
Trustworthy Interaction Balancing in Mixed
Service-oriented Systems

Florian Skopik, Daniel Schall, Schahram Dustdar
Distributed Systems Group

Vienna University of Technology
Argentinierstraße 8/184-1, A-1040 Vienna, Austria

{skopik|schall|dustdar}@infosys.tuwien.ac.at

ABSTRACT

Web-based collaboration systems typically require dynamic
and context-based interactions between people and services.
To support such complex interaction scenarios, we introduce
a mixed service-oriented system that is composed of both
humans and software services, collaborating and interact-
ing to perform certain activities. As an example, consider
a professional online help and support community spanning
interactions between human participants and software-based
services. Trust between these members is essential for suc-
cessful collaborations and has been extensively studied in
the context of social and collaborative networks. In this pa-
per, we discuss trust from a collaborative and social point of
view instead of a security perspective. Our approach follows
an interaction monitoring and an interpretative rule-based
trust inference model established on previous behavior.

However, trust relations encourage network members to
continue interacting with successful (and thus trusted) col-
laboration partners, and to avoid, or even refuse, interac-
tions with unknown actors. This behavior has negative side-
effects from a global community perspective. Given the help
and support environment, a small number of popular net-
work members will become increasingly overloaded with sup-
port requests. We solve this load and interaction balancing
problem by the means of trustworthy request delegations.

Categories and Subject Descriptors

H.3.5 [Online Information Services]: Web-based Ser-
vices; H.4 [Information Systems Applications]: Mis-
cellaneous

General Terms

Trust, Interactions, Service-oriented Systems

Keywords

Fuzzy Trust Model, Mixed System, Interaction Balancing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

1. INTRODUCTION
The support of people’s interactions on collaborative and

social Web platforms has evolved in a rapid pace over the
last few years. Services have become a fundamental pil-
lar of modern Web architectures. Today’s support of per-
vasiveness, context-awareness, and adaptiveness leads to a
paradigm shift from traditional closed environments to open,
loosely coupled, service-oriented systems. However, as these
systems become increasingly complex, they also require new
approaches to support interactions.

A mixed service-oriented system comprises human- and
software services that can be flexibly and dynamically com-
posed to perform various kinds of activities. Therefore, in-
teractions in such a system do not only span humans, but
also software services. Recently, trust has been identified as
a beneficial concept in large-scale networks [2, 8]. Consider-
ing trust relations when selecting people for communication
or collaboration, services to be utilized, and resources to be
applied leads to more efficient cooperation and compositions
of human- and software services [18]. In contrast to many
others, we do not discuss trust from a security perspective.
In this work we follow another view that is related to how
much humans or other systems can rely on services to ac-
complish their tasks [14].

We adopt common definitions of trust in collaboration
environments [5, 12, 18] and define trust as follows:

Trust reflects the expectation one actor has about

another’s future behavior to perform given activ-

ities dependably, securely, and reliably based on

experiences collected from previous interactions.

This definition includes several key characteristics that
need to be supported by a foundational trust model:

• Trust reflects an expectation and, therefore, cannot be
expressed objectively. It is influenced by subjective
perceptions of the involved actors.

• Trust is context dependent and is basically valid within
a particular scope only, such as the type of an activity
or the membership in a certain team.

• Trust relies on previous interactions, i.e., from previous
behavior a prediction for the future is inferred.

Several works have previously shown [2, 5, 8] that trust
and reputation mechanisms are key to the success of open
dynamic service-oriented environments. However, trust be-
tween human and software services is emerging based on

interactions. Interactions, for example, may be categorized
in terms of success (e.g., failed or finished) and importance.
Therefore, a key aspect of our approach is the monitoring
and analysis of interactions to automatically determine trust
in mixed service-oriented systems. We argue that in large-
scale SOA-based systems, only automatic trust determina-
tion is feasible. In particular, manually assigned ratings are
time-intensive and suffer from several drawbacks, such as
unfairness, discrimination or low incentives for humans to
provide trust ratings. Moreover, in mentioned mixed sys-
tems, software services demand for mechanisms to determine
trust relations to other services. Much research effort has
been spent on defining and formalizing trust models (e.g.,
see [1, 7, 12]). We present the following novel contributions:

• Interaction-based Trust Emergence. We show the es-
tablishment of trust based on dynamic interaction pat-
terns [4] in mixed service-oriented environments.

• Trust Interpretation. Due to the dynamic aspects in
mixed systems, we do not apply a ‘hard-wired’ and
static analytical trust model, but consider the subjec-
tive view and nature of trust by applying a rule-based
interpretative approach.

• Implementation and Architecture. We realize our the-
oretical concepts with existing Web service standards,
accounting for and relying on mechanisms that are
typically available in service-oriented systems, such as
WSDL service descriptions, and logging of SOAP-based
interactions.

The paper is organized as follows. In Section 2 we show
the fundamental concepts of trust emergence in mixed service-
oriented systems, a motivating example and the challenges
of our work. Section 3 describes the approach of trust infer-
ence and the utilized trust model. The application of trust
relations to enable trustworthy delegations and, therefore,
interaction balancing in communities is covered by Section
4. We evaluate our approach with a simulation in Section 5.
Section 6 deals with related work and Section 7 concludes
the paper.

2. INTERACTIONS AND COMPOSITIONS
We depict a professional virtual community (PVC) en-

vironment to familiarize with our concepts, and to demon-
strate the emergence of trust. A PVC is a virtual community
that consists of professionals and experts who interact and
collaborate by the means of information and communica-
tion technologies to perform their work. Nowadays, service-
oriented technologies are used to realize PVCs. The actors,
i.e., the community network members, that are both humans
and software services, provide help and support on requests
of each other. In such a mixed service-oriented environment
actors have to register at a central community management
service to become part of the network. Humans can register
themselves by providing their profiles, including their edu-
cation, employment status, certified skills and project expe-
rience. Services can be registered by their vendors or third
party persons that offer information about service features
and capabilities.

In the described environment, network members perform
activities. Activities are a concept to structure information
in ad-hoc collaboration environments, including the goal of

trusted

selection

trusted

interactions

WS
DL

WS
DL

A
1

trusted

composition
Web of Experts

Symbols:

human

software service

activity

interaction
context

interaction

trust relation

trust scope

WS

DL

AA
2

H1

H2

H3

H4

S

H

S1

Figure 1: A mixed service-oriented PVC.

the ongoing tasks, involved actors, and utilized resources.
They are either assigned from outside the community, e.g.
belonging to a higher-level process, or emerge by identifying
collaboration opportunities.

In the scenario depicted by Figure 1, the two humans H1

and H2 are the owners of activities A1 and A2 respectively.
We assume activity A1 is a software implementation activ-
ity and A2 is a software testing activity in some higher-level
software development process (not depicted here). The hu-
man H1, requests support from the Web service S1, that is
a software implementation knowledge base, providing code
examples and FAQs1 about software implementation. The
dashed arrows represent interactions (requests for support
(RFSs)), such as retrieving articles from the knowledge base.
Interactions are performed by traditional SOAP calls. Even
the capabilities of humans are described by WSDL and com-
munication takes place with SOAP messages (see Human-
Provided Services [15]). The interaction context, described
by activity A1 (reflected by the blue-shaded area), holds
information about involved actors, goal of the activity, tem-
poral constraints (start, duration, milestones), assigned re-
sources, planned costs, risk with respect to the whole soft-
ware development process and so on. The detailed descrip-
tion is out of scope of this paper, however, we conclude, that
an activity holistically describes the context of an interac-
tion in our environment model [18].

Human H2, the owner of activity A2, performs his/her
activity (software testing) jointly with the help of H1 and
S1. For that purpose, s/he interacts with all activity partic-
ipants, such as requesting help and assigning sub-activities.
As defined before, trust emerges from interactions, and is
bound to a particular scope. Therefore, we aggregate inter-
actions that occurred in a pre-defined scope, calculate met-
rics (numeric values describing prior interaction behavior),
and interpret them to establish trust. The scope of trust is
reflected by the green dashed ellipse in Figure 1. In the given
scenario, the scope comprises trust relations between PVC
members regarding help and support in ‘software develop-
ment’. So, regardless of whether interactions took place in
context of activity A1 or A2, interactions of both contexts
are aggregated to calculate metrics, because both interac-
tion contexts adhere to the scope of software development.
Finally, interaction metrics are interpreted using rules, and
the degree of trust between each pair of previously interact-
ing PVC members is determined.

Let us assume we are able to infer meaningful trust be-
tween interacting network members (as demonstrated later
in this paper). Usually, once a network member becomes

1frequently asked questions

highly trusted by others (normally leading to globally high
reputation), s/he is consulted in future collaborations again
and again. Hence, distinguished experts would get over-
loaded with work and flooded with support requests. We
aim at applying a balancing model that relies on the means
of delegations. For instance, if network member H2 is over-
loaded, s/he may delegate incoming requests (e.g., from H1)
to third, well trusted, network members (e.g., S1) in the
same scope. These third parties may directly respond to the
original requester. The delegation model has two important
properties:

• Interaction Balancing. Interactions are not focused on
highly reputed members only, but load is distributed
over the whole network.

• Establishment of new Trust Relations. New personal
trust relations that rely on direct interactions, emerge,
leading to future trustworthy compositions.

3. INTERPRETATIVE TRUST INFERENCE
We develop and extend the VieTE - Vienna Trust Emer-

gence Framework [18] to research and evaluate novel con-
cepts of trust and reputation in mixed service-oriented sys-
tem environments. Briefly (see Figure 2), the system cap-
tures interactions between network members (bottom layer),
calculates metrics of member relations, such as average re-
sponse time, request success rates, and availability, performs
a rule-based interpretation of these metrics, and infers trust
between each pair of interacting members (middle layer). Fi-
nally a social network, describing collaboration- and trust re-
lationships is provided (top layer). While the depicted archi-
tecture follows a centralized approach, the logging facilities
are replicated for scalability reasons, and monitoring takes
place in a distributed manner. Interactions are purged in
predefined time intervals, depending on the required depth
of history needed by metric calculation plugins.

Trust Administration WS

Scope Definitions
- Activity Constraints

- Tag Lists

Metric

Calculation

Plugins

Configuration Mgmt. WS

Scope-dependent

Metrics Calculation

Interaction Correlation

and Abstraction

Interaction Retrieval

and Pre-Processing

Trust Interpretation

and Fuzzy Reasoning

<context definitions>

<interactions@context>

<metric definitions>

<scope>

<rules@scope><trust@scope>

D
is

tr
ib

u
te

d
 I

n
te

ra
c
ti

o
n

L

o
g

g
in

g
C

e
n

tr
a
li
z
e
d

V

ie
T

E
C

o
re

P
ro

v
is

io
n

 a
n

d

C
o

n
fi

g
u

ra
ti

o
n

Social Network Provisioning WS

Members
- Profiles

- Collaboration Metrics

Relations
- Interaction-, Trust-,

 Similarity Metrics

SN and Metrics Update WS

<metrics@scope>

A
c
ti
v
it
y
 M

g
m

t.
 W

S

Activities
- Activity Structures

- Tags

A
c
ti
v
it
y
 A

d
m

in
.

W
S

Interaction Mgmt. WS

Interaction DB
- Raw Interactions

- Optional Subscribers

Logging WS

Interaction Mgmt. WS

Interaction DB
- Raw Interactions

- Optional Subscribers

Logging WS

Interaction Mgmt. WS

Interaction DB
- Raw Interactions

- Optional Subscribers

Logging WS

Figure 2: VieTE framework overview.

3.1 Interaction Monitoring
Interactions are captured by interaction sensors, stored

and managed by logging services. The requests for support
(RFSs) and their responses, exchanged between community
members, are modeled as traditional SOAP calls, but with
various header extensions, as shown in Listing 1. These
header extensions include the context of interactions (i.e.,
the activity that is performed), delegation restrictions (e.g.,
the number of hops), identify the sender and receivers with
WS-Addressing2, and hold some meta-information about
the RFS itself. For Human-Provided services (HPSs), SOAP
messages are mapped to a GUI by the HPS framework [15].

Actors use activities to manage their work as introduced
before. Activities are structures to describe work and its
goals, as well as participating actors, used resources, and
produced project artifacts. A detailed description of this
model, used to capture the context of interactions, is pro-
vided in [18].

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:vietypes="http://viete.infosys.tuwien.ac.at/Type"

xmlns:hps="http://hps.infosys.tuwien.ac.at/"
xmlns:rfs="http://viete.infosys.tuwien.ac.at/Type/RFS">
<soap:Header>
<vietypes:timestamp value="2009-03-05T15:13:21"/>
<vietypes:delegation hops="3" deadline="2009-03-06T12:00:00"/>
<vietypes:activity url="http://www.coin-ip.eu/Activity#42"/>
<wsa:MessageID>uuid:722B1240−...</wsa:MessageID>

<wsa:ReplyTo>http://viete..../Actor#Florian</wsa:ReplyTo>
<wsa:From>http://viete..../Actor#Florian</wsa:From>

<wsa:To>http://viete..../Actor#Daniel</wsa:To>
<wsa:Action>http://viete....ac.at/Type/RFS</wsa:Action>
</soap:Header>
<soap:Body>
<hps:RFS>
<rfs:requ>Can you create an ant file for projectX?</rfs:requ>
<rfs:generalterms>programming</rfs:generalterms>
<rfs:keywords>java, EE, ant, apache axis2</rfs:keywords>
<rfs:resource url="http://svn.vitalab.tuwien.ac.at/projectX"/>

</hps:RFS>
</soap:Body>
</soap:Envelope>

Listing 1: Simplified RFS via SOAP example.

3.2 Interaction Metric Calculation
Analyzed interactions are RFSs and responses sent by an

actor u regarding another one v. The context of interactions
reflects the situation and reason for their occurrences, and
is modeled as activities. When interactions are interpreted,
only a minor subset of all describing context elements is
relevant within a trust scope. In the motivating use case of
this paper, such a trust scope may describe the expertise
area that is required to process an RFS.

Table 1 shows some example interaction metrics suitable
for trust interpretation that can be calculated from logged
SOAP calls. Note, as described before, these metrics are de-
termined for particular scopes. The availability of a service,
either provided by humans or implemented in Software, can
be high in one scope, but much lower in another one. Fur-
thermore, these metrics are calculated for each directed re-
lation between pairs of network members. An actor u might
serve v reliably, but not a third party w.

2http://www.w3.org/Submission/ws-addressing/

Table 1: Some metrics utilized for trust inference.
metric name range unit description

availability 0-100 % ratio replied/unreplied RFSs
response time 0-96 hours average response time in hours
success rate 0-100 % amount of successful RFSs
experience 0-∞ 1 number of RFSs served
man. reward 0-5 1 manually assigned scores
costs 0-5 $ price for serving RFSs

For the sake of brevity, in the following examples and eval-
uation we account only for the average response time tr (Eq.
1) of a service and its success rate sr (Eq. 2). These are
typical metrics for an emergency help and support environ-

ment, where fast and reliable support is absolutely required,
but costs can be neglected. We assume, similar complexity
of requests for support (RFS) in a scope s, thus different
RFSs require comparable efforts from services (similar to a
traditional Internet forum).

The response time is calculated as the duration between
sending (or delegating) a request (tsend) to a service and re-
ceiving the corresponding response (treceive), averaged over
all served RFSs. Unique IDs of calls (see SOAP header in
Listing 1) enable sophisticated message correlation to iden-
tify corresponding messages.

t
s
r =

∑
rfs∈RFS (treceive(rfs)− tsend(rfs))

|RFS|
(1)

An RFS is considered successfully served (sRFS) if lead-
ing to a result before a predefined deadline, otherwise it fails
(fRFS).

sr
s =

num(sRFS)

num(sRFS) + num(fRFS)
(2)

3.3 Interpretation and Trust Inference
On top of the interaction metrics M of u towards v in

scope s (here: M = {tsr, sr
s}), personal trust τ s(u, v) ∈ [0, 1]

is inferred. Trust, describing the relationship from u to v,
represents recent evidence that an actor behaves dependably,
securely and reliably. The function Ψs (Eq. 3) evaluates
metrics M with a rule set R to interpret trust τ in scope s.

τ
s(u, v) = Ψs(u,M(u, v), R, s) (3)

Instead of usual business rules, we utilize a fuzzy set the-
ory approach that enables an intuitive way to combine and
interpret various metrics as trust from a collaborative and
social point of view. Fuzzy set theory, developed by Zadeh
[22], and fuzzy logic emerged in the domain of control en-
gineering, but are nowadays increasingly used in computer
science to enable lightweight reasoning on a set of imperfect
data or knowledge. The concept of fuzziness has been used
earlier in trust models [6, 13, 17], however, to our best knowl-
edge not to enable an interpretation of trust from larger and
diverse sets of metrics, calculated upon observed interac-
tions. Due to space limitations we do not outline fuzzy set
theory here, but refer to further literature, for instance [23].

A linguistic variable comprises a set of membership func-
tions that describe the ‘grade of membership’ of an element
to a fuzzy set. Figure 4 shows examples for the linguistic
variables response time tr and success rate sr. The corre-
sponding membership functions describe, for instance, what
means low, medium, and high response time, and the tran-
sitions between these sets. An example, showing two rules

that fire, and how concrete input values are fuzzified, inter-
preted and defuzzyfied again, is depicted.

if tr is low and sr is high then trust is full

if tr is low and sr is medium then trust is high

if tr is low and sr is low then trust is low

if tr is medium and sr is high then trust is high

if tr is medium and sr is medium then trust is medium

if tr is medium and sr is low then trust is low

if tr is high and sr is high then trust is medium

if tr is high and sr is medium then trust is low

if tr is high and sr is low then trust is low

Listing 2: Rules for inferring trust upon tr and sr.

Example: Given the linguistic variables response time tr,
success rate sr, and trust, with the membership functions as
defined in Figure 4, we provide the rulebase in Listing 2 to
the fuzzy engine. Figure 3 visualizes trust inference results
for different pairs of tr and sr inputs.

0
20

40
60

80
1000

20

40

60

80

100
0

0.2

0.4

0.6

0.8

1

response timesuccess rate

tr
u

s
t

Figure 3: Result space for the given rule set.

Personal trust τ s(u, v) from u in v is updated periodically
in consecutive time intervals (e.g., on a daily basis). We
apply a sliding window approach and process all logged in-
teractions within a pre-configured time frame (e.g., the last
week or month). The size of the window depends on the cal-
culated interaction metrics. For instance, success rates or
collected experiences are inferred from interactions within
the last six month, while response times only depend on
interactions in the last week. Therefore, the depth of the
required interaction history relies on the utilized metrics of
the environment. We demonstrate an application of this
approach in the evaluation in Section 5.

3.4 Collaboration Network Provisioning
Finally, the social network, comprising actors connected

by trust relations, is provided by VieTE through a SOAP
interface (see top of Figure 2). A trust relation is always
asymmetric, i.e., a directed edge from one member node to
another one in a graph model G = (N,E). We call the
trusting actor the trustor u (the source of an edge), and
the trusted entitiy the trustee v (the sink of an edge). Vi-
eTE’s provisioning interface, described by WSDL, supports
convinient network retrieval operations, such as getting the
trustors and trustees of a node in a specified scope.

362412 48 7260

0.25

0.75

0.5

1.0

(tr)

response

time tr [h]

HIGHLOW MEDIUM

5010 100

0.25

0.75

0.5

1.0

(sr)

success

rate sr [%]

LOW HIGHMEDIUM

18 75

0.60.40.2 0.8 1.0

0.25

0.75

0.5

1.0

(trust)
FULLLOW MEDIUM HIGH

trust

0.60.40.2 0.8 1.0

0.25

0.75

0.5

1.0

(trust)
FULLLOW MEDIUM HIGH

trust

If tr is low and sr is high then trust is full If tr is low and sr is medium then trust is high

0.60.40.2 0.8 1.0

0.25

0.75

0.5

1.0

(trust)
FULLLOW MEDIUM HIGH

trust

0.60.40.2 0.8 1.0

0.25

0.75

0.5

1.0

(trust)
FULLLOW MEDIUM HIGH

trust

If tr is medium and sr is high then trust is high If tr is medium and sr is medium then trust is medium

0.60.40.2 0.8 1.0

0.25

0.75

0.5

1.0

(trust)
FULLLOW MEDIUM HIGH

trust

a)

b)

c) Defuzzification Procedure:

Trust ’center of gravity’: 0.61

0.61

Figure 4: An example showing fuzzy trust inference. Applied interaction metrics are response time tr = 18h
and success rate sr = 75%. (a) definition of membership functions and fuzzified interaction metrics; (b) four
applied fuzzy rules following the max-min inference; (c) defuzzification by determining the center of gravity.

A domain expert configures certain properties of the trust
inference process that are applied for all participants of the
network. For instance, s/he defines meaningful trust scopes
in the given domain and business area, configures available
metric calculation plugins that provide the metrics for per-
sonal trust rules, and sets up the general trust model be-
havior, such as temporal constraints for interaction analysis
and endpoints of logging facilities.

4. DELEGATIONS AND BALANCING
A common problem of trust and reputation mechanisms

in online communities is that there emerge only a minor-
ity of highly trusted actors, while the majority remains in
the background. Therefore, network members tend to con-
sult and interact with the same (already trusted) services
again and again, leading to work overloads of these service
providers, and hindering the emergence of new trust rela-
tions. We utilize the means of delegations to compensate
this load and interaction balancing problem that is often
neglected, but of paramount importance in collaborative en-
vironments. In the motivating PVC scenario of this paper
actors send and process requests for support (RFS). Once
an actor gets overloaded s/he should be able to delegate re-
quests to other actors (with potentially free resources). If
the receivers of such delegations behave trustworthy, i.e., re-
spond fast and reliably, the original requesters will establish
trust to them. Figure 5 visualizes this model. In case of a

successful delegation, u sends an RFS to v who delegates to
w, and w responds directly to u. This interaction will pos-
itively impact the metrics that describe the relation from u

to w, and finally τ (u,w) increases. The relation τ (u, v) is
neither rewarded nor punished, because on the one side v

did not serve u’s RFS, but on the other side, v was able to
successfully delegate, and thus did not harm u. The relation
τ (v,w) is also not influenced, since v is not the original re-
quester. If a delegation fails (Figure 5(b)), i.e., an RFS is not
responded, metrics that describe both τ (u, v) and τ (v, w)
are negatively influenced (for instance the success rate is
decreased), because of v’s and w’s unreliable behavior. But
in that case, we assume that τ (u,w) remains unchanged.
Although w has not served u’s request, we do not know the
reasons for that behavior. For instance, a denial of service
attack could maliciously harm w’s reputation (the sum of
trust relations), if s/he is flooded with delegated RFSs.

vu

w
+

I.

II.

III.

(a) Successful delegation

vu

w-
I.

II.

-

(b) Failed delegation

Figure 5: Delegations and their impact on trust.

The described delegation mechanisms and their influence
on trust are configured by a domain expert in VieTE, and are
feasible for our mixed service systems PVC scenario, where
all participants in the network have similar collaboration
roles (in particular to provide help and support). Other del-
egation and trust mechanisms, accounting for different roles
of network members and restrictions of delegations due to
confidentiality reasons, may be desirable in other domains.

One of the major challenges to enable sophisticated bal-
ancing is to determine the receivers of delegations in the
whole network. Usually, the selection will rely on trust,
because, as shown in Figure 5(b), it is in v’s interest to
delegate successfully and not to get punished. A fundamen-
tal selection strategy randomly picks an actor from a pool
of service providers that are personally trusted above a pre-
defined limit. Based on each individual’s interaction history,
every network member has his/her own pool of trusted ac-
tors. More advanced selection models are out of scope of
this paper, and are subject to further research.

5. EVALUATION OF THE PVC SCENARIO
We evaluate the VieTE framework that implements our

approach of fuzzy trust inference and balancing, by simu-
lating typical scenarios in the described PVC environment.
For that purpose, we utilize the popular Repast Simphony3

toolkit, a software bundle that enables round-based agent
simulation. In contrast to researchers in the agent domain,
we do not simulate our concepts by implementing different
actor types and their behavior only, but we use a network of
actors to provide stimuli for the actual VieTE framework.
Therefore, we are not only able to evaluate our new approach
of fuzzy trust inference, but also the technical grounding
based on Web service standards. Figure 6 depicts that Vi-
eTE is used exactly in the same manner in our simulation
(highlighted left side), as it would be used by a real mixed
systems PVC (right side).

VieTE Framework

Social Network and

Trust Provisioning

Interaction Logging

agent trust information

simulated SOAP-based interactions

Mixed Systems

PVC

Service and HPS

Middleware

Mixed Systems

Trust Lookup

Simulated Agent

Network

Artifical Agent

Interactions

Simulated Agents

real SOAP-based interactions

actor trust information

Figure 6: Simulation setup (left side) compared to
the intended usage (right side) of VieTE.

In particular, we let the simulated network members in-
teract (sending, responding, and delegating RFSs), and pro-
vide these interactions to the logging facilities of VieTE. The
framework infers trust by calculating the described metrics
tr and sr, and using the rule set of Listing 2 for behavioral
interpretation. Finally, emerging trust relations between the
simulated actors influence the selection of receivers of RFSs.
Hence, VieTE and the simulated actor network relies on
each other, and are used in a cyclic approach; exactly the
same way VieTE would be used by real PVCs. To facilitate
simulations, all interactions take place in the same scope.
3http://repast.sourceforge.net

5.1 Simulation Setup
Simulated Agent Network. Repast Simphony offers

convenient support to model different actor behavior. As
an inherent part of our environment, we make no distinc-
tion between human users and software services. Each actor
owns a unique id (a number), produces SOAP requests, and
follows one of the following behavior models: (i) malicious

actors accept all RFSs but never delegate or respond, (ii)
erratic actors accept all RFSs but only process (respond di-
rectly or delegate) RFSs originally coming from requesters
with odd-numbered IDs, (iii) fair players process all requests
if they are not overloaded, and delegate to trustworthy net-
work neighbors otherwise.

We set up a network comprising 15 actors, where only one
is highly reputed and fully trusted by all others as depicted
in Figure 7(a). This is the typical starting point of a newly
created community, where one actor invites others to join.

VieTE Setup. After each simulation step (round) seven
randomly picked actors send one RFS to its most trusted
actor (in the beginning this will only be the highly reputed
one who starts to delegate). Each actor’s input queue has
exactly 5 slots to buffer incoming RFSs. A request is always
accepted and takes exactly one round to be served. An actor
processes an RFS itself if it has a free slot in its input queue,
otherwise incoming RFSs are delegated to randomly picked
trusted (τ > 0.8) neighbors in the network. Note, one actor
does not delegate more than one RFS per round to the same
neighbor, however, an actor may receive more than one RFS
from different neighbors in the same round. Delegations re-
quire one additional simulation round. There is an upper
limit of 15 rounds for an RFS to be served (deadline); other-
wise it is considered failed. A request can be delegated only
three times (but not back to the original requester) (hops)
to avoid circulating RFSs. Because the simulation utilizes
only two fully automatically determined metrics (tr and sr),
and no manual rewarding of responses, we assume an RFS is
successfully served if a response arrives within 15 rounds (no
fake or low quality responses). After each round, VieTE de-
termines tr based on interactions in the last 25 rounds, and
sr upon interactions in the last 50 rounds (sliding window
approach), and purges older logs.

5.2 Simulation Results
Interaction Balancing. We perform 250 simulation

rounds of the described scenario with the aforementioned
properties, and study the network structure in certain points
of the simulation. The depicted networks in Figure 7 show
actors with different behavior and the temporal evolvement
of trust relations between them. The size of the graph’s
nodes depend on the amount of trust established by net-
work neighbors. Beginning with a star structure (Figure
7(a)), the network structure in Figure 7(b) emerges after
100 rounds, and Figure 7(c) after 250 rounds respectively.
Note, since the behavior of the nodes is not deterministic
(i.e., RFSs are sent to random neighbors that are trusted
with τ > 0.8 (lower bound of full trust ; see Figure 4)), the
simulation output looks differently for each simulation run,
however, the overall properties of the network are similar
(number and strength of emerged trust relations).

In the beginning, all RFSs are sent to actor 0, who del-
egates to randomly picked trusted actors. If they respond
reliably, then requesters establish trust in that third parties.
Otherwise they lose trust in actor 0 (because of unsuccess-

(a) initial n=0 (b) intermediate n=100

(c) balanced n=250 (d) balanced (reduced)

Figure 7: Network structure after simulation round
n={0, 100, 250}. Elliptic nodes are fair players, rect-
angular shapes represent erratic actors, diamond
shaped nodes reflect nodes with malicious behavior.

ful delegations). Therefore, actors with even-numbered IDs
lose trust in actor 0 faster than odd-numbered actors, be-
cause if actor 0 delegates requests to erratic actors, they are
not replied. As an additional feature in round 100, actors
that are not trusted with τ > 0.2 by at least on other net-
work member, are removed from the network, similar to Web
communities where leechers (actors that do not contribute to
the network) are banned. Therefore, actors with malicious
behavior disappear, while actors with erratic behavior still
remain in the network. Figure 7(d) shows a reduced view of
the balanced network after 250 rounds. Only trust relations
with τ > 0.8 are visualized. As expected most nodes have
strong trust relations in at least one fair player (actors who
reliably respond and delegate RFSs). However, remember
that erratic actors reliably serve only requests coming from
actors with odd-numbered IDs. Therefore, actor 3 and ac-

tor 9 also establish full trust in actors from this class. Note,
if actor 3 and actor 9 would have re-delegated much RFSs
coming from even-numbered actors to erratic actors, than
those RFSs would have failed and only low trust would have
emerged. However, due to the comparatively low load of the
network (less than half of the actors receive RFSs per round
(until n = 100)), only a low amount of re-delegations occur
(approx. 8 percent).

Global Success Rate. We run the simulation with dif-
ferent interaction rates of actors. In particular, we let 5,
7 (as in the experiment described before), and 15 actors
send RFSs to others, and calculate the global success rate,
i.e., the amount of successfully answered RFSs from a global
point of view. If requests would not be sent to trusted ac-
tors that proved their reliable behavior before, but uniformly
distributed over available actor classes (5 fair, 5 erratic, 5
malicious) – according to a primitive interaction balancing
approach – than 50 percent of RFSs would be served suc-
cessfully. This theoretical limit (without delegations) is rep-
resented as a reference in Figure 8 by the dashed line. We
study the performance of our trustworthy interaction bal-

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

simulation round [n]

g
lo

b
a
l

s
u

c
c
e
s
s
 r

a
te

 [
%

]

theoretical average (ud)

5 requesters per round

7 requesters per round

15 requesters per round

Figure 8: Global RFS response success rate of the
simulated actor network.

ancing approach compared to this primitive method.
In Figure 8 some results are visualized, and the following

issues are worth mentioning. The deadline for an RFS to be
served is 15 rounds. So, the success rate of round i is avail-
able in round i + 15. We simulate the actor behavior until
round 100 (where malicious actors are banned). Therefore,
the temporal evolution of the global success rate is depicted
until round 85. In the beginning, i.e., the very first round,
the success rate is very high, because all RFSs are sent to
actor 0 (a fair player), who performs/buffers the first five
RFSs itself (and then begins to delegate). Hence, the suc-
cess rate is high for the first round, but collapses in the sec-
ond round, where virtually only delegations occur. The rate
slowly recovers as new trust relations emerge, and members
get connected to new potential actors to send RFSs to.

In the simulation, where each of five randomly picked ac-
tors send one request to another one, the success rate sta-
bilizes at a high level, after new trust relations emerged,
and the network has been balanced. This process can be
studied for seven actors again. However, since it comes to
re-delegations, some RFSs frequently fail being processed
(due to the impact of erratic actors), and therefore, the suc-
cess rate oscillates at a high level. The case of 15 interacting
network members per round shows, that actors are mainly
busy with re-delegations and the large part of RFSs miss
their deadlines. This results in a much lower success rate
than the theoretical average of 50%.

Finally, note that our interaction balancing model of trust-
worthy delegations performs best, if the overall amount of
reliable actors is high, and the load is low to medium.

6. RELATED WORK
The role of interactions in large-scale collaborative net-

works has been studied and discussed by [4]. Interaction con-
cepts, such as specific interaction and delegation patterns,
are applied in mixed service-oriented systems. Mixed Sys-
tems, consisting of humans and software services, are real-
ized with SOA concepts, regarding service discovery, service
descriptions (WSDL), late dynamic binding, and SOAP-
based interactions. In such networks, humans participate
and provide services in a uniform way by utilizing the Human-
provided Services framework [15]. The importance of inter-
actions and their impact on trust in large-scale mixed sys-
tems has been described earlier in [18].

Trust as a computational concept has been extensively
studied first by Stephen Marsh [10]. Since that, further
widely recognized works in computational models have been
performed, such as [5, 12]. While some works, including [3],
underline social aspects and subjective components of trust,
others research the detection of attacks and malicious be-
havior using appropriate trust models [19]. Trust models
highlight concepts from either an abstract perspective, i.e.,
not bound to specific scenarios or environments, or show
their application in certain domains, such as behavior in
agent networks [21] or service-oriented environments [11].
In particular, in our paper we construct a trust model that
is closely connected to and applied in the SOA domain. This
trust model relies on mechanisms of SOA, such as SOAP-
based interaction monitoring, or Web services based trust
provisioning. Other works in that domain, such as [9, 16,
20] disregard the human factor in large-scale networks.

Fuzzy set theory has been applied in trust models before
[6, 13, 17], however, to our best knowledge, not to inter-
pret diverse sets of interaction metrics. Utilizing interaction
metrics, in particular calculated between pairs of network
members, enables us to incorporate a personalized and so-
cial perspective. For instance, an actor’s behavior may vary
toward different network members. This aspect is usually
out of scope in Web Services trust models, that are often
closely connected to traditional QoS approaches. Moreover,
most trust models in the SOA domain utilize trust for ser-
vice selection only (for instance see [11]), and neglect the
collaborative aspects and the human factor.

7. CONCLUSION AND FURTHER WORK
In this paper we discussed the VieTE framework, in par-

ticular its flexible and interpretative trust model for mixed
service-oriented systems. We identified the interaction bal-
ancing problem in ad-hoc collaboration scenarios, and the
demand to support the establishment of new trust relations
between unknown actors. Unlike other approaches that pre-
dict not existing relations by the means of trust propagation
(transitive relations), recommendation, and reputation, we
facilitate the emergence of new personal trust relations. This
is achieved by connecting concepts of delegations to our trust
model.

Currently we are working on a SOA testbed environment
that will enable experiments in a real mixed service-oriented
system. Our trust model will be utilized as a foundational
pillar for collaboration support in the EU FP7 COIN4 project.

Acknowledgments

This work is supported by the European Union through the
IP project COIN (FP7-216256).

8. REFERENCES
[1] A. Abdul-Rahman and S. Hailes. Supporting trust in

virtual communities. In HICSS, 2000.

[2] D. Artz and Y. Gil. A survey of trust in computer
science and the semantic web. Web Semantics,
5(2):58–71, 2007.

[3] J. Caverlee, L. Liu, and S. Webb. Socialtrust:
tamper-resilient trust establishment in online
communities. In JCDL, pages 104–114. ACM, 2008.

4http://www.coin-ip.eu

[4] S. Dustdar and T. Hoffmann. Interaction pattern
detection in process oriented information systems.
DKE, 62(1):138–155, jul 2007.

[5] T. Grandison and M. Sloman. A survey of trust in
internet applications. IEEE Communications Surveys

and Tutorials, 3(4), 2000.

[6] N. Griffiths. A fuzzy approach to reasoning with trust,
distrust and insufficient trust. In CIA, volume 4149,
pages 360–374, 2006.

[7] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt. An
integrated trust and reputation model for open
multi-agent systems. AAMAS, 13(2):119–154, 2006.

[8] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust
and reputation systems for online service provision.
Decision Support Systems, 43(2):618–644, 2007.

[9] D. Kovac and D. Trcek. Qualitative trust modeling in
soa. Journal of Systems Architecture, 55(4):255–263,
2009.

[10] S. P. Marsh. Formalising Trust as a Computational

Concept. PhD thesis, University of Stirling, April 1994.

[11] E. M. Maximilien and M. P. Singh. Toward autonomic
web services trust and selection. In ICSOC, pages
212–221, 2004.

[12] L. Mui, M. Mohtashemi, and A. Halberstadt. A
computational model of trust and reputation for
e-businesses. In HICSS, page 188, 2002.

[13] S. Rajbhandari, O. F. Rana, and I. Wootten. A fuzzy
model for calculating workflow trust using provenance
data. In ACM Mardi Gras Conference, page 10, 2008.

[14] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Transactions

on Autonomous and Adaptive Systems, 4(2), May
2009.

[15] D. Schall, H.-L. Truong, and S. Dustdar. Unifying
human and software services in web-scale
collaborations. IEEE Internet Computing,
12(3):62–68, 2008.

[16] P. D. Sharon Paradesi and S. Swaika. Integrating
behavioral trust in web service compositions. In
ICWS, 2009.

[17] W. Sherchan, S. W. Loke, and S. Krishnaswamy. A
fuzzy model for reasoning about reputation in web
services. In SAC, pages 1886–1892, 2006.

[18] F. Skopik, D. Schall, and S. Dustdar. The cycle of
trust in mixed service-oriented systems. In SEAA,
pages 72–79, 2009.

[19] M. Srivatsa, L. Xiong, and L. Liu. Trustguard:
countering vulnerabilities in reputation management
for decentralized overlay networks. In WWW, pages
422–431, 2005.

[20] M. G. Uddin, M. Zulkernine, and S. I. Ahamed.
Collaboration through computation. SOCA,
3(1):47–63, 2009.

[21] Y. Wang and M. P. Singh. Trust representation and
aggregation in a distributed agent system. In AAAI,
2006.

[22] L. A. Zadeh. Fuzzy sets. Information and Control,
8:338–353, 1965.

[23] H.-J. Zimmermann. Fuzzy Set Theory— and Its

Applications. Kluwer Academic Publishers, third
edition, 1996.

