI reads file’ metadata

8https://github.com/openfaas/faas-cli

32

4.7. Function Deployment

in the format bucket.filename.fileformat. The yaml configuration file is translated as
Kubernetes labels as displayed below.

skippy.io.data.consume=bucketone.data-preproceesing.csv
skippy.io.data.consume=buckettwo.additionaldata.csv
skippy.io.data.consume=producebucket.trainedmodel.npy
skippy.io.chain.function=skippychain

Command Line Tool

Once installed, Skippy-cli provides one option deploy which reads OpenFaas function
file. It can be triggered by the command below.

$ skippy deploy my-function.yml

4.7.2 OpenFaas & Faas-cli
Following the FaaS principle, OpenFaas allows users to deploy serverless functions into
the Kubernetes framework. OpenFaas enables users to deploy a function using minimum
configuration. If any additional configuration is necessary, it can be adjusted in the
configuration file that contains the function’s information.

OpenFaas provides a simple and flexible process to create and deploy serverless functions.
Furthermore, OpenFaas provides additional tools like command line tools, Graphic User
Interface (GUI) and monitoring tools. To enable the serverless function triggering, the
framework uses a watchdog. The watchdog is a small HTTP server deployed with every
OpenFaas function. The framework abstracts this task from the user, it automatically
deploys a watchdog and attaches the function to it. Once the function is triggered, the
watchdog receives the incoming requests, executes the function and forwards its output
back to the user.

Faas-cli9 provides options to assist the OpenFaas function deployment in the Kubernetes
cluster. The CLI is an additional tool developed by OpenFaas. It is an option for
users that are more comfortable with terminals instead of user interfaces. Additionally,
the framework also provides an user interface which allows users to deploy and remove
functions accordingly.

9https://github.com/openfaas/faas-cli

33

CHAPTER 5
Skippy Data Scheduler

In the first part of this chapter, we make an overview in Section 5.1. Following in
Section 5.2 we describe a typical Kubernetes scheduler architecture that is the core of our
Skippy Scheduler’s implementation. In Section 5.3, we present the first version of Skippy
Scheduler, which can identify different devices’ resource and workflow characteristics
such as GPU. Finally, in Section 5.4, we present Skippy Data Scheduler, an enhanced
version of skippy designed to address data locality in data-intensive workloads.

5.1 Overview
The Skippy Data Scheduler is an enhanced version of Skippy. Skippy is a custom
Kubernetes scheduler that enables serverless edge computing. Skippy adds priority
functions that target edge computing characteristics, such as edge and cloud locality or
node capabilities, to address workload and infrastructure heterogeneity. At scheduling,
Skippy can identify specific workflow requirements and match them with the current
cluster infrastructure such as image awareness or device edge and cloud locality [11].

5.2 Kubernetes Scheduler
To understand how Skippy Data Scheduler, described in Section 5.4, works, we need
to look at Kubernetes Scheduler’s architecture. Skippy Scheduler and its data-locality
extension, Skippy Data Scheduler, use similar stages as Kubernetes default’s scheduler
during their scheduling process. According to its implementation1, Kubernetes’ default
scheduler is in charge of node selection for the incoming pods as can be seen in Fig. 5.1.
The selection process happens in four stages, as described below.

1https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/#kube-scheduler-
implementation

35

5. Skippy Data Scheduler

Figure 5.1: Kubernetes Scheduler Overview

5.2.1 Predicates Filter

The predicates should exclude the nodes which do not match the pod’s expectations.
This stage can be composed of one or more Predicates, and each of these predicates
analyzes a different requirement. As an example, one incoming pod might require 2
GB of RAM. During this stage, the scheduler should eliminate the nodes which cannot
offer this amount of RAM. Predicates work as a filtering mechanism to exclude nodes
that do not match the pod’s demands. Besides Kubernetes generic predicates, Skippy
presents one custom predicate PodFitsResourcesPred. Skippy Data Scheduler uses the
predicates filter to select only nodes which can host an incoming pod. Although the
filtering process does not directly affect the Data Locality Priority, the predicates are
essential to eliminate unqualified nodes from the priority scoring process.

PodFitsResourcesPred

This predicate checks if the nodes have requested CPU and RAM. In case there is
no value assigned, skippy uses default values of 0.1 for CPU and 200Megabytes (MB).
This behavior is also present on Kubernetes Default Scheduler Section 5.2. The scoring
system assists the scheduler in balancing loads between the nodes and filtering out nodes
overloaded.

36

5.3. Skippy Scheduler

5.2.2 Priority
The scoring process defines weights for the feasible nodes according to a specific capability.
In this stage, the scheduler grades all priorities for all nodes. A priority can be a simple
check if the node has a specific label e.g. FunctionChainPriority or can also determine
complex checks like DataLocalityPriority. Regardless of its implementation, the priorities
are a key factor for the node selection and, consequently, scheduling decision.

Balanced Resource Priority

This priority is similar to PodFitsResourcesPred, it considers CPU and RAM usage for
its scoring. Since PodFitsResourcesPred predicate already excluded out-of-capacity nodes
in the previous stage, during this priority all feasible nodes will be scored and load
distributed. This scoring is achieved by the fraction requestedCPU /allocatableCPU and
requestedRAM /allocatableRAM for CPU and RAM respectively.

Image Locality Priority

The priority favors nodes that already have the Docker Image locally stored. This image
node favoring avoids multiple image downloads from the container registry. The pod
leverages the existent Docker Image on the node and consequently faster startup time.

5.2.3 Select Node & Bind
In this stage, the scheduler picks the best-weighted node from the previous step. The
node which accumulates more points will move to the next phase to be bound to the pod.

After node selection, the binding happens between the scheduler and the Application
Programming Interface (API) server. Once the scheduler selects the node, it will send
this information to the Kubernetes API server, which will save its state and bind this
node to the incoming pod.

5.3 Skippy Scheduler
Skippy uses the four stages of Kubernetes scheduling described in previous Section 5.2.
This section explains Skippy’s specific priorities that enable scheduling according to
workload and device characteristics such as edge and cloud locality or video accelerators
presence. Skippy Data Scheduler is a data-locality extension applied on Skippy Scheduler.
Thus we need to show Skippy’s implementation to understand how these schedulers
address edge infrastructure and the workload during its scheduling process. Next, Skippy
Data Scheduler in Section 5.4 details our specific data-locality mechanism. However,
Skippy Data Scheduler also utilizes every Skippy predicate and priority described in this
section.

Skippy, at its core, was designed to analyze the cluster’s available resources. Skippy
scheduler stands out as a resource scheduler that also addresses the workload. Additionally,

37

5. Skippy Data Scheduler

its workflow’s orientation design allows the scheduler to match nodes with workflow
requirements such as video accelerators.

5.3.1 Skippy Daemon
The Skippy Daemon is a service that runs continuously and monitors nodes on the
cluster. Skippy Data Scheduler uses this service to identify and label nodes according
to their locality edge or cloud. These labels are used during scheduling by the priority
DataLocalityPriority detailed in Section 5.4.3. The daemon identifies node capabilities
such as GPU presence or locality type values like edge and cloud. As every node presents
different characteristics, the Skippy Daemon periodically collects this data. If no locality
value is present, it adds the label locality.skippy.io/type=<edge>. Additionally, it includes
also label capability.skippy.io/<nvidia-gpu|nvidia-cuda>. Specific labels related to the
GPU support the scheduler to prioritize nodes that provide this feature. In the same
principle, the Skippy Scheduler uses locality labels later to identify edge nodes and
consequently decrease cloud resource usage and costs.

5.3.2 Priorities
The Kubernetes scheduler is composed of many priorities, which score the nodes according
to their ability to fit the pod’s requirement. By the end of the scoring process, the
scheduler selects a winner node to host the incoming pod. Skippy enables different scoring
parameters using multiple priorities, as is described in each subsection below.

Locality Type Priority

Locality type is one of Skippy’s priorities. This priority identifies nodes situated on
the edge network. The locality information is essential for the scheduler; it participates
directly in decreasing financial costs as edge nodes have lesser economic costs than
cloud-hosted nodes. Nodes on the edge network have preference over nodes on the cloud,
thus minimizing cloud services fee such as AWS.

Latency Aware Image Locality Priority

The initial implementation aims to identify nodes with faster downlink connections thus
can transfer their Docker Image faster from the container registry. This priority scores
every node according to its connection and transfers time. Since skippy did not support
real-time network monitoring information, the priority works with a static assumed
bandwidth graph.

Data Locality Priority

Skippy [11] introduced a primary data locality priority. The incoming pods that contained
labels specifying the data size could be prioritized based on an assumed bandwidth graph

38

5.4. Skippy Data Scheduler

provided during startup application. Since this was not enough to mitigate the problem
in a data-intensive scenario, this priority is re-designed in our skippy data scheduler 5.4.

Capability Priority

Workflows that produce a large amount of data and process this data close to data
produced, such as the typical serverless-edge-computing scenario, motivates this thesis.
For such scenarios, the identification of specific components such as GPU is a crucial
factor for the scheduling decision. Skippy shows an improvement in the total execution
time of jobs scheduled on nodes that matches workflow’s specific hardware requirements
like GPU.

5.4 Skippy Data Scheduler
Skippy Data Scheduler is an enhanced version of its first implementation described in
section 5.3. The new scheduler presents a data-locality feature that can identify nodes
and storage nodes according to their distance and data transfer capacity. It also identifies
multiple functions that produce and consume data from each other. In this case, the
scheduler aims to speed the execution time by leveraging nodes’ resources. Figure 5.2
shows how the sequence diagram works since the user deploys a new function until the
best node is selected and bound by the scheduler.

5.4.1 Data Cluster Context
Skippy context provides a cluster context that loads the scheduler information and
facilitates its maintenance and extension. Skippy Data Scheduler presents an additional
context DataClusterContext that loads the storage index at scheduler startup. Fig. 5.3
shows the context relation between each other. Chapter 6 details how Skippy Data
Daemon scans the cluster and creates the storage index, which is constantly updated
and stored in a key-value caching system.

5.4.2 Simulation Cluster Context
The Simulation Cluster Context, introduced in [11], enables the evaluation of this project.
Our testbed does not provide enough resources to evaluate the scheduler on a big scale,
e.g., 5000 devices. Thus, we use a Simulation Cluster Context during our evaluation.
Generally, the Simulation Cluster Context in combination with Faas-sim2 allows the user
to simulate every cluster method without a Kubernetes cluster running as shown in Fig. 5.3.
During its startup in the get_storage_index, the Simulation Cluster Context loads the
storage index described in Chapter 6. This context triggers the scheduling mechanism on
place_pod_on_node which later triggers our Data Locality Priority. Additionally, during
scheduling, in get_dl_bandwidth, the Simulation Cluster Context queries the bandwidth

2https://github.com/edgerun/faas-sim

39

5. Skippy Data Scheduler

user apiserver etcd skippyd scheduler redis kubelet

create pod
save state

watch unassigned pods
pod(spec.nodeName="")

get file metadata

get bandwidth

Find best nodeFind best node

bind pod to best node
save state

watch bound pods
pod

bind pod to node
save state

Figure 5.2: Skippy Data Scheduler

graph generated by our Skippy Network described in Chapter 7. Chapter 8 details the
evaluation process. Additionally, it shows how Skippy Data Scheduler performs in large
clusters like with large numbers of nodes.

5.4.3 Priorities

The critical factor for Skippy Data Scheduler is to find the best node which matches
data-locality characteristics for a given function. The best node is calculated by the
sum of each priority described below. By the end of priorities execution, the scheduler
selects the node with a higher sum score. To achieve data locality in the Skippy Data
Scheduler, we created a new Function Chain Priority. Additionally, we modified the
existing Latency Aware Image Locality Priority and Data Locality Priority.

40

5.4. Skippy Data Scheduler

Figure 5.3: Skippy Cluster Context

Latency Aware Image Locality Priority

As already described in the previous section, this priority scores the nodes according to
their network availability and link speed. Skippy Scheduler scores every node available
in the cluster accordingly. Nodes with higher-speed connections present higher weights,
while lower-speed connections have lower weights. Due to the network monitoring solution
presented in chapter 7, Skippy Data Scheduler enhances this priority with real-time
network information. Since real-time bandwidth graph data is part of the scoring process,
the priority can provide more reliable weights.

41

5. Skippy Data Scheduler

Data Locality Priority

Data Locality Priority follows the Kubernetes general scoring principle. That means, Data
Locality Priority is composed of two externally available functions score and normalize.
The score function, shown in 5.1 as pseudo-code, is responsible for identification and
scoring. At the same time, the normalize method translates the score into a global weight
which can be later summed with other priorities’ results. Function normalize was reused
from Skippy’s homonym priority [11], thus omitted from the algorithm 5.1.

As one can see in the algorithm 5.1, the priority receives a node and a pod as input. The
pod is an instance of an incoming pod that contains labels that identify which data file
this pod needs to transfer during its execution. The node is a potential candidate for the
pod’s scheduling. The scheduler is in charge of triggering this priority for every possible
node and selects a candidate node that presents the best results.

This priority calculates the necessary amount of time to transfer the requested data
from the storage nodes. The result is obtained by the sum of the required download and
upload time. The scheduler needs quick access to the bandwidth graph and the storage
index as it relies on these elements to make correct decisions. It is crucial to have this
information up-to-date and accessible whenever necessary.

When this priority is triggered, it first searches for the file’s metadata in the storage
index. The storage index contains information about files existent in the storage nodes.
If the required data by an incoming pod is not present in a node candidate, the Data
Locality Priority scores the node with a minimum value of 0. Chapter 6 describes the
process to create and maintain the storage index. It also details how this information is
accessible at a pod’s deployment time by the scheduler and at a function’s runtime by
the Skippy SDK 6.4. The second key factor for this priority execution is the network
state. Chapter 7 explains how Skippy Network creates the Bandwidth Graph and keeps
it accessible for the scheduler at any time. The bandwidth graph represents the current
network status; it provides the available network speed between the source and the target
node. Once the priority is awake of which storage nodes contain the data, it fetches
the network availability between node candidate and storage. In possession of network
availability and file metadata, the priority can do a simple math dividing file size by
bandwidth as displayed in 5.1.

Function Chain Priority

In a data-intensive workflow, one function’s input might be the output produced by
another function, e.g., functionB receives as input the data produced by functionA.
However, as functionA was still not executed, thus this input does not exist. Therefore,
the Data Locality Priority 5.4.3 is not able to score based on the data present on the
storage nodes. These functions are called chained functions, and the scoring for these
cases needs to happen based on the chain instead of the data input.

This priority enables chained functions to be prioritized closer to each other by iden-

42

5.4. Skippy Data Scheduler

Algorithm 5.1: DataLocalityPriority
Result: Score time necessary to transfer data described in the labels

1 Function score:
Input : node
Input : pod

2 time ← 0;
3 time +←− calculateDownloadTime(pod,node) ;
4 time +←− calculateEstimatedUploadTime(pod,node) ;
5 return time;
6 Function calculateDownloadTime:

Input : node
Input : pod

7 time ← 0;
8 files ← list of files of pod’s skippy.io.data.consume label;
9 dataItems ← list of files metadata object from StorageIndex;

10 for dataItem in dataItems do
11 storageNodes ← getStorageNodes(dataItem.bucket,dataItem.fileName);
12 maxBandwidth ← 0;
13 for storageNode in storageNodes do
14 bandwidth ← getBandwidth(node,storageNode);
15 if bandwidth > maxBandwidth then
16 maxBandwidth ← bandwidth ;

17 time +←− dataItem.size
maxBandwidth ;

18 return time;
19 Function calculateEstimatedUploadTime:

Input : node
Input : pod

20 time ← 0;
21 files ← list of files of pod’s skippy.io.data.produce label ;
22 dataItems ← list of files metadata object from StorageIndex;
23 fileSizeSum ← sum of download files size;
24 for dataItem in dataItems do
25 storageNodes ← getStorageNodes(dataItem.bucket);
26 maxBandwidth ← 0;
27 for storageNode in storageNodes do
28 bandwidth ← getBandwidth(node,storageNode) ;
29 if bandwidth > maxBandwidth then
30 maxBandwidth ← bandwidth ;

31 time +←− fileSizeSum
maxBandwidth ;

32 return time;

43

5. Skippy Data Scheduler

tifying which chain it belongs. Chained function recognition is possible due to Kuber-
netes pods labels which is added by Skippy-CLI 4.7.1 via Skippy YAML configuration
chain.function=<chain-name> as displayed in listing 4.2. By placing chains on the same
node, functions leverage direct access to the temporary storage, thus spare the network
transfer of its input data. The temporary storage is later detailed in the subsection 6.4.1.

Once the priority is triggered, it searches pods in the cluster that belong to the same
chain, and it scores a specific node based on the presence or absence of request chained
function as shown in pseudo-code 5.2. Function normalize is responsible for translating
the scores. As in every priority function, the score normalization converts this score into
a weight between 1 - 10. Later the scheduler sums up with remaining priorities weights.
The normalize function is recycled from Skippy [11], thus omitted from the algorithm
5.2.

Algorithm 5.2: FunctionChainPriority
Result: Score chained functions in a node

1 Function score:
Input : node
Input : pod

2 score ← 0;
3 if pod has ’skippy.io.chain.function/chain-name’ label then
4 score +←−1 ;
5 return score;

5.5 OpenFaaS Modifications

As described in Chapter 4, Skippy Data Scheduler uses OpenFaaS as a serverless comput-
ing framework to deploy the FaaS functions. To trigger our custom scheduler described
throughout this chapter, we modified few parameters in the OpenFaaS framework as
described below.

Scheduler Assignment

OpenFaas is currently not designed to support an additional Kubernetes scheduler. In
other words, the OpenFaas functions will by default always be deployed with the property
scheduler:default-scheduler. This property assures the functions to be always scheduled
by kubernetes default’s scheduler. In order to deploy OpenFaas functions with skippy
data scheduler, we modified this OpenFaas deployment property from scheduler:default-
scheduler to scheduler:skippy-scheduler.

44

5.5. OpenFaaS Modifications

Hostname Environment Variable

As described in Skippy Data SDK storage node prediction Section 6.4.2 finds the best
storage node to either download or upload a specific file. However, this prediction only
happens if the SDK is aware of which node the functions are running on as its route
source, then the SDK can use the hostname as route source to query a target storage
node that has more bandwidth available in the bandwidth graph. Since OpenFaas
does not enable environment variables from its function properties, we slightly modified
faas-netes component to retrieve the node’s hostname from the Kubernetes configuration
and include this as the pod’s environment variable.

Persistent Volume Claim

To be able to mount volume shares in the Kubernetes deployment, one needs to create
Persistent Volumes which can be claimed by a specific Kubernetes service account user
[67]. However, this Kubernetes feature is not available through OpenFaas build and
deploy process, thus we created a cluster Persistent Volume (PV) and Persistent Volume
Claim (PVC) dedicated for skippy functions. In the faas-netes3 component, we have
bound the OpenFaas function to the skippy PVC. This feature is described in ephemeral
storage in Section 6.4.

Docker Template Store

OpenFaas provides function templates4 which take care of basic configuration such as
Dockerfile for image build and specific language script. As our experiments are executed
in an ARMv7 architecture testbed, it is required to build docker images specifically
for this architecture and therefore we modified its Dockerfile specification to match our
arm testbed. Additionally, we have included special libraries necessary for our ML test
workflow as shown in Section 8.1.2.

3https://github.com/openfaas/faas-netes
4https://github.com/openfaas/templates

45

CHAPTER 6
Data Management

In this chapter, we generally explain how the file’s metadata is handled. In Section 6.1,
we briefly overview why data management is necessary for our framework. Section 6.2
describes the data structure used to keep the file’s metadata and the components used
as storage in the cluster. Further, in Section 6.3 we explain the process to create and
update the metadata information. Additionally, we explain when this data is used during
scheduling and runtime function execution. Section 6.4 introduces our component Skippy
Data SDK that provides data-locality awareness during runtime.

6.1 Overview

To enable metadata information access for the scheduling decision process described in
Chapter 5, we need a lookup system that allows a fast way to access the file’s metadata
existent in the cluster. During scheduling, the decision-making process profits from quick
to the data index, which means it does not need to manually request every file’s metadata
information. If the Skippy Data Scheduler has access to a data index, it can quickly
access files’ information metadata leading to a faster decision-making process.

To manage the files within the cluster, we use MinIO for the data storage and Redis
as a cache framework. Both tools are deployed in the Kubernetes cluster, which means
both Redis and MinIO can communicate with any other pod also present in the cluster.
Figure 6.1 shows a simple overview from the storage framework in the Kubernetes cluster.

To achieve a fast and efficient lookup, we keep the data in MinIO storage and its metadata
in key-value Redis cache. Furthermore, we created a data structure to facilitate metadata
access.

47

6. Data Management

Figure 6.1: Data Management Framework Overview

6.2 Storage Index
Storage Index is a data structure that provides metadata information for all the available
files stored in the MinIO buckets. We can define it as a data structure that stores file
metadata and supplies this information whenever necessary.

The data index can be accessed either via in-memory storage described in Section 6.3.1 or
via key-value cache described in Section 6.3.2. It ensures complete metadata scanning of
the files existent in the storage nodes. Through the structure listed below, it is possible
to know file properties like name and size. Additionally, the storage index supports a
tree structure that contains metadata from each file present in the storage nodes. Once
this storage mapping is fully read, the lookup mechanisms detailed in 6.3 delivers the
information. Figure 6.2 displays Storage Index model class.

6.2.1 Skippy Data Daemon
As introduced in Section 4.3.1, Skippy Data Daemon is the component responsible for
creating and updating the Storage Index. The daemon keeps track of data items on a
set of storage nodes in the cluster. Skippy Data Daemon is an independent component
that automatically recognizes new MinIO pods and scans the files present on the MinIO

48

6.2. Storage Index

Figure 6.2: Storage Index Model Class

buckets. To find the information necessary for the data structure shown in Fig. 6.2,
Skippy Data Daemon requests every file stats via MinIO API1. Thus, the storage index
creation and update time vary according to the disk I/O, the number of storage nodes
and the number of files in the buckets. Once the storage index is up-to-date, Skippy
Data Daemon stores it on Redis key-value cache, which can be later retrieved by Skippy
Data Scheduler or Skippy Data SDK.

Skippy Data Daemon can be deployed in the Kubernetes cluster as described in List-
ing 6.1.As it recognizes any MinIO in the cluster, the daemon can run on a single node
only. Once deployed in the cluster, Skippy Data Daemon updates the Storage Index
every 5 minutes. However, the update time can be adjusted as necessary.

6.2.2 MinIO

As a data centered solution for edge computing, Skippy Data Scheduler needs a lightweight
solution which provides flexibility but it is still compatible with cloud computing services
like AWS S32. Therefore we opted for MinIO as our file storage tool. This storage holds
every file consumed and produced by the functions. MinIO is an open-source project
which provides high performance object storage. Besides the ability to run on edge and
cloud environments, MinIO is also compatible with S3.

As the official version do not support arm architecture which is a common used architecture
in the low processing devices present in edge network such as RaspberryPi3 Single Board
Computer (SBC), we use a community arm version of MinIO which is called MinIO-
Multiarch4.

1https://docs.min.io/docs/python-client-api-reference.html#stat_object
2https://aws.amazon.com/s3
3https://www.raspberrypi.org
4https://github.com/jessestuart/minio-multiarch

49

6. Data Management

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: skippy-data-daemon

5 namespace: default

6 spec:

7 replicas: 1

8 selector:

9 matchLabels:

10 app: skippy-data-daemon

11 template:

12 metadata:

13 labels:

14 app: skippy-data-daemon

15 spec:

16 serviceAccountName: skippy-data-daemon

17 nodeSelector:

18 containers:

19 - name: skippy-data-daemon

20 image: keniack/skippy-data-daemon:0.5

21 imagePullPolicy: Always

22 ports:

23 - containerPort: 5002

24 env:

25 - name: redis_host

26 value: 10.107.29.82

27 - name: MINIO_AC

28 value: "myuser"

29 - name: MINIO_SC

30 value: "mypassword"

Listing 6.1: Skippy Data Daemon Deployment Specification

50

6.3. Metadata Handling

6.3 Metadata Handling
The data index is stored in an in-memory cache and key-value cache-store. The scheduler
always tries to fetch the information from the scheduler’s in-memory cache. In case file
metadata is not present in the first layer, the scheduler retrieves this information from
the second level key-value cache, as is detailed in the following subsections. Figure 6.3
shows how the storage index lookup works with different levels.

Figure 6.3: Storage Index Cache Layers Lookup

51

6. Data Management

6.3.1 First level: In-Memory Storage

The first level of metadata storage refers to the in-memory storage on the Skippy Data
Scheduler. The Skippy Data Scheduler should be able to access file metadata for the
decision-making process quickly. The file metadata is necessary to prevent the Skippy
Data Scheduler from searching all MinIO pods manually during scheduling time, leading
to slower scheduling. The in-memory cache holds the storage index 6.2 instance, and it
works as a first level cache. That means whenever the scheduler receives an incoming
pod, data locality priority requests first the in-memory cache and retrieves the metadata
from it. The storage index in the in-memory cache is updated in the following situations:

Scheduler startup Skippy scheduler loads the storage index directly from the cache.
Once the scheduler has the storage index in memory, it will continually search for the file
metadata at first.

Scheduling execution The update here happens on the occasion of non-existing
information in the first layer as described above. During scheduling, more precisely
at data locality priority execution, the scheduler requests a storage index update from
the key-value cache. In the event of missing metadata information in both layers in-
memory and key-value store, the scheduler ignores the Data Locality Priority execution.
Section 5.3.2 details the Data Locality Priority.

6.3.2 Second level: Key-Value Cache

The second storage necessary for our skippy data-locality solution is an in-memory storage.
In this storage we keep key information like file metadata available at runtime. This
in-memory storage is heavily used throughout the many use cases described for skippy
either for file metadata or also to store network metrics and bandwidth graph. Therefore,
the necessity of a tool which is able to handle the intense data flow.

The second-level cache is a separated service that needs to be accessed via the network
in our solution. Due to its high throughput of approximately GET 81000 per second and
SET 110000 per second5, we select Redis due to its fast key store access. Redis can be
configured as a single storage node or as a distributed cache mechanism. The multiple
configurations enable flexibility for the framework and also scalability if necessary. There
is another component, Skippy Data Daemon, feeding this information to the Redis cache.

Redis is an open-source in-memory data store known in the community which also
provides extensive support. The following Chapter 6 describe in detail how the file’s
metadata is collected and stored in a key-value format in Redis. Additionally, Redis
stores network metrics which are used to build the bandwidth graph. This approach is
explained in Chapter 7.

5https://redis.io/topics/benchmarks

52

6.4. Skippy Data SDK

6.4 Skippy Data SDK
Skippy Data SDK is a Python library that enables data locality in a serverless function.
Generally, the SDK hides the complexity of the locality-aware data management system,
which is necessary for serverless computing. It gives the developer simple storage APIs
@consume and @produce but performs the operations with data-locality awareness.
Data-locality awareness is beneficial when implementing serverless functions. Designed
to download and upload files necessary, the SDK presents a feature to identify the best
storage node where the file transfer should happen. Similar to the algorithm used in
skippy scheduler’s data-locality priority described in 5.3.2, before any file transfer, the
SDK calculates which storage node be connected to.

The SDK reads a configuration file provided in the function as suggested in [6]. The tool
is responsible for automatically downloading all the data necessary for the function’s
execution. Once the function execution is complete, the SDK uploads the produced data
to the MinIO storage. Primarily, the Skippy Data SDK provides three main features,
which are specified below. The decorators 4.6.1 trigger one of the file transfers either via
storage node prediction 6.4.2 or via ephemeral storage 6.4.1.

6.4.1 Ephemeral Storage
Serverless functions typically store data in S3 buckets from cloud data centers. However,
in edge computing, the constant cloud transfers might lead to high latency and high
financial costs. On the other hand, data centers present on the edge network may struggle
with limited resources. Considering that in an intense data transfer scenario, it might
occur to have data only read and write once. Chained functions such as ML present many
steps to achieve its final result. The data produced between the flow is only processed
once and can be discarded afterward. As an example, we mention our ML workflow,
which presents 3 steps: 1-pre-process, 2-train and 3-evaluate. The data produced by
1-pre-process function is only read once by 2-train, further 3-eval reads the data produced
by 1-pre-process and 2-train. This cycle repeats for every trained model. The trained
model is the final target data, but all the data produced in the middle of the ML workflow
already completed its life cycle, and it is no longer necessary. This one-time read/write
data is called ephemeral data. However, this approach presents a drawback. In an edge
computing environment, resources are limited. If disk I/O is already highly used at the
moment of execution, it might present performance issues that can affect function’s Task
execution time (TET).

Often few functions are scheduled in the same node. The scheduling decision depends
on all the priorities calculations executed by the scheduler described in previous ??. To
adjust to ephemeral data workflows, thus decreasing even more bandwidth usage, we
store the produced data in temporary storage in the machine. In this temporary storage
where the faas-function is executing, any future faas-function which belongs to the same
chain can access the file directly from the temporary disk storage without transferring
the file via the network.

53

6. Data Management

Consume At the moment the function is executed, Skippy Data SDK searches first
the temporary storage if the data is found there, the SDK reads the file directly from
the disk. If the file is not present on the disk, the SDK transfers from one of the MinIO
storage nodes. Figure 6.4 shows how the consumed data source is decided.

Figure 6.4: Ephemeral Storage Flowchart

Produce The produced data is always duplicated in the temporary storage and the
MinIO storage. At execution time, the faas-function which will consume this file might
not even exist; the SDK is not sure if it will be deployed on this node or not, thus, the
duplication in both storages.

The temporary storage has the goal to avoid unnecessary network transfers for ephemeral
data. Thus, it contains data duplication from MinIO. In our scenario, we assume the

54

6.4. Skippy Data SDK

data will be produced and consumed within a short period. Hence, the temporary storage
is cleaned up regularly.

6.4.2 Storage Node Prediction
Files are also transferred from and to MinIO buckets which are placed in storage nodes
within the cluster. In a serverless-edge environment, it is possible to have more than one
MinIO storage instance. To transfer the files efficiently, the SDK needs to be aware of
where each file’s location, and in case of multiple instances, it needs to decide to which
storage node should connect. Figure 6.5 details how the SDK execution flow happens.

user function sdk decorator redis sdk prediction minio

invoke
triggers @consume

fetch metadata
storage index

execute
best node

request file
file content

file content
process function

triggers @produce
fetch metadata
storage index

execute
best node

transfer produced data
success yes or no

produced data

Figure 6.5: Skippy Data SDK

Metadata Retrieval

Skippy Data SDK relies on the metadata for its Storage Node Prediction calculations.
Thus, we ensure the metadata is always available. Once the function’s execution triggers
the prediction, the SDK fetches the storage index 6.2 from Redis cache. As explained
in Section 6.2, the storage index contains metadata from each file on the storage node.
Thus, the storage index size depends on the number of files on the storage nodes. The

55

6. Data Management

SDK requests each metadata by its key instead of the complete index download. Due to
high throughput from Redis6, the Skippy Data SDK can request one storage index key
less than one millisecond. The metadata request is detailed in Section 6.4.2.

As this execution happens at runtime in a short-lived function, in-memory storage
6.3.1 does not apply, since after the execution, the function’s Kubernetes pod might be
destroyed and its in-memory data lost. Hence, the SDK only deals with key-value cache
6.3.2 to retrieve the metadata necessary for the storage node prediction.

Prediction

As soon as the library already has the file metadata, it calculates the closest node by
executing the prediction algorithm. To keep consistency between scheduling and runtime,
the SDK uses a similar approach applied in the Data Locality Priority algorithm as the
scheduler detailed in Algorithm 5.1. Although there are many similarities between Skippy
Data Scheduler and Skippy Data SDK, the Storage Node Prediction presents different
characteristics from the Scheduler since the SDK searches for one specific storage node
during runtime while the Skippy Data Scheduler searches all possible storage nodes. At
the same time, the Data Locality Algorithm 5.1 scores all the storage nodes which contain
the files. The storage node prediction finds the storage node which includes the file and
presents higher bandwidth available. The detailed storage node prediction is displayed in
Algorithm 6.1.

If this is the case, the SDK identifies and handles every single file independently. That
means for each consumed or produced file, the SDK will predict the best storage node to
transfer the file content.

Locality Priority

As in Skippy Data Scheduler described in Chapter 5, Skippy Data SDK prioritizes nodes
on the edge network over nodes on the cloud. That means nodes on the cloud will only
be accessed if there is no device on the edge that provides the same service or data. In
the edge environment, the SDK searches for the best node, which provides better network
traffic availability as displayed in pseudo-code 6.1.

6https://redis.io/topics/benchmarks

56

6.4. Skippy Data SDK

Algorithm 6.1: StorageNodePrediction
Result: Best storage node to transfer the requested file

1 Function predictBestStorageNode:
Input : hostname
Input : dataItem

2 localities ← ["edge","cloud"];
3 bestNode ← "";
4 for locality in localities do
5 storageNodes ←

getStorageNodes(dataItem.bucket,dataItem.fileName,locality);
6 for storageNode in storageNodes do
7 bandwidth ← getBandwidth(node,storageNode);
8 if bandwidth > maxBandwidth then
9 maxBandwidth ← bandwidth ;

10 bestNode ← storageNode ;

11 if bestNode then
12 break;

13 return bestNode;

57

CHAPTER 7
Network Monitoring

In this chapter, we explain how network monitoring affects our Skippy Data Scheduler
decisions. Additionally, we introduce network monitoring solutions used in our frame-
work. Section 7.1 presents the problem and a proposed solution. Section 7.2 explains
which metrics are necessary for our solution and which system we use to collect these
metrics. In Section 7.3, we describe the bandwidth graph and propose two non-intrusive
network monitoring approaches. Further, in Section 7.4, we compare the two proposed
monitoring approaches. Additionally, we show the advantages and disadvantages of each
technique. To conclude this chapter, we present in Section 7.5 Skippy Network, the
network monitoring component responsible for creating and maintaining the bandwidth
graph.

7.1 Overview

In our system’s architecture presented in Chapter 4, the bandwidth graph enables the
decision-making process explained in Chapter 5. Skippy Data Scheduler leverages the
bandwidth graph knowledge to make scheduling decisions based on the current network
availability. Further, the Skippy Data SDK, described in Section 6.4, uses the bandwidth
graph to find the best storage node according to the bandwidth graph availability during
runtime.

To achieve a reliable bandwidth graph without extra network overhead, we propose
solutions with non-intrusive methods. Our proposed components collect metrics and
generate the bandwidth graph reflecting the network traffic at one specific moment.
Fig. 7.1 shows how these components work in our current system setup. The details are
explained throughout this chapter.

59

7. Network Monitoring

Figure 7.1: Network Framework Overview

7.2 Telemetry
According to [68], a telemetry system is fundamental for an environment where resources
are limited. A serverless-edge-computing scenario struggles with limited computing
resources. Additionally, there is a large amount of data being produced and transferred
across the network. Hence, it is necessary to learn the network usage, and telemetry
systems play an essential role in this path. Network data is a fundamental piece to
have an accurate bandwidth graph and thus make reliable and precise scheduling and
runtime decisions. To obtain system metrics such as network data, we choose to use the
already existing telemetry system Telemd1. Telemd is a telemetry system that provides
fine-grained system data. Telemd stores its data on Redis caching system, which in this
specific case also needs to be running and available on the cluster.

7.2.1 Telemd: Ouf-of-box Metrics
Telemd has system-ready metrics about a machine and its usage such as CPU, RAM,
disk and frequency. Most important for this monitoring, Telemd provides an overview of

1https://github.com/edgerun/telemd

60

7.2. Telemetry

the node’s network I/O rates in real-time. This metric enables our system to estimate
network usage at one specific moment.

Rx and Tx

Rx represents the amount of bytes received by a specific network interface while Tx is
the amount of bytes sent by a particular network interface [69]. The Linux kernel stores
these statistics in the paths

sys/class/net/<interface>/statistics/rx_bytes
sys/class/net/<interface>/statistics/tx_bytes

for rx and tx respectively.

Since one device can have many network interfaces, telemd1 provides rx and tx metrics
for every interface present on the machine. As the linux statistics data does not provide
any time frame, Telemd1 calculate rx and tx in Bytes/s for a random interface e.g.
eth0 as follows:

start=/sys/class/net/eth0/statistics/rx_bytes
sleep 1s
end =/sys/class/net/eth0/statistics/rx_bytes
rx_bytes_per_second = end - start

The same approach is used to obtain tx in Bytes/s.

7.2.2 Telemd: Add-on Metrics
In addition to the provided metrics, we slightly modified the tool to supply also the
following metrics:

Active Network Device

The Skippy framework needs to obtain statistics from the correct network interface. The
metrics collection is only possible if one knows the primary network interface, in other
words, the interface with the highest route priority. Therefore, this metric is an essential
addition to the telemetry system. This is obtained via the Linux package route CLI as
displayed below.

route | awk 'NR==3{print $8}'

It is crucial to notice that for this metric, we assume the node is not connected to any
virtual interface such as Virtual Private Network (VPN) and network bridge.

61

7. Network Monitoring

Netspeed

Netspeed represents the connectivity speed of the device. This metric only tells the
maximum speed the machine can achieve in a specific network interface. It considers
only the active network interface as described above. In this context, it was possible to
provide connectivity speed for two types of network connection:

• Ethernet Metrics read from /sys/class/net/<interface>/speed.

• Wi-Fi This metrics is obtained via linux package command line:

$ iw dev <interface> link

7.2.3 Telemd Daemon Deployment

Since Telemd collects data from one specific machine only, we need to ensure that Telemed
will run automatically on every node. This is achieved by using the Kubernetes daemon
feature. The Telemd Kubernetes daemon deployment is defined in Listing 7.1.

7.3 Bandwidth Graph
According to [70], the bandwidth graph is the result of G=(V,E) where V represents
the vertices, in our case, the nodes, while E stands for edges or communication between
nodes. The bandwidth graph G displays the current network status, its utilization, and
its availability. The throughput β available on a certain node A is described in [35] where
φ and ψ represent input and output network throughput respectively while δ stands for
max network availability. This is displayed in Eq. (7.1).

βA = δA − (ϕA + ψA) (7.1)

As stated in [64], the bandwidth graph β is the minimum available bandwidth between
source node A and target node B bandwidth capacity as displayed in Eq. (7.2). Thus,
we propose two non-intrusive methods described in the following sections.

βA,B = min(βA, βB) (7.2)

Many of the solutions on the market use intrusive methods such as iperf which provide
very accurate rates, but it also adds significant overhead to the network. In serverless
edge computing, the constant data transfers overload the network; thus, we choose to
avoid intrusive methods not to add extra load during metrics collection.

62

7.3. Bandwidth Graph

1 apiVersion: apps/v1

2 kind: DaemonSet

3 ...

4 spec:

5 ...

6 template:

7 metadata:

8 labels:

9 name: skippy-telemd

10 spec:

11 hostNetwork: true

12 tolerations:

13 - operator: Exists

14 effect: NoSchedule

15 containers:

16 - name: telemd

17 image: keniack/telemd:0.2

18 imagePullPolicy: Always

19 securityContext:

20 privileged: false

21 capabilities:

22 add: ["NET_ADMIN"]

23 env:

24 - name: telemd_redis_host

25 value: <redis-cluster-ip>

26 - name: POD_NAME

27 valueFrom:

28 fieldRef:

29 fieldPath: metadata.name

Listing 7.1: Telemd Daemon Deployment Specification

7.3.1 Estimated Bandwidth Graph

In this approach, we use netspeed to calculate the available network speed. Since the
netspeed metric only represents the maximum speed that a specific network interface can
achieve, thus, the bandwidth graph created upon this metric is not accurate but only
estimated.

The estimated bandwidth graph is built upon three metrics: speed, rx and tx. These
metrics are collected by Telemd1 as described in the previous section. As shown in
Algorithm 7.1, the graph is built by calculating netspeed minus I/O network interface
rates. Although not precise, the bandwidth graph provides a substantial overview of

63

7. Network Monitoring

Algorithm 7.1: EstimatedBandwidthGraph
Result: Available bandwidth between nodes in the cluster

1 Function getBandwidthGraph:
Input : nodes

2 edgeCapacity ← 0;
3 bandwidthGraph ← Dict[string][string];
4 for source in nodes do
5 for target in nodes do
6 if source != target then
7 edgeCapacity ← calculateEdgeCapacity(source,target) ;
8 bandwidthGraph[source][target]← edgeCapacity;

9 return bandwidthGraph;
10 Function calculateEdgeCapacity:

Input : sourceNode
Input : targetNode

11 sourceCapacity ← calculateNodeCapacity(sourceNode);
12 targetCapacity ← calculateNodeCapacity(targetNode);
13 return min(sourceCapacity,targetCapacity);
14 Function calculateNodeCapacity:

Input : node
15 nodeCapacity ← 0;
16 link ← get Node Link from telemd;
17 rx ← get Node Rx from telemd;
18 tx ← get Node Tx from telemd;
19 nodeCapacity ← link - (rx + tx);
20 return nodeCapacity;

the network status without the overhead from intrusive methods. In the experiments
Section 8.4, it is possible to see how the bandwidth graph varies according to the network
rate changes.

7.3.2 Precise Bandwidth Graph

Another approach to generating the bandwidth graph is to collect download and upload
rates of function executions. As soon as an OpenFaaS event triggers the function, it will
download the files necessary for the function’s input from a storage node. By the end
of its execution, it uploads the produced file also to a storage node. The storage nodes
chosen by download and upload might not necessarily be the same one. The decision
process is detailed described in Chapter 6. Algorithm 7.2 explains how skippy network
uses download and upload to generate a more precise bandwidth graph.

64

7.4. Comparison of Approaches

Algorithm 7.2: PreciseBandwidthGraph
Result: Stores speed rate from node to storage node

1 Function downloadFile:
Input : fileMetada
Input : storageNode

2 start ← time.now();
3 download File From Node;
4 end ← time.now();
5 bandwidthGraph[hostname][storageNode] ← fileMetada.size

end−start ;
6 store bandwidth in redis;
7 Function uploadFile:

Input : fileMetada
Input : storageNode

8 start ← time.now();
9 upload File From Node;

10 end ← time.now();
11 bandwidthGraph[hostname][storageNode] ← fileMetada.size

end−start ;
12 store bandwidth in redis;

This technique provides an accurate overview of the network at a specific moment.
However, it might affect Skippy Data Scheduler’s initial phase described in Chapter 5.
Given that first it is necessary to upload or download to calculate the rates, this will
directly affect Data Locality Priority Section 5.3.2 which initially will not have any
bandwidth data for its calculations. Thus, Data Locality Priority will only start its
prioritization after enough OpenFaaS functions have been executed and consequently,
download and upload rates used for the bandwidth graph collected.

This approach only generates partial bandwidth graphs as downloads and uploads only
happen between nodes and storage nodes. In such cases, Skippy Data SDK, described in
Section 6.4, can not evaluate the network rates because there is no file transfer between
the nodes. However, the partial bandwidth graph is sufficient for the use cases described
in this project. The decision-making process focuses on the search for the bandwidth for
file transfers. Therefore, this procedure is entirely valid for our use case, even though it
does not generate a complete graph.

7.4 Comparison of Approaches
Each of these methodologies has specific characteristics, and both approaches provide
satisfactory results. The Table 7.1 lists the main differences between Estimated Bandwidth
Graph and Precise Bandwidth Graph as well as advantages and disadvantages of each
method.

65

7. Network Monitoring

Estimated Bandwidth Graph Precise Bandwidth Graph

Advantages

• Non-intrusive.

• Full availability.

• Full network graph.

• It considers every ongoing
network communication.

• Non-intrusive.

• Accurate network rates.

Disadvantages

• It uses network’s interface
maximum communication
speed. Therefore, it does
not provide accurate
bandwidth availability.

• Partial availability, it will
only be fully available
when enough download
and upload requests have
been executed.

• Network overload might
differ from the previous
collected rate which can
mislead the
decision-making processes.

• Partial network graph
between nodes and storage
nodes only.

Table 7.1: Bandwidth Graph Approach Comparison

7.5 Skippy Network
Considering that the network monitoring is entirely independent of the other components
like Skippy Data Scheduler detailed in Chapter 5, we created a new tool called Skippy
Network. This tool is responsible for bandwidth graph generation. To do that, it reads
the network metrics collected by Telemd. Once Skippy Network generates the graph, it
stores the graph in the caching system Redis. To deploy skippy-netwwork in the cluster,
we created a kubernetes deployment defined in Listing 7.2.

66

7.5. Skippy Network

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: skippy-network

5 namespace: default

6 spec:

7 replicas: 1

8 selector:

9 matchLabels:

10 app: skippy-network

11 template:

12 metadata:

13 labels:

14 app: skippy-network

15 spec:

16 nodeSelector:

17 containers:

18 - name: skippy-network

19 image: keniack/skippy-network:latest

20 imagePullPolicy: Always

21 ports:

22 - containerPort: 5002

23 env:

24 - name: redis_host

25 value: <redisIp>

26 - name: registry_link

27 value: "10"

28 - name: cloud_link

29 value: "20"

Listing 7.2: Skippy Network Deployment Specification

67

CHAPTER 8
Evaluation

In this thesis, we develop a data-locality scheduler enhancement to Skippy Scheduler
described in Chapter 5. To achieve that, we created a storage index containing the file’s
metadata, described in Chapter 6. Additionally, we created a network monitoring tool to
provide real-time bandwidth availability, described in Chapter 7. Furthermore, as the
network usage may differ between scheduling and runtime, we introduced a framework
to identify the shortest route for a file transfer during the serverless function execution
runtime, described in Section 6.4.

In this chapter, we present the results obtained throughout this project. In Section 8.1,
we present the testbed and the simulation environment where we collect results for the
evaluation. In the simulation environment, we describe different scenarios applied in
this evaluation. Further, empirical measurements give an overview of experiments and
evaluation indicators of our Skippy Data Scheduler and Skippy Data SDK. The final
sections 8.2, 8.3 and 8.4 describe performed experiments and detailed analysis from
Skippy Data Scheduler, Function Runtime and Network Monitoring respectively.

8.1 Methodology
This section describes the environment in which we evaluate the framework, the test
workflow used, and which indicators we use as a baseline to evaluate our framework
solution.

8.1.1 Environment
To evaluate our framework developed in this thesis, we perform experiments in two
different environments: a simulation and a testbed of real edge computing hardware. The
testbed assists the proper configuration and engineering problems during the development,
while the simulations outline issues in different scenarios like urban sensing vs. industrial

69

8. Evaluation

IoT. Additionally, a simulation allows us to use a different number of devices in the
cluster, such as 100 or 1000 nodes.

Testbed

To test our framework end-to-end, we created a testbed shown in Figure 8.1, where we
could reproduce actual use cases scenarios and achieve results as close as possible to a real
production environment. Our testbed contains heterogeneous devices characteristics that
enable the developed framework to schedule using each node’s characteristics. Therefore,
a heterogeneous testbed was composed of different SBC. The SBC technical specification
can be seen in the Table 8.1. A testbed setup used is available in our git repository1.

Figure 8.1: Testbed

SBC Arch Name CPU Accelerator RAM Ethernet Storage
Nvidia Nano aarch64 jambo 4x Cortex-A57 @1.43GHz 128-core Maxwell GPU 2GB 1 Gbps SD Card
RPI 4B arm32 ananas 4x Cortex-A72 @1.5GHz N/A 4GB 1 Gbps SD Card
RPI 4B arm32 papaya 4x Cortex-A72 @1.5GHz N/A 8GB 1 Gbps SD Card
Banana Pi-M3 arm32 banana 8x Cortex-A7 @1.8 GHz N/A 2GB 1 Gbps SD Card
RPI 3B+ arm32 acerola 4x Cortex-A53 @1.4GHz N/A 1GB 1 Gbps SD Card
RPI 3B arm32 guava 4x Cortex-A53 @1.2GHz N/A 1GB 100 Mbps SD Card
OrangePi PC arm32 orange 4x Cortex-A7 @1.6GHz N/A 1GB 100 Mbps SD Card

Table 8.1: Testbed Device Specification

1https://github.com/keniack/testbed

70

8.1. Methodology

Simulation

Running the experiments on the testbed provides an overview of the end-to-end flow.
However, we would like to evaluate the project in different scenarios with different
devices setup. Therefore, we need to simulate other clusters scenarios and devices setup.
For the simulations we use edgerun faas-sim2 which allows us a detailed configuration
environment. Among the many features available in the simulator, we created test suites
using the necessary characteristics of this project which is discussed in Section 8.1.3.
The heterogeneous devices environment is formed as described in the Table 8.2 similar
approach used in [71].

Device Arch CPU Accelerator RAM Storage
VM x86 4x Core 2 @3GHz N/A 8GB HDD
XeonCPU x86 4x Xeon E-2224 @3.44GHz N/A 8GB HDD
Intel Nuc x86 4x Intel i5 @2.2 GHz N/A 16GB NVME
Nvidia Nano aarch64 4x Cortex-A57 @1.43GHz 128-core Maxwell GPU 2GB SD Card
Nvidia TX2 aarch64 4x Cortex-A57 @2GHz 256-core Pascal GPU 2GB eMMC
Coral DevBoard aarch64 4x Cortex-A53 @1.43GHz Google Edge TPU 1GB eMMC
RockPi aarch64 2x Cortex-A72, 4x Cortex-A53 N/A 2GB SD Card
RPI 4 arm32 4x Cortex-A72 @1.5GHz N/A 1GB SD Card
RPI 3 arm32 4x Cortex-A53 @1.4GHz N/A 1GB SD Card

Table 8.2: Simulation Device Specification

Scenarios

To obtain close results to a realistic environment, we choose two different scenarios
with different infrastructure configurations to evaluate our project. In both scenarios,
we randomly assign around 10 % of total devices as storage nodes. As the scenarios
are populated with different specifications and localities, the storage nodes may have
different storage capabilities. We place the storage nodes in the edge and cloud network
to analyze the impact of network traffic on the edge and cloud scenarios. This hybrid edge
and cloud network gives us an overview of the different approaches used in this project.
Additionally, it shows how we can improve the network traffic and the financial costs. We
used a similar network connection configuration for both scenarios as our implementation
is focused on network traffic and data exchange between edge and cloud environments.
Thus, we can compare our data-locality mechanism performance on different topologies.

The multiple scenarios are available via Ether3. Faas-sim 4 leverages from Ether the
ability to set up different topology configurations to obtain results close to a real system.
The scenarios are described below. Our evaluation scenarios are influenced by Skippy
experiments described in [9].

2https://github.com/edgerun/faas-sim
3https://github.com/edgerun/ether
4https://github.com/edgerun/faas-sim

71

8. Evaluation

S1: Smart City As the adoption of the smart city concept increases, solutions are
arising from real-time data processing on the edge [31]. The urban sense idea shows
sensors attached to IoT gateways which process the data in cloudlets [72]. Following the
principle presented in [9], we assume a city populated with sensor nodes and cloudlets.
Sensor nodes are represented by SBCs and have limited processing capacity while cloudlets
are characterized by Intel NUC and Intel Xeon. To analyze the performance on edge and
cloud networks, we also introduce cloud VM. Additionally, we also add VM in the cloud
network as part of the ecosystem. From the topology point of view, we assume that each
city district is one edge network, and the storage nodes are spread across the city. Table
8.3 displays a detailed setup of our smart city scenario.

Device Locality Population % LAN Internet
VM cloud 10 1Gbps 200 Mbps
XeonCPU edge 10 1Gbps 100 Mbps
Intel Nuc edge 10 1Gbps 200 Mbps
Coral DevBoard edge 20 100Mbps 50 Mbps
RockPi edge 12 100Mbps 50 Mbps
RPI 4 edge 12 100Mbps 50 Mbps
RPI 3 edge 18 100Mbps 50 Mbps

Table 8.3: S1: Smart City Device Constellation

S2: Industry 4.0 The fourth industrial revolution is quickly changing manufacturing
companies. The idea of smart manufacturing is bringing the edge network to the factories’
production line [24]. In this scenario, we assume a web of factories where each factory
represents one edge network. Each factory is composed of provider-managed on-premises
cloud centers. Our industrial simulation is composed of SBCs, Intel Xeon, and Intel NUC
on the edge while VMs are placed in the cloud as can be seen in table 8.4.

Device Locality Population % LAN Internet
VM cloud 44 1Gbps 100 Mbps
XeonCPU edge 10 1Gbps 100 Mbps
Intel Nuc edge 10 1Gbps 200 Mbps
Nvidia TX2 edge 9 100Mbps 50 Mbps
RockPi edge 9 100Mbps 50 Mbps
RPI 4 edge 9 100Mbps 50 Mbps
RPI 3 edge 9 100Mbps 50 Mbps

Table 8.4: S2:Industry 4.0 Device Constellation

8.1.2 Test Workflow
To simulate a data intense scenario, we designed a scikit-learn5 python workflow to
simulate a ML scenario. The workflow is composed of three functions as shown in

5https://scikit-learn.org

72

8.1. Methodology

Fig. 8.2.

Figure 8.2: Test ML Workflow

Each of these functions consume and produce data which are transferred from a MinIO
storage node. Fig. 8.3 shows how functions communicate with the storage nodes in order
to transfer the data.

user f1-ml-pre f2-ml-train minIO f3-ml-eval

pre-process
fetch raw data

store processed data

train
consume pre model

store trained model

evaluate
fetch model

Figure 8.3: Machine Learning Test Flow

Function f1-ml-pre loads the raw data and treats the data to be processed. This
function reads csv files from the stored nodes and its result should be uploaded again.

73

8. Evaluation

1 data:

2 consume:

3 - pre-processed.rawdata.csv

4 produce:

5 - trained-models.pre-model.npy

Listing 8.1: Function f1-ml-pre skippy.yml

Function f2-ml-train is a training function. f2-ml-train has as input the processed
data produced by previous function. This data is trained and returned as a result to be
uploaded.

1 data:

2 consume:

3 - trained-models.pre-model.npy

4 produce:

5 - trained-models.model.npy

Listing 8.2: Function f2-ml-train skippy.yml

Function f3-ml-eval is the last step, it downloads the model created by f2-ml-train
function and evaluates how precise this model is and further serves the model. As this is
the last step and the model is already stored, this function returns the evaluation results
but does not produce any data.

1 data:

2 consume:

3 - trained-models.pre-model.npy

Listing 8.3: Function f3-ml-eval skippy.yml

In our set of tests, we use the different data files size for each function as displayed in
Table 8.5.

8.1.3 Empirical Measurements
This project deals with a solution that acts in two different execution times in the
workflow: scheduling and runtime. To evaluate the project, we defined different indicators

74

8.1. Methodology

Function Name Consume Produce Image Size
ml-f1-pre 230 MB 230 MB 300M MB
ml-f2-train 850 MB 850 MB 320M MB
ml-f3-eval 100 MB n/a 320M MB

Table 8.5: Test Workflow Data Size

to be measured during the experiments as shown in the “Expected Results” column in
Table 8.6. These indicators provide an insight to conclude whether the developed tools
present satisfactory results applicable in real systems. The following subsections define
the expected results of each experiment.

Experiment Setup Expected Results

Skippy Scheduler:
Placement Quality

1100 nodes; 50 pods
placement; 100 requests

Increased Function execution
time (FET), maximization edge
traffic and minimization of egress
and ingress in the cloud network
traffic.

Skippy Scheduler:
Scheduling Latency

1100 nodes; 500 pods
placement

At least half of the scheduling
latency from the default Skippy
implementation.*

Skippy Scheduler:
Scalability

5000 nodes; 500 pods
placement

At least half of the scheduling
throughput from the default
Skippy implementation.*

Function Runtime -
Skippy Data SDK:
FET

1100 nodes; 50 pods
placement; 100 requests Increased FET.

Function Runtime -
Skippy Data SDK:
Network Traffic

1100 nodes; 50 pods
placement; 100 requests

Maximization of edge network
traffic and minimization of egress
and ingress in the cloud network
traffic.

Function Runtime -
Skippy Data SDK:
Financial Costs

1100 nodes; 50 pods
placement; 30000
monthly requests

Decrease of financial costs with
cloud services.

* Given the increased complexity of the scheduler due to data locality implementation, we consider
this loss a tradeoff to achieve data locality.

Table 8.6: Experiments Summary

Skippy Scheduler

To analyze our data-locality enhanced Skippy, we compare it with its default behavior
to conclude whether our solution is efficient for a real case application. The results

75

8. Evaluation

present the efficacy of the designed system architecture discussed in Chapter 4 as in our
data-locality solution; the scheduler is dependent on other components, e.g., Skippy Data
Daemon which keeps the storage index up to date. The efficiency of our solution is the
outcome of the analysis between the components described as follows:

• Default Skippy: we use Skippy default implementation [11, 9] as a base mea-
surement point. Skippy’s default implementation gives an overview of whether our
development is efficient enough for real case scenarios.

• Skippy Data: This is our default scheduler implementation with data locality
related priorities (DataLocalityPriority,FunctionChainPriority) described in chapter
5. Additionally, the scheduler uses the storage index described in Chapter 6. The
default storage index keeps a tree of metadata files where storageNode, bucket
and fileItem is quickly accessible during scheduling time. In this default implemen-
tation, during scheduling time, DataLocalityPriority Section 5.3.2 resolves every
download/upload file by searching in the fastest StorageNode available.

• Optimized Skippy Data: This is an improved performance feature for the
storage index. As in the default implementation, the scheduler still needs to access
the bandwidth graph and find the best storage node, increasing the latency in
overloaded cases. Thus, we created an asynchronous full storage index where all
the feasible nodes are already previously calculated and stored. In other words, we
create a full index matrix beforehand [feasibleNode, bucket, item] = storageNode
where the result storageNode already represents the fastest storage Node available
in the network. The stored matrix results in low latency storage index access during
scheduling time without any additional search necessary. As the “full storage index”
matches all the feasible nodes available in the cluster, it has high latency during
its creation than the default storage index Chapter 6. However, it improves the
scheduler’s latency and scalability, as can be seen in the following experiments in
Section 8.2.

Every tool is measured according to Skippy’s default implementation. As the components
have specific roles, we consider the following key results displayed. The placement quality,
performance, and scalability measure the scheduling efficiency. An efficient scheduler
should consider incoming pods and total worker nodes present in the cluster.

Placement Quality Function placement plays a crucial role in this solution. We
consider a good service placement if our scheduler placement improves the function
execution time. Besides scheduling, our solution also includes a SDK component, which
is responsible for storage node prediction during runtime. However, to measure the
placement quality, we do not consider the runtime SDK. Hence, we can directly compare
the function time runtime according to the function placement during scheduling.

76

8.1. Methodology

Scheduling Latency The scheduling latency gives the scheduler a performance indi-
cator. We want to see how the scheduler performs with different numbers of pods in
the queue in these experiments. The algorithm’s complexity reflects in the scheduler’s
performance. As discussed in Section 2.2.2, the scheduling complexity depends on the
complexity of each priority. Considering that the bandwidth graph is directly accessed,
default Skippy has a Data Locality complexity of O(1) [11]. As our implementation
resolves every file, our data locality implementation presents a complexity of O(f) where
f is the total number of files consumed and produced by the serverless function. This
performance is measured by the total scheduling time in the experiments.

Scalability We want to ensure that the changes implemented in the Skippy scheduler
present a good scheduling throughput in a highly-populated cluster. We consider a good
scheduling throughput if Skippy Data Scheduler shows half of the scheduling throughput
from its default Skippy implementation. As we know, our data-locality priorities increase
the scheduler complexity; a lower scheduling throughput is a tradeoff to achieve the data
locality. The experiments aim to show the degradation of Skippy Data pods placement
per second according to the number of nodes present in the cluster. Furthermore, it also
displays how the full index in a Optimized Skippy Data can improve the scalability of
the project and whether such an index is feasible or not. In the experiments, we use
Kubernetes maximum worker nodes number of 5000 in a single cluster [73].

Function Runtime: Skippy Data SDK

Once the function is placed in a pod by the scheduler, the function still needs to
download/upload the necessary data from one of the storage nodes. Thus, function
runtime experiments are a key factor in evaluating whether proposed runtime solutions
are considered enough for a data-intensive edge-cloud environment. As the function
runtime is handled by our Skippy Data SDK 6.4, we evaluate whether the Skippy Data
SDK improves the function execution time to the scheduling data-locality decisions. This
evaluation is measured by considering the following runtime solutions as described below.

• Prediction is a Skippy feature where the SDK predicts the best storage node for
the data to be transferred either via download or upload. Due to Skippy Data
SDK edge priority, storage nodes on edge have higher priority even when they
present lower network availability. The consumed data is not present in the machine;
thus, the function must retrieve the data via network transfer from one of MinIO
buckets present in the storage nodes. The storage node prediction is described in
Section 6.4.2.

• Random storage node assignment is the default function behavior. Random
storage node assignment also discards edge and cloud locality; the experiment picks
the first storage which holds the metadata necessary for the file transfer.

• Ephemeral refers to the temporary disk storage used in the pod where the function
is placed. The function leverages from its disk to quickly access the data without

77

8. Evaluation

transferring the data from the storage node via the network. The ephemeral data
storage is a solution to store the data in the current node temporarily; thus, we do
not recommend using it as storage. As an example if functionA and functionB
are hosted in the same worker nodeX and functionB consumes data produced
by functionA. Whenever functionA is executed, it stores its produced data in
temporary disk storage in nodeX. Later during functionB execution, the consumed
data for this function is already present in nodeX, and there is no network transfer
necessary. The detailed runtime functionality is explained in subsection 6.4.1 while
subsection 32 explains how the scheduler handles chained functions so that the
functions can avoid data transfer by leveraging time from the ephemeral storage.

Function Execution Time In this set of experiments, we want to show how the
Skippy data SDK performs in all different solutions described below. We also show results
from the different scenarios S1: Smart City and S2: Industry 4.0 described in 8.1.1. The
function is already placed by the scheduler, which has no longer influences the runtime.
Once the serverless function is triggered, it needs to download the necessary data, and by
the end of the function execution, it needs to upload produced data. These experiments
aim to evaluate whether the storage node prediction and ephemeral storage can improve
the function execution time.

Network Traffic One of the successful results of our project is to ensure that in a
data-intensive scenario, the edge network is efficiently maximized. In contrast, the ingress
and egress of the cloud network are minimized. The optimization of network traffic
avoids network overload while decreasing financial costs with cloud resources. In the
experiments, we show how the Skippy Data SDK acts to increase the edge network traffic,
thus bringing processing closer to the end devices. To avoid network overload, the SDK
balances the overload due to our network monitoring tools which provide access to an
updated bandwidth graph.

Financial Costs Following the network experiments, we estimated monthly costs
assume daily requests are executed. For this section, we assume the cloud resources
are hosted by external providers, e.g., AWS,Google Cloud Platform (GCP) and Azure.
In cases where we simulate on-premises cloud, e.g., S2: Industry 4.0, we assume a
provider manages the premises cloud platform; thus, it generates financial costs. In the
experiments, we assume that the cloud resources generate additional economic costs,
regardless of on-premises or provider-hosted. For these experiments we use AWS6 prices
as baseline. According to the AWS pricing model, the financial costs generated by these
experiments come mostly from AWS S3 storage and AWS egress network traffic.

Network Monitoring The experiments for this section aim to evaluate the develop-
ment tool described in Chapter 7. As Faas-sim uses Ether to simulate different topologies

6https://aws.amazon.com/s3/pricing/

78

8.2. Skippy Data Scheduler

which can be applied in real scenarios, we choose to evaluate the network monitoring
by experiments in our testbed described in Table 8.1. The small setup of a testbed
assists the deep understanding of each proposed approach. In this section we discuss the
difference between EstimatedBandwidthGraph and PreciseBandwidthGraph and in which
situations they are better suitable for.

8.2 Skippy Data Scheduler
This section describes the experiments performed to evaluate our data locality implemen-
tation of the Skippy scheduler. We use Skippy default’s implementation as a reference
point to be measured and compared. The scheduler should provide Placement Quality
by improving FET, it should have a similar or better Performance than Skippy default’s
implementation, and it should display Scalability. That means it should efficiently
handle heavily populated node clusters.

8.2.1 Placement Quality
In this section, we want to analyze the scheduler’s placement quality. All the results
shown in Fig. 8.4 are executed in a cluster containing 1100 worker nodes or feasible nodes
and scaled to 50 pods placement. Additionally, the experiments are performed in two
different scenarios S1 and S2 as described in Section 8.1.1. In these experiments, we want
to analyze whether data locality during scheduling affects the FET during runtime. The
topology of total feasible nodes created for each scenario is randomly created following
the specification described in the previous section.

Our proposed solution also contains a framework that resolves the data locality problem
at runtime. Nevertheless, to analyze the solo impact of the scheduler, we need to
provide the same runtime behavior to be able to compare the measured schedulers. Thus,
during runtime, the function uses the first storage node available, which contains the file
disregarding bandwidth availability or edge/cloud locality. The runtime solution (Skippy
Data SDK) is further discussed in a different set of experiments in the next section.

Default Skippy In this test use case, we ignore the DataLocalityPriority. This schedul-
ing uses mainly capacity and resource priorities to place the function. Skippy priorities
are described in detail in Chapter 5. Even though the same functions are performed in
S1 and S2, we notice a slightly lower FET in S2. This faster execution is due to the
different devices’ clusters which form S2. In S2, we have devices with higher capacity
than S1, which results in lower FET as can be seen in all the experiments displayed in
8.4. Furthermore, we also notice a lower FET in each scenario no matter which function
is executed. Figure 8.5 shows how the scheduling affects the network usage during its
runtime. This scheduler has no data locality; thus, the network traffic depends on the
random choice of storage nodes to transfer the files during execution time. As described
in Table 8.4 S2 has a higher number of cloud devices than S1 (Table 8.3) which explains
why S2 has higher cloud traffic than S1.

79

8. Evaluation

Figure 8.4: Skippy Scheduling Placement Quality

Skippy Data refers to the default data locality implementation described in Sec-
tion 5.3.2. In comparison with Default Skippy, we notice some impact of this scheduling
decision with/without data locality awareness. As an example, if we take a look at S1
and S2 device specification (Table 8.3 and Table 8.4 respectively), in a data-intensive
environment the function placement has a major impact. In every scenario, data transfers
are directly affected if the function is placed in a node with a link connection of 100
Megabits per second (Mbps) or 1 Gigabits per second (Gbps). A lower data transfer
leads to lower FET. This effect can be seen in S1 and S2 for all the functions in the
experiment of Fig. 8.4. The network traffic is shown in Fig. 8.5. As it is possible to
notice, edge network usage increases with simultaneous requests while cloud network
usage presents insignificant amounts.

Optimized Skippy Data is a scheduler’s storage index improvement. It should
achieve the same data locality decision as Skippy Data but in a better scheduler time
execution. It is possible to see in every scenario in Fig. 8.4 that this optimized scheduler
barely affects the FET. The same happens for the network usage displayed in Fig. 8.5.
As we can see, the optimization reaches similar results as Skippy Data, edge network
usage increases in both scenarios while cloud usage remains at low values.

80

8.2. Skippy Data Scheduler

Figure 8.5: Skippy Scheduler Network Usage

Outcome

Considering the scheduling results of these experiments, we can observe that data-locality
scheduling improves total FET in every scenario discussed. As “Optimized Skippy
Scheduler” is a performance improvement for “Skippy Data”, there is no effect during
function runtime execution. This optimization aims to provide the scheduler with file
metadata to enable a faster decision-making process. The optimization results can be
seen in Fig. 8.4 as both data locality scheduler approaches display similar results.

8.2.2 Scheduling Latency

As described in Section 8.1.3, the scheduling complexity is determined by the number of
nodes and the runtime complexity of the priority functions. Thus, in this section, we
aim to analyze the scheduling latency of our data-locality scheduler, also referred to as
Skippy Data throughout this thesis. Like in the previous section, Skippy default is used
as a quality reference. We aim to analyze how long the scheduler takes to process the
number of pods in the queue. The entire scheduling mechanism is explained in Chapter 5.
As in the previous section, we utilize a cluster with 1100 feasible nodes. The x shows
the number of pods placed in the scheduling queue, and the axis y displays the time
necessary to place the function pods. Our analysis considers high y axis values high
latency and low y axis values low latency.

81

8. Evaluation

Figure 8.6: Skippy Scheduling Time

Default Skippy is represented by the blue line in Fig. 8.6. In Fig. 8.6, the default
implementation shows a stable scheduling time around 2s for total scheduling and moves
slowly towards 4s by 500 pods placement. Due to the absence of Data Locality in default
Skippy implementation, this scheduler displays the fastest scheduling time among the
schedulers analyzed.

Skippy Data shows the highest scheduling time among the schedulers in Fig. 8.6.
When compared with the other schedulers in the figure, Skippy Data presents a poor
performance. This is explained by DataLocalityPriority implementation described in
Section 5.3.2. The storage index offers low latency access to storageNode and metadata
files as it is explained in Chapter 6. However, the scheduler still needs to resolve a data
file list by searching the storageNode, which contains each file on this list and fetching the
fastest one in the bandwidth graph. As this algorithm is executed during scheduling time,
this additional calculation is reflected in a nearly 100% increase in the total scheduling
time in comparison with Skippy default, as can be seen in Fig. 8.6.

Optimized Skippy Data is an attempt to improve Skippy Data performance and
scalability. As the calculations necessary for the data locality are unavoidable, we
improve the data locality by doing these calculations beforehand in an asynchronous
process. As described in Section 8.1.3, we create a full-index matrix by storing feasi-
bleNode,bucket,fileName] = storageNode. Once this is pre-calculated, the full-index can
be quickly accessed during scheduling time resulting in a faster total scheduling time.
This improvement is represented in Fig. 8.6 by the blue line, which displays significantly
better performance than Skippy data and slightly worse performance than default Skippy.

82

8.2. Skippy Data Scheduler

Outcome

As data locality adds additional processing during the scheduling time, it is expected
that Skippy Data Scheduler presents a higher latency than the default Skippy scheduler.
However, experiments show that we can minimize this difference by using a full storage
index as it is described in “Optimized Skippy Data” in Section 8.1.3. Data-locality
calculations during scheduling cannot be avoided, but low latency access to the file
metadata can improve the scheduling process. This low latency access leads to the
scheduler’s performance improvement.

8.2.3 Scalability
In this subsection, we want to see how our scheduler implementations degrade when
additional feasible nodes are included in the cluster. Axis x represents the number of
feasible nodes in the cluster, while y axis shows how many pods per second can be
scheduled given n feasible nodes in the cluster. As our schedulers are built on top of
the Kubernetes framework, we limit this set of tests to the maximum number of nodes
accepted by Kubernetes of 5000 feasible nodes. Additionally, we use 500 pods placement
of each function described in Section 8.1.2 [73].

Figure 8.7: Skippy Scheduler Scalability

Default Skippy Displayed by the blue line in Fig. 8.7. Due to the absence of a data
locality in Skippy default, its tests unsurprisingly reveal a higher scheduling throughput
given a low number of feasible nodes in the cluster. It shows a difference of almost 125
pods per second close to x(0) between Default Skippy and Skippy Data. However, by the
x(5000), we see this difference dropping to nearly 30 pods per second.

Skippy Data Shown in orange in Fig. 8.7. As already mentioned during the discussion
in the previous Section 8.2.2, the Skippy Scheduler searches the storageNode with the
best bandwidth availability for every consumed and produced data file. This searching

83

8. Evaluation

algorithm leads to the lowest pods scheduling throughput represented in y axis even when
the cluster is not highly populated. Skippy Data shows up to 65% lower throughput if
compared to Skippy Scheduler. As we can observe, Skippy Data can schedule around 75
pods per second in a cluster with around x(100) feasible nodes, and it converges to close
to around five pods per second with x at its maximum.

Optimized Skippy Data Displayed in green line in Fig. 8.7. This optimization enables
low latency access to the storage index information without any further calculations
necessary, it shows higher rates than Skippy Data but still lower rates than default Skippy.
While Skippy Data shows up 65% scheduling lower throughput, the optimized Skippy
shows a lower throughput up to 45% compared to Skippy Scheduler.

Outcome

Overall, Default Skippy presents better scheduling throughput with low numbers of
feasible nodes in the cluster. A higher scheduling throughput in Skippy Data Scheduler
is due to the increased complexity of the scoring functions necessary to achieve data
locality. We also notice that all measured schedulers converge between 10 and 30 pods
per second towards the maximum feasible nodes present in the cluster.

8.3 Function Runtime: Skippy Data SDK
In this section, we evaluate Skippy Data SDK features and its results according to
different scenarios described in Section 8.1.1 as is explained below. Skippy Data SDK
implementation is responsible for resolving consumed and produced data at runtime
when the serverless functions are triggered. It provides two main features: storage
node prediction and ephemeral storage. Their detailed implementations are described
in Section 6.4. To give an overview, we discuss the features from three points of view:
Function Execution Time, Network Traffic, and Financial Costs. Additionally, we
consider positive results if they decrease the total FET, use network traffic efficiently
by decreasing cloud traffic while increasing edge traffic when possible and consequently
decreasing financial costs with cloud resources. In the experiments for this section, we
use a cluster of 1100 feasible nodes, 50 pods placement using Skippy Data Scheduler
for the function scheduling placement. We use random storage node assignment as the
baseline for comparison. Additionally, the test workflow uses data sizes as it is described
in Table 8.5.

8.3.1 Function Execution Time
In Fig. 8.8 it is possible to compare the test workflow FET between the Skippy Data SDK
features: storage node prediction and ephemeral disk storage. As a reference measuring
point, we use random storage node assignment. That means if function f1-ml-pre is placed
in nodeA, the SDK can predict what the best storage node to transfer the data from
node A, read the data from the ephemeral storage if present or pick a random storage

84

8.3. Function Runtime: Skippy Data SDK

node to transfer data is. This set of tests aims to analyze whether ephemeral and storage
node prediction can improve the function execution time compared to a random storage
node assignment. We execute 100 simultaneous requests with the faas-sim simulator and
analyze the results to create a range of results.

Figure 8.8: Function Execution Time

Prediction is Skippy data SDK’s default behaviour. As described in Section 6.4, it
assigns a storage node based on the network availability and locality. The SDK picks
the storage nodes with the highest network availability placed on the edge network.
StorageNodes on the cloud network are picked when there is no storage node on the edge
that holds the requested metadata. As it is possible to see in Fig. 8.8 in both scenarios
S1 and S2, the storage node prediction based on the bandwidth graph availability
significantly improves the total function execution time. In every test case, prediction
shows a decrease in execution. In some cases like S1:f2-ml-train nearly 30% less or even
a decrease up to 50% of its FET like in S2:f3-ml-eval.

Random storage node refers to the first storage node found. Fig. 8.8 shows how the
FET is affected when there is no network knowledge during requests execution. As
displayed in the figure, in every test case for both scenarios, transferring the data from
function nodeA from a random storage node assignment presents a higher average FET
in comparison with other approaches in the Fig. 8.8.

85

8. Evaluation

Ephemeral Storage For this experiment, we enable ephemeral storage in Skippy
SDK and analyze its results with other data transferring approaches. Fig. 8.8 shows
how the different storage approaches perform according to the specific function. This
approach is designed for chained functions where functionB consumes the data produced
by functionA. Thus if both functions are placed on the same node, they can be privileged
by the low latency access to the disk storage without the necessity of a network transfer.
Additionally, a scenario where f1-ml-pre uses ephemeral storage is most likely not to
happen as this is the first function to be executed. However, we assume that for f1-ml-pre
the consumed data is already present in ephemeral storage in the disk where the function
is placed. As in the ephemeral storage, there is disk reading instead of network transfer;
we simulate the data transfer by using the disk speed according to the device specification
displayed in Table 8.2. In both scenarios, we notice a significant decrease of FET. In
f3-ml-eval for both scenarios, the use of ephemeral storage leads to nearly 10x faster
execution or 90% of FET improvement.

Outcome

Regardless of which scenario is analyzed, in Fig. 8.8 the introduction of data-locality
during runtime accelerates the total FET. The use of network availability knowledge
combined with StotrageIndex information result in a significant improvement for the
runtime execution. As the experiments show, data transfers from a predicted storage node
improve up to 50% of the total FET. Additional experiments involving the ephemeral
storage can speed up to 90% or 10x faster FET.

8.3.2 Network Traffic
Fig. 8.9 shows how the network traffic behaves between the storage prediction, ran-
domly storage node assignment, and ephemeral storage. This experiment is designed
to investigate whether the storage node prediction and ephemeral storage can reduce
cloud network traffic, by minimizing the data exchange between cloud and edge andm
consequently reduce the financial costs of network traffic. For this set of experiments, we
assume the cloud transfers are over the Internet, or if they are hosted on-premises, they
are provider-managed. Thus, in the Fig. 8.9 cloud network traffic also includes Internet
traffic data. We used a cluster with 1100 worker nodes where each function is scaled up
to 50 in both scenarios S1 and S2. Data size for the transfers is specified in Table 8.5.

In the plots shown in Fig. 8.9 the x axis shows the number of simultaneously requests of
functions f1-ml-pre,f2-ml-train and f3-ml-eval equally executed, while axis y shows the
sum amount of I/O data exchanged. The usage bytes displayed in axis y are collected
from the node which hosts the function. In this setup, we want to analyze how this
function node trades data with storage nodes on the edge and cloud network.

Edge Network Traffic The x axis represents the number of requests and y axis the
sum of data bytes I/O in Fig. 8.9. In the Figure we see a linear increase in the bytes

86

8.3. Function Runtime: Skippy Data SDK

Figure 8.9: Function Runtime Network Traffic

usage. Due to the edge locality preference in the storage node prediction described in
Section 6.4.2, both scenarios S1 and S2 predicted storage networks show similar results.
The same happens for ephemeral storage, as the number of requests increases in axis x,
ephemeral shows lower network usage as in this approach, the data is read directly from
a temporary disk. The biggest difference between S1 and S2 is seen in random node
assignments. This happens due to the scenarios locality distribution of 80% and 60%
for S1 and S2 as can be seen in Table 8.3 and Table 8.4 respectively. As in S1 there is
relatively higher edge network traffic even during random storage assignment, while in
S2, the same set of tests produces less edge traffic. As there is a higher number of edge
nodes on S1 there is a higher probability that random assignments are also placed on
the edge, thus generating similar network traffic as the storage node prediction. The
opposite situation happens in S2; since fewer devices are on edge, the network traffic is
lower even in the random assignment.

Cloud Network Traffic In both scenarios in Fig. 8.9, it is possible to see a significant
decrease in a cloud network traffic. The cloud network traffic is close to zero in a predicted
storage node choice, which also happens for ephemeral storage. In random storage node
assignment, we can see a timid increase in S1 as in this scenario; there are only 20% of
devices on the cloud. On the other hand, a higher increase of cloud network traffic in S2
as 40% of its devices is placed on the cloud.

87

8. Evaluation

Outcome

As it is possible to see in the Fig. 8.9, Skippy Data SDK favors the edge network traffic.
In all scenarios, there is a maximization of edge traffic while minimizing cloud network
traffic. An efficient traffic shift from cloud to edge network reduces the financial costs
and brings the processing closer to the end device, reducing latency. However, to ensure
efficient network traffic, we need to ensure that edge traffic increases do not cause
network overhead. To prevent network overloading, we use a network monitoring solution
described in Chapter 7. Specific network experiments are further discussed in Section 8.4.

8.3.3 Financial Costs
The efficient usage of the network does not only accelerate the functions FET, but it
also decreases the financial costs with cloud resources. As we want to simulate a real
environment, our random storage node assignment can be transferred either from edge
or cloud-like a similar real edge-cloud scenario in this set of experiments. To have an
overview of this financial difference, we use the sum of transferred data necessary for
one request one for each function f1-ml-pre, f2-ml-train and f3-ml-eval. Additionally,
we assume 30 000 monthly requests are executed and estimate the financial costs to
maintain this workflow using the approaches measured in network traffic according to
AWS7 prices.

According to AWS calculator8, S3 have prices as 0.0245 USD per GB in the S3 storage
and 0.09 USD per GB access. Hence, we can estimate financial costs as displayed in
Fig. 8.10.

Figure 8.10: Financial Cost Estimation

The low number of 20% devices on the cloud shows a timid difference between the
approaches in S1 while ephemeral and prediction keeps around 200 USD; the random

7https://aws.amazon.com/s3/pricing/
8https://calculator.aws/#/createCalculator/S3

88

8.4. Network Monitoring

assignment pushes this value to over 4000 USD. As in S2 there is a higher number of
devices placed on the cloud; its random storage node assignment makes the financial costs
to over 6500 USD while a predicted storage node shows a value of 200 USD similar to
ephemeral storage approach. Overall prediction and ephemeral features display identical
values in both environments. This financial similarity is the result of a decrease in cloud
network traffic. In both scenarios, the ephemeral and prediction approaches maximizes the
edge network traffic, leading to a reduction in cloud traffic and financial costs. Specifically,
our Skippy Data SDK combined with Skippy Data Scheduler show a reduction up to
60% in S1 and nearly 85% in S2 of its financial costs with cloud providers.

8.4 Network Monitoring
In this section, we discuss the approaches presented in Chapter 7. Additionally, we show
experiments for each of these approaches and an analysis of whether the feature satisfies
the requirements for the project. We conclude by analyzing in which situations each
methodology is best suitable.

Network Topology

For this implementation, we considered that one node uses its primary network interface
for its Kubernetes communication. In other words, if a node is connected via Ethernet and
Wifi, the highest route is also the one used for Kubernetes. In this case, the bandwidth
graph is built reading metrics from eth0 interface since ethernet has higher priority
than wlan0 according to default routing configuration.

In an attempt to simulate a real-world system, we split our single cluster into three
subgroups, as shown in Fig. 8.11. Each subgroup represents a different network that can
present its settings, such as different max speeds. This composition was used as the main
base to construct the test cases for the following described experiments.

8.4.1 Intrusive Bandwidth Graph
To evaluate our bandwidth graph, we ran intrusive methods which give precise results.
Hence, we can compare the intrusive and non-intrusive methodologies, then establish
how effective and reliable the non-intrusive approaches are.

From the many tools available in the open-source community, we picked iperf since it is
already known for its accuracy. According to [74], the tool provides two protocols that
could potentially be used for our network monitoring: Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP). In the default TCP behavior, iperf uses its
Maximum Transmission Unit (MTU); in other words, the client sends as much data as
possible to the server. In contrast, in the default UDP implementation, the client can
set the bandwidth that can be helpful for latency measurement. Since the maximum
bandwidth capacity is the metric necessary for experiments, we used the TCP protocol
to get an accurate overview of the network. However, the accuracy comes at a high price;

89

8. Evaluation

Figure 8.11: Network Topology

the tool pushes the bandwidth transfer at its maximum, which means any other transfer
happening at the same time will be directly affected.

8.4.2 Estimated Bandwidth Graph

To see the Algorithm 7.1 performance, at first, we generated the graph following the
network topology from the previous section. Fig. 8.12a shows available bandwidth
between nodes in an idle state. We consider an idle network when there are only the
necessary network connections, such as internal Linux communication or Kubernetes
system communication. We generate a graph in the network where every node has a
speed link between each other. In this methodology, we observe that the rates displayed
are very close to the maximum node’s speed link capacity, leading to false network
availability since the other approach results rarely come close to the maximum link speed.
The bandwidth graph can also be fetched in JSON format as displayed in Listing 8.4:

90

8.4. Network Monitoring

1 {

2 "jambo":{"guava":12464000.0,"orange":8978000.0,"acerola":123322000.0,

3 "ananas":123322000.0,

4 "guava":{"jambo":12464000.0,"orange":8978000.0,"acerola":12464000.0,

5 "ananas":12464000.0},

6 "orange":{"jambo":8978000.0,"guava":8978000.0,"acerola":8978000.0,

7 "ananas":8978000.0},

8 "acerola":{"jambo":123322000.0,"guava":12464000.0,"orange":8978000.0,

9 "ananas":123322000.0},

10 "ananas":{"jambo":123322000.0,"guava":12464000.0,"orange":8978000.0,

11 "acerola":123322000.0}

12 }

Listing 8.4: Idle Network Json in Bytes/sec

Following the first experiment, we started one scp9 network transfer at 6 Megabytes per
second (MBps) rate between nodes orange and guava. Fig. 8.12b shows nodes orange
and guava availability decreased not only between themselves but also with any other
connected node. The figure also shows that connections between nodes that were not
affected by the transfer remained unchanged. To have a better overview of the network,
we included only five devices from the available testbed described in Table 8.1.

(a) Idle Network (b) Busy Network

Figure 8.12: Estimated Bandwidth Graph

9http://www.scpwiki.com

91

8. Evaluation

8.4.3 Precise Bandwidth Graph
Fig. 8.13 shows what the bandwidth looks like when it is built with the latest transfer
values like download and upload. In this experiment, we spawn as many pods as necessary
to obtain the full bandwidth graph. We noticed that this might lead to nodes exhaustion
before a full bandwidth graph is generated. Hence, we optimized the flow by temporally
disabling scheduling on the nodes with bandwidth rates collected. The bandwidth can
be represented in JSON as shown in Listing 8.5.

Figure 8.13: Precise Bandwidth Graph

1 {

2 "jambo": {"guava": 4958842.4, "papaya": 19651766.4},

3 "ananas": {"papaya": 25221414.0, "guava": 5048774.7},

4 "orange": {"guava": 1626606.8, "papaya": 2810665.8},

5 "acerola": {"papaya": 17612750.1, "guava": 1368385.8}

6 }

Listing 8.5: Precise Bandwidth Graph Json in Bytes/sec

The bandwidth graph is generated with collected rates from previous data transfers such
as download and upload from pods to storage nodes in this approach. In this experiment,
we used six nodes from the available nodes described in the Table 8.1. This setup presents
nodes papaya and guava as storage nodes and the remaining four nodes as feasible nodes
able to run the pods.

It is important to emphasize that this methodology does not consider ongoing network
traffic. In parallel network transfers on the nodes outside of the Kubernetes context
during the collection of the rates, the precise bandwidth will have a lower value than

92

8.4. Network Monitoring

its full capacity. The term full capacity refers to the maximum bandwidth possible to
achieve in an idle network with only Kubernetes and the system’s network traffic. As
the bandwidth graph already displays the network status at one specific moment, it was
unnecessary to perform load tests.

8.4.4 Outcome
To understand the difference between the results from the different methodologies, we
selected four routes and directly compared values obtained from each approach as it
is displayed in Table 8.7. The rates from estimated and precise bandwidth graphs are
converted into Mbps. The tables show that discrepancy between results may differ
significantly. We observe that the higher the maximum connection speed, the more
significant differences between the three approaches. On the other hand, the results show
lower contrast between the approaches for the lower connection speed groups.

Routes Max Route Speed Intrusive iperf Estimated Precise
ananas - papaya 1Gbps 570 Mpbs 992 Mpbs 201 Mbps
ananas - guava 100Mbps 94.1 Mpbs 99 Mpbs 40 Mbps
jambo - guava 100Mbps 93.7 Mpbs 99 Mpbs 39 Mbps
jambo - papaya 1Gbps 890 Mpbs 994 Mpbs 157 Mbps
orange - guava 72Mbps 50 Mpbs 71 Mpbs 13 Mbps
orange - papaya 72Mbps 50 Mpbs 71 Mpbs 22 Mbps
acerola - guava 100Mbps 94 Mpbs 99 Mpbs 10 Mbps
acerola - papaya 1Gbps 285 Mpbs 994 Mpbs 140 Mbps

Table 8.7: Bandwidth Monitoring Comparison

Analyzing the conducted experiments and the results displayed by approaches, we learned
the following:

• Intrusive iperf it is a well-known tool in the open-source community and provides
very accurate results. However, it adds an extra overhead in the network, which
might decrease the performance in our specific case. Since our discussed scenarios
rely on a stable and fast network for constant file transfers, it is not the best option
in these situations.

• Estimated Bandwidth Graph presented reliable results when considering the
ongoing transfers in the network even outside of the cluster scope. Nevertheless, it
proposes too high rates compared to the other two approaches, and after experiments
conducted, these rates differ from what it is possible to achieve. Thus, we recommend
this solution for a light file transfer environment since it also measures network I/O
outside of the cluster scope, and it is constantly updating itself without relying on
previous data. This feature will always provide an up-to-date network overview
regardless of past data load.

93

8. Evaluation

• Precise Bandwidth Graph shows the actual transfer speed achieved regardless
of what intrusive monitoring is displayed. This approach performs well in a heavy
file transfers environment since its decision relies on the latest transfer rate without
invasive techniques. Thus, if transfers are long apart, the network might differ
significantly from when the rate was collected. This fact might wrongly induce the
scheduler.

Taking into consideration a data-intensive serverless-edge scenario, we consider Precise
Bandwidth Graph most effective from our monitoring solutions. This approach reports
the maximum achieved transfer rate, which will be used as a metric for the next scheduling
decision. Furthermore, in our circumstances where there is a constant data load on
the network and a short time distance, there is no significant network usage difference
between the rate collected and the function execution.

94

CHAPTER 9
Conclusion

In this chapter, we conclude by summarizing all the contributions that led to the solution.
In the following section, we discuss the research questions and the results obtained by
this project, and how this thesis contributes to the research community. To conclude, we
describe the main challenges faced and what could be done to continue and improve this
project in future work.

9.1 Contributions
To achieve an end-to-end solution, we carefully analyzed new components and modifi-
cations on existing components. The contribution for each component is described as
follows:

Skippy Data Scheduler is an extension of the existing custom Kubernetes scheduler
presented in [11]. The first version of Skippy was able to identify specific cluster properties,
such as CPU, RAM, GPU and resource utilization. The Skippy Data Scheduler adds
data locality to Skippy default implementation. The data-locality scheduling enables
Skippy to improve the FET in data-intensive scenarios, e.g., in ML workflows. Our
results show that the data-locality feature in Skippy Data Scheduler leads to a 40% lower
FET. Additionally, it prioritizes file transfers on edge, leading to nearly duplicated edge
network traffic and consequently cloud traffic decrease. The network traffic distribution
based on edge resources availability reduces the financial costs with cloud services up to
85% compared to solutions without data locality.

Skippy CLI is a deployment tool used to add Skippy labels to an OpenFaas function
deployment. Skippy-cli is built on the top of Faas-cli. It reads the properties provided
in the configuration file skippy.yml file, and it sends this information to Faas-cli in
Kubernetes label format.

95

9. Conclusion

Skippy Data Daemon is the component in charge of collecting the file’s metadata
and storing it in Redis key/value store. The daemon executes a full scan periodically
in all MinIO pods existent in the cluster. Additionally, Skippy Data Daemon builds a
storage index which is later available for other components like Skippy Data Scheduler
and Skippy Data SDK.

Skippy Data SDK is a python library that consumes and produces files necessary for
OpenFaaS function execution. Thanks to the Storage Node Prediction feature described
in Section 6.4.2, the Skippy Data SDK decides which storage has the largest bandwidth
available to transfer the files. Additionally, our python SDK provides an ephemeral
storage feature that determines whether the file is read from local temporary storage if
present or if it should transfer the file from the MinIO storage.

Skippy Network is responsible for the network monitoring in the cluster. Based on
metrics collected, Skippy Network builds bandwidth graph displaying current network
usage. This bandwidth graph is used by Skippy Data Scheduler and Skippy Data SDK
to perform decisions. Skippy Network is essential for the decision-making process during
scheduling and runtime. It provides routes between nodes in the cluster that enables the
Skippy Data Scheduler and Skippy Data SDK to make decisions based on the largest
bandwidth availability.

Telemd is an open-source telemetry system part of edgerun1 platform. Our main
contribution to this project was the metric addition netspeed which displays the maximum
speed connection of a device. This metric was added in the main project, while the
additional metrics described in Section 7.2 were only used for the development and
evaluation of this project.

9.2 Research Questions
Based on the evaluation of the thesis, we can answer the research questions as follows:

RQ1: Which components are necessary to enable data-locality-aware
scheduling in state-of-the-art container schedulers?

To provide scheduler scoring based on data locality, we use (1) a storage index, which
enables a low latency lookup search to the file metadata existent in the cluster. Addition-
ally, we fetch (2) the bandwidth graph containing the current network usage. Once the
scheduler was aware of both file metadata and the available bandwidth between cluster
nodes, the scheduler scores based on the time necessary to transfer the files for each
possible node in the cluster.

1https://edgerun.io

96

9.2. Research Questions

The combination of data-locality awareness, such as storage index and bandwidth graph,
enables our scheduler to improve the total FET by 40%. Experiments in Chapter 8
corroborate that data-locality awareness improves function’s execution time. Additionally,
our scheduler can maximize edge networks and minimize cloud traffic efficiently. The
priorities mechanism allows users to favor specific attributes such as edge and cloud
locality according to the workload’s requirements. In our described scenarios, the
Skippy Data Scheduler increases edge traffic up to 100% compared with default Skippy
implementations while cloud network traffic is decreased to close to nominal values.

RQ1.1: what is the performance impact of providing data storage
information to the scheduler?

To enable decision-making based on data locality, we need first to know where in the
cluster the data is stored. In our solution, we created a storage index containing file
metadata information. Our Skippy Data Daemon runs constantly scanning MinIO storage
nodes deployed in the cluster. The application asynchronously updates its information in
a key/value caching store. This approach improves the decision-making process since it
enables the Skippy Data Scheduler and Skippy Data SDK to a low latency access to the
metadata information.

In experiments in Chapter 8, we showed that data locality could reduce the FET by
40%, increase the edge network traffic, and reduces up to 85% of the financial costs
with cloud resources. However, Section 8.2.2 shows that the data locality priority
increases the latency by nearly 100% compared to the Skippy default scheduler. Further,
Section 8.2.3 displays a throughput degradation up to 65%. To minimize the latency
and throughput degradation, we present a full storage index in “Optimized Skippy Data”
in the experiments. The full storage index improves the data locality scheduling by
only increasing up to 50% of latency and up to 45% of scheduling throughput compared
to Skippy default. Nevertheless, we consider the scheduling latency and throughput
degradation a tradeoff to achieve data locality.

RQ1.2: What is the tradeoff for providing inter-node bandwidth
information to the scheduler?

To monitor the network usage and provide a bandwidth graph between the nodes in
the cluster, we proposed two non-intrusive network monitoring techniques which give a
bandwidth usage overview.

In the first proposed solution, referred as EstimatedBandwidthGraph in Section 7.3.1, we
created the bandwidth graph by collecting information from the nodes in the network
using edgerun telemd2. The key metrics used in this technique are the Ethernet connection
speed and network I/O rates. Based on this network information, we can estimate the
available connection speed on a node by decreasing its current network I/O usage from
its max speed. Once this is calculated for every device present in the network, we can

2https://github.com/edgerun/telemd

97

9. Conclusion

create a bandwidth by checking the minimum value between two devices. As the use of
maximum speed connection information might not give detailed insight from the device
network connection at a certain moment, we considered this an “estimated” bandwidth
graph.

In the second proposed solution in Section 7.3.2, we used the data transfers to collect
the metrics necessary between the source node and target node where the data is stored.
As our python Skippy Data SDK is responsible for downloading and uploading the
data from the node that hosts the serverless function to a specific storage node, we
use these data transfers to calculate the maximum transfer speed in this network route
(nodeA − StorageNodeA). As these metrics provide the speed transfer availability in a
specific moment in the network, we called it PreciseBandwidthGraph.

Both of our approaches we proposed non-intrusive bandwidth graphs. In the first approach
is more appropriate for light data transfer scenarios since metrics are constantly collected
to calculate an up-to-date bandwidth. It delivers an estimation of bandwidth usage in
real-time. Meanwhile, as the second approach relies on previous transfer data to create
the bandwidth graph, it displayed promising results in a workflow scenario with constant
file transfers.

In our proposed framework, we avoid the usage of accurate networking monitoring
tools such as iperf 3. Therefore, we created two non-intrusive approaches, which give
us an overview of the current network usage. In Section 8.4, accurate iperf shows 570
Mbps, EstimatedBandwidthGraph and PreciseBandwidthGraph show 992 Mbps and 201
Mbps respectively. As described in Chapter 7, the non-intrusive approaches are not
accurate as iperf. Still, in data-intense scenarios, accurate tools add extra overhead to the
already-overloaded edge network. As our framework does not need accurate information
but only an overview of the network usage, we opt for non-intrusive methods to create
a lightweight bandwidth graph. We consider the accuracy a tradeoff to provide the
scheduler a bandwidth graph with an overview of the current network usage information.

RQ2: What additional runtime mechanisms are needed by a serverless
system that performs data locality-aware scheduling?

As discussed in chapter 8, data-locality during scheduling time can improve the workflow
characteristics such as FET and network usage. However, in an intense data transfer
scenario, system attributes and workload can quickly change in a short time window. We
analyze these system attributes during scheduling and runtime. To solve data locality
during execution time, we proposed a Skippy Data SDK described in Section 6.4 able to
consider data locality once the serverless function is executed.

Skippy Data SDK downloads and uploads necessary files for the function execution, which
means it exempts developers from extra tasks to transfer the files. The Storage Node
Prediction feature optimizes the files transfers. This feature uses the same data-locality

3https://iperf.fr/

98

9.3. Challenges

principle used during scheduling time. Our python library can identify the shortest
route between the node which hosts the executed function and potential storage node
options based on storage index and bandwidth graph. Our experiments displayed that the
additional runtime data locality calculations speed up the data transfer and consequently
the total FET. Additionally, the framework efficiently distributes network traffic between
edge and cloud. It prioritizes edge storage cloud storage which leads to less financial
costs with cloud provider services.

The data-locality approach during scheduling and runtime results in up to 40% faster
execution time. Additionally, it nearly duplicates the edge network traffic while decreasing
the cloud network to insignificant numbers. Furthermore, the cloud traffic reduction
leads to a reduction of up to 85% of financial costs with cloud services.

9.3 Challenges
For this thesis, we intended to create an environment as heterogeneous as possible.
Therefore, we use different types of SBC in our testbed as described in Section 8.1.1. The
different types of SBC brought configuration challenges that required executing some
specific tasks for specific boards. As an example, BananaPi4 supported Linux Kernel
has flags that prevent Docker installation. It was necessary to build the Kernel with
all the flags necessary for the framework tools installation to include BananaPi in our
Kubernetes cluster.

9.4 Future work
The results obtained in this thesis show an improvement of data-intensive workflows
in limited resource capacity, such as serverless edge computing. We want to highlight
additional areas where data locality can be important for serverless edge computing.

9.4.1 Data Locality Awareness in the Load Balancer
Kubernetes provides an internal component kube-proxy responsible for forwarding requests
to the specific pods in the node. Once an incoming request arrives at the Kubernetes
Load Balancer (LB) it is only forwarded to the pod respecting internal Kubernetes rules.
To enable a data-locality load balancing, we suggest adding data-locality awareness in
kube-proxy. Thus, textitkube-proxy can improve the workflow as it can also take part in
the decision-making process, hence optimizing the workflow. The data locality during
load balancing is another improvement during function execution.

9.4.2 Function Runtime Weighted Priorities
According to [46], the scheduler is responsible for function placement and other essential
jobs like prioritization, capacity management, failure recovery, and task completion.

4http://www.banana-pi.org/m3.html

99

9. Conclusion

However, in serverless environments with constant data transferred between devices with
different characteristics such as data location, storage type, and storage locality, there is
still a lack of attention to resolving this heterogeneity during runtime. We can improve
the function execution by providing similar scheduler priority calculations based on score
points. Once a serverless function is triggered, the scheduler has no longer influence, yet
there are decisions to be taken like which storage node to use for transfer or pick storage
from edge or cloud. Our implemented Skippy Data SDK resolves the data locality during
runtime. It does find the shortest path favoring edge storage. However, a heterogeneous
workflow in a heterogeneous environment can leverage the ability to tune the different
features like weighted priorities according to its needs as it happens during scheduling
time.

9.4.3 Scheduling on Distributed Multi-Cluster

Figure 9.1: High Availability Private Clusters Setup

Fig. 9.1 shows how multiple private clusters communicate between themselves. In order
to achieve high availability of the private clusters, we used Wireguard5 installed on one
Virtual Private Server (VPS) and on the master node of each cluster, described in the
Fig. 9.1 as master-c1 and master-c2.

5https://www.wireguard.com

100

9.4. Future work

Throughout this thesis, we consider that the clusters can communicate and transfer the
information as necessary. Since each cluster only hosts its information, the foreign cluster
setup is completely ignored at the scheduling moment. If the clusters share the data
between themselves, perhaps the scheduler can consider the alien nodes during scheduling
time.

101

APPENDIX A
Skippy Data Scheduler Logs

In the listing A.1, one can see detailed a testbed pod scheduling logs for DataLocalityPri-
ority and FunctionChainPriority.

1 DEBUG|There's a new pod to schedule: skippy-test-f8c49d477-nsbg5
2 DEBUG|Received a new pod to schedule: skippy-test-f8c49d477-nsbg5
3 DEBUG|Pod skippy-test-f8c49d477-nsbg5 requests 100 / 209715200. Available on

node acerola: 4000 / 1021714432.Passed: True
4 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / Node acerola / PodFitsResourcesPred:

Passed
5 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / Node acerola /

CheckNodeLabelPresencePred: Passed
6 DEBUG|Pod skippy-test-f8c49d477-nsbg5 requests 100 / 209715200. Available on

node ananas: 4000 / 4066054144.Passed: True
7 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / Node ananas / PodFitsResourcesPred:

Passed
8 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / Node ananas /

CheckNodeLabelPresencePred: Passed
9 DEBUG|Pod skippy-test-f8c49d477-nsbg5 requests 100 / 209715200. Available on

node guava: 4000 / 1021718528.Passed: True
10 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / Node guava / PodFitsResourcesPred:

Passed
11 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / Node guava /

CheckNodeLabelPresencePred: Passed
12 DEBUG|Pod skippy-test-f8c49d477-nsbg5 requests 100 / 209715200. Available on

node orange: 4000 / 1048010752.Passed: True
13 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / Node orange / PodFitsResourcesPred:

Passed
14 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / Node orange /

CheckNodeLabelPresencePred: Passed
15 DEBUG|ResourcePriority: Calculating score for skippy-test-f8c49d477-nsbg5 on

acerola
16 DEBUG|ResourcePriority: Calculating score for skippy-test-f8c49d477-nsbg5 on

ananas

103

A. Skippy Data Scheduler Logs

17 DEBUG|ResourcePriority: Calculating score for skippy-test-f8c49d477-nsbg5 on
guava

18 DEBUG|ResourcePriority: Calculating score for skippy-test-f8c49d477-nsbg5 on
orange

19 16.01.2021 12:13:12.1610539992|INFO|TIME EXECUTION for (1.0, <core.priorities
.BalancedResourcePriority object at 0xb54b8e30>) 941 microseconds

20 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / <class 'core.priorities.
BalancedResourcePriority'>: [8.0, 9.0, 8.0, 8.0]

21 10.244.0.1 - - [16/Jan/2021 12:13:12] "GET / HTTP/1.1" 200 -
22 DEBUG|Docker images:{'creator': 676243, 'id': 131699505, 'image_id': None, '

images': [{'architecture': 'arm', 'features': '', 'variant': None, '
digest': 'sha256:
d5447d985cb6ad5823683eec73dc08709e7d1cc83e16b01885dd619b3d3726d7', 'os':
'linux', 'os_features': '', 'os_version': None, 'size': 49150162, 'status
': 'active', 'last_pulled': '2021-01-08T22:10:51.180722Z', 'last_pushed':
'2021-01-07T12:12:32.859215Z'}], 'last_updated': '2021-01-07T12
:12:32.859215Z', 'last_updater': 676243, 'last_updater_username': '
keniack', 'name': 'latest', 'repository': 10591726, 'full_size':
49150162, 'v2': True, 'tag_status': 'active', 'tag_last_pulled':
'2021-01-08T22:10:51.180722Z', 'tag_last_pushed': '2021-01-07T12
:12:32.859215Z'}

23 16.01.2021 12:13:14.1610539994|INFO|TIME EXECUTION for (1.0, <core.priorities
.LatencyAwareImageLocalityPriority object at 0xb54b8e50>) 429279
microseconds

24 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / <class 'core.priorities.
LatencyAwareImageLocalityPriority'>: [10.0, 10.0, 10.0, 10.0]

25 16.01.2021 12:13:14.1610539994|INFO|TIME EXECUTION for (1.0, <core.priorities
.LocalityTypePriority object at 0xb54b8e70>) 43 microseconds

26 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / <class 'core.priorities.
LocalityTypePriority'>: [10.0, 10.0, 10.0, 10.0]

27 DEBUG|----- Calculating DOWNLOAD estimated time-------
28 DEBUG|File [test/minio.csv] present in nodes ["guava", "acerola"]
29 DEBUG|From [acerola] to [acerola] the same. Time = 0
30 16.01.2021 12:13:14.1610539994|WARNING|MinioClientException: The specified

key does not exist.
31 DEBUG|File [faas/file_120M.txt] present in nodes ["guava"]
32 DEBUG|From [acerola] to ['guava'] [faas/file_120M.txt] calculating transfer

size 133333337 bytes
33 DEBUG|From [acerola] to [guava] bandwidth is 12464000.0 bytes/s
34 DEBUG|From [acerola] best storage found [guava] to transfer [faas/file_120M.

txt]. Estimated time = 10s
35 DEBUG|From [acerola] DOWNLOAD total estimated time for all file transfers (['

test/minio.csv', 'faas/file_120M.txt']) is 10 s
36 DEBUG|----- end DOWNLOAD calculations -------
37 DEBUG|----- Calculating UPLOAD estimated time-------
38 DEBUG|From [acerola] estimated produced file size is 400000006 bytes
39 DEBUG|File not present. bucket present in nodes {'guava'}
40 DEBUG|From [acerola] to ['guava'] [myproduce1/None] calculating transfer size

400000006 bytes
41 DEBUG|From [acerola] to [guava] bandwidth is 12464000.0 bytes/s
42 DEBUG|From [acerola] best storage found [guava] to transfer [myproduce1/].

Estimated time = 32s

104

43 DEBUG|From [acerola] UPLOAD total estimated time for all files to (['
myproduce1']) is 32 s

44 DEBUG|----- end UPLOAD calculations -------
45 DEBUG|From [acerola] total file transfers 42s
46 DEBUG|----- Calculating DOWNLOAD estimated time-------
47 DEBUG|File [test/minio.csv] present in nodes ["guava", "acerola"]
48 DEBUG|From [ananas] to ['guava', 'acerola'] [test/minio.csv] calculating

transfer size 266666669 bytes
49 DEBUG|From [ananas] to [guava] bandwidth is 12464000.0 bytes/s
50 DEBUG|From [ananas] to [acerola] bandwidth is 124524000.0 bytes/s
51 DEBUG|From [ananas] best storage found [acerola] to transfer [test/minio.csv

]. Estimated time = 2s
52 DEBUG|File [faas/file_120M.txt] present in nodes ["guava"]
53 DEBUG|From [ananas] to ['guava'] [faas/file_120M.txt] calculating transfer

size 133333337 bytes
54 DEBUG|From [ananas] to [guava] bandwidth is 12464000.0 bytes/s
55 DEBUG|From [ananas] best storage found [guava] to transfer [faas/file_120M.

txt]. Estimated time = 10s
56 DEBUG|From [ananas] DOWNLOAD total estimated time for all file transfers (['

test/minio.csv', 'faas/file_120M.txt']) is 12 s
57 DEBUG|----- end DOWNLOAD calculations -------
58 DEBUG|----- Calculating UPLOAD estimated time-------
59 DEBUG|From [ananas] estimated produced file size is 400000006 bytes
60 DEBUG|File not present. bucket present in nodes {'guava'}
61 DEBUG|From [ananas] to ['guava'] [myproduce1/None] calculating transfer size

400000006 bytes
62 DEBUG|From [ananas] to [guava] bandwidth is 12464000.0 bytes/s
63 DEBUG|From [ananas] best storage found [guava] to transfer [myproduce1/].

Estimated time = 32s
64 DEBUG|From [ananas] UPLOAD total estimated time for all files to (['

myproduce1']) is 32 s
65 DEBUG|----- end UPLOAD calculations -------
66 DEBUG|From [ananas] total file transfers 44s
67 DEBUG|----- Calculating DOWNLOAD estimated time-------
68 DEBUG|File [test/minio.csv] present in nodes ["guava", "acerola"]
69 DEBUG|From [guava] to [guava] the same. Time = 0
70 DEBUG|--------------------------------
71 DEBUG|File [faas/file_120M.txt] present in nodes ["guava"]
72 DEBUG|From [guava] to [guava] the same. Time = 0
73 DEBUG|From [guava] DOWNLOAD total estimated time for all file transfers (['

test/minio.csv', 'faas/file_120M.txt']) is 0 s
74 DEBUG|----- end DOWNLOAD calculations -------
75 DEBUG|----- Calculating UPLOAD estimated time-------
76 DEBUG|From [guava] estimated produced file size is 400000006 bytes
77 DEBUG|File not present. bucket present in nodes {'guava'}
78 DEBUG|From [guava] to [guava] the same. Time = 0
79 DEBUG|From [guava] UPLOAD total estimated time for all files to (['myproduce1

']) is 0 s
80 DEBUG|----- end UPLOAD calculations -------
81 DEBUG|From [guava] total file transfers 0s
82 DEBUG|----- Calculating DOWNLOAD estimated time-------
83 DEBUG|File [test/minio.csv] present in nodes ["guava", "acerola"]

105

A. Skippy Data Scheduler Logs

84 DEBUG|From [orange] to ['guava', 'acerola'] [test/minio.csv] calculating
transfer size 266666669 bytes

85 DEBUG|From [orange] to [guava] bandwidth is 8993000.0 bytes/s
86 DEBUG|From [orange] to [acerola] bandwidth is 8993000.0 bytes/s
87 DEBUG|From [orange] best storage found [guava] to transfer [test/minio.csv].

Estimated time = 29s
88 DEBUG|File [faas/file_120M.txt] present in nodes ["guava"]
89 DEBUG|From [orange] to ['guava'] [faas/file_120M.txt] calculating transfer

size 133333337 bytes
90 DEBUG|From [orange] to [guava] bandwidth is 8993000.0 bytes/s
91 DEBUG|From [orange] best storage found [guava] to transfer [faas/file_120M.

txt]. Estimated time = 14s
92 DEBUG|From [orange] DOWNLOAD total estimated time for all file transfers (['

test/minio.csv', 'faas/file_120M.txt']) is 43 s
93 DEBUG|----- end DOWNLOAD calculations -------
94 DEBUG|----- Calculating UPLOAD estimated time-------
95 DEBUG|From [orange] estimated produced file size is 400000006 bytes
96 DEBUG|File not present. bucket present in nodes {'guava'}
97 DEBUG|From [orange] to ['guava'] [myproduce1/None] calculating transfer size

400000006 bytes
98 DEBUG|From [orange] to [guava] bandwidth is 8993000.0 bytes/s
99 DEBUG|From [orange] best storage found [guava] to transfer [myproduce1/].

Estimated time = 44s
100 DEBUG|From [orange] UPLOAD total estimated time for all files to (['

myproduce1']) is 44 s
101 DEBUG|----- end UPLOAD calculations -------
102 DEBUG|From [orange] total file transfers 87s
103 16.01.2021 12:13:14.1610539994|INFO|TIME EXECUTION for (1.0, <core.priorities

.DataLocalityPriority object at 0xb54b8e90>) 253148 microseconds
104 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / <class 'core.priorities.

DataLocalityPriority'>: [5.0, 4.0, 10.0, 0.0]
105 16.01.2021 12:13:14.1610539994|INFO|TIME EXECUTION for (1.0, <core.priorities

.FunctionChainPriority object at 0xb54b8eb0>) 182 microseconds
106 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / <class 'core.priorities.

FunctionChainPriority'>: [0.0, 0.0, 10.0, 0.0]
107 16.01.2021 12:13:14.1610539994|INFO|TIME EXECUTION for (1.0, <core.priorities

.CapabilityPriority object at 0xb54b8ed0>) 409 microseconds
108 DEBUG|Pod skippy-test-f8c49d477-nsbg5 / <class 'core.priorities.

CapabilityPriority'>: [0.0, 0.0, 0.0, 0.0]
109 DEBUG|Node scores: [(acerola, 33.0), (ananas, 33.0), (guava, 48.0), (orange,

28.0)]
110 16.01.2021 12:13:14.1610539994|INFO|Creating namespaced binding: Pod skippy-

test-f8c49d477-nsbg5 on Node guava
111 DEBUG|response body: {"kind":"Status","apiVersion":"v1","metadata":{},"status

":"Success","code":201}
112 DEBUG|Found best node. Remaining allocatable resources after scheduling:

Capacity(CPU: 3900 Memory: 812003328)
113 DEBUG|Pod yielded SchedulingResult(suggested_host=guava, feasible_nodes=4,

needed_images=['keniack/skippy-test:latest'])

Listing A.1: Testbed Skippy Data Logs

106

APPENDIX B
Additional Experiments

In the following pictures, we can see experiments performed in the testbed and additional
simulation experiments. Figure B.1 displays a network usage overview between storage
node prediction and random storage node assignment. Additionally, it considers two
random scenarios a) most random storage nodes are placed on the cloud, and thus it
generates high financial costs. In b) random storage nodes are placed at the edge network,
generating lower financial costs. In these experiments, we imply that every edge device is
not provider-managed while cloud devices are managed by services like AWS, Azure or
GCP.

Figure B.2 shows how the use of ephemeral storage impacts computational resources like
disk and ram; even when data is transferred from the network storage, there is similar
resource usage on the testbed.

In figure B.3, we can see a simulation of a TET in axis y. The plot shows how execution
time varies according simultaneously executed requests displayed in axis x.

Further, figure B.4 displays a 3D overview from the skippy scheduler scalability.

107

B. Additional Experiments

(a) Worst Financial Scenario

(b) Best Financial Scenario

Figure B.1: Testbed Skippy SDK Network traffic

108

Figure B.2: Testbed Resource Usage: Function Runtime

109

B. Additional Experiments

Figure B.3: Skippy Data SDK: Function Execution Time

110

Figure B.4: Skippy Scheduler Scalability 3D

111

APPENDIX C
Telemd Modifications

Listing C.1 shows the changes which were necessary to telemd. It shows the modifications
to include activeDevice, netspeed and hostIp metrics

1 commit a873ea9403ea0902e771470e2cbfabf4326686de
2 Author: Cynthia Marcelino <keniack@gmail.com>
3 Date: Wed Jan 13 23:25:21 2021 +0100
4 Add hostIp to info node
5 diff --git a/internal/telemd/cfg.go b/internal/telemd/cfg.go
6 index 5f80cca..6de9b25 100644
7 --- a/internal/telemd/cfg.go
8 +++ b/internal/telemd/cfg.go
9 @@ -1,10 +1,12 @@

10 package telemd
11 import (
12 + "errors"
13 + "net"
14 @@ -175,3 +177,26 @@ func execCommand(args string) (string, error) {
15 return strings.TrimSpace(string(output)), nil
16 }
17 }
18 +
19 +func getInterfaceIpv4Addr(interfaceName string) (addr string, err error) {
20 + var (
21 + ief *net.Interface
22 + addrs []net.Addr
23 + ipv4Addr net.IP
24 +)
25 + if ief, err = net.InterfaceByName(interfaceName); err != nil { // get

interface
26 + return
27 + }
28 + if addrs, err = ief.Addrs(); err != nil { // get addresses
29 + return
30 + }

113

C. Telemd Modifications

31 + for _, addr := range addrs { // get ipv4 address
32 + if ipv4Addr = addr.(*net.IPNet).IP.To4(); ipv4Addr != nil {
33 + break
34 + }
35 + }
36 + if ipv4Addr == nil {
37 + return "", errors.New(fmt.Sprintf("interface %s don't have an ipv4

address\n", interfaceName))
38 + }
39 + return ipv4Addr.String(), nil
40 +}
41 diff --git a/internal/telemd/info.go b/internal/telemd/info.go
42 index 7150fbc..9b8921f 100644
43 --- a/internal/telemd/info.go
44 +++ b/internal/telemd/info.go
45 @@ -17,6 +17,7 @@ type NodeInfo struct {
46 NetDevice string
47 + HostIp string
48 }
49 func (info NodeInfo) Print() {
50 @@ -29,6 +30,7 @@ func (info NodeInfo) Print() {
51 fmt.Println("netDevice: ", info.NetDevice)
52 + fmt.Println("hostIp: ", info.HostIp)
53 }
54 func SysInfo() NodeInfo {
55 @@ -73,6 +75,13 @@ func ReadSysInfo(info *NodeInfo) {
56 } else {
57 - log.Println("error reading network device info", err)
58 + log.Println("error reading active device info", err)
59 }
60 +
61 + if hostIp, err := getInterfaceIpv4Addr(info.NetDevice); err == nil {
62 + info.HostIp = hostIp
63 + } else {
64 + log.Println("error reading hostIp info", err)
65 + }
66 +
67 }
68 diff --git a/internal/telemd/redis.go b/internal/telemd/redis.go
69 index be164b1..bfe1d45 100644
70 --- a/internal/telemd/redis.go
71 +++ b/internal/telemd/redis.go
72 @@ -95,6 +95,7 @@ func WriteNodeInfo(client *redis.Client, nodeName string,

info NodeInfo) error {
73 multi.HSet(key, "net", strings.Join(info.Net, " "))
74 multi.HSet(key, "netspeed", info.NetSpeed)
75 multi.HSet(key, "netdevice", info.NetDevice)
76 + multi.HSet(key, "hostIp", info.HostIp)
77
78 _, err := multi.Exec()
79 return err
80 commit 2de1ba9276189a6379ac8a8c9e1abb202a6dc5e9
81 Author: Cynthia Marcelino <keniack@gmail.com>

114

82 Date: Fri Nov 13 00:27:55 2020 +0100
83 #10 find net device
84 diff --git a/internal/telemd/cfg.go b/internal/telemd/cfg.go
85 index c1a397f..0ed54d6 100644
86 --- a/internal/telemd/cfg.go
87 +++ b/internal/telemd/cfg.go
88 @@ -135,31 +135,36 @@ func blockDevices() []string {
89 }
90 func netSpeed() string {
91 - devices := networkDevices()
92 + activeNetDevice := findActiveNetDevice()
93 + wirelessPath := "/sys/class/net/" + activeNetDevice + "/wireless"
94 + if fileDirExists(wirelessPath) {
95 + return findWifiSpeed(activeNetDevice)
96 + }else {
97 + path := "/sys/class/net/" + activeNetDevice + "/speed"
98 + speed, err := readFirstLine(path)
99 + check(err)

100 + return speed;
101 }
102 return ""
103 }
104 +func findActiveNetDevice() string {
105 + args := "route | awk 'NR==3{print $8}'"
106 + return execCommand(args)
107 +}
108 -func exec_command(device string) string {
109 +func findWifiSpeed(device string) string {
110 args := "iw dev "+device+" link | awk -F '[]' '/tx bitrate:/{print $3}'"
111 + speed := execCommand(args)
112 + value, _ := strconv.ParseFloat(speed,32)
113 + return fmt.Sprint(int(value))
114 +}
115 +func execCommand(args string) string {
116 cmd := exec.Command("sh","-c", args)
117 if output,err := cmd.Output(); err!= nil {
118 - log.Printf("Error fetching wifi bitrate: %s",err)
119 + log.Printf("Error executing command: %s",err)
120 }else{
121 log.Printf("wifi bitrate: %s",output)
122 - str_output := strings.TrimSpace(string(output))
123 - value, _ := strconv.ParseFloat(str_output,32)
124 - return fmt.Sprint(int(value))
125 + return strings.TrimSpace(string(output))
126 }
127 return ""
128 }
129 diff --git a/internal/telemd/fileio.go b/internal/telemd/fileio.go
130 index 6074a0a..d35a4d3 100644
131 --- a/internal/telemd/fileio.go
132 +++ b/internal/telemd/fileio.go
133 @@ -68,3 +68,11 @@ func readLineAndParseInt(path string) (int64, error) {
134 }

115

C. Telemd Modifications

135 return strconv.ParseInt(line, 10, 64)
136 }
137 +
138 +func fileDirExists(filename string) bool {
139 + _, err := os.Stat(filename)
140 + if os.IsNotExist(err) {
141 + return false
142 + }
143 + return true
144 +}
145 \ No newline at end of file
146 commit 3ebb7f3f38bb5369aeccbf10441e569e54ce09aa
147 Author: Cynthia Marcelino <keniack@gmail.com>
148 Date: Thu Nov 12 23:09:00 2020 +0100
149 #10 add wifi net speed
150 diff --git a/internal/telemd/cfg.go b/internal/telemd/cfg.go
151 index ad92e7a..c1a397f 100644
152 --- a/internal/telemd/cfg.go
153 +++ b/internal/telemd/cfg.go
154 @@ -1,10 +1,13 @@
155 package telemd
156 import (
157 + "fmt"
158 "github.com/edgerun/telemd/internal/env"
159 "io/ioutil"
160 "log"
161 "os"
162 + "os/exec"
163 + "strconv"
164 "strings"
165 "time"
166)
167 @@ -131,7 +134,7 @@ func blockDevices() []string {
168 })
169 }
170
171 -func ethSpeed() string {
172 +func netSpeed() string {
173 devices := networkDevices()
174 for _, dev:= range devices {
175 if strings.HasPrefix(dev, "e"){
176 @@ -139,7 +142,24 @@ func ethSpeed() string {
177 speed, err := readFirstLine(path)
178 check(err)
179 return speed;
180 + } else if strings.HasPrefix(dev, "w") {
181 + speed := exec_command(dev)
182 + return speed;
183 }
184 }
185 return ""
186 }
187 +

116

188 +func exec_command(device string) string {
189 + args := "iw dev "+device+" link | awk -F '[]' '/tx bitrate:/{print $3}'"
190 + cmd := exec.Command("sh","-c", args)
191 + if output,err := cmd.Output(); err!= nil {
192 + log.Printf("Error fetching wifi bitrate: %s",err)
193 + }else{
194 + log.Printf("wifi bitrate: %s",output)
195 + str_output := strings.TrimSpace(string(output))
196 + value, _ := strconv.ParseFloat(str_output,32)
197 + return fmt.Sprint(int(value))
198 + }
199 + return ""
200 +}
201 diff --git a/internal/telemd/info.go b/internal/telemd/info.go
202 index 8305234..f9aac60 100644
203 --- a/internal/telemd/info.go
204 +++ b/internal/telemd/info.go
205 @@ -14,7 +14,7 @@ type NodeInfo struct {
206 Hostname string
207 - EthSpeed string
208 + NetSpeed string
209 }
210
211 func (info NodeInfo) Print() {
212 @@ -25,7 +25,7 @@ func (info NodeInfo) Print() {
213 fmt.Println("Hostname: ", info.Hostname)
214 - fmt.Println("EthSpeed: ", info.EthSpeed)
215 + fmt.Println("netSpeed: ", info.NetSpeed)
216 }
217
218 func SysInfo() NodeInfo {
219 @@ -63,7 +63,7 @@ func ReadSysInfo(info *NodeInfo) error {
220 return err
221 }
222 info.Hostname = hostname
223 - info.EthSpeed = ethSpeed()
224 + info.NetSpeed = netSpeed()
225
226 return nil
227 }
228 diff --git a/internal/telemd/redis.go b/internal/telemd/redis.go
229 index 13b7cdf..f9671a7 100644
230 --- a/internal/telemd/redis.go
231 +++ b/internal/telemd/redis.go
232 @@ -93,7 +93,7 @@ func WriteNodeInfo(client *redis.Client, nodeName string,

info NodeInfo) error {
233 multi.HSet(key, "net", strings.Join(info.Net, " "))
234 - multi.HSet(key, "ethspeed", info.EthSpeed)
235 + multi.HSet(key, "netspeed", info.NetSpeed)
236 _, err := multi.Exec()
237 return err

Listing C.1: telemd patch to add new metrics

117

APPENDIX D
Openfaas Modifications

Listing D.1 shows openfaas changes necessary to . It shows the modifications done in
openfaas

1 diff --git a/pkg/handlers/deploy.go b/pkg/handlers/deploy.go
2 index 54cfd9ca..6f5c8d85 100644
3 --- a/pkg/handlers/deploy.go
4 +++ b/pkg/handlers/deploy.go
5 @@ -116,11 +116,11 @@ func MakeDeployHandler(functionNamespace string,

factory k8s.FunctionFactory) ht
6 }
7 log.Printf("Service created: %s.%s\n", request.Service, namespace)
8 -
9 w.WriteHeader(http.StatusAccepted)

10 }
11 }
12 +
13 func makeDeploymentSpec(request types.FunctionDeployment, existingSecrets

map[string]*apiv1.Secret, factory k8s.FunctionFactory) (*appsv1.
Deployment, error) {

14 envVars := buildEnvVars(&request)
15 @@ -173,7 +173,6 @@ func makeDeploymentSpec(request types.FunctionDeployment,

existingSecrets map[st
16 }
17 enableServiceLinks := false
18 - allowPrivilegeEscalation := false
19 deploymentSpec := &appsv1.Deployment{
20 ObjectMeta: metav1.ObjectMeta{
21 @@ -212,8 +211,24 @@ func makeDeploymentSpec(request types.FunctionDeployment

, existingSecrets map[st
22 },
23 Spec: apiv1.PodSpec{
24 NodeSelector: nodeSelector,
25 - Containers: []apiv1.Container{
26 + SchedulerName: "skippy-scheduler",

119

D. Openfaas Modifications

27 + Volumes: []corev1.Volume{
28 {
29 + Name: "openfaas-local-storage",
30 + VolumeSource : corev1.VolumeSource{
31 + PersistentVolumeClaim: &corev1.

PersistentVolumeClaimVolumeSource{
32 + ClaimName: "openfaas-skippy-pvc",
33 + },
34 + },
35 + },
36 + },
37 + Containers: []apiv1.Container{
38 + { VolumeMounts: []corev1.VolumeMount{
39 + {
40 + Name: "openfaas-local-storage",
41 + MountPath:"/openfaas-local-storage",
42 + },
43 + },
44 Name: request.Service,
45 Image: request.Image,
46 Ports: []apiv1.ContainerPort{
47 @@ -229,8 +244,7 @@ func makeDeploymentSpec(request types.FunctionDeployment,

existingSecrets map[st
48 LivenessProbe: probes.Liveness,
49 ReadinessProbe: probes.Readiness,
50 SecurityContext: &corev1.SecurityContext{
51 - ReadOnlyRootFilesystem: &request.ReadOnlyRootFilesystem,
52 - AllowPrivilegeEscalation: &allowPrivilegeEscalation,
53 + ReadOnlyRootFilesystem: &request.ReadOnlyRootFilesystem,
54 },
55 },
56 },
57 @@ -312,6 +326,15 @@ func buildEnvVars(request *types.FunctionDeployment) []

corev1.EnvVar {
58 })
59 }
60 + envVars = append(envVars, corev1.EnvVar{
61 + Name: "node",
62 + ValueFrom: &corev1.EnvVarSource{
63 + FieldRef: &corev1.ObjectFieldSelector{
64 + FieldPath: "spec.nodeName",
65 + },
66 + },
67 + })
68 for k, v := range request.EnvVars {
69 envVars = append(envVars, corev1.EnvVar{
70 Name: k,
71 diff --git a/yaml_armhf/skippy-storage.yml b/yaml_armhf/skippy-storage.yml
72 new file mode 100644
73 index 00000000..290a0ab8
74 --- /dev/null
75 +++ b/yaml_armhf/skippy-storage.yml
76 @@ -0,0 +1,28 @@

120

77 +kind: PersistentVolume
78 +apiVersion: v1
79 +metadata:
80 + name: openfaas-skippy-pv
81 + labels:
82 + openfaas.storage: local
83 +spec:
84 + capacity:
85 + storage: 10Gi
86 + accessModes:
87 + - ReadWriteMany
88 + hostPath:
89 + path: "/openfaas-local-storage"
90 +---
91 +apiVersion: v1
92 +kind: PersistentVolumeClaim
93 +metadata:
94 + name: openfaas-skippy-pvc
95 + namespace: openfaas-fn
96 + labels:
97 + openfaas.storage: local
98 +spec:
99 + accessModes:

100 + - ReadWriteMany
101 + resources:
102 + requests:
103 + storage: 10Gi
104 +

Listing D.1: openfaas patch to add new metrics

121

Acronyms

API Application Programming Interface. 37, 49, 53, 124

AWS Amazon Web Services. 2, 9, 11, 22, 38, 49, 78, 88, 107, 124

CLI Command Line Interface. 31–33, 61, 95, 124

CO Container Orchestration. 25, 124

CPU Central Processing Unit. 2, 4, 9, 16, 20, 36, 37, 60, 95, 124

DHT Data Hashing Tables. 17, 19, 21, 124

FaaS Function-as-a-Service. 1, 9, 10, 27, 30, 33, 44, 124

FET Function Execution Time. 75, 79–81, 84–86, 88, 95, 97–99, 124

GB Gigabytes. 27, 36, 88, 124

Gbps Gigabits per second. 80, 124

GCP Google Cloud Platform. 78, 107, 124

GPU Graphics Processing Unit. 4, 20, 35, 38, 39, 95, 124

GUI Graphic User Interface. 33, 124

HDFS Hadoop Distributed File System. 21, 124

HTTP Hypertext Transfer Protocol. 14, 28, 33, 124

I/O Input/Output. 27, 49, 53, 61, 63, 86, 93, 97, 124

IoT Internet of Things. 1, 9–12, 70, 72, 124

IP Internet Protocol. 20, 124

K8s Kubernetes. 2, 14, 124

123

Acronyms

LB Load Balancer. 99, 124

MB Megabytes. 36, 75, 124

MBps Megabytes per second. 91, 124

Mbps Megabits per second. 80, 93, 98, 124

MCDM multi-criteria decision making. 124

ML Machine Learning. 2, 5, 9, 12, 20, 45, 53, 72, 73, 95, 124

MTU Maximum Transmission Unit. 89, 124

PV Persistent Volume. 45, 124

PVC Persistent Volume Claim. 45, 124

RAM Random-access Memory. 2, 4, 9, 20, 27, 36, 37, 60, 95, 124

S3 Simple Storage Service. 2, 49, 53, 78, 88, 124

SBC Single Board Computer. 49, 70, 72, 99, 124

SDK Software Development Kit. 5, 6, 25, 26, 28–30, 32, 42, 45, 47, 49, 53–56, 59, 65,
69, 75–79, 84–86, 88, 89, 96–98, 100, 124

TCP Transmission Control Protocol. 89, 124

TET Task Execution Time. 53, 107, 124

UDP User Datagram Protocol. 89, 124

urn Uniform Resource Name. 31, 124

VM Virtual Machine. 10, 72, 124

VPN Virtual Private Network. 61, 124

VPS Virtual Private Server. 100, 124

124

Bibliography

[1] Mahadev Satyanarayanan. The emergence of edge computing. Computer, 50:30–39,
2017.

[2] Bin Cheng, Jonathan Fürst, Gürkan Solmaz, and Takuya Sanada. Fog function:
Serverless fog computing for data intensive IoT services. 2019 IEEE International
Conference on Services Computing (SCC), pages 28–35, 2019.

[3] Luciano Baresi and Danilo Filgueira Mendonça. Towards a serverless platform for
edge computing. 2019 IEEE International Conference on Fog Computing (ICFC),
pages 1–10, 2019.

[4] Junfeng Li, Sameer G. Kulkarni, K. K. Ramakrishnan, and Dan Li. Understanding
open source serverless platforms. Proceedings of the 5th International Workshop on
Serverless Computing - WOSC ’19, 2019.

[5] Joseph M. Hellerstein, Jose M. Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. Serverless computing:
One step forward, two steps back. CoRR, abs/1812.03651, 2018.

[6] Thomas Rausch, Waldemar Hummer, Vinod Muthusamy, Alexander Rashed, and
Schahram Dustdar. Towards a serverless platform for edge AI. In 2nd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 19), Renton, WA, July 2019.
USENIX Association.

[7] O. Skarlat, V. Karagiannis, T. Rausch, K. Bachmann, and S. Schulte. A framework
for optimization, service placement, and runtime operation in the fog. In 2018
IEEE/ACM 11th International Conference on Utility and Cloud Computing (UCC),
pages 164–173, Dec 2018.

[8] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang, and K. S. Chan.
Service placement and request scheduling for data-intensive applications in edge
clouds. In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications,
pages 1279–1287, 2019.

[9] Thomas Rausch, Alexander Rashed, and Schahram Dustdar. Optimized container
scheduling for data-intensive serverless edge computing. Future Generation Computer
Systems, 114:259–271, 2021.

125

Bibliography

[10] W. Yoo and A. Sim. Network bandwidth utilization forecast model on high band-
width networks. In 2015 International Conference on Computing, Networking and
Communications (ICNC), pages 494–498, 2015.

[11] Alexander Rashed. Optimized container scheduling for serverless edge computing.
Master’s thesis, Technische Universität Wien, 2019.

[12] Weisong Shi and Schahram Dustdar. The promise of edge computing. Computer,
49:78–81, 05 2016.

[13] Olena Skarlat, Stefan Schulte, Michael Borkowski, and Philipp Leitner. Resource
provisioning for iot services in the fog. In 2016 IEEE 9th International Conference
on Service-Oriented Computing and Applications (SOCA), pages 32–39, 2016.

[14] Mohammad Sadegh Aslanpour, Adel Toosi, Claudio Cicconetti, Bahman Javadi,
Peter Sbarski, Davide Taibi, Marcos Assuncao, Sukhpal Singh Gill, Raj Gaire, and
Schahram Dustdar. Serverless edge computing: Vision and challenges. 02 2021.

[15] Michael Armbrust, Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A view of cloud computing. Commun. ACM, 53:50–58, 04 2010.

[16] Changyuan Lin and Hamzeh Khazaei. Modeling and optimization of performance
and cost of serverless applications. IEEE Transactions on Parallel and Distributed
Systems, 32:615–632, 10 2020.

[17] Tarek Elgamal. Costless: Optimizing cost of serverless computing through function
fusion and placement. In 2018 IEEE/ACM Symposium on Edge Computing (SEC),
pages 300–312, 2018.

[18] Ying Xiong, Yulin Sun, Li Xing, and Ying Huang. Extend cloud to edge with
kubeedge. In 2018 IEEE/ACM Symposium on Edge Computing (SEC), pages
373–377, 2018.

[19] Li Lin, Xiaofei Liao, Hai Jin, and Peng Li. Computation offloading toward edge
computing. Proceedings of the IEEE, 107(8):1584–1607, 2019.

[20] Geoffrey C. Fox, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. Sta-
tus of serverless computing and function-as-a-service(faas) in industry and research.
CoRR, abs/1708.08028, 2017.

[21] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. Server-
less programming (function as a service). In 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), pages 2658–2659, 2017.

[22] M. McGrath and P. Brenner. Serverless computing: Design, implementation, and
performance. 2017 IEEE 37th International Conference on Distributed Computing
Systems Workshops (ICDCSW), pages 405–410, 2017.

126

Bibliography

[23] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. SOCK: Rapid task provisioning with
serverless-optimized containers. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 57–70, Boston, MA, July 2018. USENIX Association.

[24] Baotong Chen, Jiafu Wan, Antonio Celesti, Di Li, Haider Abbas, and Qin Zhang.
Edge computing in iot-based manufacturing. IEEE Communications Magazine,
56(9):103–109, 2018.

[25] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke, Andre
Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards high-performance serverless
computing. In 2018 USENIX Annual Technical Conference (USENIX ATC 18),
pages 923–935, Boston, MA, July 2018. USENIX Association.

[26] Thomas Rausch and Schahram Dustdar. Edge intelligence: The convergence of
humans, things, and ai. In 2019 IEEE International Conference on Cloud Engineering
(IC2E), pages 86–96, 2019.

[27] D. Xu, Tong Li, Y. Li, Xiang Su, Sasu Tarkoma, Tao Jiang, J. Crowcroft, and
Pan Hui. Edge intelligence: Architectures, challenges, and applications. arXiv:
Networking and Internet Architecture, 2020.

[28] Thomas Rausch, Waldemar Hummer, and Vinod Muthusamy. Pipesim: Trace-driven
simulation of large-scale AI operations platforms. CoRR, abs/2006.12587, 2020.

[29] Fotios Zantalis, Grigorios Koulouras, Sotiris Karabetsos, and Dionisis Kandris. A
review of machine learning and iot in smart transportation. Future Internet, 11(4),
2019.

[30] Thomas Rausch, Waldemar Hummer, Christian Stippel, Silvio Vasiljevic, Schahram
Dustdar, Carmine Elvezio, and Katharina Krösl. Towards a platform for smart
city-scale cognitive assistance applications. In n.n., editor, IEEE Conference on
Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) 2021, 2021.

[31] C. Catlett, P. Beckman, Rajesh Sankaran, and Kate Kusiak Galvin. Array of things:
a scientific research instrument in the public way: platform design and early lessons
learned. Proceedings of the 2nd International Workshop on Science of Smart City
Operations and Platforms Engineering, 2017.

[32] Long Hu, Yiming Miao, Gaoxiang Wu, Mohammad Hassan, and Iztok Humar.
irobot-factory: An intelligent robot factory based on cognitive manufacturing and
edge computing. Future Generation Computer Systems, 90, 08 2018.

[33] Sayed Chhattan Shah. Mobile edge cloud: Opportunities and challenges. In 2017
International Conference on Computational Science and Computational Intelligence
(CSCI), pages 1572–1577, 2017.

127

Bibliography

[34] Haojun Huang, Wang Miao, Geyong Min, and Chunbo Luo. Mobile Edge Computing
for the 5G Internet of Things, pages 143–161. 05 2019.

[35] Bo Liu, Pengfei Li, Weiwei Lin, Na Shu, Yin Li, and Victor Chang. A new container
scheduling algorithm based on multi-objective optimization. Soft Computing, 22:1–12,
12 2018.

[36] Animesh Trivedi, Lin Wang, Henri Bal, and Alexandru Iosup. Sharing and caring
of data at the edge. In 3rd USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 20). USENIX Association, June 2020.

[37] Balasundaram Vengadeswaran. Core – an optimal data placement strategy in
hadoop for data intentitive applications based on cohesion relation. Computer
Systems Science and Engineering, 34(1):47–60, 2019.

[38] Apostolos Papageorgiou, Bin Cheng, and Ernö Kovacs. Real-time data reduction at
the network edge of internet-of-things systems. In 2015 11th International Conference
on Network and Service Management (CNSM), pages 284–291, 2015.

[39] Junjie Xie, Chen Qian, Deke Guo, Minmei Wang, Shouqian Shi, and Honghui
Chen. Efficient indexing mechanism for unstructured data sharing systems in
edge computing. In IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, pages 820–828, 2019.

[40] Li Fan, Pei Cao, J. Almeida, and A.Z. Broder. Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Transactions on Networking, 8(3):281–293,
2000.

[41] B Yang and Hector Garcia-Molina. Comparing hybrid peer-to-peer systems. In 27th
International Conference on Very Large Data Bases (VLDB 2001), September 2001.
This is a shortened version; see the extended version for full details.

[42] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings
of the 2001 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’01, page 149–160, New York, NY, USA,
2001. Association for Computing Machinery.

[43] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein. It’s hard to share:
Joint service placement and request scheduling in edge clouds with sharable and
non-sharable resources. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pages 365–375, July 2018.

[44] S. Wang, M. Zafer, and K. K. Leung. Online placement of multi-component applica-
tions in edge computing environments. IEEE Access, 5:2514–2533, 2017.

128

Bibliography

[45] H. Tan, Z. Han, X. Li, and F. C. M. Lau. Online job dispatching and schedul-
ing in edge-clouds. In IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, pages 1–9, May 2017.

[46] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,
Ming Wu, and Lidong Zhou. Apollo: Scalable and coordinated scheduling for cloud-
scale computing. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 285–300, Broomfield, CO, October 2014. USENIX
Association.

[47] Yiwen Han, Shihao Shen, Xiaofei Wang, Shiqiang Wang, and Victor C. M. Leung.
Tailored learning-based scheduling for kubernetes-oriented edge-cloud system. CoRR,
abs/2101.06582, 2021.

[48] Michael Ogbuachi, Anna Reale, Peter Suskovics, and Benedek Kovacs. Context-aware
kubernetes scheduler for edge-native applications on 5g. Journal of Communications
Software and Systems, 16:85, 04 2020.

[49] Farah AIT SALAHT, Frédéric Desprez, and Adrien Lebre. An overview of service
placement problem in Fog and Edge Computing. Research Report RR-9295, Univ
Lyon, EnsL, UCBL, CNRS, Inria, LIP, LYON, France, October 2019.

[50] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar. Towards qos-aware fog service
placement. In 2017 IEEE 1st International Conference on Fog and Edge Computing
(ICFEC), pages 89–96, 2017.

[51] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu. Joint optimization of task scheduling
and image placement in fog computing supported software-defined embedded system.
IEEE Transactions on Computers, 65(12):3702–3712, 2016.

[52] Muhammad Khurram Bhatti, Isil Oz, Sarah Amin, Maria Mushtaq, Umer Fa-
rooq, Konstantin Popov, and Mats Brorsson. Locality-aware task scheduling for
homogeneous parallel computing systems. Computing, 100:557–595, 2017.

[53] Atakan Aral, Ivona Brandic, Rafael Brundo Uriarte, Rocco De Nicola, and Vincenzo
Scoca. Addressing application latency requirements through edge scheduling. Journal
of Grid Computing, 11 2019.

[54] Chia-Wei Lee, Kuang-Yu Hsieh, Sun-Yuan Hsieh, and Hung-Chang Hsiao. A
dynamic data placement strategy for hadoop in heterogeneous environments. Big
Data Research, 1:14–22, 2014. Special Issue on Scalable Computing for Big Data.

[55] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, January 2008.

[56] Minho Bae, Sangho Yeo, Gyudong Park, and Sangyoon Oh. Novel data-placement
scheme for improving the data locality of hadoop in heterogeneous environments:
Na. Concurrency and Computation: Practice and Experience, page e5752, 03 2020.

129

Bibliography

[57] Luiz Angelo Steffenel and Manuele Kirsch Pinheiro. Improving data locality in
p2p-based fog computing platforms. Procedia Computer Science, 141:72 – 79, 2018.

[58] Roberto Grossi and Luca Versari. Round-Hashing for Data Storage: Distributed
Servers and External-Memory Tables. In Yossi Azar, Hannah Bast, and Grzegorz
Herman, editors, 26th Annual European Symposium on Algorithms (ESA 2018),
volume 112 of Leibniz International Proceedings in Informatics (LIPIcs), pages 43:1–
43:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[59] M. Dehghan, A. Seetharam, B. Jiang, T. He, T. Salonidis, J. Kurose, D. Towsley,
and R. Sitaraman. On the complexity of optimal routing and content caching in
heterogeneous networks. In 2015 IEEE Conference on Computer Communications
(INFOCOM), pages 936–944, April 2015.

[60] S. Borst, V. Gupta, and A. Walid. Distributed caching algorithms for content
distribution networks. In 2010 Proceedings IEEE INFOCOM, pages 1–9, March
2010.

[61] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle,
and Animesh Trivedi. Understanding ephemeral storage for serverless analytics. In
2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 789–794,
Boston, MA, July 2018. USENIX Association.

[62] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and
Christos Kozyrakis. Pocket: Elastic ephemeral storage for serverless analytics. In
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pages 427–444, Carlsbad, CA, October 2018. USENIX Association.

[63] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios Sk-
ourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. Infinicache: Exploiting ephemeral
serverless functions to build a cost-effective memory cache. In 18th USENIX Con-
ference on File and Storage Technologies (FAST 20), pages 267–281, Santa Clara,
CA, February 2020. USENIX Association.

[64] Stefano Forti, Marco Gaglianese, and Antonio Brogi. Lightweight self-organising
distributed monitoring of fog infrastructures. Future Generation Computer Systems,
114:605–618, 2021.

[65] István Pelle, Francesco Paolucci, Balázs Sonkoly, and Filippo Cugini. Latency-
sensitive edge/cloud serverless dynamic deployment over telemetry-based packet-
optical network. IEEE Journal on Selected Areas in Communications, PP:1–1, 03
2021.

[66] K. Hightower, B. Burns, and J. Beda. Kubernetes: Up and Running: Dive Into the
Future of Infrastructure. O’Reilly Media, 2017.

130

Bibliography

[67] Persistent volumes | kubernetes. https://kubernetes.io/docs/concepts/
storage/persistent-volumes/. Accessed: 2021-04-04.

[68] Abdulkadir Karaagac, Eli De Poorter, and Jeroen Hoebeke. In-band network
telemetry in industrial wireless sensor networks. IEEE Transactions on Network
and Service Management, PP:1–1, 10 2019.

[69] The linux kernel. https://www.kernel.org/doc/Documentation/ABI/
testing/sysfs-class-net-statistics. Accessed: 2021-02-12.

[70] A. Hassidim, D. Raz, M. Segalov, and A. Shaqed. Network utilization: The flow
view. In 2013 Proceedings IEEE INFOCOM, pages 1429–1437, 2013.

[71] Philipp Alexander Raith. Container scheduling on heterogeneous clusters using
machine learning-based workload characterization. Master’s thesis, Wien, 2021.

[72] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cáceres, and Nigel Davies. The
case for vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
8:14–23, 10 2009.

[73] Kubernetes. Considerations for large clusters. https://kubernetes.io/docs/
setup/best-practices/cluster-large/, May 2021.

[74] Iperf - the ultimate speed test tool for tcp, udp and sctp. https://iperf.fr/
iperf-doc.php. Accessed: 2021-03-09.

131

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-net-statistics
https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-class-net-statistics
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://iperf.fr/iperf-doc.php
https://iperf.fr/iperf-doc.php

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Solution Approach
	Structure

	Fundamentals
	Serverless Edge Computing
	Scheduling Data Intensive Workloads
	Data Sharing at the Edge

	Related Work
	Service Placement Problem
	Data Placement
	Network Monitoring

	System Overview
	Overview
	Scheduler
	Storage Index
	Storage Node Prediction
	Bandwidth Graph
	Skippy Data SDK
	Function Deployment

	Skippy Data Scheduler
	Overview
	Kubernetes Scheduler
	Skippy Scheduler
	Skippy Data Scheduler
	OpenFaaS Modifications

	Data Management
	Overview
	Storage Index
	Metadata Handling
	Skippy Data SDK

	Network Monitoring
	Overview
	Telemetry
	Bandwidth Graph
	Comparison of Approaches
	Skippy Network

	Evaluation
	Methodology
	Skippy Data Scheduler
	Function Runtime: Skippy Data SDK
	Network Monitoring

	Conclusion
	Contributions
	Research Questions
	Challenges
	Future work

	Skippy Data Scheduler Logs
	Additional Experiments
	Telemd Modifications
	Openfaas Modifications
	Acronyms
	Bibliography

