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Abstract—Demanding latency-sensitive IoT applications have
stringent requirements like low latency, better privacy and
security. To meet such requirements, researchers proposed a
new paradigm, i.e., edge computing. Edge computing consists of
distributed computational resources and enables the execution
of IoT applications closer to the edge of the network. However,
the distributed nature of this paradigm makes the application
deployment and development process more challenging since the
developer must divide the application’s functionality into multiple
parts, assigning for each a set of requirements. As a result,
the developer must (i) define the application’s requirements
and validate them at design time and (ii) find a deployment
strategy on the target edge computing platform. In this paper,
we propose EdgeFlow, a new IoT framework capable of assisting
the developer in the application development process. Specifically,
we introduce a methodology for latency-sensitive IoT applications
development and deployment, consisting of three different stages,
i.e., the development, validation, and deployment. To this end, we
propose an extension of the Flow-Based Programming paradigm
with new timing requirements and provide a resource allocation
technique to assist with the deployment and validation of latency-
sensitive IoT applications. Finally, we evaluate EdgeFlow by
(i) presenting the application development methodology and (ii)
performing a quantitative evaluation demonstrating our resource
allocation technique’s capabilities to find feasible and optimal
deployment strategies. Experimental results illustrate the effec-
tiveness of our methodology to assist the developer throughout
the entire application development process.

Index Terms—IoT Application development, Flow-Based Pro-
gramming, Edge Computing, Resource Management.

I. INTRODUCTION

Latency-sensitive Internet of Things (IoT) applications have
stringent requirements, e.g., low latency, better privacy and
security. Current cloud-centric solutions fail to satisfy these
requirements since high volumes of data must be transferred
to the cloud [[1]. Hence, to successfully met the application’s
requirements, we must take advantage of the distributed com-
putational nodes found in an [oT system. As a result, a latency-
sensitive IoT application consists of multiple interconnected
components; a component is capable of executing one part
of the application’s functionality. However, developing and
deploying such an application model is not a trivial task since
the developer must (i) define and validate the application’s
requirements at design time and (ii) find a deployment strategy
such that it satisfies all application requirements.

To address the shortcoming of cloud computing, researchers
have proposed edge computing [2]. Edge computing enables
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the utilization of available computation resources found at
the edge of the network [3], [4] — a paradigm consisting of
multiple geo-distributed resource-constrained devices capable
of hosting deployed IoT applications. Edge computing assists
cloud computing in satisfying the stringent requirements of
latency-sensitive IoT applications, where components may be
deployed on edge nodes. Some advantages of edge computing
include low latency and data locality [5]. Nevertheless, de-
ploying an application on an edge computing platform is chal-
lenging since heterogeneity and limited resource capabilities
define an edge node. As a result, the successful deployment
of latency-sensitive applications is dependent on new resource
allocation techniques.

Edge computing brings many advantages for the deploy-
ment of latency-sensitive IoT applications. However, edge
computing makes the application development process more
challenging, since the developer must divide the application’s
functionality and define different requirements for each com-
ponent [6]. Previously, in a cloud-centric system, a single
component contains the entire application’s functionality and
it is deployed in a single location, i.e., in the cloud. In contrast,
in an edge computing platform, the application model consists
of multiple components that are distributed among different
edge devices. An application model that is in line with the
flow-based programming (FBP) paradigm [7] concepts; an
application has a communication flow that connects different
components to achieve certain functionality. Several FBP tools
like noFlo [8], node-RED [9]], and drawFBP [10] exist to
aid the developer in creating new IoT application models
and define their communication flow. However, it is still
challenging to define and validate the application’s timing and
resource requirements during the development stage.

In this paper, we propose EdgeFlow, a new IoT framework
for latency-sensitive IoT applications development and deploy-
ment. Our main contribution is a methodology for aiding the
developer in the process of creating and deploying applica-
tions by (i) defining new applications’ timing and resource
requirements, (ii) validating all requirements, and (iii) finding
a deployment strategy.

Development stage. We propose an loT application model-
ing paradigm for developing latency-sensitive applications at
design time. The purpose of this stage is to collect as much
information as possible regarding the current application —
information that improves the chances to successfully deploy
an application on the target edge computing platform. As a
result, we employ the FBP paradigm as an application model
to define latency-sensitive IoT applications and extend this
paradigm with new timing requirements allowing the devel-
oper to provide timing and resource requirements. We allow
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for a higher granularity when defining the application’s timing
requirements. As a result, for a latency-sensitive IoT applica-
tion, the developer can define an end-to-end (e2e) delay for
many communication flows ranging from the communication
link between two components to a flow containing the entire
application (if possible). To evaluate our development stage,
we create a prototypical framework based on the drawFBP
tool. We describe the application development methodology
by creating an IoT application.

Deployment and validation stages. The deployment stage
offers support for deploying latency-sensitive applications on
edge computing platforms. This stage provides validation
for defined application constraints by determining eligible
deployments (if any) of the designed application to the target
edge computing platform. We cast our deployment technique
within constraint programming (CP) paradigm [11], where we
define the deployment constraints as a constraint satisfaction
problem. Consequently, the deployment stage can generate fea-
sible or optimal deployment strategies — it provides guarantees
that if a deployment strategy exists, the technique can find it.
A deployment strategy that (i) satisfies each component’s re-
source requirements while not exceeding the device’s available
resources and (ii) meets the communication flow constraints,
i.e., ensuring that the e2e delay of each communication flow
does not exceed the determined one. Finally, we evaluate our
deployment stage performance by assessing the execution time
required to find an optimal deployment strategy.

The contributions of this paper are as follows:

o EdgeFlow. A methodology for latency-sensitive IoT ap-
plications development and deployment. Our proposed
methodology aids the developer in defining and validating
timing and resource requirements as well as finding
optimal and feasible deployment strategies.

e Development stage. We propose an extension of the FBP
programming paradigm with new concepts like timing
and resource requirements. By introducing new timing
requirements, we support the definition of multiple e2e
delays for different communication flows for the devel-
oped application.

o Deployment stage. We introduce a novel resource allo-
cation technique capable of finding optimal or feasible
deployment strategies. Our main objective is to find a
deployment strategy that satisfies all timing and resource
requirements defined in the development stage.

o Validation stage. We provide validation for all application
requirements introduced during the development stage
using the proposed resource allocation technique from
the deployment stage. As a result, the developer can
refine the defined requirements, considering the target
edge computing platform.

The remainder of the paper is structured as follows. In
Section [ we summarize the related work. Section [Tl provides
an overview of EdgeFlow and defines the application model,
the edge computing platform, and the communication flows
constraints, given as input files to the deployment stage.
In Section we describe the implementation details of
our proposed framework. Section |V| presents the application

development methodology, while Section [VI| shows the results
of our deployment stage evaluation. Finally, Section con-
cludes the paper and provides an outlook on future work.

II. RELATED WORK

The adoption of edge computing and the stringent applica-
tion requirements have changed the application’s deployment
and development process. Recently, the consensus, in the
research literature, depicts an application model as a collection
of components to accommodate the distributed nature of edge
computing [12], [13], [14], [15]. Typically, researchers con-
sider as given the application model and its associated timing
and resource requirements when proposing new application
deployment techniques. However, developing an application
model and defining all requirements is not a trivial task.

Only recently, researchers have proposed techniques to
aid with the IoT application development process. Giang et
al. [16]] present a distributed dataflow programming model for
fog computing that aids the developer during the application
development process. In this case, the developer defines the
application model as a directed graph, dividing the applica-
tion’s functionality between different application nodes. Wang
et al. [[17] propose a stream processing approach, i.e., Edge-
Stream, for building new applications for edge computing
systems. Edge-Stream represents data flows between the appli-
cation’s components as streams. Frasad [18] is another frame-
work that helps with the IoT application development and
makes use of a model-driven design approach to enhance the
reusability, flexibility, and maintainability of sensor software.
Rafique et al. [19]] develop an IoT application development
framework using model-driven development and attribute-
driven design. The framework transforms the application’s
requirements into a solution architecture using the attribute-
driven design and then uses model-driven development to
generate models to transform the application’s components
into software artifacts. Other papers make use of FBP for
the IoT applications development process. Szydlo et al. [20]
introduce a heuristic data flow transformation technique to
successfully distribute flows on the target network, while Belsa
et al. [21] present a solution to interconnect services from
different IoT platforms. Jain et al. [22] propose a mapping
technique composed of two stages: (i) the IoT application is
modeled into multiple different tasks annotated with target
location information and (ii) each task is deployed on an edge
node based on its location. The authors extend Node-RED to
allow the development of the IoT application and deployment
of defined components to their predefined location, i.e., cloud
or edge. Compared to the related IoT development approaches,
we focus on deployment and validation of IoT applications
on different edge computing platforms without the need to
introduce predefined locations for components — we enable
the deployment of applications on large-scale platforms.

The deployment problem exists in many variants in the sci-
entific literature [23]], [24], [25]], [26]. The two most common
scenarios where researchers propose deployment techniques
are (i) service placement and (ii) service offloading. The
former migrates services that reside in the cloud closer to the



IEEE INTERNET OF THINGS JOURNAL

edge of the network, i.e., on edge or fog nodes. In contrast, the
latter moves services from resource-constrained devices, e.g.,
smartphones, to nearby edge nodes, in an attempt to preserve
the energy of devices. Brogi et al. [27] propose a deployment
technique having as objective the latency and bandwidth. As
a result, the proposed solution provides Quality of Service
(QoS) aware deployments of IoT applications on a target fog
computing architecture. Scoca et al. [28] propose a latency,
bandwidth, and resource-aware scheduling algorithm that finds
a mapping of services to edge nodes. The approach uses a
score-based technique that evaluates the target edge nodes and
communication links and computes a scoring mapping for each
service. The main objective of this technique is to guarantee
optimal service quality. In [29]], Redowan et al. introduce a
latency-aware technique aiming to deploy the application’s
modules on fog computing such that it satisfies all objectives.
The approach has two objectives, i.e., (i) to satisfy the applica-
tion’s latency requirements and (ii) to optimize the utilization
of the node’s available resources. Liu et al. [30] propose a
task offloading technique that aims to minimize the system
cost, i.e., energy and latency. This technique groups the users
into clusters based on their priorities and decided if a cluster
should run all its tasks locally or should be offloaded to an
edge server. Grosu et al. [31] introduce an online heuristic
algorithm based on Mixed Integer Linear Program to deploy
multi-components applications on edge computing platforms.
As we can see, all approaches strive to achieve at least one
objective, i.e., latency. However, the deployment problem is
implemented as a resource allocation optimization problem
leveraging assumptions about the application model.

Note that, in the presented related work, some solutions
consider as target deployment platforms either fog or edge
computing paradigms. These two paradigms have the same un-
derlying premise of migrating computational resources closer
to the edge of the network [6]]. Therefore, from the perspective
of EdgeFlow, using one paradigm over the other poses no
impact on the EdgeFlow functionality — in both cases, the
available resources are shared between the participant devices.
We differentiate ourselves from the aforementioned related
work from two big perspectives: we (i) extend the FBP
paradigm with new timing requirements and (ii) propose
a new deployment technique. With the former, we allow
the developer to define new timing requirements for each
application component and communication link. Moreover, we
introduce a new timing constraint for multiple communication
flows, i.e., the developer can define individual delays for many
communication flows of different sizes. The latter technique
can find feasible or optimal deployment strategies, fulfilling
the timing and resource requirements. Furthermore, since we
are using CP, the technique can validate the application’s
timing and resource requirements considering the target edge
computing platform.

III. EDGEFLOW: APPLICATION DEVELOPMENT AND
DEPLOYMENT FRAMEWORK

New latency-sensitive IoT application models achieved
through edge computing decompose the application’s func-
tionality into multiple distributed components. As a result, the

developer must define new timing and resource requirements
for each component and the overall application — besides
the maximum e2e delay involved in the correct application
functionality, the developer must define specific requirements
for each component. As such, the developer must be able to
define and validate all requirements during the application’s
development process; since these requirements play an active
role in the application deployment.

In our framework, we provide a methodology to develop and
deploy IoT applications on the target edge computing platform.
For the former, we offer support for creating the application
model and defining the timing and performance requirements.
For the latter, we propose a deployment stage capable of
finding a deployment strategy at design time. Depending on
the type of the target edge computing platform, i.e., static or
dynamic, the deployment stage provides a different utility. In
the case of static architectures, e.g., like in a smart factory, the
deployment stage can generate feasible or optimal deployment
strategies. However, if the target platform is a dynamic edge
computing architecture characterized by high uncertainty and
node mobility, then the deployment stage can only validate
the application requirements; a dynamic network may change
while we search for the optimal deployment strategy at design
time. As a result, for dynamic architectures, we can use a
decentralized resource allocation technique capable of finding
deployment strategies at runtime [32]. Figure [I] presents an
overview of our EdgeFlow methodology consisting of three
distinct stages, i.e., (i) the development stage, (ii) the deploy-
ment stage, and (iii) the validation stage.
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Fig. 1: EdgeFlow methodology overview.

A. Development stage

The application development stage is an extension of the
FBP programming paradigm, introducing new timing and
resource requirements. The application modeling paradigm
offers the possibility to divide the application’s functionality
into different components and build the application’s com-
munication flow such that the application performs certain
functionality.

The FBP paradigm views an application as a network
of processes, i.e., components, interconnected via predefined
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communication links. Each component runs asynchronously
and communicates via streams of data chunks, i.e., Information
Packets (IPs) [33]. FBP is component-oriented, allowing the
developer to develop different applications using the same
network of components — a practice that improves the ap-
plication development process and enhances the reusability of
components. FBP is not a coding language. As a result, it is
ideal to use predefined components from a library.

FBP extension. The FBP paradigm does not provide the
possibility to define Quality of Service (QoS) requirements,
i.e., timing requirements, data locality, affinity and anti-affinity
constraints between components, privacy [34], [35], and secu-
rity [36], during the application’s modeling stage. In this paper,
we target the development and deployment of latency-sensitive
IoT applications — one of the fundamental concerns of these
applications is latency. To this end, we propose an extension
of the current FBP paradigm with new timing requirement
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Fig. 2: The FBP paradigm extension metamodel.

In our opinion, three essential timing requirements define
a latency-sensitive application, i.e., worst-case execution time
(WCET), e2e delay for different flows, and worst-case com-
munication delay (WCCD). Each application’s component has
associated a WCET representing the time required to produce
a result. Similarly, we define, for each communication link,
a maximum WCCD serving as the time that an IP needs to
reach its destination. Finally, we provide the means to define
an e2e delay for multiple communication flows. Notice that
the first two timing constraints are part of the e2e delay
computation since a communication flow consists of one or
more components and communications links alike. In [37],
authors formalized the syntax and semantics of Flow-Based
languages, and they proposed a metamodel for FBP. Figure [2]
presents our extended metamodel based on their formalism.

Application model. An application model is defined as an
FBP network which consists of a set of components C={c;, ¢,
... } that collaborates to perform a certain goal. An application
may have one or more source components (i.e., the component
that provides the required data) as well as at least one sink
(i.e., a component that acts according to the data received).
In Figure [3] we present an example of an application model
having one source and two sinks, where the communication

'We identify all other QoS requirements as an interesting path for future
work. Furthermore, researchers can contribute to the IoT application modeling
paradigm by providing extensions for new requirements.

flow starts with the source component, i.e., co, and finishes
with two sink components, i.e., ¢4 and cg.
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Fig. 3: Latency-sensitive 10T application model.

Q

A component ¢; performs a certain functionality and repre-
sents a containerized microservice or serverless function. Each
component is characterized by a set of timing and resource
requirements, Creq={ri, r2, ... } as well as a set of input
and output ports, Ci,={iny, iny, ... } and Co={outy, outy, ...
}+. During the application development process, the developer
defines these requirements according to the application’s goals.
A resource requirement represents the generic memory (i.e.,
RAM), computational power (i.e., CPU), and storage (i.e.,
HDD) requirements, while the WCET of a component is an
example of a timing requirement. To fit better the application’s
needs, in future work, we intend to extend the components’ re-
source requirements with specific requirements, e.g., hardware
requirements like GPUs for high computational components or
specific data that must be present on the host node.

B. Edge Computing platform

An edge computing platform consists of multiple distributed
edge nodes, having the following characteristics: (i) hetero-
geneity, (ii) limited computational resources, and (iii) mobility.
Let Ey={E;1, Ej, ... } be a set of edge nodes found in the target
architecture. Each node is characterized by a set of available
resources, Eyes={r1, r2, ... }, like RAM, CPU, and HDD, and a
list of communication links Linkeom={linky, linky, ... } —each
link; having associated a bandwidth.

Based on the platform’s characteristics and the adminis-
trative entity control level, we identify two types of edge
computing platforms, i.e., a dynamic platform and a static
platform. The dynamic platform consists of different mobile
and static edge nodes owned by distinct administrative entities.
As a consequence, it introduces a high uncertainty level into
the system, making the deployment of an application at design
time more challenging; an example of such a platform is the
typical smart city scenario. In contrast, the static platform
has a low uncertainty where the developer knows the nodes’
characteristics at design time, e.g., a smart factory scenario.

C. Deployment and validation stages

The deployment and validation stages uses a resource allo-
cation technique aiming to help the developer to validate the
defined application’s requirements considering the target edge
platform’s available resources. Consequently, we develop our
resource allocation technique using Constraint Programming
(CP), which produces both feasible and optimal deployment
strategies. Notice that CP fits rather well with our deployment
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stage since our primary focus is to validate the application’s
requirements — CP provides guarantees that if a deployment
strategy is possible, then it satisfies all requirements. To deploy
an application, the deployment stage requires information
regarding the application model and the target edge computing
platform. The developer provides all required information as
three input files, i.e., application model file, edge computing
platform file, and flow constraints file; the developer can
generate the files using the IoT application modeling stage
or can create them manually.

Application model file. The development stage provides the
developer with the ability to generate the application model file
—a process that stores all application resource requirements in a
JSON file. In the end, the JSON file contains information about
the application’s components, such as input and output ports,
the period and data size associated with the ports, resource
requirements (RAM, CPU, HDD), and the WCET.

Edge computing platform file. Since the edge computing
platform is not modeled with the FBP paradigm, we assume
that the developer obtains this file from the administrative
entity that owns the platform, i.e., considering the static plat-
form scenario. For the dynamic platform, we assume that the
file represents an estimation of the possible current topology
determined from the history data stored in the cloud.

Flow constraints file. This file contains the application’s
constraints — the deployment strategy uses them as objectives.
We offer the developer the possibility to add for each flow
found in the application model an e2e delay constraint. The
e2e delay considers both the WCET of each component
found on the path as well as the communication latency
used when components exchange IPs. For example, consider
the application shown in Figure [3} the developer can create
multiple constraint flows between its components. There are
three big flows consisting of the following components: (i)
Cp— Cp —Cs — Cg, (i) cg — Cc3 — C5 — Cg, and (iii) cg —c1 — ¢4
respectively. However, the developer can add a constraint
even for a smaller flow consisting of a minimum of two
components, e.g., ¢o — ;. In this paper, we assume that the
developer provides at least the number of flows required to
involve all communication links and components found in
the application model. If any component remains outside of
a defined flow constraint, then our deployment stage will
consider it as a single component with no dependencies.

Grammar 1: Flow Constraint Language

<Delay> :: <Number> ms | <Number> ns

<BooleanOp> :: < | > | >= | <= | =

<FlowSource> :: <InPortID> | <DataPacketID>

<FlowSink> :: <OutPortID> | <ComponentFlow>
<ComponentFlow> :: <InPortID> <ComponentID> <OutPortID>
<FlowPath> :: <FlowPath> -> <ComponentFlow>

<ComponentFlow>
<Flow> :: <FlowSource> —-> <FlowPath> -> <FlowSink>
<FlowSource> -> <FlowSink>

<FlowConstraint> :: <FlowID> : <Flow> <BooleanOp> <Delay>
<FlowConstraints> :: <FlowConstraints> ; <FlowConstraint>
<FlowConstraint>

<FlowConstraintsDef> :: flow constraints <AppID>
<FlowConstraints> end

The proposed IoT framework utilizes a mini-language to
specify the flow constraints, see Grammar 1. The developer
can add the flow constraints using this language to specify

the flow’s path and the maximum e2e delay. In Equation [I]
we present an example of a flow containing two components
c; and cp. In the flow declaration, the IN and OUT ports
represent the name of the input and output ports used by
each component. As we can observe, the colon separates
the flow’s path declaration from its id, while < shows the
relation between the path and the e2e delay and — represents
the direction of the communication. Furthermore, the last
component does not need an output port, this highlighting that
the path is ending.

pathy : INc; OUT — INc, < e2eDelay (1)

IV. APPLICATION DEVELOPMENT AND DEPLOYMENT
STAGES

In this section, we present the two stages that represent
the core of the EdgeFlow framework, i.e., the development
stage and the deployment stage. For the former, to prove
our concept, we develop a prototype to help the developer
in creating new application models and defining their timing
and performance requirements. For the latter, we propose
a deployment technique capable of providing deployment
strategies such that it satisfies all application’s requirements
and constraints.

A. Development stage prototype

To prove the benefits of creating a new latency-sensitive
application using our IoT framework, we develop an appli-
cation development prototype based on drawFBP. DrawFBP
uses FBP at its core and allows developers to create diagrams
using blocks, i.e., components [10]. An advantage of drawFBP
is that developers can generate different components that
other developers can reuse — the developer can create them
using Java, C#, or JSON. As a result, the developer can use
existing components from the drawFBP library during the
application development process. In this case, the development
process resumes at creating a communication flow between
selected components such that it fulfills the application’s goals.
However, defining the application’s communication flow and
choosing the components is not enough; the developer must
define specific requirements for both the communication flows
and for each component.

We extend drawFBP with new options, like set component
requirements, set flow constraints, application model: generate
JSON file, and flow constraints: generate JSON file, offer-
ing developers the possibility of adding timing requirements.
Using the set component requirements option, the developer
can describe for each component the following characteristics,
i.e., WCET, period, message size, and resource requirements
(RAM, CPU, HDD). Furthermore, the developer can define
different e2e delay constraints for custom communication
flows using the set flow constraints option. Finally, we col-
lect all information into two input files, i.e., the application
model and the communication flow constraints, using the two
generate JSON file options; files that the deployment stage
uses as input.
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B. Deployment stage technique

Our deployment technique helps the developer to decide if
the application can be deployed on the target edge comput-
ing platform. Depending on the success of the deployment,
the developer gets more clarity in defining the component’s
resource requirements and the application’s constraints. Two
cases lead to deployment failure, i.e., (i) the application has
very stringent requirements and (ii) the target platform lacks
the required available resources. Under these conditions, if
the deployment stage does not find a deployment strategy,
the developer can investigate one of the two cases and make
the required adjustments accordingly. Therefore, the developer
can use the deployment stage to understand if the target edge
computing platform can host the application. As a result,
developers can create better application models suitable for
deployment on a large variety of platforms.

As mentioned in the previous section, we implement the
resource allocation technique using CP. Depending on the
strategy found, CP can return one of the four different status
values, i.e., (i) optimal, (ii) feasible, (iii) unknown, and (iv)
infeasible. The deployment technique found a deployment
strategy that meets the requirements if the returned status
is (i) or (ii). In contrast, if the returned status is (iv), then
the technique cannot find a deployment strategy that meets
all requirements. An interesting state, i.e., (iii), may appear
when the developer decides to limit the execution time of the
deployment stage. Under these conditions, the technique is
unable to decide if the current deployment strategy satisfies
all application’s requirements — as a result, it returns unknown.
To find a deployment strategy, we model the problem using
decision variables, constraints, and global objective and solve
it using a CP solver.

The procedure starts once the deployment technique re-
ceives the required input files from the developer. Using the
information received as input, we can create a set of decisions
variables used in the CP model. A decision variable represents
a variable for which the CP solver tries to assign a value
chosen from a predefined domain to satisfy the application’s
requirements. In our case, we identify four different decision
variables, i.e., component variables, latency variables, WCET
variables, and resource variables. From all these decision
variables, only the component variables yields an allocation,
while all the other variables are support variables for validating
the chosen deployment strategy.

Component variables. The component variables define for
each component a domain containing a list of edge nodes
where the current component can be mapped. For example,
component ¢; can be mapped only on nodes E;, E,, and Ej;
hence, a valid domain for the decision variable of c; is D={E;,
Es, Es}. Under these conditions, the solver can only choose a
node from D to allocate c;.

Latency variables. These variables are in charge of saving
the communication latency between two components consider-
ing their mapping. Let us consider that two components ¢; and
¢, communicate with each other — ¢; is mapped on E; and c;
is mapped on E,. We can use the IP size and the bandwidth
of the communication link used for communication to find

the communication latency between the two components. To
build the variable’s domain, we use the dependencies between
components described in the communication flow constraints
input file and all possible locations from their respective
domains devised in the component variables. As a result, to
compute the communication latency between two dependent
components, ¢; and ¢;, we take all possible distinct edge node
combinations from their associated domains.

WCET variables. The WCET variables has the same
purpose as the latency variables, i.e., to store the WCET given
to each component. Since the WCET of a component is strictly
dependent on the host’s internal status, obtaining the exact
WCET of a component is challenging; the edge computing
platform consists of multiple heterogeneous devices, requiring
a complete analysis of the WCET of a component on every
edge node. We consider such analysis as out of scope for the
current paper. Therefore, to lower the challenge in finding a
suitable WCET, we assume the developer can provide a lower
and an upper bound for the WCET of each component.

Resource variables. These variables keep track of the edge
node’s available resources. Every node starts with a predefined
set of available resources; resources that decrease with the re-
source requirements of new mapped components. An approach
that ensures the correct distribution of components on nodes
without exceeding the node’s available resources.

Once we add all decision variables to the CP model, we
can continue with the introduction of our constraints. Each
constraint represents an important part of our model, guiding
the CP solver towards a feasible deployment strategy that
considers the application’s constraints. For this purpose, we
define two different constraints, i.e., components constraints
and flows constraints.

Components constraints. The components constraints en-
sure that the distribution of components on edge nodes does
not exceed the node’s available resources. To achieve such
purpose, the components constraints make use of the following
decision variables, i.e., component variables and resource
variables. Equation [2] Equation [3] and Equation [] guarantee
that a deployment strategy does not exceed nodes’ available
resource, where n. represents the total number of components
mapped on the current node.

Nc
usedCPU = chpu < availalbecpy

2
i=1

usedRAM = ZCRAM < availableram 3)
i=1
Nc

usedHDD = ZCHDD < availableypp 4)

i=1

Flows constraints. By validating the components con-
straints, we can successfully deploy the application on the tar-
get edge computing platform. However, we only consider the
application’s resource requirements as a deployment objective.
Therefore, we introduce a new set of constraints, i.e., flows
constraints, to consider the flow constraints introduced in the
flow constraints file. We build these constraints based on the
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components variables, WCET variables, and latency variables.
By combining the three decision variables, we manage to
further enforce constraints on the deployment strategy. In
conclusion, we can observe that these constraints consider both
WCET and communication latency. Equation 5] guarantees that
the flow’s e2e delay does not exceed the maximum e2e delay
associated with it; the e2e delay of a flow is the sum of
all participants components’ WCET and their communication
latency. In Equation [3] I¢ represents the total number of links
found in a flow f, ¢ is the total number of components part
of a flow f, and maxE2Edelayf represents the maximum e2e
delay allowed for flow f.

l¢ Cf
e2eDelay = Y _linKiatency + D Cucer < maxE2Edelays (5)
link c

Global objective. The purpose of this objective is to
minimize the e2e delay of each flow. In doing so, we ob-
tain a solution that offers an optimal deployment strategy if
there is enough time to search for it. Equation [6] shows the
global objective, where n¢ represents the total number of flow
constraints defined in the communication flow constraints file
and flowE2E; is the current e2e delay of flow i.

Min()  flowE2E;) (6)

i=1

V. APPLICATION DEVELOPMENT METHODOLOGY

EdgeFlow provides a framework that aids the developer
in creating emergent latency-sensitive IoT applications and
deploy them in an edge computing platform. In this section, we
evaluate the applicability of our IoT framework by presenting
the application development experience. We describe this as a
step-by-step process using one latency-sensitive IoT applica-
tion. First, we describe the development of the IoT application
model and generate the input files that the deployment stage
requires to validate the requirements and find a deployment
strategy to map the application on an edge computing platform.
The application development prototype and the deployment
stage technique are available in our online appendix E] and our
git repository

As a running exemplar, we model a public safety IoT
application deployed in a smart city scenario. The application
aims to prevent any possible attacks by analyzing all the
images and videos from an area. The application consists of
multiple components capable of analyzing both the environ-
ment as well as people. For example, the application sends
an emergency signal to the police department if a suspicious
package is found in the monitored area. Since our focus is
to show the extensions and improvements we bring with our
proposed IoT framework, we assume that the public safety
application’s components are available in the drawFBP library.
In this setting, the developer must connect the components and
add the timing and resource requirements.

Zhttps://dsg.tuwien.ac.at/team/cavasalcai/projects/EdgeFlow
3https://github.com/cavasalcai/EdgeFlow

Considering the safety implications, the smart city appli-
cation must adhere to some timing requirements such as
low e2e delay. To prevent a possible disaster scenario, the
application must be able to provide alerts without delay. Thus,
the application must execute at the edge of the network.
As a consequence, a prerequisite for the developer is to
validate the timing and performance requirements on the target
edge computing platform before deploying the application. As
we will show, our IoT framework is capable of performing
such validation. In our case, the application consists of five
components, each enacting a specific functionality.

IN | ca4: Send
Alarm

SendAlarm.class

IN

C1: Motion
Detection

C2: Face
Recognition

ouT

MotionDetsg cgygn .class FaceRecognition.class

IN | C3:Env.
Analysis

ouTt

EnvAnalysis.class

Fig. 4: Public Safety Application DrawFBP model.

Development stage. Using the application development
prototype, the developer can create all components required
for the application, add the functionality, and connect them via
ports to create the application’s functionality (see Figure [4).
Currently, the developer has created the application model
without defining the timing and resource requirements.

Once the model is complete, the developer can specify the
timing and resource requirements using our FBP extension
options presented in Section To assign the component’s
requirements, the developer can use the option set component
requirements available in the component menu; to access
this menu, right-click on the target component. The process
of setting the component’s requirements goes through each
requirement and asks the developer to provide a value or a
range (in the case of WCET). To create new flow constraints,
the developer can select the set flow constraints option from
file menu and define a new flow constraint using the template
from Equation [I] We have added support options, i.e., display
flow constraints and delete flow constraints, that help the
developer to display and delete all existing flow constraints.

Finally, there is one more step to perform before the
developer can move to thedeployment stage, i.e., to gener-
ate the application model file and the communication flow
constraints. The developer can generate these files using the
two options, i.e., Application Model: generate JSON file and
Flow Constraints: generate JSON file, from the file menu. As
explained in Section the developer can obtain the edge
computing platform file from other sources.

Deployment stage. The contents of the three input files are
presented in Table [ Table [T} and Figure [5} Table [I] shows
the target edge computing platform, where we can see the
node’s available resources, connections with other nodes, and
the bandwidth of each communication link. For simplicity, we
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choose for each available resource, i.e., RAM, CPU, HDD,
a value between 15 and 30 units. The deployment stage can
operate with different units, e.g., MB or GB, as long as there
is consistency between the available and required resources.

Nodes Available Resources ] Cpnnections .
RAM | CPU [ HDD destination [ bandwidth

no 20 22 15 :; 1(5)

n 17 30 18 :2 i(s)

no 15 25 16 o 2

with more resources. In Figure [6] we can see the output of
the deployment stage. We highlight the host node of each
component by placing the node’s id on the top left corner.
For example, component c¢; is mapped on Ey and component
cp is mapped on E;. In this case, the deployment stage finds
the optimal deployment strategy in /0 ms.

TABLE I: Edge Computing platform characteristics.

The application model file contains the timing and resource
requirements of all components; requirements that we present
in Table [lIl For our public safety application, we choose for
each component the following: all resource requirements have
a value between 1 to 15 units, we randomly select a data size
value between 30 and 115 units, and add a custom range for
the WCET considering each component’s functionality.

Resource Requirements Data
Components RAM [ CPU [ HDD WCET size
C1 6 7 5 [5, 9] 60
co 13 15 7 [20, 35] 90
c3 10 13 10 [15, 25] 75
[ 3 2 3 [2, 4] 30

TABLE II: Application resource and timing requirements.

Figure 5] shows the declaration of the flow’s path in the com-
munication flow constraints file where a list of communication
ports, the source, and the destination component describe each
link found in the path. For our application, we assign two
different flows, i.e., f; with the path ¢c; — c; — ¢4 and f, having
the path c; — c3 —cq. For f; we chose an e2e delay equal
to 40 ms and for f, the maximum e2e delay is 33 ms. To
choose the maximum e2e delay, we consider the sum of the
lower bound of the WCET of all components found on the
communication flow. Furthermore, to this, we add a value of
10; this value reflects the impact of the communication latency
between components.

[ ] o List of flows constraints

ID path e2e delay
1 IN C1 OUT->IN C2 OUT->IN C4 40

f2 IN C1 OUT->IN C3 OUT->IN C4 33

Fig. 5: Flow constraints for public safety application.

With the three files ready, the developer can start the process
of finding a satisfiable deployment strategy. Considering the
target edge computing platform, the deployment technique
tries to find an optimal or feasible deployment strategy. De-
pending on what status the CP solver returns, the developer
must decide if he/she should change the application’s require-
ments or try to find a more suitable edge computing platform

0.
c2: face
E0 - recognition 2
raw | c1: motion c4: send
data | detection | E2 3 alarm
c3: env.
analysis 4*

Fig. 6: Deployment strategy for public safety application.

The deployment stage returns a detail report showing the
communication latency between components and their WCET
concerning each communication flow constraint. In Table [II|
we present the flows’ e2e delay and the communication latency
for the deployment strategy presented in Figure [6] We can
observe that for the optimal solution, the actual e2e delay of
flow f; is 34 ms, while for f, is 32 ms. Also, we can see that
for f; the communication latency between components c¢; and
co is equal to 6 ms.

Flows Components | Communication Latency | e2e
ID | WCET | destination | Tatency delay
Cc1 5 C2 0
[ 20 Cy4 6

f1 < 5 . - 33
C1 5 C3 4
Cc3 15 Cy 0

fa o > - . 26

TABLE III: Flows e2e delay and communication latency.

Validation stage. As we can observe from the results of the
deployment stage, for the current running example application,
there is no need to redefine the timing requirements — the
deployment stage has found an optimal solution that fulfills all
application’s requirements. However, if the deployment stage
cannot find a solution, then the developer can change the
requirements and employ the deployment stage again.

VI. EVALUATION

In this section, we perform a quantitative evaluation to
assess the deployment stage’s capabilities in terms of the
time required to provide optimal and feasible deployment
strategies for different scenarios. We are interested in finding
how certain markers like (i) the application size, (ii) the
edge computing platform size, and (iii) the number of flow
constraints impact the tool’s performance. Considering our
evaluation objective, we propose three distinct scenarios, each
having a different application model and flow constraints input
files. Furthermore, in every scenario, we deploy the application
on multiple edge computing platforms; each target platform
has a different number of available edge nodes.

We proceed by generating the three input files for each
scenario. We can obtain these files using the application mod-
eling stage, as proven in Sectionm However, considering our
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evaluation objective, it is not feasible nor required to develop
the applications and add timing and resource requirements
manually. As a result, we randomly generate all input files
using different procedures.

Application model file: generation. All considered appli-
cations have one source component and one sink component
— a decision that does not alter the evaluation objective and
results since an application with multiple sources and sinks
only implies a higher initial number of flows. We choose a
different number of components for each scenario, starting
from 10 for the first scenario up to 30 components for the last
one; in our case, we increase the application size by 10. We
first model the component’s resource requirements as a tuple,
i.e., (RAM, CPU, HDD), choosing for each resource a random
value between [5, 15] units. Next, we choose the WCET range
[, u] for a component by selecting a value for / and u, from
[4, 10] ms and [10, 12] ms respectively. Finally, the period
has a value between [0, 30] ms, the IP’s data size is between
[30, 120] bytes, and we define for each component a total of
two input and output ports.

Edge platform file: generation. We create multiple edge
computing platforms, having a size between 10 and 500 nodes.
In each scenario, we gradually increase the size by 10, generate
the edge platform file, and employ the deployment stage to find
an application deployment strategy. Similar to the components’
resource requirements, we model the available resources of
an edge node as a tuple and choose for each resources a
value between [15, 30] units. Finally, we choose for each
communication link an available bandwidth between [30, 90]
bytes/ms.

Flow constraints file: generation. We randomly generate
multiple flow constraints for every application model. The
procedure takes as input the total number of flow constraints
defined in a file and the maximum e2e delay. We set the
maximum e2e delay to a high value, i.e., 500 ms, for all
flows. Choosing a smaller e2e delay does not impact the
deployment stage’s performance; however, it may influence its
ability to find a deployment strategy if we set the e2e delay
to a very stringent value. Moreover, in Section [V| we have
demonstrated the capability to generate deployment strategies
under demanding e2e delay requirements.

After we choose the e2e delay value of a flow, we must
provide the associated communication path. In our case, we
define three flow constraints files for every scenario, i.e., a file
containing (i) one flow constraint, (ii) three flow constraints,
and (iii) a total number of five flows. Remember that the
developer must define flow constraints such that it involves
all communication links and components at least once. As a
result, in our procedure, the first flow will always traverse the
application from the source component to the sink component
— involving all other components in between.

To create a communication path between the participating
components, the procedure creates a pair of two components,
i.e., (src, dest), starting from the source component and selects
the next destination components. Next, we create a new pair
using as src the dest component from the previous pair and
choosing as the new dest a new component. The procedure
continues until the destination becomes the sink component.

For example, let us consider that we want to build flow f7 from
Section In this case, we have four components involved
in f1, i.e., C={co, c1, 2, ¢4 }. To build the flow constraint,
the procedure starts from cy and chooses the destination c;
forming the first pair (cg, c1). Next pair is formed by making
c; as the source and choosing c; as the new destination,
resulting in the new pair (c;, cp). Finally, the procedure stops
with the pair (cp, c4), since ¢4 is the sink component. For all
other flows, we randomly select the number of participating
components and restart the procedure.

To evaluate the performance of our deployment stage, we
perform 50 deployments for each scenario. In this case, once
we find an optimal deployment strategy for the current edge
computing platform, we increase the platform size and attempt
to find a new deployment strategy for our IoT application.
In Figure /] we present the execution time required by the
deployment stage to find an optimal deployment strategy for
all three scenarios. The x-axis represents the total number of
nodes found in the target platform, while y-axis represents the
execution time in seconds.

600
—&— scenario_1

scenario_2
500 —#— scenario_3

400 -

300 4

time [s]

200 -

1001

(') 160 260 3(‘)0 4(‘)0 560
# of nodes
Fig. 7: Execution time of the deployment stage for different
scenarios over different edge computing platform sizes, con-
sidering only one flow constraint.

In Figure [/, we show the total execution time required by
the deployment stage to yield an optimal deployment strategy.
However, the deployment technique consists of two different
parts, i.e., (i) building the CP model and (ii) solving the model
using a CP solver. As a result, we are interested in finding
how much execution time each part requires (see Figure [§). In
Figure [8b] we present the execution time required to generate
the CP model, while Figure [8a) presents the time required by
the CP solver to find an optimal deployment strategy.

In all experiments presented above, we have kept the num-
ber of flow constraints equal to 1. However, we are interested
in observing the impact of multiple flow constraints on the
execution time of both the CP solver and model as well. As a
result, we perform the same set of experiments, increasing
the number of flow constraints as well — we perform 50
deployments using a total of 3 respectively 5 flow constraints.
In Figure 0] we show the execution time required to solve a
model for each scenario, while in Figure @] we show the time
required to build the CP model.

A. Discussion

We have demonstrated that with the proposed deployment
technique, we can successfully find an optimal deployment
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Fig. 8: Execution time of (a) finding a deployment strategy
and (b) building the CP model over different edge computing
platform sizes, considering one flow constraint.

strategy. Contrary to how we chose the flows’ maximum e2e
delay in Section [V] we have decided to choose a less stringent
maximum e2e delay since this does not impact our evaluation
results; we use the same e2e delay for all scenarios. Results of
Figure[7|shows that (i) the number of nodes found in the target
platform and (ii) the application’s size impacts the execution
time required to find an optimal deployment strategy. Breaking
down the execution time, see Figure [8a] and Figure [8bl we
can observe that the execution time required to build the CP
model or to solve it is dependent on the number of nodes
and components. Note that in scenario 1, when we deploy
the IoT application on an edge computing platform consisting
of 500 nodes, building the CP model requires more time than
finding an optimal deployment strategy. In contrast, in scenario
3, the CP solver is more demanding than building the CP
model, requiring more time to find an optimal solution — a
trend that continues with an increase in both application and
edge computing platform size.

In Figures [7] and [8] we have demonstrate the scalability
of our resource management technique considering the appli-
cation and platform size. However, other factors impact the
technique’s execution time, i.e., the number of flow constraints.
From Figure [I0] we can conclude that the number of flow
constraints marginally increases the time required to generate
the CP model — by adding more flows in the CP model, we
must create more variables for the added flows constraints. We
can observe that the execution time for building the CP model
gradually increases with an increase in the (i) number of nodes,
(i1) number of components, and (iii) number of flow constraints
— an expected behavior, since the number of model variables
and constraints increases in the CP model. Comparing to the
execution time seen in Figure [8b] we can conclude that the
flow constraints do not have a big impact on the execution
time required to build the CP model. In contrast, the number
of flows has a great impact on the CP solver’s execution time
(see Figure [9) — the problem to be solved has become more
challenging. Compared to the results seen in Figure [8a] the
number of flows severely impact the execution time required
by the CP solver. On the one hand, we can see that the
execution time fluctuates between different deployments when
the edge platform size grows — a trend that is the result of all
the default optimizations the CP solver has. On the other hand,
in some scenarios (see Figure [9c)), the CP solver requires up to

x2.5 more time to find a deployment strategy — the addition of
different flow constraints makes the problem harder to solve.
As a result, the CP solver’s execution time depends more
on how complex the problem is. Note that the complexity
of a problem depends on the node’s available resources, the
application size, the component’s resource requirements, and
the defined flow constraints. For example, in Figure [Oc| we
can observe that the solver manages to find a deployment
strategy faster when there are 5 flows than when we have
3 flows constraints. A possible reason for this is that the
overall problem complexity is higher with the addition of the
three flow constraints. Therefore, we can conclude that not
only the number of flows impact the execution time, but also
the construction of each flow, i.e., the communication path,
number of components, and the component’s dependencies.
However, since we built the scenarios randomly and the CP
solver has its own optimizations, we cannot say with certainty
why this behavior appears or the fluctuations in execution time.

Finally, one advantage of using CP for our deployment
technique is the ability to allow the developer to limit the CP
solver’s execution time. For example, we can find a feasible
deployment strategy for scenario 3, having one flow constraint,
and 500 nodes (see Figure [8a), in 720 ms. By applying a time
limitation we can lower the total execution time required to
find a deployment strategy — lowering the time required to
validate all requirements. However, it is important to mention
that if the time limit is set too low, then the solver may not be
able to decide if a solution exists. Hence, the solver’s output
will be "UNKNOWN’ — the solver does not have enough
knowledge to determine if the solution is infeasible or feasible.
As a consequence, the developer should pick a reasonable time
for complex problems where finding the optimal deployment
strategy requires too much time.

We acknowledge the high computational demands of our
deployment stage when finding optimal deployment strategies
for scenarios where the problem becomes too complex. We can
see in Figure [/| that the deployment stage requires around 600
seconds to find the optimal deployment strategy for scenario
3. However, we argue that the execution time is not an issue
since the deployment stage takes place at design time when
the application is not operational.

B. Challenges and Limitations

We identify two types of latency-sensitive applications that
would benefit from edge computing, i.e., the hard real-time
IoT applications and soft real-time IoT applications. Both
applications are similar since their correct functionality relies
on having a low e2e delay and meeting their deadlines.
However, there is an important distinction between the two,
i.e., in the case of a soft real-time [oT application, violating the
deadline of a component impacts the quality of the application,
compared to hard real-time applications where missing a
deadline can have catastrophic events. Hence, in this paper,
we focus on the development of soft real-time IoT applications
offering the possibility to validate only the e2e delay set for
each flow, i.e., it does not violate its maximum allowed e2e
delay deadline for a certain flow. We do not provide time
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Fig. 9: Impact of the number of flow constraints on solver execution time considering all three scenarios.
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Fig. 10: Impact of the number of flow constraints on model execution time considering all three scenarios.

analysis strategies for validating the component’s WCET on
the host node. In conclusion, for the current paper, we can
only deploy soft real-time IoT applications.

There are two main challenges for the developer during
the application modeling stage, i.e., assigning the WCET and
the resource requirements for each component. The former
plays an important role in the overall e2e delay while the
latter is critical for the deployment technique; without knowing
the resource requirements of a component, the deployment
technique cannot find a deployment strategy.

Finding the WCET is not a trivial task. The WCET of a
component is directly dependent on the host node, i.e., the
developer must know the internal status of the node (i.e., the
current load and the available resources) and the location of the
component. An approach to determine the component’s WCET
is to compute it at deployment time. We can integrate the
WCET analysis into the deployment stage similar to how we
do for the latency communication computation. An approach
that automates the process of finding the WCET and simplifies
the tasks of the application developer. In this paper, we assume
that the developer provides the WCET using an external tool;
the implementation of an automatic approach is our target
for future work. Similar to the WCET computation, finding
the component’s resource requirements is a challenging task.
One option to find and estimate these resources (i.e., RAM,
CPU, HDD) is to benchmark the application on multiple
edge computing platforms and take the maximum usage as
an estimate.

Finally, besides finding an allocation of components to

nodes, we must map the input and output virtual ports as
well. There are two approaches that we can follow to achieve
port mapping, i.e., manual and automatic. The former requires
that the engineer performs manually the mapping of virtual
ports to the host node’s real ports following the deployment
strategy suggestion; a scenario that is possible only if the
target edge computing platform is known and has a relatively
small size. In comparison, in the latter approach, the resource
allocation technique is in charge of mapping the ports and the
components without requiring the help of an engineer.

VII. CONCLUSION

In this paper, we present EdgeFlow, a new IoT framework
aiming to assist the developer throughout the entire application
development and deployment process. For this framework, we
propose a methodology for latency-sensitive IoT applications
consisting of three important stages, i.e., the development
stage, validation stage, and deployment stage. For the devel-
opment stage, we propose an extension of the FBP paradigm
with timing and resource requirements. These requirements
are crucial to the successful deployment of the application
on the target edge computing platform. Further, we enable
the introduction of multiple communication flow constraints,
ensuring that the e2e delay of a certain communication flow
does not exceed a certain e2e delay. For the deployment and
validation stages, we introduce a new resource allocation
technique capable of finding feasible or optimal deployment
strategies. In conclusion, our methodology allows for a more
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detailed application description and assures that if the resource
allocation technique finds a deployment strategy, then the
strategy satisfies all application requirements.

For future work, we intend to extend our current work with
techniques to analyze and compute the component’s WCET;
hence, we eliminate the need of introducing a WCET range,
offering a more efficient deployment strategy. By having the
possibility to compute the WCET of a component, our IoT
framework can assist in the development and deployment of
hard real-time IoT applications as well. Furthermore, there is
one more important set of applications that are relevant in the
edge computing context, i.e., edge intelligence applications —
applications that have components that require machine learn-
ing supporting hardware (e.g., GPU and TPU) and specific
data stored locally. As a result, we plan to extend EdgeFlow
to (i) allow the developer to add the specific requirements to
each component during the application development process
and (ii) consider them during the deployment stage. Finally,
we aim to provide further extensions to the FBP paradigm,
i.e., add the possibility to (i) define QoS requirements and (ii)
add privacy and security requirements for each component.
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